Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods

Carsten Carstensen, Joscha Gedicke, and Donsub Rim

Abstract. The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.

1. Introduction

Quantitative a priori error control for the three most popular lowest-order conforming, nonconforming, and mixed 2D finite element methods (FEMs) named after Courant, Crouzeix-Raviart, and Raviart-Thomas, depicted symbolically in Figure 1.1, is one of the most fundamental questions in the numerical analysis of partial differential equations (PDEs). For the Courant FEM and the Raviart-Thomas mixed FEM (MFEM), there exist elementwise interpolation operators I and I_F such that the error analysis consists in an estimate of the Lebesgue norms in the sense of

$$\|\nabla (v - Iv)\|_{L^2(T)} \leq C(T) h_T \|D^2 v\|_{L^2(T)}$$

for some smooth function v with Hessian $D^2 v$ and the triangle T with diameter h_T. The point is that the constant $C(T)$ depends on the shape of the triangle but not on its size h_T. The textbook analysis is based on the Bramble-Hilbert lemma and so on some compact embeddings on a reference geometry [Bra01, Cia78]. The transformation formula then leads to some estimate of $C(T)$ which is qualitative and can be quantified with the help of computer-justified values of some eigenvalue problem on the reference triangle, cf. e.g. [KL07] for a historic overview and the references quoted therein, in particular [BA76] for Courant.

This research was supported by the World Class University (WCU) program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology R31-2008-000-10049-0 and the DFG Research Center MATHEON "Mathematics for key technologies" in Berlin. The second author was supported in parts by the DFG graduate school BMS "Berlin Mathematical School".
and [AD99] for Raviart-Thomas FEM. This paper aims at direct elementary
proofs of quantitative error estimates based on the Poincaré inequality
with some known constant plus elementary integration by parts.

The situation is somewhat different for the nonconforming FEMs
because the local interpolation error through the natural interpolation
operator I_{NC} is very sharp, even optimal by some averaging
property; but the global error is also driven by the interaction with
the inconsistency. The standard textbook analysis employs some
Strang-Fix type argument [Bra01, BS08] which leads to

two contributions and gives the reader the impression that the error analysis

is even more sensitive and perhaps even the scheme is more sensitive than

the other two. In Braess [Bra01] page 111 one can even find the hint that

the Crouzeix-Raviart nonconforming FEM (NCFEM) is more sensitive

with respect to large second order derivatives than the other two.

This paper aims at a clarification by the comparison of the best known

constants $C(T)$ for the three FEMs at hand. In fact, the constant

\[C(\alpha) := \sqrt{\frac{1/4 + 2/j_{1,1}^2}{1 - |\cos \alpha|}}, \]

for a maximal angle $0 < \alpha < \pi$ of a triangle T and the first positive root $j_{1,1}$
of the Bessel function J_1, and its maximum

\[C(T) := \max_{T \in \mathcal{T}} C(\max \angle T) \]
in a triangulation \mathcal{T} of a 2D polygonal domain Ω play a dominant role. The

main results of this paper are the explicit error estimates

\begin{align*}
(1.1) \quad & \|u - u_C\| \leq C(T) \|h_T D^2 u\|_{L^2(\Omega)}, \\
(1.2) \quad & \|p - p_{RT}\|_{L^2(\Omega)} \leq C(T) \|h_T Dp\|_{L^2(\Omega)}, \\
(1.3) \quad & \|u - u_{CR}\|_{NC} \leq \frac{1}{j_{1,1}} \text{osc}(f, \mathcal{T}) + \sqrt{\frac{1}{j_{1,1}^2} + C(T)^2 \|h_T D^2 u\|_{L^2(\Omega)}},
\end{align*}
for the Courant, Raviart-Thomas and Crouzeix-Raviart finite element approximations u_C, p_{RT} and u_{CR} in a simple Poisson model problem and the oscillations $\text{osc}(f, T)$ defined in Section 6. In particular, the constants (which are upper bounds) have the same behaviour as the angles deteriorate as $\alpha \nearrow \pi$.

The above estimate for the NCFEM displays the perturbation result for an arbitrary L^2 function f as a right-hand side in the Poisson model problem and thereby corrects and sharpens a corresponding error analysis in [MS09]. The technique here bypasses the Strang-Fix argument by the direct connection of the Raviart-Thomas MFEM with the Crouzeix-Raviart NCFEM usually attributed to Marini [Mar85, AB85].

The paper is organised as follows. Section 2 presents some preliminaries and Section 3 shows the elementary interpolation estimate for the nodal interpolation operator I. The model problem and the error estimate (1.2) for the Courant finite element method is presented Section 4. Sections 5 and 6 present the error estimates for the Raviart-Thomas MFEM (1.3) and the Crouzeix-Raviart NCFEM (1.4).

The contents of this paper reflects the way, finite element methods are taught by the first author over the years at the universities in Kiel, Vienna, Berlin, Budapest, and Seoul as well as in his summer schools in Cape Town, Beijing, Mumbai and on Goa. They seem to be optimal in the class of arguments and offer some quantitative insight with surprisingly little effort.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is employed. The Lebesgue integral reads \int, the integral mean \bar{f}, norms $\|\cdot\| := \|
abla \cdot\|_{L^2(\Omega)}$, $\|\cdot\|_{NC} := \|
abla_{NC} \cdot\|_{L^2(\Omega)}$ with piecewise gradient $(\nabla_{NC} \cdot)|_T := \nabla(\cdot|_T)$ for all $T \in \mathcal{T}$, and $|\cdot|$ denotes the measure as the area $|T|$ of the triangle T and the length $|E|$ of an edge E.

2. Elementary Preliminaries

This section is devoted to some preliminaries for the interpolation error estimates. One is a Poincaré-Friedrichs type estimate, which follows from the well known trace identity and another is some transformation stability in the plane. Figure 2.1 displays the geometry of a triangle in the subsequent two lemmas.

Lemma 2.1 (Trace Identity). Let $f \in W^{1,1}(T)$ on the triangle $T = \text{conv}(\{P\} \cup E)$ with vertex P and opposite edge E. Then it holds

$$\int_E f \, ds - \int_T f \, dx = \frac{1}{2} \int_T (x - P) \cdot \nabla f(x) \, dx.$$
Figure 2.1. Geometry of the triangle T from Lemma 2.1 and Lemma 2.3.

Proof. Set $g(x) := (x - P)f(x)$ for all $x \in T$ and observe

$$(x - P) \cdot \nu_E = \text{dist}(P, H) \quad \text{for} \quad x \in E \subset H$$

for the line H from Figure 2.1 that enlarges E. For x on one of the two other edges, $x - P$ is parallel to that edge. Hence, the unit normal ν along ∂T satisfies

$$(x - P) \perp \nu(x) \quad \text{for} \quad x \in \partial T \setminus E.$$

Therefore, the Gauss divergence theorem leads to

$$\int_T \text{div} \, g(x) \, dx = \int_{\partial T} g(x) \cdot \nu(x) \, ds_x$$

$$= \int_E f(x) (x - P) \cdot \nu_E \, ds_x = \text{dist}(P, H) \int_E f \, ds.$$

This and the product rule

$$\text{div} \, g(x) = 2f(x) + \nabla f(x) \cdot (x - P)$$

prove the assertion. \hfill \Box

The classical Poincaré constant of Payne-Weinberger [PW60] has recently been improved from $1/\pi$ (for all convex domains) to the optimal value $1/j_{1,1}$ (for triangles), where $j_{1,1} \approx 3.8317059702$ denotes the first positive root of the Bessel function J_1.

Theorem 2.2 (Poincaré Inequality on Triangles [LS10]). For all $f \in H^1(T)$ on a triangle T it holds

$$\left\| f - \frac{1}{|T|} \int_T f(x) \, dx \right\|_{L^2(T)} \leq h_T/j_{1,1} \| f \|_{H^1(T)}. \quad (2.1)$$
Lemma 2.3 (Poincaré-Friedrichs Inequality). Let \(f \in H^1(T) \) on the triangle \(T = \text{conv}(\{P\} \cup E) \) with vertex \(P \) opposite of the edge \(E \) satisfy \(\int_E f \, ds = 0 \). Then it holds
\[
\|f\|_{L^2(T)} \leq \sqrt{\max_{x \in E} |P - x|^2 /8 + h_T^2/j_{1,1}^2} \|f\|_{H^1(T)}.
\]

Proof. The theorem of Pythagoras for \(a := f - f_T, f(x)dx \) and \(b := f_T f(x)dx \) reads
\[
\|f\|_{L^2(T)}^2 = \|a + b\|_{L^2(T)}^2 = \|a\|_{L^2(T)}^2 + \|b\|_{L^2(T)}^2.
\]
The Poincaré inequality \([2.1]\) gives
\[
\|a\|_{L^2(T)} = \|f - f_T, f(x)dx\|_{L^2(T)} \leq h_T/j_{1,1} |f|_{H^1(T)}.
\]
The trace identity from Lemma 2.1 with \(f_E f \, ds = 0 \) leads to
\[
|T||b| = \left| \int_T f(x) \, dx \right| = \frac{1}{2} \left| \int_T (x - P) \cdot \nabla f(x) \, dx \right| \leq \frac{1}{2} \|\cdot - P\|_{L^2(T)} \|f\|_{H^1(T)}.
\]
With polar coordinates \((r, \varphi)\) and the notation for \(|x - P| =: r\) and \(\alpha < \varphi < \beta \) with some distance \(0 < \delta(\varphi) \leq \max_{x \in E} |P - x|\) of \(P \) to \(E \), one deduces
\[
\|x - P\|_{L^2(T)}^2 = \int_0^{\beta} \int_0^{\delta(\varphi)} r^2 r \, dr \, d\varphi = \int_0^{\beta} \delta(\varphi)^4 / 4 \, d\varphi
\]
\[
\leq \max_{x \in E} |P - x|^2 / 2 \int_0^{\beta} \int_0^{\delta(\varphi)} r \, dr \, d\varphi = |T| \max_{x \in E} |P - x|^2 / 2.
\]
This results in the bound
\[
|b| = \left| \int_T f(x) \, dx \right| \leq 2^{-3/2} |T|^{-1/2} \max_{x \in E} |P - x| \|f\|_{H^1(T)}.
\]
The preceding two estimates control the two terms \(a \) and \(b \) of the above Pythagoras identity and so prove
\[
\|f\|_{L^2(T)}^2 \leq h_T^2/j_{1,1} |f|_{H^1(T)}^2 + \max_{x \in E} |P - x|^2 / 8 |f|_{H^1(T)}^2
\]
\[
= \left(\max_{x \in E} |P - x|^2 / 8 + h_T^2/j_{1,1}^2 \right) \|f\|_{H^1(T)}^2.
\]
The following inequality compares the Euclidean length \(|a|\) of a vector \(a \) in the plane with a second metric \(\sqrt{(a \cdot \nu)^2 + (a \cdot \mu)^2}\) given by the two projections \(a \cdot \nu\) and \(a \cdot \mu\).

Lemma 2.4 (Transformation Stability). For linearly independent unit vectors \(\nu \) and \(\mu \) in \(\mathbb{R}^2\), it holds
\[
\min_{a \in \mathbb{R}^2 \setminus \{0\}} \frac{(a \cdot \nu)^2 + (a \cdot \mu)^2}{|a|^2} = 1 - |\nu \cdot \mu|.
\]
Proof. Let \(a = \alpha \nu + \beta \mu \) for real \(\alpha \) and \(\beta \) with \(\alpha^2 + \beta^2 = 1 \). Set \(\gamma := \nu \cdot \mu \) and \(|\nu| = 1 = |\mu| \). Then \(-1 \leq 2\alpha\beta \leq 1\) and so
\[
0 \leq (1 + |\gamma|)(|\gamma| + 2\alpha\beta\gamma).
\]
This is equivalent to
\[
-(1 + |\gamma|)2\alpha\beta\gamma \leq \gamma^2 + |\gamma|.
\]
Add \(1 - |\gamma| + 4\alpha\beta\gamma \) on both sides to prove
\[
LHS := (1 - |\gamma|)(1 + 2\alpha\beta\gamma) = 1 + 2\alpha\beta\gamma - |\gamma|2\alpha\beta\gamma - |\gamma|
\leq 1 + \gamma^2 + 4\alpha\beta\gamma =: RHS.
\]
Direct calculations show
\[
|a|^2 = \alpha^2 + \beta^2 + 2\alpha\beta\gamma = 1 + 2\alpha\beta\gamma = LHS/(1 - |\gamma|)
\]
as well as \(a \cdot \nu = \alpha + \beta\gamma \) and \(a \cdot \mu = \beta + \alpha\gamma \). Therefore
\[
(a \cdot \nu)^2 + (a \cdot \mu)^2 = (\alpha + \beta\gamma)^2 + (\beta + \alpha\gamma)^2
= 1 + \gamma^2 + 4\alpha\beta\gamma = RHS.
\]
Altogether this proves,
\[
(1 - |\gamma|)|a|^2 \leq (a \cdot \nu)^2 + (a \cdot \mu)^2 \text{ for all } a \in \mathbb{R}^2.
\]
This shows that the left-hand side in the assertion is in fact larger than or equal to \(1 - |\gamma| \). Equality and attainment of the minimum follows with the choice
\[
(\alpha, \beta) = \frac{1}{\sqrt{2}}(\pm 1, 1) \quad \text{for } \pm \gamma \leq 0
\]
plus direct calculations. This concludes the proof. \(\square \)

3. Nodal Interpolation Error Estimate

This section presents the nodal interpolation error estimates in an abstract form on a triangle with focus on explicit constants and then compares with the estimate from [KL07]. Recall the expression \(C(\alpha) \) from (1.1) for any angle \(0 < \alpha < \pi \) of a triangle \(T \) which is preferably chosen as \(C(\max \angle T) \).

Theorem 3.1 (Interpolation Error Estimate). Let \(v \in H^2(T) \) with \(v(A) = v(B) = v(C) = 0 \) on the triangle \(T = \text{conv}\{A, B, C\} \), with vertices \(A, B, C \), diameter \(h_T \), and some interior angle \(0 < \alpha < \pi \). Then it holds
\[
\|\nabla v\|_{L^2(T)} \leq C(\alpha) \ h_T \|D^2 v\|_{L^2(T)}.
\]
Proof. Figure 3.1 displays two unit vectors $\tau_1 = \nu$ and $\tau_2 = \mu$ along the two sides of the angle α with $|\gamma| := |\tau_1 \cdot \tau_2| = |\cos \alpha|$. Lemma 2.4 for $a := \nabla v(x)$ and $f_j := \tau_j \cdot \nabla v(x)$ plus integration over T show

$$(1 - |\gamma|) \int_T |\nabla v(x)|^2 \, dx \leq \int_T (f_1(x)^2 + f_2(x)^2) \, dx.$$

Lemma 2.3 proves

$$\int_T (f_1(x)^2 + f_2(x)^2) \, dx \leq \max \{|A - B|^2, |A - C|^2\}/8 + h_T^2 j_{1,1}^2 \left(|f_1|^2_{H^1(T)} + |f_2|^2_{H^1(T)}\right).$$

Since $|\tau_j| = 1$ it holds for all $x \in T$ and $j, k = 1, 2$ that

$$\frac{\partial f_j}{\partial x_k}(x) = \frac{\partial}{\partial x_k} \nabla v(x) \cdot \tau_j \leq \sqrt{\sum_{\ell=1}^2 \left|\frac{\partial^2 v(x)}{\partial x_k \partial x_\ell}\right|^2}.$$

This and

$$|f_j|^2_{H^1(T)} = \|\partial f_j/\partial x_1\|^2_{L^2(T)} + \|\partial f_j/\partial x_2\|^2_{L^2(T)}$$

for $j = 1, 2$ (which eventually results in the factor 2) lead to

$$|v|^2_{H^1(T)} \leq \frac{1/4 + 2/j_{1,1}^2}{1 - |\cos \alpha|} h_T^2 \int_T \left(\left|\frac{\partial^2 v}{\partial x_1^2}\right|^2 + 2 \left|\frac{\partial^2 v}{\partial x_1 \partial x_2}\right|^2 + \left|\frac{\partial^2 v}{\partial x_2^2}\right|^2 \right) \, dx$$

$$= \frac{1/4 + 2/j_{1,1}^2}{1 - |\cos \alpha|} h_T^2 |v|^2_{H^2(T)} = C(\alpha)^2 h_T^2 |v|^2_{H^2(T)}. \quad \Box$$

The following example illustrates how the estimate has to deteriorate as $\alpha \nearrow \pi$ and why it stays bounded under the maximal angle condition.
Example 3.2 (Maximal Angle Condition). Given any $0 < \delta \leq 1$, consider the triangles T_1 and T_2 defined in Figure 3.2 with vertices $N(T_1)$ and $N(T_2)$. The point is that T_2 has some largest angle $\alpha = \pi/2$ while that of T_1 is $\alpha = 2 \arctan(1/\delta)$ and this tends to π as δ tends to zero. The smooth function $v(x_1, x_2) = 1 - x_2^2$ has the nodal interpolation $Iv(x_1, x_2) = x_2/\delta$ on T_1 and one calculates
\[
\| \partial(v - Iv)/\partial x_2 \|_{L^2(T_1)}^2 = 1/\delta \leq \| \nabla(v - Iv) \|_{L^2(T_1)}^2 \text{ for } \| D^2 v \|_{L^2(T_1)}^2 = 4\delta .
\]
Theorem 3.1 applies to the interpolation error $v - Iv$ as it vanishes at the vertices of T_1. This shows
\[
Q(v) := \frac{\| \nabla(v - Iv) \|_{L^2(T_1)}}{h_{T_1} \| D^2 v \|_{L^2(T_1)}} \leq C(\alpha) .
\]
Elementary trigonometric considerations show
\[
(1 - |\cos \alpha|)^{-1} = (1 + \delta^2)/(2\delta^2) \leq \delta^{-2} .
\]
Hence, the lower and upper bounds show the same asymptotic behaviour
\[
(4\delta)^{-1} \leq Q(v) \leq \delta^{-1} \sqrt{1/4 + 2/j_{1,1}^2} \text{ as } \delta \searrow 0
\]
In other words, the degeneracy of $C(\alpha) \to \infty$ is sharp in the sense that
\[
\sup_{v \in H^2(T_1) \setminus \{0\}} \left\{ Q(v) : v \in H^2(T_1) \text{ with } v = 0 \text{ at } N(T_1) \right\} \propto (1 - |\cos \alpha|)^{-1/2} \text{ as } \alpha \nearrow \pi .
\]
To illustrate the difference to the triangle T_2 with right angle $\alpha = \pi/2$, note that
\[
C(\pi/2) = \sqrt{1/4 + 2/j_{1,1}^2} \approx 0.6215
\]
is bounded independently of $\delta \searrow 0$. □

The search of an optimal bound the error estimate of Theorem 3.1 can also be posed as an eigenvalue problem with the Rayleigh quotient
\[
RQ(v) := \| \nabla v \|_{L^2(T)}^2 / \| D^2 v \|_{L^2(T)}^2 \text{ for } v \in H^2(T) \text{ with } v = 0 \text{ on } N(T)
\]
Theorem 3.1 leads to an upper bound of the first eigenvalue of this eigenvalue problem with an elementary proof. The value $C_3 = 0.489$ is known for a right isosceles triangle T from [Arb82, Leh86, Sig88].

Remark 3.3 (Comparison with [KL07]). The reference [KL07] discusses a valid upper bound for the constant

$$C_3(T)^2 := \sup_{v \in H^2(T) \setminus \{0\}} \frac{RQ(v)}{\|v\|_{H^2(T)}} \leq C(\alpha)^2 h_T^2,$$

for a triangle T with maximal angle α and diameter $h_T = \text{diam}(T)$. Based on some transformation arguments, this constant has been computed and empirically studied in [KL07] and formerly in [Arb82, Leh86, Sig88] with the numerical value $C_3(T_{ref}) = 0.489$ on the reference triangle $T_{ref} = \text{conv}\{(0,0), (0,1), (1,0)\}$. Justified by computer-simulations, the bound of [KL07] leads to

$$C_3(T) \leq \frac{1 + |\cos \alpha|}{\sqrt{2} \sqrt{1 - |\cos \alpha|}} \frac{C_3(T_{ref})}{\sqrt{1 - \cos \alpha}} h_T.$$

(The reader is warned that the notation in [KL07] is different and does not involve the maximum length h_T but the second largest one and there is another parameter which is maximized here in (3.1) for simplicity.) Figure 3.3 compares the upper bound in (3.1) for $C_3(T)$ and the bound $C(\alpha)$ as a function of the angle α in the range $\pi/3 \leq \alpha < \pi$. Notice that an equilateral triangle T with $\alpha = \pi/3$ shows

$$C(\alpha) = 0.8789 < C_3(T) = 1.0373$$

and the bound of Theorem 3.1 is even sharper than that of [KL07]. This is not a contradiction because the transformation in [KL07] leads to some upper bound. The overall conclusion from Figure 3.3 is that the two bounds are comparable; one is with an elementary proof, while the other is justified by numerical calculations. □

4. Courant FEM

This section is devoted to the simplest model problem for second-order elliptic PDEs and its most elementary first-order conforming discretisation.

4.1. Poisson Model Problem. Given a right-hand side $f \in L^2(\Omega)$ on a bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$ with polygonal boundary $\partial \Omega$, the strong form of the Poisson model problem reads: seek $u \in C(\bar{\Omega}) \cap H^1_{\text{loc}}(\Omega)$ such that

$$- \Delta u = f \text{ in } \Omega \text{ and } u = 0 \text{ along } \partial \Omega.$$
Figure 3.3. Comparison of the constant $C(\alpha)$ and the upper bound (3.1) for $C_3(T)$.

The formally equivalent weak formulation utilizes the scalar product and the linear and bounded functional

$$a(u,v) := \int_\Omega \nabla u \cdot \nabla v\, dx \quad \text{and} \quad F(v) := \int_\Omega f v\, dx \quad \text{for } u,v \in V := H^1_0(\Omega)$$

in the Hilbert space $H^1_0(\Omega)$ of Lebesgue measurable functions in $L^2(\Omega)$ with a weak gradient in $L^2(\Omega; \mathbb{R}^2)$. The weak form seeks the Riesz representative u of F within the Hilbert space V, namely $u \in V$ with

$$a(u,v) = F(v) \quad \text{for all } v \in V. \quad (4.2)$$

Elliptic regularity leads to $u \in H^2_{\text{loc}}(\Omega) \cap H^{1+s}(\Omega)$ for some $1/2 < s \leq 1$ with $s = 1$ for convex domains [Eva10 GT01].

4.2. Regular Triangulation. A regular triangulation \mathcal{T} of Ω (in the sense of Ciarlet) into triangles is a finite set of closed triangles T of positive area $|T|$ such that

$$\bigcup_{T \in \mathcal{T}} T = \Omega \quad \text{and} \quad \text{any two distinct triangles } T_1 \text{ and } T_2 \in \mathcal{T} \text{ with } T_1 \cap T_2 \neq \emptyset \text{ share exactly one vertex } z \text{ or have one edge } E \text{ in common.}$$

The set of all edges of a triangle T is denoted by $\mathcal{E}(T)$, the set of vertices of T is denoted by $\mathcal{N}(T)$. The set of all edges resp. nodes is written as

$$\mathcal{E} := \bigcup_{T \in \mathcal{T}} \mathcal{E}(T) \quad \text{and} \quad \mathcal{N} := \bigcup_{T \in \mathcal{T}} \mathcal{N}(T).$$

Let $\text{mid}(\mathcal{E}) := \{\text{mid}(E) \mid E \in \mathcal{E}\}$ be the set of midpoints of the edges.
The piecewise constant weight \(h_T \in P_0(T) \) is the local mesh-size,

\[
h_T|_T := h_T := \text{diam}(T) \quad \text{for all } T \in T.
\]

4.3. Courant FEM. For a regular triangulation \(T \) of \(\Omega \) and \(k \in \mathbb{N}_0 \) define the finite element spaces

\[
P_k(T) := \{\text{polynomial on } T \text{ with degree } \leq k\},
\]

\[
P_k(T) := \{v \in L^2(\Omega)| \forall T \in T, v|_T \in P_k(T)\},
\]

\[
V_C(T) := C_0(\Omega) \cap P_k(T).
\]

The nodal basis function \(\varphi_z \in C(\Omega) \cap P_1(T) \) is defined by \(\varphi_z(z) = 1 \) and \(\varphi_z(y) = 0 \) for \(z \in N \) and all other nodes \(y \in N \setminus \{z\} \). The nodal interpolant is the operator

\[
I : C(\Omega) \to V_C(T), \quad v \mapsto \sum_{z \in N} v(x) \varphi_z(x).
\]

The Galerkin discretisation replaces \(H^1_0(\Omega) \) by the finite element space \(V_C(T) \):

seek \(u_C \in V_C \) with

\[
(a(u_C, v_C) = F(v_C) \quad \text{for all } v_C \in V_C.
\]

The following immediate consequence of Theorem 3.1 and the well-known optimality of \(u_C \) implies (1.2).

Corollary 4.1. The Courant FEM solution \(u_C \) on \(\Omega \) of the Poisson model problem (4.1) satisfies

\[
\|u - u_C\| \leq \|u - I u\| \leq C(T)\|h_TD^2u\|_{L^2(\Omega)}.
\]

Proof. The first inequality follows from Galerkin orthogonality and the second from Theorem 3.1 because \(u - I u \) vanishes at all nodes. \(\square \)

4.4. Numerical Example. Consider the Poisson model problem (4.1) with

\[
f(x, y) = 4 - 2x^2 - 2y^2 \quad \text{for } (x, y) \in \Omega := (-1, 1)^2
\]

and exact solution \(u(x, y) = (1 - x^2)(1 - y^2) \).

The sequence of uniform criss triangulations \((T_\ell)_\ell \) of the unit square \(\Omega \) is generated by uniform refinements of \(\Omega \) into squares divided along the diagonal parallel to the main diagonal. Table 4.1 shows the errors computed with Matlab [ACF99] for different levels \(\ell \) with mesh-sizes \(h_T = \sqrt{2}/2^\ell \) and efficiency indices

\[
EI := (C(T_\ell)\|h_{T_\ell}D^2u\|_{L^2(T_\ell)})/\|u - u_C\|.
\]
This section is devoted to the error analysis of the Raviart-Thomas mixed finite element method. The first subsection presents the key argument.

5.1. Fortin Interpolation Error Estimate. This subsection is devoted to the error analysis in simplified notation. The Fortin interpolation will be defined in Subsection 5.2 below.

Theorem 5.1 (Fortin Interpolation Error Estimate). Let $q \in H^1(T; \mathbb{R}^2)$ on the triangle $T = \text{conv}\{P_1, P_2, P_3\}$ with maximal angle α with

$$\int_E q \cdot \nu_E \, ds = 0 \quad \text{for all } E \in \mathcal{E}(T).$$

Then it holds

$$\|q\|_{L^2(T)} \leq C(\alpha) \|h_T Dq\|_{L^2(T)}. $$

Proof. Let E_1, E_2, E_3 be the edges of T and ν_1, ν_2, ν_3 corresponding exterior unit normal vectors. Then

$$f_j := q \cdot \nu_j \in H^1(T) \text{ satisfies } \int_{E_j} f_j \, ds = 0$$

for any $j = 1, 2, 3$. Lemma 2.3 implies

$$\|f_j\|_{L^2(T)} \leq h_T \sqrt{1/8 + 1/j_{1,1}^2} |f_j|_{H^1(T)}. $$

Suppose that the maximum angle α of T is at P_3 with neighbouring edges E_1 and E_2. Lemma 2.4 implies for $\nu = \nu_1$ and $\mu = \nu_2$ with $|\nu_1 \cdot \nu_2| = |\cos \alpha|$ that

$$(1 - |\cos \alpha|) \|q\|_{L^2(T)}^2 \leq \|f_1\|_{L^2(T)}^2 + \|f_2\|_{L^2(T)}^2 \leq h_T^2 (1/8 + 1/j_{1,1}^2)(|f_1|_{H^1(T)}^2 + |f_2|_{H^1(T)}^2).$$

Since ν_j is a unit vector,

$$|f_j|_{H^1(T)} = \|Dq \cdot \nu_j\|_{L^2(T)} \leq \|Dq\|_{L^2(T)}.$$

Hence

$$|f_1|_{H^1(T)}^2 + |f_2|_{H^1(T)}^2 \leq 2 |q|_{H^1(T)}^2.$$
The combination with the aforementioned estimate of \(\|q\|_{L^2(T)} \) proves the assertion. \(\square \)

5.2. **Raviart-Thomas Finite Element Space.** Given a regular triangulation \(\mathcal{T} \) from Subsection 4.2, define the Raviart-Thomas finite element space

\[
RT_0(\mathcal{T}) := \{ q_{RT} \in P_1(\mathcal{T}; \mathbb{R}^2) \cap H(\text{div}, \Omega) : \forall T \in \mathcal{T} \exists a_T, b_T, c_T \in \mathbb{R} \\\n\quad \forall x \in T, q_{RT}(x) = (a_T, b_T) + c_T(x_1, x_2) \}. \]

It is well known that some piecewise polynomial function \(q_{RT} \) belongs to

\[
H(\text{div}, \Omega) = \{ q \in L^2(\Omega; \mathbb{R}^2) : \text{div} q \in L^2(\Omega) \}
\]

if and only if all the jumps \([q_{RT}]_E := (q_{RT}|_{T_+} - q_{RT}|_{T_-})|_E \), for \(E = T_+ \cap T_- \) with \(T_\pm \in \mathcal{T} \), across an interior edge \(E \) disappear in their normal component \([q_{RT}]_E \cdot \nu_E = 0 \) along \(E \). Given an interior edge \(E \in \mathcal{E}(T) \) shared by its neighbouring triangles \(T_+ \) and \(T_- \) and the vertices \(P_\pm \) opposite to \(E \) of \(T_\pm \), set

\[
\Psi_E(x) := \begin{cases} \pm \frac{|E|}{2|T_\pm|} (x - P_\pm) & \text{for } x \in T_\pm, \\ 0 & \text{elsewhere.} \end{cases}
\]

A corresponding formula without \(T_- \) applies to some boundary edge \(E \in \mathcal{E}(\mathcal{T}) \) with one neighbouring triangle \(T_+ \). Then \(\Psi_E \in RT_0(\mathcal{T}) \) with \(\text{supp} \Psi_E = \overline{w_E} := T_+ \cup T_- \) defines an edge-basis function of \(RT_0(\mathcal{T}) \). Indeed,

\[
RT_0(\mathcal{T}) = \text{span}\{ \Psi_E : E \in \mathcal{E} \}.
\]

The Fortin interpolation operator \(I_F q \) is defined for all \(q \in H^1(\Omega; \mathbb{R}^2) \) by

\[
I_F q = \sum_{E \in \mathcal{E}} \left(\int_E q \cdot \nu_E \, ds \right) \Psi_E
\]

(with signs \(\pm \) in the definition of \(T_\pm \) and \(\nu_E = \nu_{T_+} \)) such that

\[(q - I_F q) \cdot \nu_E = 0 \text{ along any } E \in \mathcal{E}.\]

Theorem 5.2. Let \(q \in H^1(\Omega; \mathbb{R}^2) \) with Fortin interpolation \(I_F q \). Then it holds

\[
\|q - I_F q\|_{L^2(\Omega)} \leq C(\mathcal{T}) \|h_T Dq\|_{L^2(\Omega)}.
\]

Proof. The condition (5.2) leads to the assumption of Theorem 5.1 with \(q \) substituted by \(q - I_F q \) on any triangle \(T \in \mathcal{T} \). Theorem 5.1 shows

\[
\|q - I_F q\|_{L^2(T)} \leq C(\max \angle T) h_T \|D(q - I_F q)\|_{L^2(T)}.
\]

Any \(2 \times 2 \) matrix \(A \) with trace \(\text{tr}(A) = A_{11} + A_{22} \) and deviatoric part

\[
\text{dev} A = A - \text{tr}(A)/2 I
\]

allows for the orthogonality of the \(2 \times 2 \) unit matrix \(I \) and \(\text{dev} A \) with respect to the scalar product \(A : B := \sum_{j,k=1,2} A_{jk} B_{jk} \) of the two matrices \(A, B \in \mathbb{R}^2 \).
\[\mathbb{R}^{2 \times 2} \]. The Pythagoras theorem shows for the associated Frobenius norm \(|\cdot|\) (i.e. \(|A| = \sqrt{A : A}\))
\[|A|^2 = |\text{dev } A|^2 + \text{tr}(A)^2 / 2. \]
This identity for \(A = D(q - I_F q)(x) \) followed by an integration of \(x \) over \(T \) leads to
\[\|D(q - I_F q)\|_{L^2(T)}^2 = \|\text{dev } D(q - I_F q)\|_{L^2(T)}^2 + \|\text{div } (q - I_F q)\|_{L^2(T)}^2 / 2. \]
Notice that \(DI_F q|_T = c_T I \) for some \(c_T \in \mathbb{R} \) is constant on \(T \). Hence, \(\text{dev } DI_F q = 0 \). Moreover, the Gauss divergence theorem and (5.2) show
\[\hat{\Omega} \text{div } Dq \, dx = \hat{\partial T} q \cdot \nu \, dx = \hat{\partial T} (I_F q) \cdot \nu \, ds = \int_T \text{div } (I_F q) \, dx = 2c_T |T|. \]
Therefore, \(\text{div } (q - I_F q) \) has integral mean zero and so
\[\|\text{div } (q - I_F q)\|_{L^2(T)} \leq \|\text{div } q\|_{L^2(T)}. \]
Altogether, and with another application of the Pythagoras theorem, it follows
\[\|D(q - I_F q)\|_{L^2(T)}^2 \leq \|\text{dev } Dq\|_{L^2(T)}^2 + \|\text{div } Dq\|_{L^2(T)}^2 / 2 = \|Dq\|_{L^2(T)}^2. \]
The summation of the resulting estimate on \(\|q - I_F q\|_{L^2(T)}^2 \) over all \(T \in \mathcal{T} \) concludes the proof. \(\square \)

5.3. Raviart-Thomas MFEM. The mixed finite element method for the Poisson model problem of Subsection 4.1 with the Raviart-Thomas finite element space \(RT_0(T) \) and the piecewise constant \(P_0(T) \) seeks \((p_{RT}, u_{RT}) \in RT_0(T) \times P_0(T) \) with
\[\int_\Omega p_{RT} \cdot q_{RT} \, dx + \int_\Omega u_{RT} \text{div } q_{RT} \, dx = 0 \quad \text{for all } q_{RT} \in RT_0(T); \]
\[\int_\Omega v_{RT} \text{div } p_{RT} \, dx + \int_\Omega f v_{RT} \, dx = 0 \quad \text{for all } v_{RT} \in P_0(T). \]
Let \(f_T \) denote the piecewise \(L^2 \) projection of \(f \) onto \(P_0(T) \) with
\[(5.4) \quad f_T|_T := f_T := \int_T f(x) \, dx \quad \text{for all } T \in \mathcal{T}. \]

Theorem 5.3. There exists a unique solution \((p_{RT}, u_{RT}) \) of the Raviart-Thomas MFEM. The discrete flux \(p_{RT} \) is the unique minimiser of
\[\|p - q_{RT}\|_{L^2(\Omega)} \text{ for all } q_{RT} \in Q(f, T) := \{ q_{RT} \in RT_0(T) : f_T + \text{div } q_{RT} = 0 \}. \]
Proof. The existence of a unique solution follows from standard results in the
theory of mixed FEM [BS08, Bra01, BF91]. The optimality is well known and
follows from (5.3) for the test function \(q_{RT} := p_{RT} - r_{RT} \in Q(0, T) \) for any
\(r_{RT} \in Q(f, T) \). Indeed, (5.3) shows \(p_{RT} \perp (p_{RT} - r_{RT}) \). Since \(p = \nabla u \) is a
gradient, \((p - p_{RT}) \perp (p_{RT} - r_{RT}) \) and so
\[
\|p - r_{RT}\|_{L^2(\Omega)}^2 = \|p - p_{RT}\|_{L^2(\Omega)}^2 + \|p_{RT} - r_{RT}\|_{L^2(\Omega)}^2 .
\]
\(\square \)

The following immediate consequence of Theorem 5.2 and 5.3 is announced as
the a priori error estimate (1.3).

Corollary 5.4. The Raviart-Thomas MFEM solution \(p_{RT} \) on \(\Omega \) of the Poisson
model problem (4.1) satisfies
\[
\|p - p_{RT}\|_{L^2(\Omega)} \leq \|p - I_F p\|_{L^2(\Omega)} \leq C(T) \|h_T D p\|_{L^2(\Omega)} .
\]

Proof. The first inequality follows from the minimising property of Theo-
rem 5.3 and the second from Theorem 5.2. \(\square \)

Remark 5.5 (Comparison with [MS09]). Corollary 5.4 is a significant im-
provement over [MS09, Equation (3.31)]; the estimate [MS09] is significantly
greater than \(C(\alpha) \).

5.4. **Numerical Example.** Table 5.1 displays the errors \(\|p - p_{RT}\|_{L^2(\Omega)}, \)
\(\|p - I_F p\|_{L^2(\Omega)} \), and the efficiency index
\[
EI := (C(T) \|h_T D p\|_{L^2(T)}) / \|p - p_{RT}\|_{L^2(\Omega)}
\]
for different levels \(\ell \) in the benchmark problem from Subsection 4.4 based on
the Matlab implementation [BC05].

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(|p - p_{RT}|_{L^2(\Omega)})</td>
<td>0.98381972</td>
<td>0.56556947</td>
<td>0.29406962</td>
<td>0.14855355</td>
<td>0.07447061</td>
</tr>
<tr>
<td>(|p - I_F p|_{L^2(\Omega)})</td>
<td>0.99628941</td>
<td>0.57150710</td>
<td>0.29503879</td>
<td>0.14868306</td>
<td>0.07448708</td>
</tr>
<tr>
<td>(EI)</td>
<td>4.99703932</td>
<td>4.34622629</td>
<td>4.17944042</td>
<td>4.13671187</td>
<td>4.12594455</td>
</tr>
</tbody>
</table>

Table 5.1. Numerical results for Raviart-Thomas MFEM.

6. **Crouzeix-Raviart NCFEM**

This section is devoted to the nonconforming finite element method (NCFEM)
after Crouzeix and Raviart and its relation to the Raviart-Thomas MFEM usu-
ally associated with Marini [Mar85]. The implications lead to some equivalence
of error estimates for the two methods.
6.1. Crouzeix-Raviart NCFEM. The NCFEM after Crouzeix and Raviart concerns the nonconforming finite element space

\[V_{NC}(\mathcal{T}) := \{ v \in P_1(\mathcal{T}) \mid v \text{ continuous at mid}(\mathcal{E}), \text{ with } v = 0 \text{ for mid}(\partial \Omega \cap \mathcal{E}) \} \]

The piecewise gradient \(\nabla_{NC} : H^1(\mathcal{T}) \to L^2(\Omega; \mathbb{R}^2) \) is defined by \((\nabla_{NC} v)|_T := \nabla v|_T \) for all \(T \in \mathcal{T} \) and defines the scalar product

\[a_{NC}(u,v) := \sum_{T \in \mathcal{T}} \int_T \nabla u \cdot \nabla v \, dx \quad \text{for all } u, v \in H^1(\mathcal{T}) \]

and the induced discrete energy norm \(\| \cdot \|_{NC} := \sqrt{a_{NC}(\cdot, \cdot)} \). For every \(E \in \mathcal{E} \), the edge-oriented basis function \(\psi_E \) is defined by

\[\psi_E(\text{mid}(E)) = 1 \text{ and } \psi_E(\text{mid}(F)) = 0 \text{ for all } F \in \mathcal{E} \setminus \{E\} \]

and \(V_{NC}(\mathcal{T}) = \text{span}\{\psi_E \mid E \in \mathcal{E}(\Omega)\} \). The discrete Friedrichs inequality [BS08] reads

\[\|v\|_{L^2(\Omega)} \leq C_{dF} \|v\|_{NC} \quad \text{for all } v \in V_{NC}(\mathcal{T}). \]

The constant \(C_{dF} \) does not depend on the mesh-size or cardinality of the shape-regular triangulation. The discrete Friedrichs inequality implies that \(\| \cdot \|_{NC} \) is a norm on \(V_{NC}(\mathcal{T}) \) and the Riesz representation theorem guarantees a unique solution \(u_{CR} \in V_{NC} \) of

\[a_{NC}(u_{CR},v) = \int_\Omega fv \, dx \quad \text{for all } v \in V_{NC}(\mathcal{T}). \tag{6.1} \]

6.2. Equivalence of CR-FEM and RT-MFEM. The following equivalence theorem is well known [Mar85, BC05] and is given here to stress that the right-hand side \(f \) in the Poisson model problem has to be modified to its piecewise integral mean \(f_T \in P_0(\mathcal{T}) \) as in (5.4). For any \(T \in \mathcal{T} \) set

\[s^2(T) := \sum_{E \in \mathcal{E}(T)} |E|^2 = 36 \| \cdot - \text{mid}(T) \|_{L^2(T)} / |T|. \]

The following theorem states a representation of the unique solution (5.3).

Theorem 6.1 (Marini [Mar85]). Suppose \(\bar{u}_{CR} \in V_{NC}(\mathcal{T}) \) solves the discrete problem for the Crouzeix-Raviart FEM with modified right-hand side \(f_T \in P_0(\mathcal{T}) \), i.e., \(\bar{u}_{CR} \in V_{NC}(\mathcal{T}) \) satisfies

\[a_{NC}(\bar{u}_{CR},v) = \int_\Omega fTv \, dx \quad \text{for all } v \in V_{NC}(\mathcal{T}). \tag{6.2} \]
Then the solution \((p_{RT}, u_{RT})\) of (5.3) reads
\[
p_{RT}(x) = \nabla_{NC} \tilde{u}_{CR} - f_T/2 \left(x - \text{mid}(T)\right) \quad \text{for } x \in T \in \mathcal{T},
\]
\[
u_{RT} = \int_T \tilde{u}_{CR} \, dx + s^2(T)f_T/144 \quad \text{on } T \in \mathcal{T}.
\]

6.3. CR-FEM Error Estimate. This section establishes the error estimate (1.4) for the Crouzeix-Raviart nonconforming finite element method. The oscillations of a function \(f \in L^2(\Omega)\) are defined as
\[
\text{osc}(f, T) := \sum_{T \in \mathcal{T}} h_T^2 \| f - f_T \|^2_{L^2(T)}.
\]

Theorem 6.2. The Crouzeix-Raviart NCFEM solution \(u_{CR} \in V_{NC}(\mathcal{T})\) on \(\Omega\) of the Poisson model problem (4.1) satisfies
\[
\| u - u_{CR} \|_{NC} \leq \frac{1}{j_{1,1}} \text{osc}(f, \mathcal{T}) + \sqrt{\frac{1}{j_{1,1}} + C(\mathcal{T})^2} \left\| h_T D^2 u \right\|_{L^2(\Omega)}.
\]

Proof. Let \(\tilde{u}_{CR} \in V_{NC}(\mathcal{T})\) solve (6.2) and set \(\tilde{p}_{CR} := \nabla_{NC} \tilde{u}_{CR} \in P_0(\mathcal{T}; \mathbb{R}^2)\). The orthogonality of the \(L^2\) projection \(\Pi_0\) onto \(P_0(\mathcal{T})\) plus the Poincaré inequality show
\[
\| \tilde{u}_{CR} - u_{CR} \|_{NC}^2 = a_{NC}(\tilde{u}_{CR}, \tilde{u}_{CR} - u_{CR}) - a_{NC}(u_{CR}, \tilde{u}_{CR} - u_{CR})
\]
\[
= \int_\Omega (f - f_T)(\tilde{u}_{CR} - u_{CR}) \, dx
\]
\[
= \int_\Omega (f - f_T)((\tilde{u}_{CR} - u_{CR}) - \Pi_0(\tilde{u}_{CR} - u_{CR})) \, dx
\]
\[
\leq \frac{1}{j_{1,1}} \text{osc}(f, \mathcal{T}) \| \tilde{u}_{CR} - u_{CR} \|_{NC}.
\]

Hence, \(\| \tilde{u}_{CR} - u_{CR} \|_{NC} \leq \text{osc}(f, \mathcal{T})/j_{1,1}\). The Pythagoras theorem leads to
\[
\| p - \tilde{p}_{CR} \|_{L^2(\Omega)}^2 = \| p - \Pi_0 p \|_{L^2(\Omega)}^2 + \| \Pi_0 p - \tilde{p}_{CR} \|_{L^2(\Omega)}^2.
\]

For the first term on the right-hand side, the Poincaré inequality yields
\[
\| p - \Pi_0 p \|_{L^2(\Omega)}^2 \leq \frac{1}{j_{1,1}} \left\| h_T Dp \right\|_{L^2(\Omega)}^2.
\]

For the second term, Theorem 6.1 leads to \(\Pi_0 p_{RT} = \tilde{p}_{CR}\) and therefore
\[
\| \Pi_0 p - \tilde{p}_{CR} \|_{L^2(\Omega)}^2 = \| \Pi_0 (p - p_{RT}) \|_{L^2(\Omega)}^2 \leq \| p - p_{RT} \|_{L^2(\Omega)}^2.
\]

Thus, Corollary 5.4 and the triangle inequality conclude the proof. □
Remark 6.3. The estimate in [MS09, Theorem 4.1] is wrong in the sense that the difference of u_{CR} and \tilde{u}_{CR} has been neglected. Even the corrected version of that estimate is less sharp than Theorem 6.2 because of Remark 5.5.

6.4. Numerical Example. Table 6.1 displays the error $\|u - u_{CR}\|_{NC}$, the oscillations $\text{osc}(f, \mathcal{T})$, and the efficiency index

$$EI := \left(\frac{1}{j_{1,1}} \text{osc}(f, \mathcal{T}) + \frac{1}{j_{3,1}} + C(\mathcal{T})^2 \|h_{\mathcal{T}} D^2 u\|_{L^2(\Omega)} \right) / \|u - u_{CR}\|_{NC}$$

in the benchmark problem from Subsection 4.4.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|u - u_{CR}|_{NC}$</td>
<td>1.34051563</td>
<td>0.73261164</td>
<td>0.37526998</td>
<td>0.18881556</td>
<td>0.09455757</td>
</tr>
<tr>
<td>$\text{osc}(f, \mathcal{T})$</td>
<td>1.97765293</td>
<td>0.53229065</td>
<td>0.13533651</td>
<td>0.03397415</td>
<td>0.00850227</td>
</tr>
<tr>
<td>EI</td>
<td>4.36265775</td>
<td>3.82871143</td>
<td>3.64628361</td>
<td>3.57691331</td>
<td>3.54782899</td>
</tr>
</tbody>
</table>

Table 6.1. Numerical results of Crouzeix-Raviart FEM.

Acknowledgements

The authors would like to thank the two anonymous referees for their valuable comments and suggestions. In particular, to the second referee which pointed us to the recently improved Poincaré constant for triangles. This research was supported by the World Class University (WCU) program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology R31-2008-000-10049-0 and the DFG Research Center MATHEON ”Mathematics for key technologies” in Berlin. The second author was supported in parts by the DFG graduate school BMS ”Berlin Mathematical School”.

References

