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Abstract
The discontinuous Galerkin (dG) methodology provides a hierarchy of time dis-
cretization schemes for evolutionary problems such as elastoplasticity with the
Prandtl-Reuß flow rule. A dG time discretization has been proposed for a varia-
tional inequality in the context of rate-independent inelastic material behaviour in
Alberty and Carstensen in (CMME 191:4949–4968, 2002) with the help of duality in
convex analysis to justify certain jump terms. This paper establishes the first a priori
error analysis for the dG(1) scheme with discontinuous piecewise linear polynomials
in the temporal and lowest-order finite elements for the spatial discretization. Com-
pared to a generalized mid-point rule, the dG(1) formulation distributes the action of
the material law in the form of the variational inequality in time and so it introduces
an error in the material law. This may result in a suboptimal convergence rate for the
dG(1) scheme and this paper shows that the stress error in the L∞(L2) norm is merely
O(h + k3/2) based on a seemingly sharp error analysis. The numerical investigation
for a benchmark problem with known analytic solution provides empirical evidence
of a higher convergence rate of the dG(1) scheme compared to dG(0).
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716 C. Carstensen et al.

1 Introduction and overview

The discontinuous Galerkin time discretization, abbreviated as dG(k) with polynomial
degree at most k ∈ N0, of elastoplastic evolution problems has been proposed, imple-
mented, and validated in [3]. One main motivation was the usage of a hierarchy of
time discretization schemes in adaptive time-step control with the view that a higher-
order scheme is more accurate. The latter is supported by numerical experiments in
computational mechanics and Fig. 1 displays the exact and approximate stress (in the
tangential component) in the numerical benchmark of Sect. 5 as a function of time t .
The Crank-Nicolson (CN) scheme is shown to be of quadratic order in time [2] under
high (and possibly unrealistic) smoothness assumptions. The oscillations in Fig. 1
clearly question the premise that CN performs better than the first-order backward
Euler (bE) scheme. In comparison, dG(1) appears more accurate than dG(0). Notice
that bE, dG(0), and dG(1) lead to admissible generalized stress approximations point-
wise in time-space, while the higher-order in CN leads to nonphysical oscillations.

A further motivation is the lower regularity required in the dGmethodology, at least
for a linear model problem in [20, p 209], which is desirable in elastoplasticity.
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Fig. 1 Time evolution for one stress component σφ(1.0147, 0.0147, t) in the computational benchmark of
Sect. 5 for exact values and for backward Euler (bE), Crank–Nicolson (CN), dG(0), and dG(1) schemes
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Convergence of dG(1) in elastoplastic evolution 717

This paper justifies the superiority of dG(1) over dG(0) for smooth solutions and
presents an error analysis for the dG(1) scheme for elastoplasticity with hardening in
the weak primal and dual formulation [12]. The analysis of time difference schemes
(bE and CN) is straightforward in the evaluation of the time-derivatives on the exact
and on the discrete level at the same time (in a generalized midpoint rule). In the
context of variational inequalities, this leads to one inequalitywith discrete and another
one with continuous quantities; their sum establishes a difference identity bounded
by approximation error terms as outlined, e.g., in [2] for elastoplasticity with sharp
error estimates. One aspect is that the Prandtl-Reuß flow is modeled exactly (at the
generalized midpoint in time and on each simplex in space) and the original hardening
material laws act as a regularization and control over certain error terms. In contrast
with this, the discontinuous Galerkin time approximation smears out the elastoplastic
evolution law in a weak formulation and strongly requires the discrete stresses to be
admissible a.e. in the time-space cylinder Q.

On the continuous level, the Prandtl-Reuß flow rule links the exact generalized
stress � and the rate Ṗ = ∂P/∂t of the generalized plastic strain P through a varia-
tional inequality in the dual formulation of elastoplasticity (a.e. in Q)

Ṗ�(T − �) ≤ 0 for all admissible generalized stresses T . (1.1)

The concept of admissible generalized stresses means that � belongs to a closed,
convex, and nonvoid set K a.e. in Q and so do all test-functions, like the above T .

The discrete analog approximates the above pointwise structure through time-space
integrals and so it leads to an approximation error in the material law in the dG(1)
scheme (dG(0) is almost bE). A textbook error analysis of dG time discretization
[20, Chap 12] (of linear parabolic model problems) starts with a splitting of the error
and the introduction of an intermediate quantity �dG with the same integral mean as
� over the time interval (t j−1, t j ) and exact interpolation �−

dG, j = � j at the right
end-point of this interval. This amounts to an extrapolation of the values in a convex
set and, in general, to a violation of the restriction �dG ∈ K a.e. in Q. This paper
examines the approximation of � by a piecewise linear polynomial ˜� in time with
respect to a time discretisation with time points t j := jk for all j = 0, 1, . . . , J
(with J = tJ /k ∈ N) and the uniform time increment k. In contrast to extrapolation,
the interpolation ˜� meets the exact stress � in all time points t j and is globally
continuous in time and admissible a.e. in Q. The space-averages of ˜� are admissible
in the discrete variational inequality and result in a first contribution for an estimation
of the procedural error � := ˜� − �hk for the above interpolation ˜� of the true stress
and the discrete stress �hk from a full discretization with the dG(1) method in time
and the standard lowest-order conforming approximation in space.

An optimal error analysis of dG time discretization in the textbook [20] derives an
evolution relation for the error part� from the continuous problem. In linear problems,
the test functions T belong to a linear space, whereas they are restricted to the convex
set K in the Prandtl-Reuß flow rule at hand. The naive choice T = �hk ∈ K is feasible,
but leads to the integral

∫

Q j
Ṗ�(�hk − �)dQ ≤ 0 over the time-space sub-cylinder
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718 C. Carstensen et al.

Q j := (t j−1, t j ) × � for j = 1, . . . , J . In order to reformulate this material law in
terms of �, the inequality reads

−
∫

Q j

Ṗ��dQ ≤
∫

Q j

Ṗ�(� − ˜�)dQ. (1.2)

The left-hand side contributes as a second ingredient for an evolution relation for �,
while the right-hand side is a perturbation term on its own and requires an estimation
from above. Since ˜� ∈ K is admissible, the integrand Ṗ�(� − ˜�) ≥ 0 is nonnegative
a.e. in Q and the interpolation error estimate leads to a bound of order O(k2), which
merely proves linear convergence for dG(1) as outlined below in Sect. 4.7.1.

This paper derives a convergence rate O(h+k3/2) under the assumption of smooth
exact solutions by a test with the linear interpolation ˜� of � and the evaluation of the
Prandtl-Reuß flow rule at the two time interval endpoints. This cannot circumvent the
application of a trace inequality for the control of jump terms and eventually leads to
an upper error bound O(h+k3/2) for the error of the (smooth) exact stress� and their
fully discrete approximation �hk in the maximum norm in time and the L2 norm in
space, abbreviated as L∞(L2). It also bounds the sum of all jumps [�hk] j−1 at t j−1
in time,

‖� − �hk‖2L∞(L2)
+

J
∑

j=1

‖[�hk] j−1‖2L2(�)
= O(h2 + k3),

for themaximalmesh-size h under sufficient smoothness assumptions of all continuous
variables. The approximation order 1.5 appears to be suboptimal for the norm L∞(L2)

compared to theCrank-Nicolson schemewhich is second order in k, but the above error
estimate also controls the sum of the jump errors and is admissible a.e. in Q. The latter
summands may be compared to the jumps of the aforementioned dG approximation
�dG and they are merely O(k3/2‖�̈‖L2(Q j )

). An Aubin-Nitsche duality argument
even shows superconvergence for the nodal values in linear model problems [20], but
a corresponding argument has not been applied in the literature on elastoplasticity.

The remaining parts of the paper are organized as follows. The mathematical mod-
eling of elastoplasticity is briefly recalled from the literature in Sect. 2. The resulting
fully discrete scheme is a variational inequality at each time-step and it is given in
Sect. 3. There are two discrete formulations, the dual and the primal one, and The-
orem 3.2 establishes their equivalence. The error analysis in Sect. 4 explains and
verifies the aforementioned asymptotic convergence result. A computational bench-
mark in Sect. 5 behind the Fig. 1 confirms the superiority of dG(1) over dG(0) even
for an exact solution with reduced regularity.

Throughout this paper, the following notation applies for a time-space cylinder
Q = (0, tJ ) × � and a typical part Q j := (t j−1, t j ) × �, for j = 1, . . . , J , with
respect to a uniform time discretisation with t j := jk for j = 0, . . . , J for a time
increment k > 0. A lower index refers to the time-space discretization, e.g., �hk for
the discrete solution and �±

hk, j refers to the one-sided limit of the function �hk at
time t j from the left (−) and the right (+). A tilde indicates a linear interpolation in
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Convergence of dG(1) in elastoplastic evolution 719

time with respect to the time points t0, …, tJ . There are various inner products like
· for vectors, : for matrices, and � for certain finite-dimensional product spaces in
(2.2) below, which can all be seen as Euclidian scalar products if the objects are re-
labelled as a one-dimensional list. The time-derivative of P is denoted Ṗ := ∂P/∂t
and the piecewise version of Phk as Phk,τ . For any d × d matrix σ ∈ R

d×d
sym , the

deviatoric part dev σ := σ − tr(σ )
d Id×d for the d × d unit matrix Id×d and the trace

tr(σ ) := σ11 + σ22 + · · · + σdd .

2 Mathematical modeling of elastoplasticity

This section is devoted to the strong form of a model example in elastoplasticity with
hardening and the weak primal and dual form [12] for almost every point (t, x) ∈ Q in
time and space. This section is a short summary of an elastoplastic model problem for
ease of reading and more details and relevant subcases are found in [2–4,7,8,12,17].
The generalized stress and generalized plastic strains are given as

� = (σ, χ) and P = (p, ξ).

The stress variable σ and the total (linear Green) strain (with u j,k = ∂u j/∂xk)

ε(u) := sym Du = ((u j,k + uk, j )/2) j,k=1,...,d

are linked with the irreversible plastic strain p through an additive split

ε(u) = C
−1σ + p

of small strain plasticity. The fourth-order elasticity tensor C acts as

Cq = λ tr(q) Id×d + 2μ q for all q ∈ R
d×d
sym

with trace tr(q) := q11+· · ·+qdd , the unitmatrix Id×d , and theLamé constantsλ,μ >

0. The displacement field u is supposed to satisfy a Dirichlet boundary condition in
the form

u = 0 on �D

for a fixed closed part �D of ∂� = � of positive d −1 dimensional (surface) measure
and almost every time t . The equilibrium model reads in local form

σ = σ T and div σ + f = 0 in �

together with a Neumann boundary condition on the remaining part of the boundary

σn = g on �N := �\�D
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720 C. Carstensen et al.

for almost every time t . In terms of the elastic strain e := C
−1σ , the internal energy

assumes the form
F(e, ξ) := 1/2(e : Ce + ξ · Hξ) (2.1)

for the aforementioned fourth-order elasticity tensor C and a symmetric and positive
definite hardening tensor H. The internal (hardening) variables ξ and their dual vari-
ables χ are written (symbolically) asm dimensional vectors (e.g., them = d(d+1)/2
components of a symmetric d × d matrix for kinematic hardening or scalar, m = 1,
for linear isotropic hardening) withm = 1+d(d +1)/2 for combined hardening with
ξ = (α, β), χ = (a, b) ∈ R × R

d×d
sym ≡ R

m . Hence, ξ, χ ∈ R
m and H ∈ R

m×m
sym is

identified with an m × m SPD matrix in (2.1). Recall that ε(u) = e + p and notice
that

σ = ∂F(e, ξ)/∂e = Ce and χ = −∂F(e, ξ)/∂ξ = −Hξ.

The Prandtl-Reuß flow rule reads (recall that Ṗ denotes the time derivative of P)

Ṗ ∈ NK (�) :=
{

Q ∈ R
d×d
sym × R

m : ∀T ∈ K , Q�(T − �) ≤ 0
}

for the set of admissible generalized stresses K ⊂ R
d×d
sym ×R

m determined by the yield
function (e.g., the von-Mises yield function) � : Rd×d

sym × R
m → R via

K :=
{

T ∈ R
d×d
sym × R

m : �(T ) ≤ 0
}

.

Throughout this paper, we distinguish between the scalar products ·, :, �, defined for
vectors u, v, d×d matrices p, q, and generalized stresses or strains P = (p, ξ), Q =
(q, χ) by u · v = u1v1 + · · · + udvd , or ξ · χ = ξ1χ1 + · · · + ξmχm ,

p : q :=
d

∑

j,k=1

p jkq jk, and P�Q := (p, ξ)�(q, χ) = p : q + ξ · χ. (2.2)

The strong form of the continuousmodel problem of elastoplasticity with combined
isotropic and kinematic hardening reads:Given data f and g as functions in time [0, tJ ]
and space, given consistent homogeneous initial conditions (i.e., f = g = 0 for t = 0)
the elastoplastic time-evolution determines u, σ, χ, p, and ξ as functions on [0, tJ ]×�

with

σ = σ T = C(ε(u) − p), div σ + f = 0, ( ṗ, ξ̇ ) ∈ NK (σ, χ) in [0, tJ ] × �

and the boundary conditions

u = 0 on [0, tJ ] × �D and σn = g on [0, tJ ] × �N .
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Convergence of dG(1) in elastoplastic evolution 721

Following [7,12] the primal and dual formulations differ in the treatment of the elasto-
plastic evolution law. The duality relation of subgradients of convex functions in
convex analysis [10,21] leads to an equivalent reformulation

Ṗ ∈ NK (�) ⇔ � ∈ ∂ suppK (Ṗ).

The first inclusion is defined above and, given K via a yield function �, reads

�(�) ≤ 0 and Ṗ�(T − �) ≤ 0 for all T ∈ R
d×d
sym × R

m with �(T ) ≤ 0.

The second inclusion involves the support function

suppK (Q) := sup
T∈K

Q�T = sup
�(T )≤0

Q�T

and its subdifferential ∂ suppK . Indeed, � ∈ ∂ suppK (Ṗ) reads

��(Q − Ṗ) ≤ suppK (Q) − suppK (Ṗ) for all Q ∈ R
d×d
sym × R

m .

Throughout this paper, the combined kinematic and isotropic hardening are consid-
ered in the vonMises yield function,where� = (σ, χ)withχ = (a, b) = −Hξ ∈ R

m

for a ∈ R and b ∈ R
d×d
sym ≡ R

m−1 and

�(�) ≡ �(σ, a, b) := | dev σ − dev b| − σy(1 + Ha) for � ≡ (σ, a, b) ∈ R
d×d
sym × R

m .

Here and throughout this paper, Rm ≡ R × R
d×d
sym and

H = diag(A, B) ∈ R
m×m for A > 0 and positive definite B ∈ R

(m−1)×(m−1)
sym .

The material parameters σy > 0 and H ≥ 0 are fixed and constant in time and space;
particular cases are discussed in more details in [2,4,7,8,12].

The hardening allows a control of the Green strain in terms of the generalized
stresses.

Proposition 2.1 [8] The functional suppK is the dual of the characteristic functional
χK of K (zero on K and elsewhere infinity) and reads

suppK (p, α, β) =
{

σy |p| if tr p = 0, p = −β, and A−1α + σy H |p| ≤ 0,
∞ otherwise.

Moreover, the inclusion (σ, χ) ≡ (σ, a, b) ∈ ∂ suppK ( ṗ, ξ̇ ) in case ṗ �= 0 is equiva-
lent to

ṗ

| ṗ| = dev(σ − b)

σy(1 + Ha)
and α̇ = −Aσy H | ṗ|.


�
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722 C. Carstensen et al.

The corresponding weak formulations of the complete model are derived by the
principle of virtual displacements or by testing with a test function. The two resulting
variational inequalities are summarized below; we refer to [4,12] for further details.

The weak formulation involves test and trial functions in standard Lebesgue and
Sobolev spaces, namely,

L2(�) := {

v : � → R : v measurable with
∫

�
|v|2 dx < ∞}

,

H1(�) :=
{

v ∈ L2(�) : ∂v/∂x1, . . . , ∂v/∂xd ∈ L2(�)
}

and powers thereof (i.e., all components belong to the respective space); ∂v/∂x j is a
weak derivative [11,21]. Moreover,

V :=
{

v ∈ H1(�;Rd) : v = 0 on �D

}

and L := L2
(

�;Rd×d
sym × R

m
)

.

The weak primal formulation seeks (u, p, ξ) : [0, tJ ] × � → R
d × R

d×d
sym × R

m

with homogeneous initial values and a Dirichlet boundary condition on �D such that,
for a.e. time t ∈ (0, tJ ) and for all v ∈ V and all (q, ζ ) ∈ L , one has

∫

�

C(ε(u(t)) − p(t)) : (ε(v) − ṗ(t) + q) dx −
∫

�

ξ(t)�H(ζ − ξ̇ (t)) dx

≤
∫

�

f (t) · v dx +
∫

�N

g(t) · v ds +
∫

�

suppK (q, ζ ) dx

−
∫

�

suppK ( ṗ(t), ξ̇ (t)) dx .

The dual formulation seeks (u, σ, χ) : [0, tJ ] × � → R
d × R

d×d
sym × R

m with
homogeneous initial values and a Dirichlet boundary condition on �D , such that, for
a.e. time t ∈ (0, tJ ) and all v ∈ V , one has

∫

�

σ(t) : ε(v) dx =
∫

�

f (t) · v dx +
∫

�N

g(t) · v ds (2.3)

and�(σ(t), χ(t)) ≤ 0 such that, for all (τ, ψ) ∈ L2(�;Rd×d
sym ×R

m)with�(τ,ψ) ≤
0, one has

∫

�

(

ε(u̇(t)) −C
−1σ̇ (t)

) : (τ − σ(t)) dx −
∫

�

χ̇(t) �H−1(ψ − χ(t)) dx ≤ 0. (2.4)

On the continuous level the dual and primal formulation are equivalent [4,12]. The role
of the time-derivative and the choice of variables are different. The unique existence
of solutions is well established [12–14,18,19] as well as a certain regularity result
for the stress variables [16]. The work [15] on a related evolution problem presents
comprehensive regularity results and illustrates what smoothness can be expected for
rate-independent problems.
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Convergence of dG(1) in elastoplastic evolution 723

The time in the rate-independent quasi-static model is a process time and the loads
may even allow for a separation f (t, x) = f1(t) f2(x) for a.e. (t, x) ∈ Q. Com-
putational examples even consider f1(t) = t and may lead to rather complicated
stress-strain interactions.

3 Discretization

This section is devoted to the motivation of discontinuous Galerkin time discretization
schemes for elastoplastic evolution problems. The point of departure is the definition
of a distributional derivate for discontinuous, but I-piecewise smooth test functions.
The time interval [0, tJ ] is partitioned in J subintervals I j = (t j−1, t j ] (open at the
left and closed at the right) of length k, t j := jk for j = 0, . . . , J . Define the set of
I-piecewise smooth functions by

C1(I) :=
{

v ∈ L∞(−∞, tJ ) : v|(−∞,0] := 0 and v|I j ∈ C1[t j−1, t j ] for j = 1, 2, . . . , J
}

.

Piecewise uniformly continuous functions u allow for one-sided limits and the
definition of the jump

[u] j := u(t+j ) − u(t−j ) with u±
j := u(t±j ) := lim

t→t±j
u(t) for j = 0, . . . , J − 1.

(Throughout, u−
0 := 0 owing to the homogeneous initial conditions, whence [u]0 :=

u+
0 .) Since u|(t j−1,t j ) is C1(t j−1, t j ), the time derivative uτ := ∂u/∂t exists on each

open interval (t j−1, t j ) in the classical sense as limits of difference quotients. The
distributional derivative u̇ is defined through

∫ tJ

−∞
u̇(t)v(t)dt = −

∫ tJ

−∞
u(t)v̇(t)dt

for all test functions v ∈ C∞
c (−∞, tJ ). With the delta distribution δt j at the point t j ,

it reads

u̇ = uτ +
J−1
∑

j=0

[u] jδt j .

This explains the action of u̇ on differentiable test functions. An extension to discon-
tinuous test functions starts with globally continuous and piecewise C1 test functions
vε which vanish outside some fixed interval I j . The functions vε are defined by mul-

tiplication of v ∈ C1(R) with the step functions χ
j
ε of Fig. 2,

vε(t) := χ j
ε (t)v(t).
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724 C. Carstensen et al.

tj−1 − ε tj−1 tj − ε tj

1

Fig. 2 Test function χ
j
ε

A formulation of a distributional derivative for the fixed interval I j follows from the
equation

∫ tJ

−∞
u̇(t)vε(t) dt =

∫ t j

t j−1−ε

uτ (t)vε(t) dt + [u] j−1vε(t j−1)

in the limit ε → 0, which is equal to
∫

I j
uτ (t)v(t) dt +[u] j−1v(t+j−1). This argument

applies to a general v ∈ C1(I) and leads to the formula

lim
ε→0

∫

R

u̇

⎛

⎝

J
∑

j=1

v j
ε

⎞

⎠ dt =
∫ tJ

0
uτ (t)v(t) dt +

J
∑

j=1

[u] j−1v
(

t+j−1

)

.

(For a proof, extend the function vI j ∈ C1(I j ) to v̂ j ∈ C1(R) and multiply by χ
j
ε to

define v
j
ε := χ

j
ε v̂ j for j = 1, . . . , J ). The spline space of discontinuous Galerkin

functions of order � is defined through

P�(I; X) = {

u ∈ L∞([0, tJ ], X) : ∀ j = 1, . . . , J , u|I j ∈ P�(I j ; X)
}

.

The homogeneous initial data are reflected in the convention that u(0−) = 0 for
all discrete values below. The discrete loads fk ∈ P1(I; L2(�;Rd)) and gk ∈
P1(I; L2(�N ;Rd)) are seen as approximations to the respective data f and g, as
in Example 3.1 below.

The domain� is partitioned into triangles and parallelograms for 2D and tetrahedra
for 3D. The resulting triangulation T is supposed to be regular in the sense of Ciarlet
[6,9]. For each T ∈ P�(T ) denotes the algebraic polynomials on T of degree ≤ � and
P�(T ;Rd) ≡ P�(T )d . The required finite element function spaces read
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Convergence of dG(1) in elastoplastic evolution 725

P�(T ;Rd) :=
{

v ∈ L2(�) : ∀T ∈ T , v|T ∈ P�(T ;Rd)
}

,

Vh := P1(T ;Rd) ∩ V ,

Lh := P0
(

T ;Rd×d
sym × R

m
)

,

Kh := P0(T ; K ) = {�h ∈ Lh : �h ∈ K a.e. in �}.

The finite element approximation is denoted by subindices k and h (neglected for its
continuous counterpart) as the underlying discretization is based on a partition I in
time and a regular triangulation T in space. Recall the following abbreviations used
throughout this paper

Q j := I j × � and
∫

I j

∫

�

. . . dx dt reads
∫

Q j

. . . dQ.

The discrete primal problem seeks (uhk, Phk) ∈ P1(I; Vh × Lh) such that �hk =
(σhk, χhk) := (C(ε(uhk) − phk),−Hξhk) ∈ P1(I; Lh) and Phk := (phk, ξhk) satisfy,
for all j = 1, . . . , J and for all vhk ∈ P1(I j ; Vh) and all Qhk ∈ P1(I j ; Lh), that

∫

Q j

σhk : ε(vhk) dQ =
∫

Q j

fk · vhk dQ +
∫

I j

∫

�N

gk · vhk ds dt; (3.1)

∫

Q j

�hk�(Qhk − Phk,τ )dQ −
J

∑

j=1

∫

�

(�hk)
+
j−1�[Phk] j−1dx

≤ sup
Rhk∈P1(I j ;Kh)

∫

Q j

Rhk�QhkdQ

− sup
Shk∈P1(I j ;Kh)

(

∫

Q j

Shk�Phk,τdQ +
∫

�

(Shk)
+
j−1�[Phk] j−1 dx

)

. (3.2)

The discrete dual problem seeks (uhk, �hk) ∈ P1(I; Vh × Kh) such that �hk =
(σhk, χhk) and Phk := (phk, ξhk) = (ε(uhk) − C

−1σhk,−H
−1χhk) ∈ P1(I; Lh)

satisfy (3.1) for j = 1, . . . , J and for all vhk ∈ P1(I j ; Vh) and Thk ∈ P1(I j ; Kh) that

∫

Q j

Phk,τ �(Thk − �hk) dQ +
∫

�

[Phk] j−1�(Thk − �hk)
+
j−1dx ≤ 0. (3.3)

The jump terms in this inequality reflect the aforementioned construction of the
distributional derivative for the discontinuous test functions. The implementation of
the dG(1) discretization is described in [3].

Lemma 3.1 (pointwise equilibrium)Given any discrete loads fk ∈ P1(I; L2(�;Rd))

and gk ∈ P1(I; L2(�N ;Rd)) and let σhk ∈ P1(I; P0(T ;Rd×d)) satisfy (3.1). Then
any t ∈ I j , j = 1, . . . , J , and any vh ∈ Vh satisfy
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∫

�

fk(t) · vh dx +
∫

�N

gk(t) · vh ds =
∫

�

σhk(t) : ε(vh) dx . (3.4)

Proof Given any t ∈ I j , j = 1, . . . , J , let F(t) ∈ Vh denote the Riesz representation
of the functional on the right-hand side

∫

�

F(t) · vh dx =
∫

�

fk(t) · vh dx +
∫

�N

gk(t) · vh ds −
∫

�

σhk(t) : ε(vh) dx .

in theHilbert spaceVh with respect to the scalar product of L2(�;Rn) (and so the above
equality holds for all vh ∈ Vh). Then F(t) is affine in t ∈ I j , written F ∈ P1(I j ; Vh).
Endow P1(I j ; Vh) with the scalar product of L2(Q j ). The equilibrium (3.1) shows
that the scalar product

∫

Q j
F(t) · vhk dx = 0 for all vhk ∈ P1(I j ; Vh). Consequently,

F ∈ P1(I j ; Vh) vanishes in L2(Q j ) and so vanishes pointwise almost everywhere.
This implies (3.4). This identity follows for the one-sided limits t±j as well (notice that
( fk, gk) may have jumps). 
�
Example 3.1 (discrete loads) (a) Linear interpolation For continuous data ( f , g), let
( fk, gk) = ( f̃ , g̃) denote the nodal interpolation, also denoted for other quantities
throughout this paper by a tilde,

( fk, gk)(t) = (t j − t)/k ( f , g)(t j−1) + (t − t j−1)/k ( f , g)(t j ) for t j−1 ≤ t ≤ t j .

(b)Natural choice The discretisation with an approximation ( fk, gk) to ( f , g) in (3.1)
may appear artificial at the first glance and one may substitute ( fk, gk) in (3.1) by
( f , g). This is equivalent to the choice of ( fk, gk) as orthogonal projections of ( f , g)
onto P1(I; L2(� × �N ;Rn)) with respect to the scalar product of L2((0, tJ ) × � ×
�N ;Rn).

Remark 3.2 (approximation of loads) All the data approximation terms of Example 3.1
satisfy, for j = 1, . . . , J , the approximation property

‖( f − fk, g − gk)‖L∞(I j ;V ∗×V ∗) ≤ CI k‖( f̈ , g̈)‖L1(I j ;V ∗×V ∗)

≤ CI k
3/2‖( f̈ , g̈)‖L2(I j ;V ∗×V ∗) (3.5)

with some universal constant CI and all ( f , g) ∈ H2(0, tJ ; L2(� × �N ;Rn)).

Further error analysis is contained in the next section, while a few general properties
of the two discrete problems conclude this one.

Theorem 3.2 There exist unique solutions to the discrete primal problem and the
discrete dual problem. The discrete primal problem and the discrete dual problem are
equivalent.

Proof The existence and uniqueness is proven for the primal formulation in [3] and
that of the dual formulation follows from the equivalence to be established here. Let
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(uhk, �hk, Phk) solve the discrete primal problem. Since P1(I j ; Lh) is a Hilbert space
(with respect to the scalar product of L2(Q j ), the linear functional associated with
[Phk] j−1 and Phk,τ |I j has the Riesz representation Ṗhk ∈ P1(I j ; Lh) defined by

∫

Q j

Ṗhk�ThkdQ =
∫

Q j

Phk,τ �ThkdQ

+
∫

�

[Phk] j−1�(Thk)
+
j−1dx for all Thk ∈ P1(I j ; Lh).

Then (3.2) means that all Qhk ∈ P1(I j ; Lh) and all Shk ∈ P1(I j ; Kh) satisfy

∫

Q j

(Qhk − Ṗhk)��hkdQ ≤ sup
Rhk∈P1(I j ;Kh)

∫

Q j

Qhk�RhkdQ −
∫

Q j

Ṗhk�ShkdQ.

Some reformulations result in

∫

Q j

(Qhk − Ṗhk)�(�hk − Shk)dQ ≤ sup
Rhk∈P1(I j ;Kh)

∫

Q j

Qhk�(Rhk − Shk)dQ. (3.6)

The substitution of Qhk ∈ P1(I j ; Lh) by Qhk := λQhk with λ → ∞ in (3.6) leads to

0 ≤ sup
Rhk∈P1(I j ;Kh)

∫

Q j

Qhk�(Rhk − Shk)dQ for all Qhk ∈ P1(I j ; Lh). (3.7)

Given almost every x ∈ � and �hk(·, x) ∈ P1(I j ;Rd×d
sym × R

m) let �̂hk(·, x) denote
its projection onto P1(I j ; Kh) in the Hilbert space P1(I j ;Rd×d

sym ×R
m) with respect to

the scalar product of L2(I j ;Rd×d
sym × R

m). Then, Qhk := �hk − �̂hk in (3.7) implies
that

‖�̂hk − �hk‖2L2(Q j )
≤ sup

Rhk∈P1(I j ;Kh)

∫

Q j

(Rhk − �̂hk)�(�hk − �̂hk) dQ.

Since Rhk belongs to P1(I j ; Kh) and �̂hk is the projection onto this, the scalar product
on the right-hand side is non-positive. Hence �hk = �̂hk and �hk ∈ P1(I j ; Kh) is
admissible. For all Shk ∈ P1(I j ; Kh), the choice Qhk = 0 in (3.6) leads to

∫

Q j

Ṗhk�(Shk − �hk)dQ ≤ 0. (3.8)

Hence Ṗhk ∈ NKh (�hk) and (3.3) of the dual formulation is verified.
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To prove the converse implication, suppose �(�hk) ≤ 0 and (3.3) for all Thk ∈
P1(I j ; Kh). This means that

sup
Thk∈P1(I j ;Kh)

∫

Q j

Ṗhk�ThkdQ j =
∫

Q j

Ṗhk��hkdQ j .

This implies the discrete variational inequality (3.2) for Qhk = 0. Finally, since
�hk ∈ Kh ,

∫

Q j

Qhk��hkdQ ≤ sup
Rh∈P1(I j ;Kh)

∫

Q j

Qhk�RhkdQ

for any Qhk ∈ P1(I j ; Lh). The sum of the two displayed inequalities is (3.2). 
�
The discrete dual formulation reveals explicitly that�hk = (σhk, χhk) ∈ P1(I; Kh)

is admissible a.e. in Q. With an appropriate interpretation of NP1(I j ;K ), the inequality
(3.8) in the equivalence proof reads

Ṗhk|I j×T ∈ NP1(I j ;K )(�hk|I j×T ).

This is not a pointwise version of Proposition 2.1: The dG(1) discretization merely
ensures an averaged discrete material evolution law. This causes a new difficulty in the
error analysis in comparison to the backward Euler and the Crank–Nicolson schemes.
Nevertheless, the discrete kinematic hardening rule allows to deduce a certain discrete
material evolution law pointwise in time-space.

Lemma 3.3 (discrete hardening) The discrete primal solution Phk ≡ (phk, αhk, βhk)

satisfies

tr(phk) = 0 and phk = −βhk a.e. in Q.

Proof Let Ṗhk ≡ ( ṗhk, α̇hk, β̇hk) denote the Riesz representation of the discrete
plastic strain rate from the proof of Theorem 3.2 and fix a time interval for
j = 1, . . . , J . The variational inequality (3.2) implies that the last supremum
M := supShk∈P1(I j ;Kh)

∫

Q j
Shk�ṖhkdQ < ∞ is finite. For any positive r > 0, the

test functions Shk := (σh, ah, bh) := r tr( ṗhk)(1d×d , 0, 0) and Sh = r (R, 0, R) for
R := ṗhk + β̇hk ∈ P1(I j ; P0(T ;Rd×d

sym )) satisfy �(σhk, ahk, bhk) ≤ 0 a.e. in Q j .

Hence the supremum M is a global upper bound for the integral
∫

Q j
Shk�ṖhkdQ

evaluated at the two particular functions Shk ∈ P1(I j ; Kh). This leads to

r ‖ tr( ṗhk)‖2L2(Q j )
≤ M and r ‖ ṗhk + β̇hk‖2L2(Q j )

≤ M .

Since M < ∞ is fixed, r → ∞ implies

tr( ṗhk) = 0 and ṗhk = −β̇hk a.e. in Q j .
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This holds for the Riesz representation ṗhk of the distributional time derivative of phk .
Consequently tr([phk] j−1) = 0 in� and tr(phk,τ ) = 0 in Q j . Together with the initial
conditions tr(phk) = 0, one concludes tr(phk) = 0 a.e. in Q. The same arguments
show phk = −βhk = B−1bhk a.e. in Q. 
�

4 A priori convergence analysis

The main results are stated in the first subsection followed by their verifications.

4.1 A priori error estimate

Given the elasticity and hardening tensors C and H, let A := diag(C−1,H−1) and
define the associated norm |||•||| by

|||(τ, ψ)|||2 :=
∫

�

(τ, ψ)�A(τ, ψ)dx for all (τ, ψ) ∈ L2
(

�;Rd×d
sym × R

m
)

.

(4.1)
The (in general discontinuous) errors � := ˜� − �hk allow for a right and left limit
�±

j at t j = jk; more generally •+
j (resp.•−

j ) denote the one-sided limits limt↘t j •(t)
(resp. limt↗t j •(t)) at t j . The local mesh-sizes hT ∈ P0(T ) are defined by hT |T :=
diam(T ) for all T ∈ T and the time intervals are uniformly distributed with the time
increment k > 0. The following result implies that the stress error converges like
O(h + k3/2) in terms of the maximal mesh-size h := max hT .

Theorem 4.1 (main result) Suppose that u ∈ W 1,1(0, tJ ; H2(�;Rd)), P ∈
W 3,1(0, tJ ; L), and in (b) ( f , g) ∈ W 2,1(0, tJ ; V ∗ × V ∗). Then there exist constants
C1(A) and C2(A), which depend on all material constants as well as the shapes of
the element domains, but not on their sizes, such that the stress error � := ˜� − �hk

satisfies (a) and (b) for the choice of the discrete data ( fk, gk) in Example 3.1.

(a) For Example 3.1.a

Err := max{∣∣∣∣∣∣�+
0

∣

∣

∣

∣

∣

∣

2
,
∣

∣

∣

∣

∣

∣�−
1

∣

∣

∣

∣

∣

∣

2
,
∣

∣

∣

∣

∣

∣�+
1

∣

∣

∣

∣

∣

∣

2
, . . . ,

∣

∣

∣

∣

∣

∣�−
J

∣

∣

∣

∣

∣

∣

2} +
J

∑

j=1

∣

∣

∣

∣

∣

∣[�] j−1
∣

∣

∣

∣

∣

∣

2

≤ C1
(

A)
(

‖
(

k2
...
P, hT D2u̇

)

‖2L1(L2)
+ ‖k3/2 P̈‖2L2(L2)

+ ‖k2 P̈‖2L∞(L2)

)

.

(b) For Example 3.1.b, the lower bound Err is bounded by

Err ≤ C2
(

A)
(

‖
(

k2
...
P, hT D2u̇

)

‖2L1(L2)

+‖
(

k f̈ , kg̈, k3/2 P̈
)

‖2L2(V ∗×V ∗×L)
+ ‖k2 P̈‖2L∞(L2)

)

.

Remark 4.1 (alternative discrete loads) The proof of the theorem shows that certain
critical jump terms disappear if the discrete loads ( fk, gk) ≡ ( ˜f , g̃) are nodal interpo-
lations of ( f , g) in (3.1) as in Example 3.1.a. This leads to an improved convergence
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rate O(h + k3/2) in time in (a) in comparison to O(h + k) for the seemingly natu-
ral choice of Example 3.1.b. One conclusion is the choice of h and k in practice with
h = k3/2 or h = k. A discussion on the sharpness of themathematical analysis follows
in Sect. 4.7.

Remark 4.2 (the role of hardening) The hardening parameters allow for the control
of the Green strain error ε(u − uhk) and the plastic strain P − Phk in terms of the
generalized stress error in Sect. 4.5. The proof below shows that

‖(� − �hk, P − Phk, u − uhk)‖L∞(L×L×V ) = O(h + k3/2)

is controlled by the upper bound in the assertion (a) (resp. O(h+k) in (b)) as well (with
multiplicative constants which tend to infinity as the hardening parameters become
smaller and smaller).

Remark 4.3 (perfect plasticity) In case of no hardening (m = 0) but appropriate
smoothness of the exact solutions, the assertion of Theorem 4.1.a remains true. In
that case (a), the constant C(A) depends exclusively on the elastic material parame-
ters in C. This is very different in case (b), where the constant C(A) tends to infinity
as the hardening parameters become smaller and smaller and the estimate (b) fails in
the case of perfect plasticity. The work [5] analises the limit for vanishing hardening.

Remark 4.4 (constant coefficients) For notational simplicity, all material constants A,
A, B, C,H, H , σy are constant in space and time. We refer to [8] for variable material
parameters in space and a corresponding perturbation analysis.

4.2 Discrete approximations

Given the exact solution � and P , define ˜� and ˜P as the linear interpolation of � and
P in time

˜�(t)|I j = t − t j−1

t j − t j−1
�(t j ) + t j − t

t j − t j−1
�(t j−1) for t j−1 ≤ t ≤ t j .

˜P(t)|I j = t − t j−1

t j − t j−1
P(t j ) + t j − t

t j − t j−1
P(t j−1) for t j−1 ≤ t ≤ t j .

Define �∗
hk as piecewise integral mean (with the volume |T | of T ∈ T ) of ˜� by

�∗
hk(t)|T := 1

|T |
∫

T

˜�(t, x) dx ∈ Kh for all T ∈ T , 0 ≤ t ≤ tJ .

Abbreviate the time difference [•] jj−1 := (•|(t j−1,t j ))(t j ) − (•|(t j−1,t j ))(t j−1) and the

average value 〈•〉 j = (•+
j + •−

j )/2 for the one-sided limits indicated by an upper

index ± at the time point t j , e.g., •−
j := (•)(t−j ) = limt↗t−j

(•)(t).
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Lemma 4.2 (approximate flow rule) It holds for all j = 1, . . . , J that

−
∫

Q j

˙̃P�(˜� − �hk)dQ ≤ k

4

∫

�

[Ṗ] jj−1�[˜� − �hk] jj−1 dx

+ k2

8
‖ ...P‖L1(I j ;L2(�))‖(˜� − �hk)(t j−1/2)‖L2(�).

Proof The Prandtl-Reuß flow rule (2.4) and p = ε(u) − C
−1σ and χ = −Hξ from

Sect. 2 show that

∫

�

Ṗj�(�
−
hk, j − � j )dx ≤ 0 and

∫

�

Ṗj−1�(�
+
hk, j−1 − � j−1)dx ≤ 0.

The sum of the two inequalities leads to

∫

�

(Ṗj + Ṗj−1)�
(

�−
hk, j + �+

hk, j−1 − (� j + � j−1)
)

dx

+
∫

�

(Ṗj − Ṗj−1)�
(

�−
hk, j − � j − (�+

hk, j−1 − � j−1)
)

dx ≤ 0.

A direct calculation shows that this is equivalent to

− 1

2

∫

Q j

(Ṗj + Ṗj−1)�(˜� − �hk)dQ ≤ k

4

∫

�

[Ṗ] jj−1�[˜� − �hk] jj−1dx . (4.2)

The (negative of the) left-hand side of (4.2) is split into two parts,

∫

Q j

Pj − Pj−1

k
�(˜� − �hk)dQ

+
∫

Q j

(

Ṗj + Ṗj−1

2
− Pj − Pj−1

k

)

�(˜� − �hk)dQ,

to obtain the first term of the lemma and a remaining term. A direct calculation leads
to the following identities (cf., e.g., (5.10)–(5.11) in [2])

2k

(

Ṗj + Ṗj−1

2
− Pj − Pj−1

k

)

= k(Ṗj − 2 Ṗj−1/2 + Ṗj−1)

− 2(Pj − k Ṗj−1/2 − Pj−1)

= k
∫ k/2

0

∫ t

−t

...
P(t j−1/2 + s)dsdt − 2

∫ k/2

0

∫ t

0

∫ s

−s

...
P(t j−1/2 + r)drdsdt .
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With the temporary abbreviation g(t) := ∫ t
0

∫ s
−s

...
P(t j−1/2 +r)drds, this term is equal

to

kg(k/2) − 2
∫ k/2

0
g(t)dt = 2

∫ k/2

0

∫ k/2

t
g′(s)dsdt .

The combination with (4.2) (recall the notation dQ = dxdt and ˙̃P = (Pj − Pj−1)/k
etc.) shows

−
∫

Q j

˙̃P�(˜� − �hk)dQ − k

4

∫

�

[Ṗ] jj−1�[˜� − �hk] jj−1dx

≤ 1

k

∫

Q j

(∫ k/2

0

∫ k/2

t
g′(s)dsdt

)

�(˜� − �hk)dQ

≤ k2

8
‖ ...P‖L1(I j ;L2(�))‖(˜� − �hk)(t j−1/2)‖L2(�).


�

The following lemma requires uniform time steps and identifies one term that causes
the order O(k3/2) in the final result.

Lemma 4.3 (time approximation) It holds for all � = 1, . . . , J that

�
∑

j=1

k
∫

�

[Ṗ] jj−1�[˜� − �hk] jj−1 dx

≤ k3/2‖P̈‖L2(0,t�;L2(�))

√

√

√

√

�−1
∑

j=1

‖[�hk] j‖2L2(�)

+ k2

2
‖ ...P‖L1(0,t�;L2(�))

�−1
max
j=1

‖� j − 〈�hk〉 j‖L2(�)

+ k2‖P̈‖L∞(0,t�;L2(�))

(‖(� − �hk)
−
� ‖L2(�) + ‖(� − �hk)

+
0 ‖L2(�)

)

.

Proof Some elementary algebra shows, for � = 1, . . . , J (note [˜�] j−1 = 0), that

�
∑

j=1

∫

�

[Ṗ] jj−1�[˜� − �hk] jj−1 dx

= 1

2

�−1
∑

j=1

∫

�

[�hk] j�(Ṗj+1 − Ṗj−1)dx
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+
�−1
∑

j=1

∫

�

(� j − 〈�hk〉 j )�(−Ṗj+1 + 2 Ṗj − Ṗj−1)dx

+
∫

�

(Ṗ� − Ṗ�−1)�(�� − �−
hk,�)dx −

∫

�

(Ṗ1 − Ṗ0)�
(

�0 − �+
hk,0

)

dx .

The integral Ṗj+1 − Ṗj−1 = ∫ t j+1
t j−1

P̈dt and the Cauchy inequality lead to

1

2

�−1
∑

j=1

∣

∣

∣

∣

∫

�

[�hk] j�(Ṗj+1 − Ṗj−1)dx

∣

∣

∣

∣

≤ k1/2‖P̈‖L2(0,t�;L2(�))

√

√

√

√

�−1
∑

j=1

‖[�hk] j‖2L2(�)
.

(4.3)
The arguments at the end of the proof of the previous lemma show that

�−1
∑

j=1

∣

∣

∣

∣

∫

�

(� j − 〈�hk〉 j )�(−Ṗj+1 + 2 Ṗj − Ṗj−1)dx

∣

∣

∣

∣

≤ k

2
‖ ...P‖L1(0,t�;L2(�))

�−1
max
j=1

‖� j − 〈�hk〉 j‖L2(�).

The initial and final remaining terms are bounded as

∣

∣

∣

∣

∫

�

(Ṗ1 − Ṗ0)�(�0 − �+
hk,0)dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

�

(Ṗ� − Ṗ�−1)�(�� − �−
hk,�)dx

∣

∣

∣

∣

≤ k‖P̈‖L∞(0,t�;L2(�))

(‖(� − �hk)
−
� ‖L2(�) + ‖(� − �hk)

+
0 ‖L2(�)

)

.

The combination of all the above estimates concludes the proof. 
�

4.3 Combination of variational inequalities

The Prandtl-Reuß flow rule has been approximated in Lemma 4.2. The discrete coun-
terpart takes Thk = �∗

hk in (3.3). The sum of the two inequalities is summed up for
j = 1, . . . , �, � ≤ J , and with the estimate of Lemma 4.3 leads to the point of
departure
∫

�×(0,t�)
(Phk,τ − ˙̃P)�(˜� − �hk) dQ +

�
∑

j=1

∫

�

[Phk] j−1�(˜� − �hk)
+
j−1 dx

≤ RHS1(�) := k3/2

4
‖P̈‖L2(0,t�;L2(�))

√

√

√

√

�−1
∑

j=1

‖[�hk ] j‖2L2(�)

+ k2

8
‖ ...P‖L1(0,t�;L2(�))

(

�
max
j=1

‖(˜� − �hk)(t j−1/2)‖L2(�) + �−1
max
j=1

‖� j − 〈�hk〉 j‖L2(�)

)

+ k2

4
‖P̈‖L∞(0,t�;L2(�))

(‖(� − �hk)
−
� ‖L2(�) + ‖(� − �hk)

+
0 ‖L2(�)

)

.
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Recall that P = (ε(u), 0) − A�, Phk = (ε(uhk), 0) − A�hk , and with σ̃ and ũ
denoting the linear interpolants of σ and u in time, set

� := ˜� − �hk, δ := σ̃ − σhk, and e := ũ − uhk .

Then the left-hand side with the piecewise time derivative �τ := ∂�/∂t reads

∫

�×(0,t�)
�τ �A� dQ +

�
∑

j=1

∫

�

[�] j−1�A�+
j−1dx

−
∫

�×(0,t�)
δ : ε(eτ )dQ +

�
∑

j=1

∫

�

[ε(uhk)] j−1 : δ+
j−1dx .

With the homogeneous initial conditions and the convention�−
0 := 0, the term�+

0 =
[�]0 iswritten as the summand for the index zero below.Recall that |||•||| := ‖A1/2•‖L
abbreviate the norm in L with the weight A. Then the first two of the preceding terms
with a telescoping sum combine to

LHS(�) = 1

2

∣

∣

∣

∣

∣

∣�−
�

∣

∣

∣

∣

∣

∣

2 + 1

2

�−1
∑

j=0

∣

∣

∣

∣

∣

∣[�] j
∣

∣

∣

∣

∣

∣

2
.

The remaining two terms with the displacement contributions will be placed in the
upper bound and lead to

LHS(�) − RHS1(�) ≤ RHS2(�) :=
∫

�×(0,t�)
δ : ε(eτ )dQ

−
�

∑

j=1

∫

�

[ε(uhk)] j−1 : δ+
j−1dx . (4.4)

To bound RHS2(�), let G denote the Galerkin projection (optimal in the space of H1

functions) as a linear and boundedmapG : V → Vh and split the volume contribution
with ε(eτ ) into

∫

(0,t�)×�

δ : ε(eτ )dQ =
∫

(0,t�)×�

δ : ε( ˙̃u − G( ˙̃u))dQ +
∫

(0,t�)×�

δ : ε(G(eτ ))dQ.

The first term on the right-hand side is bounded by C1‖δ‖L∞(L2) ‖hT D2u̇‖L1(L2)

with the Hessian D2 of all spatial partial derivatives of order 2 and an interpolation
constant C1, which depends exclusively on the shape-regularity of the triangulation
T . Set vhk := G(eτ ) ∈ P0(I; Vh) and observe that ε(vhk) is constant in time (and
piecewise constant in space) in each Q j . The contribution of Q j to the second term
reads
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∫

Q j

δ : ε(vhk)dQ = k

2

∫

�

δ−
j : ε(vhk)dx + k

2

∫

�

δ+
j−1 : ε(vhk)dx .

The last term in (4.4) can be rewritten with [ε(uhk)] j−1 = −[ε(G(e))] j−1 and leads
to

RHS2(�) ≤ C1‖δ‖L∞(0,t�;L2) ‖hT D2u̇‖L1(L2) +
�

∑

j=1

I ( j) with the abbreviation

I ( j) :=
∫

�

(

k

2
δ−
j : ε(vhk |I j ) + k

2
δ+
j−1 : ε(vhk |I j ) + δ+

j−1 : [ε(G(e))] j−1

)

dx .

(4.5)

4.4 Finish of the proof of (a)

This subsection finalizes the proof in Example 3.1.a, which is special in that I ( j) = 0
in (4.5). In fact, the equilibrium (2.3) and the discrete equilibrium (3.4) (for the one-
sided limits) and, in the case of linear interpolation ofExample 3.1.b, fk(t j ) = ˜f (t j ) =
f (t j ) =: f j etc. show that each summand in I ( j) of (4.5) vanishes, e.g.,

∫

�

δ+
j−1 : ε(vhk)dx=

∫

�

( f j−1 − f +
k, j−1) · vhkdx +

∫

�N

(g j−1 − g+
k, j−1) · vhkds=0.

This and (4.4)–(4.5) read LHS(�) ≤ RHS1(�) + C1‖δ‖L∞(0,t�;L2) ‖hT D2u̇‖L1(L2).
The fourth-order tensors behind A and its inverses are bounded and so ‖�±

j ‖L ≤
C2 ‖A1/2�±

j ‖L for any j etc. With the maximum M := max{∣∣∣∣∣∣�+
0

∣

∣

∣

∣

∣

∣,
∣

∣

∣

∣

∣

∣�−
1

∣

∣

∣

∣

∣

∣,
∣

∣

∣

∣

∣

∣�+
1

∣

∣

∣

∣

∣

∣, . . . ,
∣

∣

∣

∣

∣

∣�−
J

∣

∣

∣

∣

∣

∣}, this leads to

2
∣

∣

∣

∣

∣

∣�−
�

∣

∣

∣

∣

∣

∣

2 +
�−1
∑

j=0

∣

∣

∣

∣

∣

∣[�] j
∣

∣

∣

∣

∣

∣

2

≤ C2

(

2k2‖P̈‖L∞(L2) + k2‖ ...P‖L1(L2) + C1‖hT D2u̇‖L1(L2)

)

M

+ 1

2

�−1
∑

j=1

∣

∣

∣

∣

∣

∣[�] j
∣

∣

∣

∣

∣

∣

2 + k3

2
C2
2‖P̈‖2L2(L2)

for any � = 0, . . . , J .

Consequently,

LHS := J
max
�=1

∣

∣

∣

∣

∣

∣�−
�

∣

∣

∣

∣

∣

∣

2 + 1

2

J−1
∑

j=0

∣

∣

∣

∣

∣

∣[�] j
∣

∣

∣

∣

∣

∣

2

≤ M2/8 + C3

(

h2‖u̇‖2L2(H2)
+ k3‖P̈‖2L2(L2)

+k4‖ ...P‖2L1(L2)
+k4‖P̈‖2L∞(L2)

)

.

123



736 C. Carstensen et al.

A triangle inequality shows that M2/4 ≤ LHS and that concludes the proof for
Example 3.1.a. 
�

4.5 Displacement control through hardening

The presence of hardening acts as a regularization and allows for solutions with
displacements in H1. It follows with Proposition 2.1 for the generalized stress
� = (σ,−Aα,−Bβ) and the plastic deformation P = (ε(u) − C

−1σ, α, β) that
p := ε(u) −C

−1σ = −β. Lemma 3.3 shows shat all those aforementioned identities
hold a.e. in Q for the discrete quantities (with lower index hk) as well. This, but not
more, is inherited by the kinematic hardening in the discrete situation with a discrete
flow-rule. The error � in the generalized stresses is hence equal to

� = ˜� − �hk = (

σ̃ − σhk,−A(̃α − αhk), B( p̃ − phk)
)

a.e. in Q.

This and the additive split p = ε(u) − C
−1σ and its discrete version (in terms of the

Frobenius matrix norm | • | inherited from the scalar product :) lead a.e. in Q to

|ε(̃u − uhk)|2 = | p̃ − phk + C
−1(̃σ − σhk)|2 ≤ 2| p̃ − phk |2

+ 2|C−1(̃σ − σhk)|2 ≤ C4 ��A�

with a material-dependent constant C4 = C4(C
−1, B−1) with A := diag(C−1,H−1)

andH = diag(A, B). This and the Korn inequality lead to displacement control in the
sense that ‖e(t)‖H1(�) ≤ C5|||�(t)||| holds for a.e. time t (and for the one-sided limits
at t±j ) with an universal constant C5. Since the Galerkin projection is H1 stable, this
leads to

k‖vhk‖L∞(V ) + ‖G(e)‖L∞(V ) ≤ C6 max
0≤t≤tJ

|||�(t)||| = C6M . (4.6)

4.6 Finish of the proof (b)

The proof requires the hardening control (4.6) and exclusively utilizes the approxima-
tion property of Remark 3.2 to control the extra terms I ( j) in (4.5) for Example 3.1.b.
The equilibrium (2.3) and Lemma 3.1 show that

I ( j) =
∫

�

(

k

2
( f − fk)

−
j · vhk |I j + k

2
( f − fk)

+
j−1 · vhk |I j + ( f − fk)

+
j−1 · [G(e)] j−1

)

dx

plus corresponding terms with g−gk and their integrals along �N . Remark 3.2 shows

I ( j) ≤ k CI C6‖( f̈ , g̈)‖L1(I j ;V ∗×V ∗) M .

This bounds the sum in (4.5) and the arguments of Sect. 4.4 conclude the proof. 
�
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Convergence of dG(1) in elastoplastic evolution 737

4.7 Discussion and refined analysis

The optimal convergence rate O(h + k2) for the dG(1) scheme is not established in
this paper although this is understood to hold for the Crank–Nicolson scheme [2]. This
subsection discusses the sub-optimality of the mathematical arguments and enlightens
the two convergence rates in Theorem 4.1.

4.7.1 Consequences of the flow rule I

The introduction explains that the textbook analysis of the dG schemes cannot be
performed andmotivates the split of the error with one contribution� and a remainder
on the right-hand side in (1.2) that needs to be bounded from above. Since ˜� is
admissible, the flow rule (1.1) states that the integrand Ṗ�(� − ˜�) ≥ 0 is non-
negative pointwise a.e. in the time-space cylinder Q j . Assuming that the continuous
variables are all smooth, the Simpson quadrature rule in the time interval (t j−1, t j )
gives

∫

Q j

Ṗ�(� − ˜�)dQ =
∫

Q j

|Ṗ�(� − ˜�)|dQ

= 2k/3
∫

�

Ṗj−1/2�(� − ˜�) j−1/2dx + O(k5).

The central difference scheme leads to 2(� − ˜�) j−1/2 = � j − 2� j−1/2 + � j−1 =
k2�̈ j−1/2 up to the error O(k4). The conclusion is that

∫

Q j
Ṗ�(� − ˜�)dQ = O(k3)

and the sum over all j = 1, . . . J is O(k2). This shows that there is only linear
convergence in the end and so, in order to deduce a better convergence rate, this paper
has adopted a pointwise test of the continuous flow rule.

4.7.2 Consequences of the flow rule II

The comments of this subsections refine the main result of Theorem 4.1 in that there
is an additional term

J
∑

j=1

k
∫

�

|Ṗj−1�[�hk] j−1|dx (4.7)

in the lower bound. The above analysis tests the continuous flow rule (1.1) at the
endpoints t j−1 and t j of a typical time interval with a particular choice of an admissible
T from the discrete generalized stress �hk . Since the latter is discontinuous in general
at t j−1, the choice of T in the proof of Lemma 4.2 will be revisited. The continuous
flow rule (for continuous quantities) at the fixed time t j−1 holds pointwise in space.
Rather than �+

hk, j−1 we choose the admissible stress �−
hk, j−1 and that leads to
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∫

�

Ṗj−1�(�
+
hk, j−1 − � j−1)dx −

∫

�

Ṗj−1�[�hk] j−1dx

=
∫

�

Ṗj−1�(�
−
hk, j−1 − � j−1)dx ≤ 0.

The use of the first term in the above displayed inequality leads to the analysis as
above but then the extra jump term −k

∫

�
Ṗj−1�[�hk] j−1dx appears in the lower

bound of Lemma 4.2. The key observation is that the two choices for T , namely
�+

hk, j−1 or �−
hk, j−1, in (1.1) can be made separately for a.e. point x ∈ �. Hence

if the term Ṗj−1(x)�[�hk] j−1(x) is positive, we select T = �+
hk, j−1(x) in (1.1)

and otherwise T = �−
hk, j−1(x). The integral of all those (measurable) selections

generates the additional term k
∫

�
max{0,−Ṗj−1�[�hk] j−1}dx in the lower bound of

Lemma 4.2. The analogous selection procedure is possible at the point t j (for j < J )
and then leads to the additional term k

∫

�
max{0, Ṗj�[�hk] j }dx in the lower bound

of Lemma 4.2. The refined test leads to an additional term

k
∫

�

max{0,−Ṗj−1�[�hk] j−1}dx + k
∫

�

max{0, Ṗj�[�hk] j }dx

in the lower bound of Lemma 4.2. The sum of those terms in the flow of the arguments
in the above proof results in the additional term (4.7) in the lower bound of the two
assertions in Theorem 4.1.

4.7.3 Comments on Theorem 4.1.a

In the absence of further arguments and the presence of plasticity with ‖Ṗ‖L2(L2) > 0,
the extra term (4.7) in the lower bound of the Theorem 4.1.a may be expected to be

of the same order as
√

∑J
j=1 k‖[�hk] j−1‖2L ; at least the non-negative sign of the

integrand gives no reason to believe that a strengthened Cauchy inequality can be
applied. However, if not only (4.7) but also the latter termwere controlled by the right-
hand side O(h2 + k3) of Theorem 4.1.a, then

∑J
j=1 ‖[�hk] j−1‖2L = O(h4/k + k5).

With the practical choice h = k3/2 of Remark 4.1, this gives O(k5) and hence a
superconvergence result.

This line of thoughts may (i) indicate why any improvement of the theoretical
convergence rate beyond the statement of Theorem 4.1 is tricky if not impossible,
and (ii) warn against naive attempts to utilize the computed jumps ‖[�hk] j−1‖L in an
adaptive time-stepping (suggested in the engineering literature).

4.7.4 Comments on Theorem 4.1.b

At the first glance it might be surprising that the natural choice with ( fk, gk) as L2

projections in the discrete equilibrium (3.1) of Example 3.1.b lead to seemingly sub-
optimal rates as highlighted in Remark 4.1. Moreover, the numerical benchmark in the
following section adopts the natural choice and shows the higher convergence rates in
time within the computational range (and the linear interpolant looks identical).
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1 2

E = 70000

ν = 0.33

μ =
E

2(1 + ν)

λ =
νE

(1 + ν)(1− 2ν)
σy = 243

H2 = 1

g1(r, φ, t) = 240 sin(2πt)(cosφ, sinφ)

g2(r, φ, t) = −60 sin(2πt)(cosφ, sinφ)

Fig. 3 Geometry and parameters for the computational benchmark

On the other hand, when the discrete loads are different from the linear inter-
polation, the approximation property (3.5) is supposed to be sharp and shows that
‖[( f − fk, g − gk)] j−1‖L2(�×�N ) = O(k2). This and the pointwise equilibrium of
Lemma 3.1 enforces a jump

∣

∣

∣

∣

∣

∣[�hk] j−1
∣

∣

∣

∣

∣

∣ = O(k2) and the sum over all those jumps

gives
√

∑J
j=1

∣

∣

∣

∣

∣

∣[σhk] j−1
∣

∣

∣

∣

∣

∣

2 = O(k3/2).
The discussion in Sect. 4.7.3 about the extra term (4.7) and the same convergence

rate for the upper bound suggests that the extended lower bound in Theorem 4.1.b is
O(k2) and can not be improved.

5 Numerical experiments

The numerical experiments for the elastoplastic time evolution that lead to Fig. 1 are
considered for the axisymmetric ring � of Fig. 3. While the volume force f vanishes,
the applied surface loads g1 and g2 correspond to a pure Neumann problem with
a known analytical solution given in closed form in [1,2] for kinematic hardening
(H1 = A = 0), where further details can be found.

The algorithmic details of the implementation are included in [3] and lead to the
stress evaluation of Fig. 1. Some snapshots of the elastoplastic evolution computed
with the backward Euler (bE), Crank–Nicolson (CN), dG(0), and dG(1) are displayed
in Fig. 4. To discuss the convergence rates, the relative error

e2Q :=
∫ 1
0

∫

�

(‖C−1/2(σ (x, t) − σhk(x, t))‖2 + ‖H−1/2(χ(x, t) − χhk(x, t))‖2
)

dx dt
∫ 1
0

∫

�

(‖C−1/2σ(x, t)‖2 + ‖H−1/2χ(x, t)‖2) dx dt ,

(5.1)
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(a) bE at t = 1
3 (b) CN at t = 1

3 (c) dG(0) at t = 1
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(e) bE at t = 61
81 (f) CN at t = 61

81 (g) dG(0) at t = 61
81 (h) dG(1) at t = 61

81

Fig. 4 Elastoplastic evolution for time step size, k = 3−4 at various times

and the stress error

e2� :=
∫

�

‖C−1/2(σ (x, 1) − σhk(x, 1))‖2 dx (5.2)

are computed at t = T = 1. The convergence history for the error eQ (left) and e�

(right) is displayed in Fig. 5 for dG(0) and dG(1). Several uniform spatial discretiza-
tions are performed and give rise to different curves. Each curve displays the error as
a function of the (uniform) time-step size k = 3−n for n = 2, 3, 4, 5 with both axes
with a logarithmic scaling. Notice that the convergence in time is from right to left.
For a fine mesh, the empirical convergence rate in time is close to 1 for dG(0) and in
fact better than 1.7 for dG(1). The observed value 2 (resp. 1) for dG(1) (resp. dG(0))
and e� is not a proof for a higher order of convergence, but an indication that the pre-
asymptotic range is very large. This might be an overall impression for dG(1): The
time discretisation error is so small that the spatial error dominates the convergence.

In this (non-academic) mechanical problem, the solution is globally Lipschitz in
space-time and piecewise smooth (cf. [2] for the some explicit formulas): There are up
to two rings in space, which evolve in time, where at x ∈ �with |x | = R(t) the plastic
rate Ṗ(x, t) has a finite jump with respect to t . Hence the high regularity assumptions
of our theoretical results are not met. Nevertheless, we observe the predicted maximal
convergence rates and give a heuristic explanation in the sequel. The leading term
(4.3) in the analysis has to be modified in a time interval I j for all x with |x | = R(t)
for some t with t j−1 ≤ t ≤ t j+1, but remains valid elsewhere. For those points x ,
written x ∈ ω(t j−1, t j+1) ⊂ �, the difference ṗ j+1(x) − ṗ j−1(x) is the L1 time
integral of the piecewise second derivative p̈(x, t) with respect to time t plus a finite
jump of ṗ(x, t) at the critical time t . The Cauchy inequality implies the extra term
k1/2 in the analysis of the L2 norm, but this is not available for the jump terms. Since
the jumps are bounded in L∞(L∞) and the area ω(t j−1, t j+1) has a volume O(k) in
space, the extra term (with O(k−1) time steps) reduces the overall convergence rate
to O(k + h). Although those arguments could be made rigorous they do not explain
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(d)

Fig. 5 Convergence for the error eQ (left) and e� (right) from (5.1)–(5.2) as a function of the time-step

size k = 3−2, . . . , 3−5 with dG(0) in a–b and dG(1) in c–d for various fixed uniform space discretizations
with dof = 6, . . . , 49536 degrees of freedom for the displacements

the better empirical convergence rate for dG(1) compared to dG(0). However, it is
the nature of elastoplasticity to diminish the stress peaks compared to a linear elastic
material behaviour and there is no reason to believe that the stresses concentrate near
the interfaces at |x | = R(t). In the optimistic (although heuristic) hypothesis that the
discrete stress differences in (4.3) do not concentrate, one may hope that the L2 norm
of contribution [�hk] j over ω(t j−1, t j+1) in the extra term is much smaller than the
full L2 norm over �. For instance, if the term [�hk] j is equidistributed in space, the
relevant term over ω(t j−1, t j+1) scales like O(k1/2) times its full L2 norm over �.
That extra scaling factor could explain the observed improved convergence rate in
time.
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