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LOWEST-ORDER EQUIVALENT NONSTANDARD FINITE ELEMENT
METHODS FOR BIHARMONIC PLATES

Carsten Carstensen1,2 and Neela Nataraj2,*

Abstract. The popular (piecewise) quadratic schemes for the biharmonic equation based on triangles
are the nonconforming Morley finite element, the discontinuous Galerkin, the 𝐶0 interior penalty, and
the WOPSIP schemes. Those methods are modified in their right-hand side 𝐹 ∈ 𝐻−2(Ω) replaced
by 𝐹 ∘ (𝐽𝐼M) and then are quasi-optimal in their respective discrete norms. The smoother 𝐽𝐼M is
defined for a piecewise smooth input function by a (generalized) Morley interpolation 𝐼M followed by a
companion operator 𝐽 . An abstract framework for the error analysis in the energy, weaker and piecewise
Sobolev norms for the schemes is outlined and applied to the biharmonic equation. Three errors are
also equivalent in some particular discrete norm from [Carstensen, Gallistl, Nataraj, ESAIM: M2AN
49 (2015) 977–990.] without data oscillations. This paper extends the work [Veeser and Zanotti, SIAM
J. Numer. Anal. 56 (2018) 1621–1642] to the discontinuous Galerkin scheme and adds error estimates
in weaker and piecewise Sobolev norms.

Mathematics Subject Classification. 65N30, 65N12, 65N50.

Received August 19, 2021. Accepted December 14, 2021.

1. Introduction

The paper contributes to lower-order nonstandard finite element methods for a biharmonic plate problem in
a real Hilbert space (𝑉, 𝑎). Given 𝐹 ∈ 𝐿2(Ω), [23] compares the errors for nonstandard finite element methods
(FEM) of the clamped biharmonic plate problem based on piecewise quadratic polynomials, namely the non-
conforming Morley FEM [26], the symmetric interior penalty discontinuous Galerkin FEM (dGFEM) [28], and
the 𝐶0 interior penalty method (𝐶0IP) [6], with respective solutions 𝑢M, 𝑢ℎ, and 𝑢IP; Table 1 displays details
of the respective schemes. For 𝐹 ∈ 𝐿2(Ω), dGFEM and hp-dGFEM for biharmonic and fourth-order problems,
are extensively studied in [27,28,30,31,36,37,39].

For a general right-hand side 𝐹 ∈ 𝐻−2(Ω), the standard right-hand side 𝐹 (𝑣ℎ) remains undefined for non-
standard finite element methods. A postprocessing procedure in [6] enables to introduce a new 𝐶0IP method
for right-hand sides in 𝐻−2(Ω). In [41–43], the discrete test functions are transformed into conforming func-
tions (𝐽 is called smoother in those works) before applying the load functional and quasi-optimal energy norm
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Table 1. Overview of notation for four discrete schemes with discrete bilinear form (5.12)

Schemes
Notation Morley FEM dGFEM 𝐶0IP WOPSIP

Section reference Section 3.2 Section 7 Section 8 Section 10
𝑉ℎ M(𝒯 ) 𝑃2(𝒯 ) 𝑆2

0(𝒯 ) 𝑃2(𝒯 )
𝐴ℎ 𝑎pw in (3.3) 𝐴dG in (7.1) 𝐴IP in (8.1) 𝐴P in (10.2)
𝑏ℎ 0 −Θ 𝒥 − 𝒥 * in (6.2) −Θ 𝒥 − 𝒥 * in (6.2) 0
𝑐ℎ 0 𝑐dG in (4.3) 𝑐IP in (8.2) 𝑐P in (10.1)
𝐼ℎ : M(𝒯 ) → 𝑉ℎ id id 𝐼C in (8.4) id

estimates

‖𝑢− 𝑢M‖pw ≈ min
𝑣M∈M(𝒯 )

‖𝑢− 𝑣M‖pw, ‖𝑢− 𝑢IP‖IP ≈ min
𝑣IP∈IP(𝒯 )

‖𝑢− 𝑣IP‖IP

are derived for the Morley FEM and 𝐶0IP method.
The papers [41–43] discuss minimal conditions on a smoother for each problem, while this paper presents one

smoother 𝐽𝐼M for all schemes; the best-approximation for the dGFEM is a new result. The smoother 𝐽𝐼M also
allows a post-processing with a priori error estimates in weaker and piecewise Sobolev norms.

Table 1 summarizes the notation of spaces, bilinear forms, and an operator for the four second-order methods
for the biharmonic problem detailed in Section 3.2 and in Sections 7, 8, and 10.

Contributions

The main contributions of this paper are

(a) the design and analysis of a generalized Morley interpolation operator 𝐼M for piecewise smooth functions in
𝐻2(𝒯 ),

(b) the design of modified schemes for Morley FEM, dGFEM, 𝐶0IP method, and a weakly over-penalized
symmetric interior penalty (WOPSIP) method for the biharmonic problem for data in 𝐹 ∈ 𝐻−2(Ω),

(c) an abstract framework for the best-approximation property and weaker (piecewise) Sobolev norm estimates,
(d) a priori error estimates in (piecewise) Sobolev norms for the lowest-order nonstandard finite element meth-

ods for biharmonic plates,
(e) an extension of the results of [23] to an equivalence

‖𝑢− 𝑢M‖ℎ ≈ ‖𝑢− 𝑢IP‖ℎ ≈ ‖𝑢− 𝑢dG‖ℎ ≈
⃦⃦

(1−Π0)𝐷2𝑢
⃦⃦

𝐿2(Ω)
(1.1)

without data oscillations for the modified schemes,
(f) the proof of the best approximation for the modified dGFEM that extends [42] and Theorem 4.3 of [23].

Remark 1.1 (Medius analysis). The quasi-optimality of nonconforming and discontinuous Galerkin methods
was established in the seminal paper [34] for the original method up to data oscillations for 𝐹 ∈ 𝐿2(Ω).
Arguments from a posteriori error analysis [44] give new insight in the consistency term from the Strang–Fix
lemmas. The techniques in this paper circumvent any a posteriori error analysis and take advantage of the extra
benefits of the companion operator 𝐽 .

Remark 1.2 (Smoother). The fundamental series of contributions [41–43] on the quasi-optimality concerns
best-approximation for a modified scheme with 𝐹ℎ := 𝐹 ∘ 𝐽 for a smoother 𝐽 . Elementary algebra indicates
a key identity (of (5.5) below) that is already mentioned in (5.15) of [6] and makes the source term in the
consistency disappear.
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Remark 1.3 (Extension to higher order). A (general) Morley interpolation allows for a simultaneous analysis
of four lowest-order schemes, but appears to be restricted to piecewise quadratics at first glance. But the
combination of 𝐽𝐼M as an averaging smoother with higher-order bubble-smoothers shall enable applications to
higher-order schemes as indicated in [42].

Remark 1.4 (Extension to 3D). Although the plate problem is intrinsic two-dimensional, there are three-
dimensional Morley finite elements with a recent companion operator [18] that guarantees the fundamental
properties in 3D such that the abstract framework applies.

Organization

The remaining parts of this paper are organised as follows. Section 2 provides an abstract characterization of
the best-approximation property that applies to the various applications considered in this and future papers
[25]. Section 3 presents preliminaries, a nonconforming discretisation, introduces a novel generalized Morley
interpolation operator for discontinuous functions, and states a best-approximation [16] result for nonconforming
discretisations with data 𝐹 ∈ 𝐻−2(Ω). Section 4 proves a crucial equivalence result of two discrete norms for
a piecewise 𝐻2(𝒯 ) function, and proves approximation properties for the generalized Morley interpolation
operator. Section 5 provides a framework for dG methods and the proof of a best-approximation property under
a set of general assumptions. Section 6 develops the abstract result for a priori error estimates in weaker and
piecewise Sobolev norms. Sections 7 and 8 recall the dG and 𝐶0IP schemes and verify the assumptions of
Sections 5 and 6 for the best-approximation result in the energy norm as well as weaker and piecewise Sobolev
norms without data oscillations. The paper concludes with the equivalence (1.1) of errors in Section 9 and a
proof of quasi-optimality up to penalty for the WOPSIP scheme in Section 10.

General notation

Standard notation of Lebesgue and Sobolev spaces, their norms, and 𝐿2 scalar products applies throughout
the paper such as the abbreviation ‖ ∙ ‖ for ‖ ∙ ‖𝐿2(Ω). For real 𝑠, 𝐻𝑠(Ω) denotes the Sobolev space associated
with the Sobolev–Slobodeckii semi-norm | ∙ |𝐻𝑠(Ω) [33]; 𝐻𝑠(𝑇 ) := 𝐻𝑠(int(𝑇 )) abbreviates the Sobolev space
with respect to the interior int(𝑇 ) ̸= ∅ of a (compact) triangle 𝑇 . The closure of 𝐷(Ω) in 𝐻𝑠(Ω) is denoted
by 𝐻𝑠

0(Ω) and 𝐻−𝑠(Ω) is the dual of 𝐻𝑠
0(Ω). The triple norm ||| ∙ ||| := | ∙ |𝐻2(Ω) is the energy norm and

||| ∙ |||pw := | ∙ |𝐻2(𝒯 ) :=
⃦⃦
𝐷2

pw∙
⃦⃦

is its piecewise version with the piecewise Hessian 𝐷2
pw. Given any function

𝑣 ∈ 𝐿2(𝜔), define the integral mean
ffl

𝜔
𝑣 dx := 1/|𝜔|

´
𝜔
𝑣 dx; where |𝜔| denotes the area of 𝜔. The notation

𝐴 . 𝐵 abbreviates 𝐴 ≤ 𝐶𝐵 for some positive generic constant 𝐶, which depends only on Ω and the shape
regulatity of 𝒯 ; 𝐴 ≈ 𝐵 abbreviates 𝐴 . 𝐵 . 𝐴.

2. Prologue

This section characterizes the best-approximation property of a class of non-conforming finite element meth-
ods. The biharmonic problem is put in an abstract framework in real Hilbert spaces 𝑋 and 𝑌 and a bounded
bilinear form 𝑎 : 𝑋 ×𝑌 → R satisfying an inf-sup condition. Given a right-hand side 𝐹 ∈ 𝑌 *, the exact problem
seeks 𝑥 ∈ 𝑋 with

𝑎(𝑥, ∙) = 𝐹 in 𝑌.

The discrete problem is put in an analog framework with finite-dimensional real Hilbert spaces 𝑋ℎ and 𝑌ℎ and a
bilinear form 𝑎ℎ : 𝑋ℎ×𝑌ℎ → R. The discrete space 𝑋ℎ (resp. 𝑌ℎ) is not a subspace of 𝑋 (resp. 𝑌 ) in general, but
𝑋 and 𝑋ℎ (resp. 𝑌 and 𝑌ℎ) belong to one common bigger vector space that gives rise to the sum ̂︀𝑋 = 𝑋 +𝑋ℎ

(resp. ̂︀𝑌 = 𝑌 + 𝑌ℎ). It is not supposed that this is a direct sum, so the intersection 𝑋 ∩ 𝑋ℎ (resp. 𝑌 ∩ 𝑌ℎ)
may be non-trivial. We suppose that ̂︀𝑋 and ̂︀𝑌 are real Hilbert spaces with (complete) subspaces 𝑋, 𝑋ℎ and 𝑌 ,
𝑌ℎ. The linear and bounded map 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) links the right-hand side 𝐹 ∈ 𝑌 * of the exact problem to the
right-hand side 𝐹ℎ := 𝐹 ∘ 𝑄 ∈ 𝑌 *ℎ of the discrete problem. The map 𝑄 is called smoother in [41–43] because
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it maps a (possibly) discontinuous function 𝑦ℎ ∈ 𝑌ℎ to a smooth function 𝑄𝑦ℎ in applications. The resulting
discrete problem seeks 𝑥ℎ ∈ 𝑋ℎ with

𝑎ℎ(𝑥ℎ, ∙) = 𝐹 (𝑄∙) in 𝑌ℎ. (2.1)

We also suppose that the exact and discrete problems are well-posed and this means in particular that dim𝑋ℎ =
dim𝑌ℎ < ∞ and that the bounded bilinear forms 𝑎 and 𝑎ℎ satisfy inf-sup conditions with positive constants
𝛼 and 𝛼ℎ and are non-degenerate such that the associated linear and bounded operators 𝐴 ∈ 𝐿(𝑋;𝑌 *) and
𝐴ℎ ∈ 𝐿(𝑋ℎ;𝑌 *ℎ ) are bijective; the associated linear operators are defined by 𝐴𝑥 := 𝑎(𝑥, ∙) ∈ 𝑌 * for all 𝑥 ∈ 𝑋
and by 𝐴ℎ𝑥ℎ := 𝑎ℎ(𝑥ℎ, ∙) ∈ 𝑌 *ℎ for all 𝑥ℎ ∈ 𝑋ℎ.

The general discussion in [41–43], leads to an optimal smoothing 𝑄 = Π𝑌 |𝑌ℎ
for the orthogonal projection

Π𝑌 ∈ 𝐿(̂︀𝑌 ) onto 𝑌 . This is a global operation in general and hence infeasible for practical computations. Notice
carefully that all examples in [41–43] discuss 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) with 𝑄𝑧 = 𝑧 for all 𝑧 ∈ 𝑌ℎ ∩ 𝑌, abbreviated by

𝑄 = id in 𝑌ℎ ∩ 𝑌. (2.2)

This paper introduces a smoother 𝐽𝐼M for the discontinuous Galerkin schemes that satisfies (2.2) and is quasi-
optimal in the following sense with a constant ΛQ ≥ 0 that is exclusively bounded in terms of the shape
regularity of the underlying triangulations.

Definition 2.1 (Quasi-optimal smoother). A linear bounded operator 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) is called a quasi-optimal
smoother if there exists some ΛQ ≥ 0 such that

‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 ≤ ΛQ‖𝑦ℎ − 𝑦‖̂︀𝑌 for all 𝑦ℎ ∈ 𝑌ℎ and all 𝑦 ∈ 𝑌. (2.3)

The proofs of Lemma 2.2 and 2.4 below rely on compactness arguments whence in the Appendix A, the
constants ΛP and ΛQ depend on the discrete space. The point is that this paper designs a smoother in Section 4.3
with a constant that does not depend on the mesh-size.

Lemma 2.2. The operator 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) is a quasi-optimal smoother if and only if (2.2) holds.

The (nonconforming) finite element method is characterized by the operator 𝑀 ∈ 𝐿(𝑋;𝑋ℎ) that maps any
𝑥 ∈ 𝑋 to a right-hand side 𝐹 := 𝑎(𝑥, ∙) ∈ 𝑌 * and then to the solution 𝑀𝑥 := 𝑥ℎ = 𝐴−1

ℎ (𝑄*𝐹 ) to (2.1), i.e.,
𝑀𝑥 := 𝐴−1

ℎ (𝑎(𝑥,𝑄∙)) ∈ 𝑋ℎ for all 𝑥 ∈ 𝑋, or, in operator form,

𝑀 := 𝐴−1
ℎ 𝑄*𝐴 ∈ 𝐿(𝑋;𝑋ℎ).

In other words, the subsequent diagram commutes.

𝑋

𝑋ℎ

𝑌 *

𝑌 *ℎ

𝑃 𝑀

𝐴
−1
ℎ

𝐴

𝑄*

This diagram also depicts some (linear and bounded) operator 𝑃 : 𝑋ℎ → 𝑋 that will become a quasi-optimal
smoother in the context of the best-approximation property of 𝑀 below. A synonym to the best-approximation
property of 𝑀 is to say 𝑀 is quasi-opimal in the following sense.
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Definition 2.3 (Quasi-optimal). The above operator 𝑀 is said to be quasi-optimal if

(QO) ∃ 𝐶qo > 0 ∀𝑥 ∈ 𝑋 ‖𝑥−𝑀𝑥‖ ̂︀𝑋 ≤ 𝐶qo min
𝑥ℎ∈𝑋ℎ

‖𝑥− 𝑥ℎ‖ ̂︀𝑋 .

A first characterisation of (QO) has been given in [41] in terms of

𝑀 = id in 𝑋ℎ ∩𝑋. (2.4)

Lemma 2.4 ([41]). Under the present notation, (QO) is equivalent to (2.4).

The above lemmas characterize 𝐶qo and ΛQ by a compactness argument and it remains to control 𝐶qo and
ΛQ in terms of mesh-size independent bounds in applications. This paper designs in Section 4.3 a smoother in
the spirit of [41–43] based on earlier work in the context of a posteriori error control [9, 12, 22] and adaptive
mesh-refinement [14, 17–19]. The outcome is a quasi-optimal smoother 𝑃 ∈ 𝐿(𝑋ℎ;𝑋) with a constant ΛP that
depends only on the shape regularity of the underlying finite element mesh and

‖𝑥ℎ − 𝑃𝑥ℎ‖ ̂︀𝑋 ≤ ΛP‖𝑥ℎ − 𝑥‖ ̂︀𝑋 for all 𝑥ℎ ∈ 𝑋ℎ and all 𝑥 ∈ 𝑋. (2.5)

The proof of the following characterization of best-approximation shall be given in the Appendix A.

Theorem 2.5. Suppose 𝑃 ∈ 𝐿(𝑋ℎ;𝑋) and ΛP satisfy (2.5). Then (QO) is equivalent to the existence of
ΛH > 0 with

(H) 𝑎ℎ(𝑥ℎ, 𝑦ℎ)− 𝑎(𝑃𝑥ℎ, 𝑄𝑦ℎ) ≤ ΛH‖𝑥ℎ − 𝑃𝑥ℎ‖ ̂︀𝑋‖𝑦ℎ‖𝑌ℎ
for all 𝑥ℎ ∈ 𝑋ℎ and 𝑦ℎ ∈ 𝑌ℎ.

In particular, if (H) holds, then (QO) follows with a constant 𝐶qo that depends solely on 𝛼ℎ, ΛH, ΛP, ‖𝑄‖,
and ‖𝐴‖.

The next theorem presents a key estimate that is crucial for goal-oriented error control and duality arguments
for weaker norm estimates. The proof and the dependence of contants are presented in the Appendix A. The
motivation for (̂QO) is exemplified in Theorem 2.7 below.

Theorem 2.6. Suppose 𝑃 and 𝑄 are quasi-optimal smoothers with (2.3)–(2.5) and suppose (QO). Then the
existence of ̂︂𝐶qo > 0 with

(̂QO) 𝑎(𝑥− 𝑃𝑀𝑥, 𝑦) ≤ ̂︂𝐶qo‖𝑥−𝑀𝑥‖ ̂︀𝑋‖𝑦 − 𝑦ℎ‖̂︀𝑌 for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, and 𝑦ℎ ∈ 𝑌ℎ

is equivalent to the existence of ̂︁ΛH > 0 with

̂︂(H) 𝑎ℎ(𝑥′ℎ, 𝑦ℎ)− 𝑎(𝑃𝑥′ℎ, 𝑄𝑦ℎ) ≤ ̂︁ΛH‖𝑥′ℎ − 𝑃𝑥′ℎ‖ ̂︀𝑋‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 for all 𝑥′ℎ ∈ 𝑋 ′
ℎ, and 𝑦ℎ ∈ 𝑌ℎ.

In particular, if ̂︂(H) holds, (̂QO) follows with a constant ̂︂𝐶qo that depends solely on ‖𝑎‖, Λ′2, ΛP, and ΛQ.
The a priori error estimates in weaker Sololev norms (weaker than the energy norm) are a corollary of

Theorem 2.6 and the elliptic regularity, the latter is written in an abstract form by the assumption that 𝑋𝑠 and
𝑌𝑠 are two Hilbert spaces with 𝑋 ⊂ 𝑋𝑠 and 𝑌𝑠 ⊂ 𝑌 such that

(R) ∃𝐶reg > 0 ∀𝐹 ∈ 𝑋*
𝑠 ‖𝐴−*𝐹‖𝑌𝑠

≤ 𝐶reg‖𝐹‖𝑋*𝑠

for the solution 𝑦 := 𝐴−*𝐹 ∈ 𝑌𝑠 ⊂ 𝑌 to 𝑎(∙, 𝑦) = 𝐹 ∈ 𝑋*
𝑠 ⊂ 𝑋*.

Theorem 2.7 (Weak a priori). Under the assumptions of Theorem 2.6, (̂QO) and (R) imply

‖𝑥− 𝑃𝑀𝑥‖𝑋𝑠
≤ ̂︂𝐶qo‖𝑥−𝑀𝑥‖ ̂︀𝑋 sup

𝑦∈𝑌𝑠
‖𝑦‖𝑌𝑠≤𝐶reg

inf
𝑦ℎ∈𝑌ℎ

‖𝑦 − 𝑦ℎ‖̂︀𝑌 for all 𝑥 ∈ 𝑋.



46 C. CARSTENSEN AND N. NATARAJ

Proof. Given 𝑥 − 𝑃𝑀𝑥 ∈ 𝑋 ⊂ 𝑋𝑠, a corollary of the Hahn–Banach extension theorem leads to some 𝐹 ∈
𝑋*

𝑠 ⊂ 𝑋* with norm ‖𝐹‖𝑋*𝑠
≤ 1 in 𝑋*

𝑠 and ‖𝑥 − 𝑃𝑀𝑥‖𝑋𝑠
= 𝐹 (𝑥 − 𝑃𝑀𝑥). The dual solution 𝑦 ∈ 𝑌 to

𝐹 = 𝑎(∙, 𝑦) ∈ 𝑋* satisfies (R) and (̂QO) leads to

‖𝑥− 𝑃𝑀𝑥‖𝑋𝑠 = 𝑎(𝑥− 𝑃𝑀𝑥, 𝑦) ≤ ̂︂𝐶qo‖𝑥−𝑀𝑥‖ ̂︀𝑋‖𝑦 − 𝑦ℎ‖̂︀𝑌

for any 𝑦ℎ ∈ 𝑌ℎ. This and ‖𝑦‖𝑌𝑠 ≤ 𝐶reg‖𝐹‖𝑋*𝑠
≤ 𝐶reg conclude the proof. �

Example 2.8 (Standard). For the 𝑚-harmonic operator 𝐴 = (−1)𝑚∆𝑚 and 𝑋 = 𝐻𝑚
0 (Ω) = 𝑌 , (R) holds for

𝑋𝑠 = 𝐻𝑚−𝑠
0 (Ω), 𝑌𝑠 = 𝐻𝑚+𝑠(Ω) and 1/2 ≤ 𝑠 ≤ 1, 𝑚 = 1 or 2. Typical first-order approximation properties of

the discrete finite element spaces result in

sup
𝑦∈𝑌𝑠

‖𝑦‖𝑌𝑠≤𝐶reg

inf
𝑦ℎ∈𝑌ℎ

‖𝑦 − 𝑦ℎ‖̂︀𝑌 = 𝑂(ℎ𝑠
max)

in terms of the maximal mesh-size ℎmax of the underlying finite element mesh.

Remark 2.9 (Best-approximation constant). The paper [41] gives a formula for the best-approximation con-
stant 𝐶qo for some slightly simpler problem in one Hilbert space.

Remark 2.10 (Injective smoother). Under the above notation 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) is injective if and only if 𝑀 ∈
𝐿(𝑋;𝑋ℎ) is surjective [41]. Then there exists a right-inverse 𝑃 ∈ 𝐿(𝑋ℎ;𝑋) to 𝑀 and (H) holds with ΛH = 0
(this follows with the arguments of the proof of Theorem 2.7 for 𝑃 ′ that is in fact a quasi-optimal smoother
owing to (A.5)). Consequently, the discrete scheme is equivalent to a conforming Petrov–Galerkin scheme.

Remark 2.11 (Non injective smoother). In case 𝑄 ∈ 𝐿(𝑌ℎ;𝑌 ) is not injective, the discrete problem may
reduced to the range 𝑋 ′

ℎ := ℛ(𝑀) of 𝑀 and the orthogonal complement 𝑌 ′ℎ of the kernel of 𝑄 in 𝑌ℎ. However,
the explicit computation of the reduced discrete spaces 𝑋 ′

ℎ and 𝑌 ′ℎ may be costly and hence this paper outlines
a general analysis that allows non-injective quasi-optimal smoothers.

Example 2.12 (Smoother for Morley). For the standard Morley interpolation operator 𝐼M : 𝐻2
0 (Ω) → M(𝒯 )

and a companion operator 𝐽 : M(𝒯 ) → 𝐻2
0 (Ω) (cf., Lem. 3.7 below for details) the smoother 𝑄 = 𝐽𝐼M is

injective because 𝐽 is a right-inverse of 𝐼M.

Example 2.13 (Smoother for dG). This paper advertises a smoother 𝑄 := 𝐽𝐼M for a (generalized) Morley
interpolation 𝐼M : (𝑃2(𝒯 ) + 𝐻2

0 (Ω)) → M(𝒯 ) (cf., (3.5) below for details) followed by a companion operator
𝐽 from the previous example for the dG FEM. Then dim 𝑃2(𝒯 ) = 6|𝒯 | is strictly larger than dim M(𝒯 ) =
|𝒱(Ω)|+ |ℰ(Ω)|; whence 𝑄 cannot be injective.

The situation for the 𝐶0 IP with the discrete space 𝑆2
0(𝒯 ) (of the same dimension as M(𝒯 )) is more involved

and is discussed in more details in Section 8 below.

3. Preliminaries

3.1. Continuous model problem

Suppose 𝑢 ∈ 𝑉 := 𝐻2
0 (Ω) solves the biharmonic equation ∆2𝑢 = 𝐹 for a given right-hand side 𝐹 ∈ 𝑉 * ≡

𝐻−2(Ω) in a planar bounded Lipschitz domain Ω with polygonal boundary 𝜕Ω. The weak form of this equation
reads

𝑎(𝑢, 𝑣) = 𝐹 (𝑣) for all 𝑣 ∈ 𝑉 (3.1)

with the scalar product 𝑎(𝑣, 𝑤) :=
´
Ω
𝐷2𝑣 : 𝐷2𝑤 dx for all 𝑣, 𝑤 ∈ 𝑉 . It is well known that (3.1) has a unique

solution 𝑢 and elliptic regularity [1, 3, 32, 38] holds in the sense that 𝐹 ∈ 𝐻−𝑠(Ω) implies 𝑢 ∈ 𝑉 ∩𝐻4−𝑠(Ω) for
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all 𝑠 with 2− 𝜎reg ≤ 𝑠 ≤ 2 with the index of elliptic regularity 𝜎reg > 0. The lowest-order nonconforming finite
element schemes suggest a linear convergence rate in the energy norm for a solution 𝑢 ∈ 𝐻𝑡(Ω) at most for all
𝑡 ≥ 3. Therefore 𝜎 := min{1, 𝜎reg} is fixed throughout this paper and exclusively depends on Ω. The regularity
is frequently employed in the following formulation.

Example 3.1 (Regularity). There exists a constant 0 < 𝜎 ≤ 1 such that 𝐹 ∈ 𝐻−𝑠(Ω) with 2 − 𝜎 ≤ 𝑠 ≤ 2
satisfies 𝑢 ∈ 𝑉 ∩𝐻4−𝑠(Ω) and

‖𝑢‖𝐻4−𝑠(Ω) ≤ 𝐶reg(𝑠)‖𝐹‖𝐻−𝑠(Ω) (3.2)

for some constant 𝐶reg(𝑠) <∞, which depends on Ω and 𝑠. (The dependence on 𝑠 results from the equivalence
of Sobolev norms that may depend on the index 𝑠 in general.)

It is true that pure Dirichlet boundary conditions in the model example lead to 𝜎 > 1/2 and then allow for
a control of the traces 𝐷2𝑢 in the jump terms. This paper circumvents this argument and all the results hold
for 𝜎 ≥ 0. The new discrete analysis is therefore much more flexible and allows for generalizations of the model
problem e.g., for mixed and boundary conditions of less smoothness.

3.2. Nonconforming discretisation

Throughout the rest of this article, the following notations are adopted. Let 𝒯 denote a shape regular
triangulation of the polygonal Lipschitz domain into compact triangles. Associate its piecewise constant mesh-
size ℎ𝒯 ∈ 𝑃0(𝒯 ) with ℎ𝑇 := ℎ𝒯 |𝑇 := diam(𝑇 ) ≈ |𝑇 |1/2 in any triangle 𝑇 ∈ 𝒯 of area |𝑇 | and its maximal
mesh-size ℎmax := max ℎ𝒯 . Let 𝒱 (resp. 𝒱(Ω) or 𝒱(𝜕Ω)) denote the set of all (resp. interior or boundary)
vertices in 𝒯 . Let ℰ (resp. ℰ(Ω) or ℰ(𝜕Ω)) denote the set of all (resp. interior or boundary) edges. The length
of an edge 𝐸 is denoted by ℎ𝐸 . Let Π𝑘 denote the 𝐿2(Ω) orthogonal projection onto the piecewise polynomials
𝑃𝑘(𝒯 ) := {𝑣 ∈ 𝐿2(Ω) : ∀𝑇 ∈ 𝒯 , 𝑣|𝑇 ∈ 𝑃𝑘(𝑇 )} of degree at most 𝑘 ∈ N0. Let the Hilbert space 𝐻1(𝒯 ) ≡∏︀

𝑇∈𝒯 𝐻
1(𝑇 ). Define the jump [𝜙]𝐸 := 𝜙|𝑇+ −𝜙|𝑇− and the average ⟨𝜙⟩𝐸 := 1

2

(︀
𝜙|𝑇+ + 𝜙|𝑇−

)︀
across the interior

edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ ℰ(Ω) of 𝜙 ∈ 𝐻1(𝒯 ) of the adjacent triangles 𝑇+ and 𝑇− ∈ 𝒯 in an order such that
the unit normal vector 𝜈𝑇+ |𝐸 = 𝜈𝐸 = −𝜈𝑇− |𝐸 along the edge 𝐸 has a fixed orientation and points outside 𝑇+

and inside 𝑇−; 𝜈𝑇 is the outward unit normal of 𝑇 along 𝜕𝑇 . The edge-patch 𝜔(𝐸) := int(𝑇+ ∪ 𝑇−) of the
interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ ℰ(Ω) is the interior of union 𝑇+ ∪ 𝑇− of the neighboring triangles 𝑇+ and 𝑇−.
Extend the definition of the jump and the average to an edge 𝐸 ∈ ℰ(𝜕Ω) on the boundary by [𝜙]𝐸 := 𝜙|𝐸 and
⟨𝜙⟩𝐸 := 𝜙|𝐸 owing to the homogeneous boundary conditions. Jump and average are understood componentwise
for any vector function. The edge-patch 𝜔(𝐸) := int(𝑇+) of an edge 𝐸 ∈ ℰ(𝜕Ω) on the boundary is simply the
interior of the one triangle 𝑇+ with the edge 𝐸 in the triangulation 𝒯 .

The nonconforming Morley finite element space [26] reads

M′(𝒯 ) :=

{︃
𝑣M ∈ 𝑃2(𝒯 )

⃒⃒⃒⃒
⃒ 𝑣M is continuous at the vertices and its normal derivatives
𝜈𝐸 · ∇pw𝑣M are continuous at the midpoints of interior edges

}︃
,

M(𝒯 ) :=

{︃
𝑣M ∈ M′(𝒯 )

⃒⃒⃒⃒
⃒ 𝑣M vanishes at the vertices of 𝜕Ω and its normal derivatives
𝜈𝐸 · ∇pw𝑣M vanish at the midpoints of boundary edges

}︃
.

Figure 1a depicts the degrees of freedom of the Morley finite element(︂
𝑇, 𝑃2(𝑇 ), (𝛿𝑧 : 𝑧 ∈ 𝒱(𝑇 )) ∪

(︂ 
𝐸

𝜕𝜈𝐸
∙ ds : 𝐸 ∈ ℰ(𝑇 )

)︂)︂
(in the sense of Ciarlet) in the triangle 𝑇 with set of vertices 𝒱(𝑇 ) and set of edges ℰ(𝑇 ).
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Figure 1. (a) Morley (left) and (b) HCT (right) finite element.

The semi-scalar product 𝑎pw is defined by the piecewise differential operator 𝐷2
pw and

𝑎pw(𝑣pw, 𝑤pw) :=
∑︁
𝑇∈𝒯

ˆ
𝑇

𝐷2𝑣pw : 𝐷2𝑤pw dx for all 𝑣pw, 𝑤pw ∈ 𝐻2(𝒯 ). (3.3)

It induces a piecewise 𝐻2 seminorm ||| ∙ |||pw = 𝑎pw(∙, ∙)1/2 that is also a norm in M(𝒯 ). Then (M(𝒯 ), 𝑎pw)
is a (finite-dimensional) Hilbert space so that, given any 𝐹ℎ ∈ M(𝒯 )*, there exists a unique discrete solution
𝑢M ∈ M(𝒯 ) to

𝑎pw(𝑢M, 𝑣M) = 𝐹ℎ(𝑣M) for all 𝑣M ∈ M(𝒯 ). (3.4)

3.3. Interpolation of discontinuous functions

Lemma 3.2 (Interpolation estimates I [8, 10]). The Morley interpolation operator 𝐼M : 𝑉 → M(𝒯 ) is defined
by (𝐼M𝑣)(𝑧) = 𝑣(𝑧) and

ffl
𝐸

𝜕𝐼M𝑣
𝜕𝜈𝐸

ds =
ffl

𝐸
𝜕𝑣

𝜕𝜈𝐸
ds for any 𝑧 ∈ 𝒱(Ω) and 𝐸 ∈ ℰ(Ω). It satisfies

(a) the integral mean property of the Hessian, 𝐷2
pw𝐼M = Π0𝐷

2,
(b)

∑︀2
𝑚=0 ℎ

𝑚−2
𝑇 |𝑣 − 𝐼M𝑣|𝐻𝑚(𝑇 ) ≤ 2‖(1−Π0)𝐷2𝑣‖𝐿2(𝑇 ) for all 𝑣 ∈ 𝐻2(𝑇 ) and any 𝑇 ∈ 𝒯 ,

(c) |||𝑣 − 𝐼M𝑣|||pw . ℎ
𝑠
max‖𝑣‖𝐻2+𝑠(Ω) for all 𝑣 ∈ 𝐻2+𝑠(Ω) and all 0 ≤ 𝑠 ≤ 1.

A reformulation of Lemma 3.2a is the best-approximation property

𝑎pw(𝑣 − 𝐼M𝑣, 𝑤2) = 0 for all 𝑣 ∈ 𝑉 and all 𝑤2 ∈ 𝑃2(𝒯 ). (3.5)

A reformulation of Lemma 3.2b is the existence of a universal constant 𝜅 > 0 with

‖ℎ−2
𝒯 (𝑣 − 𝐼M𝑣)‖ ≤ 𝜅|||𝑣 − 𝐼M𝑣|||pw for all 𝑣 ∈ 𝑉. (3.6)

(In fact 𝜅 = 0.25745784465 from [10] is independent of the shape of the triangle 𝑇 .)

Remark 3.3 (Pythagoras). The functions 𝑣pw, 𝑤pw ∈ 𝐻2(𝒯 ) :=
{︀
𝑣pw ∈ 𝐿2(Ω) : ∀𝑇 ∈ 𝒯 , 𝑣pw|𝑇 ∈ 𝐻2(𝑇 )

}︀
are

orthogonal iff 𝑎pw(𝑣pw, 𝑤pw) = 0 holds and then the Pythagoras theorem leads to

|||𝑣 − 𝑤M|||2pw = |||𝑣 − 𝐼M𝑣|||2pw + |||𝑤M − 𝐼M𝑣|||2pw (3.7)

for all 𝑣 ∈ 𝑉 and 𝑤M ∈ M(𝒯 ). In particular, |||𝑣 − 𝐼M𝑣|||pw = min𝑣2∈𝑃2(𝑇 ) |||𝑣 − 𝑣2|||pw.
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Definition 3.4 ((local) Morley interpolation). Given any 𝑇 ∈ 𝒯 and 𝑣pw ∈ 𝐻2(𝑇 ), the (local) Morley inter-
polation 𝐼 loc

M 𝑣pw|𝑇 ∈ 𝑃2(𝑇 ) is defined by the degrees of freedom of the Morley finite element such that, for all
𝑧 ∈ 𝒱(𝑇 ) and for all 𝐸 ∈ ℰ(𝑇 ),

(︀
𝐼 loc
M 𝑣pw − 𝑣pw

)︀
|𝑇 (𝑧) = 0 and

 
𝐸

(︀
𝜕
(︀
𝐼 loc
M 𝑣pw − 𝑣pw

)︀
|𝑇 /𝜕𝜈𝐸

)︀
ds = 0.

The Morley interpolation allows for an extension (still denoted by 𝐼M) to piecewise 𝐻2 functions in 𝐻2(𝒯 ) ≡∏︀
𝑇∈𝒯 𝐻

2(𝑇 ) by averaging the degrees of freedom.

Definition 3.5 (Morley interpolation). Given any 𝑣pw ∈ 𝐻2(𝒯 ), define 𝐼M𝑣pw := 𝑣M ∈ M(𝒯 ) by the degrees
of freedom as follows. For any interior vertex 𝑧 ∈ 𝒱(Ω) with set of attached triangles 𝒯 (𝑧) that has cardinality
|𝒯 (𝑧)| ∈ N and any interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ ℰ(Ω) and its mean value operator ⟨∙⟩𝐸 (the arithmetic
mean of the two traces from the triangles 𝑇+ and 𝑇− ∈ 𝒯 along their common edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇−), set

𝑣M(𝑧) := |𝒯 (𝑧)|−1
∑︁

𝑇∈𝒯 (𝑧)

(𝑣pw|𝑇 )(𝑧) and
 

𝐸

𝜕𝑣M
𝜕𝜈𝐸

ds :=
 

𝐸

⟨
𝜕𝑣pw

𝜕𝜈𝐸

⟩
𝐸

ds.

(The remaining degrees of freedom at vertices and edges on the boundary are zero for homogeneous boundary
conditions.)

Remark 3.6 (Standard Morley interpolation vs. Def. 3.5). The interpolation operator 𝐼M of Definition 3.5
extends that of standard Morley interpolation operator in the sense that the two definitions coincide for functions
in 𝐻2

0 (Ω). This justifies the use of the same symbol 𝐼M.

3.4. Companion operator and best-approximation for the Morley FEM

A conforming finite-dimensional subspace of 𝐻2
0 (Ω) is provided by the Hsieh–Clough–Tocher (HCT) FEM

([26], Chap. 6). For any 𝑇 ∈ 𝒯 , let 𝒦(𝑇 ) := {𝑇𝐸 : 𝐸 ∈ ℰ(𝑇 )} denote the triangulation of 𝑇 into three
sub-triangles 𝑇𝐸 := conv{𝐸,mid(𝑇 )} with edges 𝐸 ∈ ℰ(𝑇 ) and common vertex mid(𝑇 ) depicted in Figure 1b.
Then,

HCT(𝒯 ) :=
{︀
𝑣 ∈ 𝐻2

0 (Ω) : 𝑣|𝑇 ∈ 𝑃3(𝒦(𝑇 )) for all 𝑇 ∈ 𝒯
}︀
. (3.8)

The degrees of freedom in a triangle 𝑇 ∈ 𝒯 are the nodal values 𝜓(𝑧) and its derivative ∇𝜓(𝑧) of the function
𝜓 ∈ HCT(𝒯 ) at any vertex 𝑧 ∈ 𝒱(𝑇 ) and the values 𝜕𝜓/𝜕𝜈𝐸(mid(𝐸)) of the normal derivatives at the midpoint
mid(𝐸) of any edge 𝐸 ∈ ℰ(𝑇 ).

Lemma 3.7 (Right-inverse [17, 29, 41]). There exists a linear map 𝐽 : M(𝒯 ) → (HCT(𝒯 ) + 𝑃8(𝒯 )) ∩ 𝐻2
0 (Ω)

and a constant ΛJ (that exclusively depends on the shape regularity of 𝒯 ) such that any 𝑣M ∈ M(𝒯 ) satisfies
(a)–(e).

(a) 𝐽𝑣M(𝑧) = 𝑣M(𝑧) for any 𝑧 ∈ 𝒱;
(b) ∇(𝐽𝑣M)(𝑧) = |𝒯 (𝑧)|−1

∑︀
𝑇∈𝒯 (𝑧)(∇𝑣M|𝑇 )(𝑧) for 𝑧 ∈ 𝒱(Ω);

(c)
ffl

𝐸
𝜕𝐽𝑣M/𝜕𝜈𝐸 d𝑠 =

ffl
𝐸
𝜕𝑣M/𝜕𝜈𝐸 d𝑠 for any 𝐸 ∈ ℰ;

(d) |||𝑣M − 𝐽𝑣M|||pw ≤ ΛJ min𝑣∈𝑉 |||𝑣M − 𝑣|||pw;
(e) 𝑣M − 𝐽𝑣M ⊥ 𝑃2(𝒯 ) in 𝐿2(Ω).

The operator 𝐽 of Lemma 3.7 with (𝑎)–(𝑐) is a right-inverse for 𝐼M : 𝑉 → M(𝒯 ), i.e.,

𝐼M𝐽 = id in M(𝒯 ). (3.9)
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Examples are provided in [17, 29, 41]. For earlier references in the literature, see [5, 13, 20]. A right-inverse
with benefits like (d) and (e) is called companion operator and [17] defines 𝐽 : M(𝒯 ) → 𝑉 so that (a)–(e) of
Lemma 3.7 hold (cf., in particular [17], Lem. 5.1 for the analysis of (d) and (e)).

Given 𝐹 ∈ 𝐿2(Ω), we may choose 𝐹ℎ ≡ 𝐹 in the discrete scheme (3.4); but otherwise 𝐹ℎ = 𝐹 ∘𝐽 is the option
throughout this paper; other choices are proposed in [6,42]. Given any Lebesgue function 𝐹 ≡ 𝐹ℎ ∈ 𝐿2(Ω) with
its 𝐿2 projection Π2𝐹 onto 𝑃2(𝒯 ), define its oscillations osc2(𝐹, 𝒯 ) :=

⃦⃦
ℎ2
𝒯 (𝐹 −Π2𝐹 )

⃦⃦
.

Theorem 3.8 (Best-approximation up to data approximation [23,34]). The constant 𝐶1 := max{𝜅ΛJ, 1 + ΛJ},
the solution 𝑢 ∈ 𝑉 to (3.1) with 𝐹 ∈ 𝐿2(Ω), and the solution 𝑢M ∈ M(𝒯 ) to (3.4) with 𝐹ℎ ≡ 𝐹 satisfy
𝐶−1

1 |||𝑢− 𝑢M|||pw ≤ |||𝑢− 𝐼M𝑢|||pw + osc2(𝐹, 𝒯 ).

The discrete scheme (3.4) requires a discrete right-hand side 𝐹ℎ for a general 𝐹 ∈ 𝐻−2(Ω). The evaluation
of 𝐹ℎ := 𝐹 ∘ 𝐽 is feasible with 𝐹ℎ(𝑣M) := 𝐹 (𝐽𝑣M) for all 𝑣M ∈ M(𝒯 ) and the (modified) nonconforming scheme
seeks the solution 𝑢M ∈ M(𝒯 ) to

𝑎pw(𝑢M, 𝑣M) = 𝐹 (𝐽𝑣M) for all 𝑣M ∈ M(𝒯 ). (3.10)

Let Λ0 denote the norm of 1− 𝐽 , where the right-inverse 𝐽 ∈ 𝐿(M(𝒯 );𝑉 ) is regarded as a linear map between
M(𝒯 ) and 𝑉 ,

Λ0 := sup
𝑣M∈M(𝒯 )∖{0}

|||𝑣M − 𝐽𝑣M|||pw/|||𝑣M|||pw ≤ ΛJ. (3.11)

Theorem 3.9 (Best-approximation [16, 43]). The solution 𝑢 ∈ 𝑉 to (3.1) with 𝐹 ∈ 𝑉 * and the solution
𝑢M ∈ M(𝒯 ) to (3.10) satisfy |||𝑢− 𝑢M|||pw ≤

√︀
1 + Λ2

0|||𝑢− 𝐼M𝑢|||pw. The constant
√︀

1 + Λ2
0 is optimal.

Remark 3.10 (Extra orthogonality in Lem. 3.7e). The 𝐿2 orthogonality in Lemma 3.7e allows control over
dual norm estimates of the form ‖𝑣M − 𝐽𝑣M‖𝐻−𝑠(Ω) . ‖ℎ𝑠

𝒯 (𝑣M − 𝐽𝑣M)‖ for 0 ≤ 𝑠 ≤ 2. This is critical in
eigenvalue analysis or problems with low-order terms; for e.g., in [14,17]. The 𝐿2 orthogonality in Lemma 3.7e
also allows a direct proof of Theorem 3.8 that circumvents the a posteriori error analysis of the consistency
term as part of the medius analysis [34]. Notice that the proof of the best-approximation of Theorem 3.9 for
the modified scheme does not require the 𝐿2 orthogonality in Lemma 3.7e.

Remark 3.11 (Minimal assumptions on the smoother). The series of papers [41–43] addresses the question on
the minimal assumptions on the smoother (partly as a right inverse only). This paper utilizes a smoother 𝐽
with the properties of Lemma 3.7a–d.

The point in the subsequent example is that the smoother 𝐽𝐼M may be more costly than averaging in other
examples but it is at almost no extra costs for the case of point forces, which are of practical importance in civil
engineering.

Example 3.12 (Point forces). Let 𝑚 denote the point forces in the right-hand side, i.e., let

𝐹 =
𝑚∑︁

𝑗=1

𝛼𝑗𝛿𝑎𝑗
, (3.12)

the triangulation can be adopted such that the concentration point 𝑎𝑗 becomes a vertex in the triangulation.
The right-inverse property of 𝐼M displays that (𝐽𝐼M𝑣M)(𝑧) = 𝑣M(𝑧) holds at any vertex 𝑧 ∈ 𝒱 and for any
Morley function 𝑣M ∈ M(𝒯 ). Hence the evaluation of the modified right-hand side 𝐹ℎ := 𝐹 ∘ 𝐽 leads for (3.12)
to 𝐹ℎ𝑣M =

∑︀𝑚
𝑗=1 𝛼𝑗𝑣M(𝑎𝑗). The averaging of 𝐼M in Definition 3.5 shows in the more general case 𝑉ℎ ⊂ 𝑃2(Ω)

that 𝐹ℎ := 𝐹 ∘ 𝐽𝐼M leads to 𝐹ℎ𝑣M =
∑︀𝑚

𝑗=1 𝛼𝑗/|𝒯 (𝑎𝑗)|
∑︀

𝑇∈𝒯 (𝑎𝑗)
(𝑣ℎ|𝑇 )(𝑎𝑗). The same formula applies to other

smoothers like the enrichment in [6, 41–43].
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4. Interpolation of piecewise 𝐻2 functions

4.1. Equivalent norms

The Hilbert space 𝐻2(𝒯 ) ≡
∏︀

𝑇∈𝒯 𝐻
2(𝑇 ) is endowed with a norm ‖ ∙ ‖ℎ from [23] defined by

‖𝑣pw‖2ℎ := |||𝑣pw|||2pw + 𝑗ℎ(𝑣pw)2 for all 𝑣pw ∈ 𝐻2(𝒯 ). (4.1)

The homogeneous boundary conditions in 𝐻2
0 (Ω) are included in the the jump contributions

𝑗ℎ(𝑣pw)2 :=
∑︁
𝐸∈ℰ

∑︁
𝑧∈𝒱(𝐸)

ℎ−2
𝐸 |[𝑣pw]𝐸(𝑧)|2 +

∑︁
𝐸∈ℰ

⃒⃒⃒⃒ 
𝐸

[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒2

(4.2)

by [𝑣pw]𝐸(𝑧) = 𝑣pw|𝜔(𝐸)(𝑧) for 𝑧 ∈ 𝒱(𝜕Ω) and
[︁

𝜕𝑣pw
𝜕𝜈𝐸

]︁
𝐸

= 𝜕𝑣pw
𝜕𝜈𝐸

|𝐸 for 𝐸 ∈ ℰ(𝜕Ω) at the boundary with jump

partner zero owing to the homogeneous boundary conditions in (3.1).
The discontinuous Galerkin schemes of [2,28] are associated with a another family of norms ‖∙‖dG depending

on the two positive parameters 𝜎1, 𝜎2 > 0 in the semi-norm scalar product

𝑐dG(𝑣pw, 𝑤pw) :=
∑︁
𝐸∈ℰ

𝜎1

ℎ3
𝐸

ˆ
𝐸

[𝑣pw]𝐸 [𝑤pw]𝐸 ds +
𝜎2

ℎ𝐸

ˆ
𝐸

[︂
𝜕𝑣pw

𝜕𝜈𝐸

]︂
𝐸

[︂
𝜕𝑤pw

𝜕𝜈𝐸

]︂
𝐸

ds (4.3)

for all 𝑣pw, 𝑤pw ∈ 𝐻2(𝒯 ). The DG norm ‖∙‖dG is the square root of

‖𝑣pw‖2dG := |||𝑣pw|||2pw + 𝑐dG(𝑣pw, 𝑣pw) (4.4)

for all 𝑣pw ∈ 𝐻2(𝒯 ). It depends on the parameters 𝜎1, 𝜎2 > 0 and so do all constants in the sequel; in particular
those suppressed in the abbreviations . and ≈. The conditions on the ellipticity of the scheme in Lemma 7.1
below will assert that 𝜎1 and 𝜎2 are sufficiently large. The analysis of this paper assumes this and simplifies the
notation 𝜎1 ≈ 1 ≈ 𝜎2.

One result in Theorem 4.1 of [23] shows that ‖∙‖ℎ ≈ ‖∙‖dG in 𝐻2
0 (Ω) + 𝑃2(𝒯 ); but the two norms are

equivalent in the larger vector space 𝐻2(𝒯 ).

Theorem 4.1 (‖ ∙ ‖ℎ ≈ ‖∙‖dG). The function ‖ ∙ ‖ℎ from (4.1) and ‖∙‖dG from (4.4) define norms in 𝐻2(𝒯 )
with

‖𝑣pw‖ℎ ≈ ‖𝑣pw‖dG .
2∑︁

𝑚=0

|ℎ𝑚−2
𝒯 𝑣pw|𝐻𝑚(𝒯 ) for all 𝑣pw ∈ 𝐻2(𝒯 ).

Remark 4.2 ({𝑗ℎ = 0} ∩ 𝑃2(𝒯 ) = M(𝒯 )). For any 𝑣2 ∈ 𝑃2(𝒯 ), the condition 𝑗ℎ(𝑣2) = 0 is equivalent to
𝑣2 ∈ M(𝒯 ). (This follows from the definitions of M(𝒯 ) and 𝑗ℎ.)

Proof of ‖ ∙ ‖ℎ . ‖∙‖dG. The (possibly discontinuous) piecewise affine interpolation 𝑣1 ∈ 𝑃1(𝒯 ) of 𝑣pw ∈ 𝐻2(𝒯 )
is defined by nodal interpolation 𝑣1|𝑇 (𝑧) = 𝑣pw|𝑇 (𝑧) at the three vertices 𝑧 ∈ 𝒱(𝑇 ) in each triangle 𝑇 ∈ 𝒯 . It is
well known from standard finite element interpolation [4, 6, 26] that the error 𝑤 := 𝑣pw − 𝑣1 ∈ 𝐻2(𝑇 ) satisfies

2∑︁
𝑚=0

ℎ𝑚−2
𝑇 |𝑤|𝐻𝑚(𝑇 ) . |𝑣pw|𝐻2(𝑇 ) (4.5)

for each triangle 𝑇 ∈ 𝒯 with explicit constants [21] that exclusively depend on the maximal angle in the
triangulation. The nodal interpolation implies [𝑣pw]𝐸(𝑧) = [𝑣1]𝐸(𝑧) at each vertex 𝑧 ∈ 𝒱(𝐸) of an edge 𝐸 ∈ ℰ .
Since [𝑣1]𝐸 is an affine function along the edge 𝐸 ∈ ℰ , an inverse estimate shows

ℎ𝐸/6
∑︁

𝑧∈𝒱(𝐸)

|[𝑣1]𝐸(𝑧)|2 ≤ ‖[𝑣1]𝐸‖
2
𝐿2(𝐸)

≤ 2
⃦⃦

[𝑣pw]𝐸
⃦⃦2

𝐿2(𝐸)
+ 2‖[𝑤]𝐸‖2𝐿2(𝐸) (4.6)
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with a triangle inequality in the last step for 𝑤 = 𝑣pw − 𝑣1. (The constant ℎ𝐸/6 in the first inequality of (4.6)
stems from the eigenvalues ℎ𝐸/2 and ℎ𝐸/6 of the 2× 2 mass matrix of piecewise linear functions in 1D.) This
implies an estimate for the first term of the definition of 𝑗ℎ(𝑣pw):∑︁

𝐸∈ℰ

∑︁
𝑧∈𝒱(𝐸)

ℎ−2
𝐸

⃒⃒
[𝑣pw]𝐸(𝑧)

⃒⃒2 ≤ 12
∑︁
𝐸∈ℰ

ℎ−3
𝐸

(︁⃦⃦
[𝑣pw]𝐸

⃦⃦2

𝐿2(𝐸)
+ ‖[𝑤]𝐸‖2𝐿2(𝐸)

)︁
.

A typical contribution (
ffl

𝐸
[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds)2 for the second term (in the definition of 𝑗ℎ) is controlled with a

Cauchy inequality by ℎ−1
𝐸 ‖[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸‖

2
𝐿2(𝐸). This results in

𝑗ℎ(𝑣pw)2 ≤
∑︁
𝐸∈ℰ

ℎ−1
𝐸 12

(︁
ℎ−2

𝐸

(︁
‖[𝑣pw]𝐸‖2𝐿2(𝐸) + ‖[𝑤]𝐸‖2𝐿2(𝐸)

)︁
+

⃦⃦
[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸

⃦⃦2

𝐿2(𝐸)

)︁
.

A triangle inequality ‖[𝑤]𝐸‖𝐿2(𝐸) ≤ ‖𝑤|𝑇+‖𝐿2(𝐸) + ‖𝑤|𝑇−‖𝐿2(𝐸) for an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ ℰ(Ω)
shared by the two triangles 𝑇± ∈ 𝒯 plus trace inequalities on 𝑇± show

ℎ
1/2
𝐸 ‖[𝑤]𝐸‖𝐿2(𝐸) . ‖𝑤‖𝐿2(𝜔(𝐸)) + ℎ𝐸‖∇pw𝑤‖𝐿2(𝜔(𝐸)) . ℎ

2
𝐸

⃦⃦
𝐷2

pw𝑣pw

⃦⃦
𝐿2(𝜔(𝐸))

(4.7)

with (4.5) in the end. The omission of 𝑇− in the above arguments for an edge 𝐸 ∈ ℰ(𝜕Ω) on the boundary
provide (4.7) with 𝜔(𝐸) = 𝑇+.

This and the finite overlap show
∑︀

𝐸∈ℰ ℎ
−3
𝐸 ‖[𝑤]𝐸‖2𝐿2(𝐸) . |||𝑣pw|||2pw. In conclusion,

𝑗ℎ(𝑣pw)2 . |||𝑣pw|||2pw +
∑︁
𝐸∈ℰ

ℎ−3
𝐸 ‖[𝑣pw]𝐸‖2𝐿2(𝐸) +

∑︁
𝐸∈ℰ

ℎ−1
𝐸

⃦⃦
[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸

⃦⃦2

𝐿2(𝐸)
.

The upper bound in the latter estimate is ‖𝑣pw‖2dG up to the weights 𝜎1 ≈ 1 ≈ 𝜎2. �

Proof of ‖∙‖dG . ‖ ∙ ‖ℎ. Recall the piecewise affine interpolation 𝑣1 ∈ 𝑃1(𝒯 ) of 𝑣pw ∈ 𝐻2(𝒯 ) and 𝑤 := 𝑣pw −
𝑣1 ∈ 𝐻2(𝒯 ) with (4.5) from the previous part of the proof. Standard trace inequalities as in (4.7) for the first
term (and an analog for the second term ℎ

−1/2
𝐸 ‖[𝜕𝑤/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸)) for 𝐸 ∈ ℰ provide

ℎ
−3/2
𝐸 ‖[𝑤]𝐸‖𝐿2(𝐸) + ℎ

−1/2
𝐸 ‖[𝜕𝑤/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸) .

⃦⃦
𝐷2

pw𝑣pw

⃦⃦
𝐿2(𝜔(𝐸))

. (4.8)

This and triangle inequalities result in

ℎ
−3/2
𝐸 ‖[𝑣pw]𝐸‖𝐿2(𝐸) + ℎ

−1/2
𝐸 ‖[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸)

. ℎ−3/2
𝐸 ‖[𝑣1]𝐸‖𝐿2(𝐸) + ℎ

−1/2
𝐸 ‖[𝜕𝑣1/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸) +

⃦⃦
𝐷2

pw𝑣pw

⃦⃦
𝐿2(𝜔(𝐸))

.

The constant factor 1/2 in the upper bound of the first subsequent inequality (displayed as 2 in the lower bound)
stems from the eigenvalues ℎ𝐸/2 and ℎ𝐸/6 of the 2× 2 mass matrix of piecewise linear functions in 1D,

2ℎ−3
𝐸 ‖[𝑣1]𝐸‖2𝐿2(𝐸) ≤ ℎ−2

𝐸

∑︁
𝑧∈𝒱(𝐸)

|[𝑣1]𝐸(𝑧)|2 = ℎ−2
𝐸

∑︁
𝑧∈𝒱(𝐸)

|[𝑣pw]𝐸(𝑧)|2

with the nodal interpolation property 𝑣1|𝑇 (𝑧) = 𝑣pw|𝑇 (𝑧) for 𝑧 ∈ 𝒱(𝑇 ), 𝑇 ∈ 𝒯 , in the last step. The jump
[𝜕𝑣1/𝜕𝜈𝐸 ]𝐸 is constant along the edge 𝐸 and so

ℎ
−1/2
𝐸 ‖[𝜕𝑣1/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸)

=
⃒⃒⃒⃒ 

𝐸

[𝜕𝑣1/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒
≤

⃒⃒⃒⃒ 
𝐸

[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒

+
⃒⃒⃒⃒ 

𝐸

[𝜕𝑤/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒
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with a triangle inequality in the last step. A Cauchy inequality ‖∇𝑤pw‖𝐿1(𝐸) ≤ ℎ
1/2
𝐸 ‖∇𝑤pw‖𝐿2(𝐸) and a trace

inequality show (as above in (4.8)) that⃒⃒⃒⃒ 
𝐸

[𝜕𝑤/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒
≤ ℎ

−1/2
𝐸 ‖[𝜕𝑤/𝜕𝜈𝐸 ]𝐸‖𝐿2(𝐸)

.
⃦⃦
𝐷2

pw𝑣pw

⃦⃦
𝐿2(𝜔(𝐸))

.

The combination of all aforementioned estimates reads

ℎ−3
𝐸

⃦⃦
[𝑣pw]𝐸

⃦⃦2

𝐿2(𝐸)
+ ℎ−1

𝐸

⃦⃦
[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸

⃦⃦2

𝐿2(𝐸)
.

⃦⃦
𝐷2

pw𝑣pw

⃦⃦2

𝐿2(𝜔(𝐸))
+ ℎ−2

𝐸

∑︁
𝑧∈𝒱(𝐸)

⃒⃒
[𝑣pw]𝐸(𝑧)

⃒⃒2
+

⃒⃒⃒⃒ 
𝐸

[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds
⃒⃒⃒⃒2
.

The sum of all those estimates over 𝐸 ∈ ℰ plus |||𝑣pw|||2pw leads to an estimate with the lower bound ‖𝑣pw‖2dG

up to the weights 𝜎1 ≈ 1 ≈ 𝜎2. The finite overlap of the edge-patches (𝜔(𝐸) : 𝐸 ∈ ℰ) shows that the resulting
upper bound is . ‖𝑣pw‖ℎ. �

Proof of the upper bound. The proof of the asserted inequality starts with triangle inequalities for the jumps of
𝑣pw ∈ 𝐻2(𝒯 ) and the shape regularity for ℎ𝐸 ≈ ℎ𝑇 for 𝐸 ∈ ℰ(𝑇 ). This and a Cauchy inequality ‖∇𝑣pw‖𝐿1(𝐸) ≤
ℎ

1/2
𝐸 ‖∇𝑣pw‖𝐿2(𝐸) lead to

𝑗ℎ(𝑣pw)2 .
∑︁
𝑇∈𝒯

⎛⎝ℎ−2
𝑇

∑︁
𝑧∈𝒱(𝑇 )

|(𝑣pw|𝑇 )(𝑧)|2 + ℎ−1
𝑇

∑︁
𝐸∈ℰ(𝑇 )

‖∇𝑣pw‖2𝐿2(𝐸)

⎞⎠.
A one-dimensional trace inequality (with a factor 1 that follows from 1D integration)

|(𝑣pw|𝑇 )(𝑧)| ≤ ℎ
−1/2
𝐸 ‖𝑣pw‖𝐿2(𝐸) + ℎ

1/2
𝐸 ‖∇𝑣pw‖𝐿2(𝐸)

along the edge 𝐸 ∈ ℰ(𝑇 ) of the triangle 𝑇 ∈ 𝒯 with vertex 𝑧 ∈ 𝒱(𝐸) results in

𝑗ℎ(𝑣pw)2 .
∑︁
𝑇∈𝒯

(︁
ℎ−3

𝑇 ‖𝑣pw‖2𝐿2(𝜕𝑇 ) + ℎ−1
𝑇 ‖∇𝑣pw‖2𝐿2(𝜕𝑇 )

)︁
.

∑︁
𝑇∈𝒯

2∑︁
𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 𝑣pw

⃒⃒2
𝐻𝑚(𝑇 )

with standard trace inequalities on 𝜕𝑇 for 𝑣pw and ∇𝑣pw in the last step. The right-hand side is∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 𝑣pw|2𝐻𝑚(𝒯 ) as asserted. The remaining details are omitted for brevity. �

4.2. Interpolation errors

The interpolation error estimates are summarised in one theorem.

Theorem 4.3 (Interpolation). Any 𝑣pw ∈ 𝐻2(𝒯 ) and its Morley interpolation 𝐼M𝑣pw ∈ M(𝒯 ) from Defini-
tion 3.5 satisfy

(a)
∑︀2

𝑚=0 |ℎ
𝑚−2
𝒯 (𝑣pw − 𝐼M𝑣pw)|𝐻𝑚(𝒯 ) .

⃦⃦
(1−Π0)𝐷2

pw𝑣pw

⃦⃦
+ 𝑗ℎ(𝑣pw) ≤ ‖𝑣pw‖ℎ;

(b)
∑︀2

𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 (𝑣pw − 𝐼M𝑣pw)

⃒⃒
𝐻𝑚(𝒯 )

≈ min𝑤M∈M(𝒯 )‖𝑣pw − 𝑤M‖ℎ ≈ min𝑤M∈M(𝒯 )

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣pw −

𝑤M)|𝐻𝑚(𝒯 ).

Proof of (a). The first step reduces the analysis to piecewise quadratic functions by the piecewise Morley
interpolation 𝐼 loc

M . Definition 3.4 shows
´

𝐸
∇

(︀
𝐼 loc
M 𝑣pw − 𝑣pw

)︀
|𝑇 ds = 0 for an edge 𝐸 ∈ ℰ(𝑇 ) of the triangle 𝑇

and therefore 𝐷2
(︀
𝐼 loc
M 𝑣pw

)︀
|𝑇 = Π0𝐷

2𝑣pw|𝑇 a.e. in 𝑇 ∈ 𝒯 . Notice that the piecewise defined Morley interpolation
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𝑣2 := 𝐼 loc
M 𝑣pw ∈ 𝑃2(𝒯 ) is discontinuous (and shares none of the compatibility or boundary conditions) in general.

The interpolation error estimates of Lemma 3.2b read

2∑︁
𝑚=0

ℎ𝑚−2
𝑇 |𝑣2 − 𝑣pw|𝐻𝑚(𝑇 ) ≤ 2

⃦⃦
(1−Π0)𝐷2𝑣pw

⃦⃦
𝐿2(𝑇 )

.

This and a triangle inequality show that it remains to prove that 𝑣M := 𝐼M𝑣pw satisfies

2∑︁
𝑚=0

ℎ𝑚−2
𝑇 |𝑣2 − 𝑣M|𝐻𝑚(𝑇 ) . 𝑗ℎ(𝑣pw, 𝑇 ) (4.9)

for the jump terms localised to a neighbourhood Ω(𝑇 ) of 𝑇 ∈ 𝒯 as follows. The neighbourhood Ω(𝑇 ) is the
interior of the union ∪{𝐾 ∈ 𝒯 : dist(𝑇,𝐾) = 0} of 𝑇 ∈ 𝒯 plus one layer of triangles in 𝒯 around. Then

𝑗ℎ(𝑣pw, 𝑇 )2 :=
∑︁

𝑧∈𝒱(𝑇 )

∑︁
𝐹∈ℰ(𝑧)

ℎ−2
𝐹 |[𝑣pw]𝐹 (𝑧)|2 +

∑︁
𝐸∈ℰ(𝑇 )

⃒⃒⃒⃒ 
𝐸

[︂
𝜕𝑣pw

𝜕𝜈𝐸

]︂
𝐸

ds
⃒⃒⃒⃒2

is the contribution from 𝑇 and its neighbourhood Ω(𝑇 ) to the full jump term 𝑗ℎ(𝑣pw)2 with the spider ℰ(𝑧) :=
{𝐹 ∈ ℰ : 𝑧 ∈ 𝒱(𝐹 )} of edges with one end-point 𝑧 ∈ 𝒱(𝑇 ).

The second step reduces the analysis to piecewise quadratic functions. The first obervation is that the
averaging of the degrees of freedom in the definition of 𝐼M merely employs the data of 𝑣2 = 𝐼 loc

M 𝑣pw in the sense
that 𝑣M = 𝐼M𝑣pw = 𝐼M𝑣2. This explains why 𝑗ℎ(𝑣pw, 𝑇 ) = 𝑗ℎ(𝑣2, 𝑇 ) in the asserted estimate (4.9). The second
observation is that the left-hand side of (4.9) involves the polyonomial (𝑣2 − 𝑣M)|𝑇 ∈ 𝑃2(𝑇 ) that allows for
inverse estimates

2∑︁
𝑚=0

ℎ𝑚−2
𝑇 |𝑣2 − 𝐼M𝑣2|𝐻𝑚(𝑇 ) . ℎ

−2
𝑇 ‖𝑣2 − 𝐼M𝑣2‖𝐿2(𝑇 ).

The overall conclusion is that it suffices to prove, for all 𝑣2 ∈ 𝑃2(𝒯 ), that

ℎ−4
𝑇 ‖𝑣2 − 𝐼M𝑣2‖2𝐿2(𝑇 ) . 𝑗ℎ(𝑣2, 𝑇 )2. (4.10)

In fact, equation (4.10) and the aforementioned arguments lead to a localised form of the assertion. The sum
over all 𝑇 ∈ 𝒯 and the bounded overlap of (Ω(𝑇 ) : 𝑇 ∈ 𝒯 ) then conclude the proof of the theorem.

The third step reduces the proof of (4.10) to six coefficients. The six degrees of freedom on a triangle 𝑇 ∈ 𝒯
are the three point evaluations 𝛿𝑧 at the three vertices 𝑧 ∈ 𝒱(𝑇 ) and the three integral means of the normal
derivatives

ffl
𝐸
𝜕𝜈𝐸

∙ ds along the three edges 𝐸 ∈ ℰ(𝑇 ). The six dual basis functions 𝜓𝑧 for 𝑧 ∈ 𝒱(𝑇 ) and 𝜓𝐸 for
𝐸 ∈ ℰ(𝑇 ) in 𝑃2(𝑇 ) are defined by the duality relations 𝜓𝐸(𝑧) = 0 =

ffl
𝐸
𝜕𝜈𝐸

𝜓𝑧 ds and 𝜓𝑧(𝑧) = 1 =
ffl

𝐸
𝜕𝜈𝐸

𝜓𝐸 ds
for all 𝑧 ∈ 𝒱(𝑇 ) and 𝐸 ∈ ℰ(𝑇 ), while 𝜓𝑦(𝑧) = 0 =

ffl
𝐸
𝜕𝜈𝐸

𝜓𝐹 ds for all vertices 𝑧 ̸= 𝑦 ∈ 𝒱(𝑇 ) and edges 𝐸 ̸=
𝐹 ∈ ℰ(𝑇 ). Those functions are known and given explicitly (e.g., in [22] in the context of a short implementation
of the Morley FEM in 30 lines of Matlab) with a scaling (which is generally understood and follows from the
explicit formulas)

‖𝜓𝑧‖𝐿2(𝑇 ) ≈ |𝑇 |1/2 ≈ ℎ𝑇 and ‖𝜓𝐸‖𝐿2(𝑇 ) ≈ ℎ𝑇 |𝑇 |1/2 ≈ ℎ2
𝑇

for all 𝑧 ∈ 𝒱(𝑇 ) and 𝐸 ∈ ℰ(𝑇 ). On the other hand, given the dual basis of 𝑃2(𝑇 ), any function 𝑤2 := 𝑣2− 𝑣M ∈
𝑃2(𝑇 ) for 𝑣M := 𝐼M𝑣2 allows for a representation

𝑤2 = 𝑣2 − 𝑣M =
∑︁

𝑧∈𝒱(𝑇 )

𝑤(𝑧)𝜓𝑧 +
∑︁

𝐸∈ℰ(𝑇 )

𝑤(𝐸)𝜓𝐸 in 𝑇

with the real coefficients 𝑤(𝑧) := 𝑣2|𝑇 (𝑧) − 𝑣M(𝑧) and 𝑤(𝐸) :=
ffl

𝐸
𝜕𝜈𝐸

𝑣2|𝑇 ds −
ffl

𝐸
𝜕𝜈𝐸

𝑣M ds for 𝑧 ∈ 𝒱(𝑇 )
and 𝐸 ∈ ℰ(𝑇 ). Notice that the contributions of the piecewise quadratic 𝑣2 are taken from 𝑇 ∈ 𝒯 and this is
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written explicitly by 𝑣2|𝑇 in the coefficients, while the corresponding values of the Morley function 𝑣M ∈ M(𝒯 )
are independent of 𝑇 as long as 𝑧 ∈ 𝒱(𝑇 ) or 𝐸 ∈ ℰ(𝑇 ). Given the coefficients 𝑤(𝑧) and 𝑤(𝐸), the triangle
inequality in 𝐿2(𝑇 ) and the scaling of the dual basis functions lead to

‖𝑣2 − 𝑣M‖𝐿2(𝑇 ) . ℎ𝑇

∑︁
𝑧∈𝒱(𝑇 )

|𝑤(𝑧)|+ ℎ2
𝑇

∑︁
𝐸∈ℰ(𝑇 )

|𝑤(𝐸)|. (4.11)

The fourth step analyses the coefficients in (4.11). Let the triangles 𝒯 (𝑧) := {𝑇 ∈ 𝒯 : 𝑧 ∈ 𝒱(𝑇 )} =
{𝑇 (1), . . . , 𝑇 (𝐽)} at the vertex 𝑧 ∈ 𝒱 be enumerated such that 𝑇 (𝑗) and 𝑇 (𝑗 + 1) share an edge 𝜕𝑇 (𝑗) ∩
𝜕𝑇 (𝑗 + 1) =: 𝐸(𝑗) ∈ ℰ(𝑧) for 𝑗 = 1, . . . , 𝐽 . For an interior vertex 𝑧 ∈ 𝒱(Ω), the patch is closed and then 𝑇 (1)
and 𝑇 (𝐽) share an edge 𝜕𝑇 (1)∩ 𝜕𝑇 (𝐽) =: 𝐸(𝐽) ∈ ℰ(𝑧) as well. Define 𝑥𝑗 := ((𝑣2− 𝑣M)|𝑇 (𝑗))(𝑧) for 𝑗 = 1, . . . , 𝐽
and observe for an interior vertex 𝑧 ∈ 𝒱(Ω) that

∑︀𝐽
𝑗=1 𝑥𝑗 = 0 (from the choice of 𝑣M(𝑧) as the arithmetic mean

of the 𝑣2|𝑇 (𝑗)) and that ∑︁
𝐸∈ℰ(𝑧)

|[𝑣2]𝐸(𝑧)| =
𝐽∑︁

𝑗=1

|𝑥𝑗+1 − 𝑥𝑗 |

with 𝑥𝐽+1 := 𝑥1 (recall 𝑧 ∈ 𝒱(Ω) here). Since the arithmetic mean of the real numbers 𝑥1, . . . , 𝑥𝐽 vanishes, zero
belongs to their convex hull; whence 𝑚 := min𝑗=1,...,𝐽 𝑥𝑗 ≤ 0 ≤ max𝑗=1,...,𝐽 𝑥𝑗 =: 𝑚. A triangle inequality in
this sequence 𝑥1, . . . , 𝑥𝐽 shows that 𝑚 −𝑚 ≤

∑︀𝐽
𝑗=1 |𝑥𝑗+1 − 𝑥𝑗 | (even with an omitted factor 1/2). It follows

|𝑥1|, . . . , |𝑥𝐽 | ≤
∑︀𝐽

𝑗=1 |𝑥𝑗+1 − 𝑥𝑗 | and so, for a triangle 𝑇 ∈ 𝒯 (𝑧) in the notation of (4.11),

|𝑤(𝑧)| ≤
∑︁

𝐸∈ℰ(𝑧)

|[𝑣2]𝐸(𝑧)| ≤ 𝐽1/2

√︃ ∑︁
𝐸∈ℰ(𝑧)

|[𝑣2]𝐸(𝑧)|2 (4.12)

follows (with a Cauchy inequality in R𝐽 in the end). This is suboptimal and the best constant in a squared
version of this argument is contained in Appendix C of [17]. Observe that 𝐽 . 1 is bounded from above by the
shape regularity of the triangulation 𝒯 .

In the remaining case of a vertex 𝑧 ∈ 𝒱(𝜕Ω) on the boundary, 𝑣M(𝑧) = 0 and, in the above notation
𝒯 (𝑧) = {𝑇 ∈ 𝒯 : 𝑧 ∈ 𝒱(𝑇 )} = {𝑇 (1), . . . , 𝑇 (𝐽)} and 𝑥𝑗 = ((𝑣2 − 𝑣M)|𝑇 (𝑗))(𝑧) = (𝑣2|𝑇 (𝑗))(𝑧) for 𝑗 = 1, . . . , 𝐽 .
The homogeneous boundary conditions enter in the jump terms for 𝐸(1) := 𝑇1 ∩ 𝜕Ω and 𝐸(𝐽) := 𝑇𝐽 ∩ 𝜕Ω and

∑︁
𝐸∈ℰ(𝑧)

|[𝑣2]𝐸(𝑧)| = |𝑥1|+ |𝑥𝐽 |+
𝐽−1∑︁
𝑗=1

|𝑥𝑗+1 − 𝑥𝑗 |.

Triangle inequalities show |𝑥1|, . . . , |𝑥𝐽 | ≤ |𝑥1|+ |𝑥𝐽 |+
∑︀𝐽−1

𝑗=1 |𝑥𝑗+1− 𝑥𝑗 | (even with an omitted factor 1/2) and
the above arguments lead to (4.12) as well. (The optimal constant for this argument may be found in Lem. 4.2
of [11].)

Recall the design of the Morley interpolation in Definition 3.5 with the arithmetic mean
ffl

𝐸
𝜕𝜈𝐸

𝑣M ds =ffl
𝐸

⟨
𝜕𝑣2
𝜕𝜈𝐸

⟩
𝐸

ds of the two normal traces for an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ ℰ(Ω). This leads to the edge
contribution

𝑤(𝐸) =
 

𝐸

𝜕𝜈𝐸
𝑣2|𝑇 ds−

 
𝐸

⟨
𝜕𝑣2
𝜕𝜈𝐸

⟩
𝐸

ds = ±1
2

 
𝐸

[𝜕𝜈𝐸
𝑣2]𝐸 ds

in (4.11) with a sign ± for 𝑇 = 𝑇±. The boundary conditions for a boundary edge 𝐸 ∈ ℰ(𝜕Ω) and the jump
convention for [∙]𝐸 (recall that 𝜈𝐸 points outwards for 𝐸 ⊂ 𝜕Ω) directly show 𝑤(𝐸) =

ffl
𝐸

[𝜕𝜈𝐸
𝑣2]𝐸 ds. It follows

|𝑤(𝐸)| ≤
⃒⃒⃒⃒ 

𝐸

[𝜕𝜈𝐸
𝑣2]𝐸 ds

⃒⃒⃒⃒
for any 𝐸 ∈ ℰ(𝑇 ). (4.13)
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The fitfh step finishes the proof. Recall that the coefficients 𝑤(𝑧) for 𝑧 ∈ 𝒱(𝑧) and 𝑤(𝐸) for any 𝐸 ∈ ℰ(𝑇 ) in
(4.11) satisfy (4.12) and (4.13). The resulting estimate reads

ℎ−4
𝑇 ‖𝑣2 − 𝑣M‖2𝐿2(𝑇 ) . ℎ

−2
𝑇

∑︁
𝑧∈𝒱(𝑇 )

∑︁
𝐸∈ℰ(𝑧)

|[𝑣2]𝐸(𝑧)|2 +
∑︁

𝐸∈ℰ(𝑇 )

⃒⃒⃒⃒ 
𝐸

[𝜕𝜈𝐸
𝑣2]𝐸 ds

⃒⃒⃒⃒2
≈ 𝑗ℎ(𝑣2, 𝑇 )2

with the shape regularity ℎ𝐹 ≈ ℎ𝑇 for 𝐹 ∈ ℰ(𝑧) and 𝑧 ∈ 𝒱(𝑇 ) in the end. This concludes the proof of (4.10)
and thus that of (a) as outlined at the end of the second step. �

Proof of (b). Given any 𝑤M ∈ M(𝒯 ), part (a) shows that the first term 𝑇1 in the equivalence (b) is 𝑇1 .
|||𝑣pw−𝑤M|||pw + 𝑗ℎ(𝑣pw−𝑤M) ≤ ‖𝑣pw−𝑤M‖ℎ =: 𝑇2 with 𝑗ℎ(𝑣pw) = 𝑗ℎ(𝑣pw−𝑤M) in the last step. Theorem 4.1
applies to 𝑣pw−𝑤M ∈ 𝐻2(𝒯 ) and proves 𝑇2 .

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣pw−𝑤M)|𝐻𝑚(𝒯 ) =: 𝑇3. The estimates 𝑇1 . 𝑇2 . 𝑇3

hold for all 𝑤M ∈ M(𝒯 ) and so for the respective minima as well. Since 𝐼M𝑣pw ∈ M(𝒯 ), the remaining estimate
min𝑤M∈M(𝒯 ) 𝑇3 ≤ 𝑇1 is obvious. �

Remark 4.4 (𝐼M𝐽𝐼M = 𝐼M in 𝐻2(𝒯 )). Let 𝐽 be any right-inverse of 𝐼M in the sense of (3.9). Since 𝐼M𝐽 is
identity in M(𝒯 ), 𝐼M𝐽𝐼M𝑣pw = 𝐼M𝑣pw holds for any 𝑣pw ∈ 𝐻2(𝒯 ).

4.3. Approximation errors

The subsequent theorem discusses the approximation properties of 𝐽 ∘ 𝐼M for piecewise smooth and piecewise
quadratic functions. It is formulated in terms of ‖∙‖ℎ ≈ ‖∙‖dG and the norm equivalence implies an (undisplayed)
analog for ‖∙‖dG as well.

Theorem 4.5 (Approximation). Any 𝑣pw ∈ 𝐻2(𝒯 ) and 𝑣2 ∈ 𝑃2(𝒯 ) satisfy (a)–(d).
(a) ‖𝑣pw − 𝐽𝐼M𝑣pw‖ℎ . ‖(1−Π0)𝐷2

pw𝑣pw‖𝐿2(Ω) + min𝑣∈𝐻2
0 (Ω) ‖𝑣pw − 𝑣‖ℎ;

(b)
∑︀2

𝑚=0 |ℎ
𝑚−2
𝒯 (𝑣pw − 𝐽𝐼M𝑣pw)|𝐻𝑚(𝒯 ) . ‖(1−Π0)𝐷2

pw𝑣pw‖𝐿2(Ω) + min𝑣∈𝐻2
0 (Ω)

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣pw − 𝑣)|𝐻𝑚(𝒯 );

(c) ‖𝑣2−𝐽𝐼M𝑣2‖ℎ ≈ min𝑣∈𝐻2
0 (Ω) ‖𝑣2−𝑣‖ℎ ≈

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣2−𝐽𝐼M𝑣2)|𝐻𝑚(𝒯 ) ≈ min𝑣∈𝐻2

0 (Ω)

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣2−

𝑣)|𝐻𝑚(𝒯 );
(d) ‖𝑣2 − 𝐽𝐼M𝑣2‖𝐻𝑠(𝒯 ) . ℎ2−𝑠

max min𝑣∈𝐻2
0 (Ω) ‖𝑣2 − 𝑣‖ℎ holds for any 0 ≤ 𝑠 ≤ 2.

Remark 4.6. Theorem 4.5 implies that 𝑃 = 𝑄 = 𝐽 ∘ 𝐼M is a quasi-optimal smoother with constant ΛP = ΛQ

that depends only on the shape regularity of the triangulation.

Remark 4.7 (Remainder in (a) and (b)). The extra term
⃦⃦

(1−Π0)𝐷2
pw𝑣pw

⃦⃦
𝐿2(Ω)

in the upper bound will
vanish for piecewise quadratic functions but cannot be omitted in (a) and (b). For a proof of the latter statement
by contradiction consider some 𝑣pw ∈ 𝐻2

0 (Ω) ∖ (HCT(𝒯 ) + 𝑃8(𝒯 )). Since 𝐽𝐼M𝑣pw ∈ HCT(𝒯 ) + 𝑃8(𝒯 ), the left-
hand side in (a) and (b) is positive, while 𝑣 = 𝑣pw ∈ 𝐻2

0 (Ω) leads to a right-hand side zero if the term
‖(1−Π0)𝐷2

pw𝑣pw‖𝐿2(Ω) was neglected.

Proof of (a). Theorem 4.1 implies the first estimate (4.14a) below and Theorem 4.3a asserts the second (4.14b)
for the Morley interpolation 𝑣M := 𝐼M𝑣pw of 𝑣pw ∈ 𝐻2(𝒯 ) in

‖𝑣pw − 𝑣M‖ℎ .
2∑︁

𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 (𝑣pw − 𝑣M)

⃒⃒
𝐻𝑚(𝒯 )

.
⃦⃦

(1−Π0)𝐷2
pw𝑣pw

⃦⃦
𝐿2(Ω)

+ 𝑗ℎ(𝑣pw). (4.14)

Notice that 𝑗ℎ(𝑣M − 𝐽𝑣M) = 0 implies ‖𝑣M − 𝐽𝑣M‖ℎ = |||𝑣M − 𝐽𝑣M|||pw . |||𝑣M − 𝑣|||pw for any 𝑣 ∈ 𝑉 from
Lemma 3.7d in the last step. This and a triangle inequality, (4.14), and |||𝑣pw − 𝑣|||pw + 𝑗ℎ(𝑣pw) ≤

√
2‖𝑣pw − 𝑣‖ℎ

show

‖𝑣M − 𝐽𝑣M‖ℎ . |||𝑣pw − 𝑣|||pw + |||𝑣pw − 𝑣M|||pw . ‖(1−Π0)𝐷2
pw𝑣pw‖𝐿2(Ω) + ‖𝑣pw − 𝑣‖ℎ. (4.15)

This and a triangle inequality ‖𝑣pw − 𝐽𝐼M𝑣pw‖ℎ ≤ ‖𝑣pw − 𝑣M‖ℎ + ‖𝑣M − 𝐽𝑣M‖ℎ and (4.14), (4.15) conclude
the proof of (a). �
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Proof of (b). Adapt the notation of part (a) and recall that Theorem 4.3a provides (4.14b), the second estimate
in (4.14). Since 𝑣M − 𝐽𝑣M = 𝐼M𝐽𝑣M − 𝐽𝑣M (from (3.9)), Lemma 3.2 controls this interpolation error of 𝐽𝑣M ∈
𝐻2

0 (Ω) and shows

2∑︁
𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 (𝑣M − 𝐽𝑣M)

⃒⃒
𝐻𝑚(𝒯 )

≤ 2|||𝑣M − 𝐽𝑣M|||pw .
⃦⃦

(1−Π0)𝐷2
pw𝑣pw

⃦⃦
𝐿2(Ω)

+ ‖𝑣pw − 𝑣‖ℎ

with (4.15) in the last step. Theorem 4.1 applies to 𝑣pw−𝑣 ∈ 𝐻2(𝒯 ). The combination of the resulting estimate
with the previous one concludes the proof of (b). �

Proof of (c). The assertions (a) and (b) apply to 𝑣pw := 𝑣2 ∈ 𝑃2(𝒯 ) and the extra term ‖(1−Π0)𝐷2
pw𝑣pw‖𝐿2(Ω)

vanishes. The resulting estimates allow for obvious converse inequalities and so prove, for 𝑣2 ∈ 𝑃2(𝒯 ) and
𝑣M := 𝐼M𝑣2 ∈ M(𝒯 ), that

‖𝑣2 − 𝐽𝑣M‖ℎ ≈ min
𝑣∈𝐻2

0 (Ω)
‖𝑣2 − 𝑣‖ℎ .

2∑︁
𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 (𝑣2 − 𝐽𝑣M)

⃒⃒
𝐻𝑚(𝒯 )

≈ min
𝑣∈𝐻2

0 (Ω)

2∑︁
𝑚=0

⃒⃒
ℎ𝑚−2
𝒯 (𝑣2 − 𝑣)

⃒⃒
𝐻𝑚(𝒯 )

with Theorem 4.1 in between the two equivalences. A triangle inequality, the estimate (4.14b), the estimate for
(1−𝐽)𝑣M in the proof of (𝑏) and (4.1) applies to 𝑣pw := 𝑣2 ∈ 𝑃2(𝒯 ) and shows

∑︀2
𝑚=0 |ℎ

𝑚−2
𝒯 (𝑣2−𝐽𝑣M)|𝐻𝑚(𝒯 ) .

𝑗ℎ(𝑣2) + ‖𝑣2 − 𝑣‖ℎ = 𝑗ℎ(𝑣2 − 𝑣) + ‖𝑣2 − 𝑣‖ℎ ≤ 2‖𝑣2 − 𝑣‖ℎ for any 𝑣 ∈ 𝐻2
0 (Ω). This concludes the

proof of (c). �

Proof of (d). The equivalence of the Sobolev–Slobodeckii norm and the norm by interpolation of Sobolev spaces
([35], Rem. 9.1), for instance for a fixed reference triangle 𝑇 = 𝑇ref with 𝐶2(𝑠) = 𝐶2(𝑠, 𝑇ref), provides for
𝑤 := (𝑣2 − 𝐽𝐼M𝑣2)|𝑇 ∈ 𝐻2(𝑇 ) the estimate

‖𝑤‖𝐻𝑠(𝑇 ) ≤ 𝐶2(𝑠) ‖𝑤‖2−𝑠
𝐻1(𝑇 )‖𝑤‖

𝑠−1
𝐻2(𝑇 ) for 1 < 𝑠 < 2. (4.16)

A straightforward transformation of Sobolev norms ([26], Thm. 3.1.2) show (4.16) for any triangle 𝑇 ∈ 𝒯 with
𝐶2(𝑠) = 𝐶2(𝑠, 𝑇 ) = 𝜅1+𝑠𝐶2(𝑠, 𝑇ref) for the condition number 𝜅 = 𝜎1/𝜎2 of the affine transformation 𝑎+ 𝐵𝑥 of
𝑇ref to 𝑇 with the 2× 2 matrix 𝐵 and its positive singular values 𝜎2 ≤ 𝜎1. A more detailed analysis [15] reveals
that 𝐶2(𝑠) exclusively depends on 𝑠 (but exploits singularities as 𝑠 approaches the end-points 0 and 1). The
estimate (4.16) shows the first inequality in

𝐶2(𝑠)−2 ‖𝑤‖2𝐻𝑠(𝑇 ) ≤ ‖𝑤‖
2(2−𝑠)
𝐻1(𝑇 ) ‖𝑤‖

2(𝑠−1)
𝐻2(𝑇 ) ≤ ‖𝑤‖

2
𝐻1(𝑇 ) + ‖𝑤‖2(2−𝑠)

𝐻1(𝑇 ) |𝑤|
2(𝑠−1)
𝐻2(𝑇 )

with the subadditivity (𝑎+ 𝑏)𝑝 ≤ 𝑎𝑝 + 𝑏𝑝 for 𝑎, 𝑏 ≥ 0 and 0 < 𝑝 = 𝑠− 1 < 1 (e.g., from the concavity of 𝑥 ↦→ 𝑥𝑝

for non-negative 𝑥) in the last step. An elementary estimate is followed by the Young inequality 𝑎𝑏 ≤ 𝑎𝑝/𝑝+𝑏𝑞/𝑞
for 𝑝 = (2− 𝑠)−1, 𝑞 = (𝑠− 1)−1, 𝑎 =

⃦⃦
ℎ−1

𝑇 𝑤
⃦⃦2(2−𝑠)

𝐻1(𝑇 )
, and 𝑏 = |𝑤|2(𝑠−1)

𝐻2(𝑇 ) to prove

ℎ2(𝑠−2)
max ‖𝑤‖2(2−𝑠)

𝐻1(𝑇 ) |𝑤|
2(𝑠−1)
𝐻2(𝑇 ) ≤

⃦⃦
ℎ−1

𝑇 𝑤
⃦⃦2(2−𝑠)

𝐻1(𝑇 )
|𝑤|2(𝑠−1)

𝐻2(𝑇 ) ≤
⃦⃦
ℎ−1

𝑇 𝑤
⃦⃦2

𝐻1(𝑇 )
+ |𝑤|2𝐻2(𝑇 ).

This and the trivial estimate ℎ2(𝑠−1)
max ≤ diam(Ω)2(𝑠−1) leads to

‖𝑤‖2𝐻𝑠(𝑇 ) ≤ 𝐶3ℎ
2(2−𝑠)
max

(︁⃦⃦
ℎ−1

𝑇 𝑤
⃦⃦2

𝐻1(𝑇 )
+ |𝑤|2𝐻2(𝑇 )

)︁
for 𝐶3 = 𝐶2(𝑠)2(1 + diam(Ω)2(𝑠−1)). The sum over all those contributions over 𝑇 ∈ 𝒯 proves

‖𝑣2 − 𝐽𝐼M𝑣2‖𝐻𝑠(𝒯 ) ≤ 𝐶
1/2
3 ℎ2−𝑠

max

(︁⃦⃦
ℎ−1
𝒯 (𝑣2 − 𝐽𝐼M𝑣2)

⃦⃦
𝐻1(𝒯 )

+ |||𝑣2 − 𝐽𝐼M𝑣2|||pw

)︁
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. ℎ2−𝑠
max min

𝑣∈𝑉
‖𝑣2 − 𝑣‖ℎ

with Theorem 4.5c in the last step. This concludes the proof of (d) for 1 < 𝑠 < 2. The assertion (d) is
included in Theorem 4.5c for 𝑠 = 0, 1, 2. The remaining case 0 < 𝑠 < 1 is similar to the above analysis
with ‖𝑤‖𝐻𝑠(𝑇 ) ≤ 𝐶2(𝑠)‖𝑤‖1−𝑠

𝐿2(𝑇 )‖𝑤‖
𝑠
𝐻1(𝑇 ) replacing (4.16) and analogous arguments; hence further details are

omitted. �

5. Abstract framework for best-approximation of lower-order methods

5.1. Discretisation

Suppose that 𝑉ℎ ⊂ 𝐻2(𝒯 ) is the finite-dimensional trial and test space of an abstract (discontinuous Galerkin)
scheme with a bilinear form

𝐴ℎ : (𝑉ℎ + M(𝒯 ))× (𝑉ℎ + M(𝒯 )) → R

that is coercive and continuous with respect to some norm ‖∙‖ℎ in 𝐻2(𝒯 ) in the sense that, for all 𝑣ℎ, 𝑤ℎ ∈ 𝑉ℎ,

𝛼‖𝑣ℎ‖2ℎ ≤ 𝐴ℎ(𝑣ℎ, 𝑣ℎ) and 𝐴ℎ(𝑣ℎ, 𝑤ℎ) ≤𝑀‖𝑣ℎ‖ℎ‖𝑤ℎ‖ℎ (5.1)

hold for some universal constants 0 < 𝛼,𝑀 < ∞. Suppose that ‖ ∙ ‖ℎ is a norm in 𝐻2(𝒯 ) and equal to the
norm ||| ∙ |||pw := 𝑎pw(∙, ∙)1/2 in 𝑉 + M(𝒯 ) and stronger in general, i.e.,

(a) ||| ∙ |||pw ≤ ‖ ∙ ‖ℎ in 𝐻2(𝒯 ) and (b) ||| ∙ |||pw = ‖ ∙ ‖ℎ in 𝑉 + M(𝒯 ). (5.2)

Given a linear operator 𝐽𝐼M : 𝑉ℎ → 𝑉 with the companion operator 𝐽 from Lemma 3.7 and the (extended)
linear interpolation operator 𝐼M from Section 3.3 the discrete problem reads: Given 𝐹 ∈ 𝑉 * = 𝐻−2(Ω) seek the
discrete solution 𝑢ℎ ∈ 𝑉ℎ to

𝐴ℎ(𝑢ℎ, 𝑣ℎ) = 𝐹 (𝐽𝐼M𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ. (5.3)

The Lax-Milgram lemma assures the existence of a unique discrete solution 𝑢ℎ to (5.3).

Remark 5.1 (‖ ∙ ‖ℎ). The examples of Sections 7 and 8 utilize ‖ ∙ ‖ℎ given in (4.1) and (4.2), but the abstract
framework allows more general 𝐴ℎ and ‖ ∙ ‖ℎ with (5.1) and (5.2) in (5.3).

5.2. First glance at the analysis

This subsection motivates the abstract conditions and emphasises the relevance of the discrete consistency
condition (dcc)

𝑎pw(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑏ℎ(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) ≤ Λdc|||𝑢− 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ (5.4)

that leads to the best-approximation in terms of |||𝑢 − 𝐼M𝑢|||pw = min𝑣2∈𝑃2(𝑇 ) |||𝑢 − 𝑣2|||pw from (3.7). The test
function 𝑒ℎ := 𝐼ℎ𝐼M𝑢− 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝐻2(𝒯 ) is the discrete approximation of the error 𝑢− 𝑢ℎ with 𝐼M : 𝐻2(𝒯 ) →
M(𝒯 ) from Definition 3.5 and a transfer operator 𝐼ℎ : M(𝒯 ) → 𝑉ℎ from Section 5.3 below. For the dGFEM of
Section 7 and the WOPSIP scheme of Section 10, 𝐼ℎ is the identity 1 and otherwise it is controlled nicely (cf.,
(5.11) below for details) [23]. So we may neglect the difference 1−𝐼ℎ for the sake of this first look at the analysis
and suppose 𝐼ℎ = 1. The key identity from the continuous problem (3.1) and the discrete one (5.3) reads

𝑎(𝑢, 𝐽𝐼M𝑒ℎ) = 𝐹 (𝐽𝐼M𝑒ℎ) = 𝐴ℎ(𝑢ℎ, 𝑒ℎ). (5.5)

The stability of the scheme 𝛼‖𝑒ℎ‖2ℎ ≤ 𝐴ℎ(𝑒ℎ, 𝑒ℎ) ≤𝑀‖𝑒ℎ‖2ℎ motivates the investigation of

𝐴ℎ(𝑒ℎ, 𝑒ℎ) = 𝑎pw(𝑒ℎ, 𝑒ℎ) + 𝑏ℎ(𝑒ℎ, 𝑒ℎ) + 𝑐ℎ(𝑒ℎ, 𝑒ℎ) (5.6)
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for the three bilinear forms that define the class of problems in (5.12) displayed in Table 1. The stability term
𝑐ℎ(∙, ∙) is controlled nicely in harmony with the discrete norm ‖ ∙ ‖ℎ, while 𝑏ℎ(∙, ∙) drives the method and
completes the leading term 𝑎pw(∙, ∙).

The definition of 𝑒ℎ in (5.6) leads to

𝐴ℎ(𝑒ℎ, 𝑒ℎ) = 𝑎pw(𝐼M𝑢, 𝑒ℎ)−𝐴ℎ(𝑢ℎ, 𝑒ℎ) + 𝑏ℎ(𝐼M𝑢, 𝑒ℎ) + 𝑐ℎ(𝐼M𝑢, 𝑒ℎ) (5.7)

Since 𝐽 is a the right-inverse of 𝐼M, (3.5) implies 𝑎pw(𝐼M𝑢, 𝐼M𝑒ℎ − 𝐽𝐼M𝑒ℎ) = 0. This and elementary algebra
show

𝑎pw(𝐼M𝑢, 𝑒ℎ) = 𝑎pw(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑎pw(𝐼M𝑢, 𝐽𝐼M𝑒ℎ).

This in combination with (5.5) leads in (5.7) to

𝐴ℎ(𝑒ℎ, 𝑒ℎ) = 𝑎pw(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑎pw(𝐼M𝑢− 𝑢, 𝐽𝐼M𝑒ℎ) + 𝑏ℎ(𝐼M𝑢, 𝑒ℎ) + 𝑐ℎ(𝐼M𝑢, 𝑒ℎ). (5.8)

The second term in the right-hand side of (5.8) is equal to 𝑎pw(𝐼M𝑢− 𝑢, 𝐽𝐼M𝑒ℎ − 𝐼M𝑒ℎ) and the stabilisation
term is equal to 𝑐ℎ(𝐼M𝑢 − 𝑢, 𝑒ℎ). They are controlled by |||𝑢 − 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ. The bilinear form 𝑏ℎ enjoys the
miraculous property 𝑏ℎ(𝐼M𝑢, 𝐼M𝑒ℎ) = 0 for the discontinuous Galerkin schemes of this paper. The remaining
term on the right-hand side of (5.8) is 𝑎pw(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑏ℎ(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) and in fact controlled by the
dcc (5.4). The proof of dcc in Section 8 is one key argument in this paper.

Remark 5.2. The arguments in this section applies to the case where 𝐴ℎ(∙, ∙) satisfies an inf-sup condition;
(and not the coercivity condition). The key idea is to estimate the consistency error 𝐹 (𝐽𝐼M𝑣ℎ) − 𝐴ℎ(𝐼M𝑢, 𝑣ℎ)
using (5.5) and (5.6) and the orthogonality of the interpolation operator.

5.3. Transfer operators between 𝑉ℎ and M(𝒯 )

Recall 𝐼M : 𝐻2(𝒯 ) → M(𝒯 ) from Definition 3.5, and suppose the existence of some constant ΛM ≥ 0 with

‖𝑣ℎ − 𝐼M𝑣ℎ‖ℎ ≤ ΛM‖𝑣ℎ − 𝑣‖ℎ for all 𝑣ℎ ∈ 𝑉ℎ and all 𝑣 ∈ 𝑉. (5.9)

Suppose the existence of constants Λ′M,𝑀M ≥ 0, and boundedness in the sense that

‖𝑣ℎ − 𝐼M𝑣ℎ‖ℎ ≤ Λ′M‖𝑣ℎ‖ℎ for all 𝑣ℎ ∈ 𝑉ℎ,

|||𝐼M𝑣ℎ|||pw ≤𝑀M‖𝑣ℎ‖ℎ for all 𝑣ℎ ∈ 𝑉ℎ. (5.10)

Apparently Λ′M ≤ ΛM (with 𝑣 = 0) and 𝑀M ≤ 1 + Λ′M (with (5.2a) and a triangle inequality). The possibly
smaller constant 𝑀M enters in Theorem 5.4a, while ΛM appears in Theorems 5.4b and 6.2 below. The above
conditions control the transfer from 𝑉ℎ into M(𝒯 ) via 𝐼M : 𝑉 + 𝑉ℎ + M(𝒯 ) → M(𝒯 ).

The transfer from M(𝒯 ) into 𝑉ℎ is modeled by some linear map 𝐼ℎ : M(𝒯 ) → 𝑉ℎ that is bounded in the sense
that there exists some constant Λℎ > 0 such that

‖𝑣M − 𝐼ℎ𝑣M‖ℎ ≤ Λℎ|||𝑣M − 𝑣|||pw for all 𝑣M ∈ M(𝒯 ) and for all 𝑣 ∈ 𝑉. (5.11)

The examples of this paper concern the discrete norm from (4.1), (4.2) and then the estimates of this
subsection follow for piecewise quadratic discrete spaces.

Example 5.3 (Equations (5.9) and (5.10) hold for 𝑉ℎ ⊆ 𝑃2(𝒯 ) and (4.1), (4.2)). Suppose that the discrete
norm ‖ ∙ ‖ℎ is defined by (4.1), (4.2) and 𝑉ℎ ⊆ 𝑃2(𝒯 ). Then (5.2) and (5.9), (5.10) follow.
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Proof of (5.9) and (5.10). Given any 𝑣2 ∈ 𝑃2(𝒯 ) and any 𝑣 ∈ 𝑉 , a triangle inequality shows

‖𝑣2 − 𝐼M𝑣2‖ℎ ≤ ‖𝑣2 − 𝐽𝐼M𝑣2‖ℎ + ‖𝐼M𝑣2 − 𝐽𝐼M𝑣2‖ℎ =: 𝑡1 + 𝑡2.

Theorem 4.5c controls the first term 𝑡1 := ‖𝑣2 − 𝐽𝐼M𝑣2‖ℎ . ‖𝑣2 − 𝑣‖ℎ on the right-hand side. Since 𝑗ℎ(𝑣M) = 0
in (4.2) vanishes for 𝑣M := 𝐼M𝑣2 ∈ M(𝒯 ), the second term 𝑡2 := |||𝑣M−𝐽𝑣M|||pw . |||𝑣M− 𝑣|||pw with Lemma 3.7d
in the last step. Since ‖(1 − Π0)𝐷2

pw𝑣2‖ = 0 vanishes for 𝑣2 ∈ 𝑃2(𝒯 ), Theorem 4.3a shows |||𝑣M − 𝑣2|||pw .
𝑗ℎ(𝑣2) = 𝑗ℎ(𝑣2 − 𝑣) ≤ ‖𝑣2 − 𝑣‖ℎ with (4.1) and (4.2) in the last two steps. This and a triangle inequality prove
𝑡2 . ‖𝑣2 − 𝑣‖ℎ. The combination of the estimates for 𝑡1 + 𝑡2 . ‖𝑣2 − 𝑣‖ℎ proves (5.9); and (5.9) immediately
implies (5.10) as discussed above. �

5.4. Sufficient conditions for best-approximation

The bilinear forms 𝐴ℎ, 𝑎pw, 𝑏ℎ, 𝑐ℎ : (𝑉ℎ + M(𝒯 )) × (𝑉ℎ + M(𝒯 )) → R in the discrete problem (5.3), (all
bounded because 𝑉ℎ + M(𝒯 ) is finite dimensional) read

𝐴ℎ(̂︀𝑣, ̂︀𝑤) := 𝑎pw(̂︀𝑣, ̂︀𝑤) + 𝑏ℎ(̂︀𝑣, ̂︀𝑤) + 𝑐ℎ(̂︀𝑣, ̂︀𝑤) for all ̂︀𝑣, ̂︀𝑤 ∈ 𝑉ℎ + M(𝒯 ). (5.12)

The key assumption in abstract form is the discrete consistency condition with a constant 0 < Λdc < ∞: All
functions 𝑣M ∈ M(𝒯 ), 𝑤ℎ ∈ 𝑉ℎ, and all 𝑣, 𝑤 ∈ 𝑉 satisfy

𝑎pw(𝑣M, 𝑤ℎ − 𝐼M𝑤ℎ) + 𝑏ℎ(𝑣M, 𝑤ℎ − 𝐼M𝑤ℎ) ≤ Λdc|||𝑣M − 𝑣|||pw‖𝑤ℎ − 𝑤‖ℎ. (5.13)

(This is a straightforward generalization of (5.4) from Sect. 5.2.) Assume that 𝑏ℎ : (𝑉ℎ+M(𝒯 ))×(𝑉ℎ+M(𝒯 )) → R
is bounded in 𝑉ℎ + M(𝒯 ) by a constant 0 < 𝑀b < ∞ and vanishes in M(𝒯 ) × M(𝒯 ) in the sense that all
𝑣ℎ, 𝑤ℎ ∈ 𝑉ℎ and all 𝑣M, 𝑤M ∈ M(𝒯 ) satisfy

𝑏ℎ(𝑣M, 𝑤M) = 0, (5.14)
𝑏ℎ(𝑣ℎ + 𝑣M, 𝑤ℎ + 𝑤M) ≤𝑀b‖𝑣ℎ + 𝑣M‖ℎ‖𝑤ℎ + 𝑤M‖ℎ. (5.15)

Suppose that the bilinear form 𝑐ℎ : (𝑉ℎ + M(𝒯 ))× (𝑉ℎ + M(𝒯 )) → R and a constant 0 < Λc <∞ satisfy

𝑐ℎ(𝑣ℎ, 𝑤ℎ) ≤ Λc‖𝑣 − 𝑣ℎ‖ℎ‖𝑤 − 𝑤ℎ‖ℎ for all 𝑣ℎ, 𝑤ℎ ∈ 𝑉ℎ and 𝑣, 𝑤 ∈ 𝑉. (5.16)

Theorem 5.4 (Best-approximation). Suppose (5.1), (5.2) and (5.9)–(5.16). Let 𝑢 ∈ 𝑉 solve (3.1) and let
𝑢ℎ ∈ 𝑉ℎ solve (5.3). Then

(𝑎) ‖𝑢− 𝑢ℎ‖ℎ ≤ 𝐶qo|||𝑢− 𝐼M𝑢|||pw and (𝑏) |||𝑢− 𝐽𝐼M𝑢ℎ||| ≤ (1 + ΛM)(1 + ΛJ)‖𝑢− 𝑢ℎ‖ℎ

hold with the constant 𝐶qo := 1 + Λℎ + 𝛼−1(Λ0𝑀M + Λℎ(1 +𝑀b) + Λdc + Λc(1 + Λℎ)).

Remark 5.5. The Morley FEM is included in the (non-symmetric) abstract framework of Theorem 5.4 and
leads to a sub-optimal best-approximation constant 𝐶qo = 1 + Λ0.

The error analysis of a post-processing dates back at least to [6] with a design of an enrichment operator for
C0IP functions replaced here by the smoother 𝐽𝐼M. For 𝐹 ∈ 𝐻−𝑠(Ω) with 2 − 𝜎 ≤ 𝑠 ≤ 2 (and 𝑢 ∈ 𝐻4−𝑠(Ω)
from elliptic regularity), Theorem 5.4 verifies

|||𝑢− 𝐽𝐼M𝑢ℎ||| ≤ 𝐶qo(1 + ΛM)(1 + ΛJ)|||𝑢− 𝐼M𝑢|||pw . ℎ
2−𝑠
max‖𝐹‖𝐻−𝑠(Ω).
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5.5. Proofs

Abbreviate 𝑒ℎ := 𝐼ℎ𝐼M𝑢 − 𝑢ℎ ∈ 𝑉ℎ and (𝑎pw + 𝑏ℎ)(∙, ∙) := 𝑎pw(∙, ∙) + 𝑏ℎ(∙, ∙) for the sum of the bilinear
forms.

Lemma 5.6 (Key identity). It holds

𝐴ℎ(𝑒ℎ, 𝑒ℎ) = 𝑎pw(𝑢, (1− 𝐽)𝐼M𝑒ℎ) + (𝑎pw + 𝑏ℎ)((𝐼ℎ − 1)𝐼M𝑢, 𝑒ℎ)
+ (𝑎pw + 𝑏ℎ)(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑐ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ).

Proof. The test function 𝑣 := 𝐽𝐼M𝑒ℎ ∈ 𝑉 in (3.1) and the test function 𝑣ℎ := 𝑒ℎ ∈ 𝑉ℎ in (5.3) lead to

𝑎(𝑢, 𝐽𝐼M𝑒ℎ) = 𝐹 (𝐽𝐼M𝑒ℎ) = 𝐴ℎ(𝑢ℎ, 𝑒ℎ).

This and the definition 𝑒ℎ = 𝐼ℎ𝐼M𝑢− 𝑢ℎ result in

𝐴ℎ(𝑒ℎ, 𝑒ℎ) = 𝐴ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ)− 𝑎(𝑢, 𝐽𝐼M𝑒ℎ).

The identity 𝑎pw(𝑢, 𝐼M𝑒ℎ) = 𝑎pw(𝐼M𝑢, 𝐼M𝑒ℎ) from (3.5) shows that this is equal to

𝑎pw(𝑢, (1− 𝐽)𝐼M𝑒ℎ) +𝐴ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ)− 𝑎pw(𝐼M𝑢, 𝐼M𝑒ℎ).

The last term 𝑎pw(𝐼M𝑢, 𝐼M𝑒ℎ) is part of 𝐴ℎ(𝐼M𝑢, 𝐼M𝑒ℎ) by (5.12), while 𝑏ℎ(𝐼M𝑢, 𝐼M𝑒ℎ) = 0 owing to (5.14).
This and elementary algebra conclude the proof. �

Lemma 5.7. The assumptions (3.5), (3.9), (3.11), and (5.10) imply

𝑎pw(𝑢, (1− 𝐽)𝐼M𝑒ℎ) ≤ Λ0𝑀M|||𝑢− 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ.

Proof. Set 𝑣M := 𝐼M𝑒ℎ and recall 𝐼M(𝑣M − 𝐽𝑣M) = 0 from (3.9). The orthogonality (3.5) and the Cauchy
inequality with respect to 𝑎pw(∙, ∙) imply

𝑎pw(𝑢, (1− 𝐽)𝑣M) = 𝑎pw(𝑢− 𝐼M𝑢, (1− 𝐽)𝑣M) ≤ |||𝑢− 𝐼M𝑢|||pw|||(1− 𝐽)𝑣M|||pw.

The boundedness of 1− 𝐽 in (3.11) and the boundedness of 𝐼M in (5.10) show

|||(1− 𝐽)𝑣M|||pw ≤ Λ0|||𝑣M|||pw ≤ Λ0𝑀M‖𝑒ℎ‖ℎ.

The combination of the two displayed inequalities concludes the proof. �

Lemma 5.8. The assumptions (5.2), (5.11), and (5.15) imply

(𝑎pw + 𝑏ℎ)((𝐼ℎ − 1)𝐼M𝑢, 𝑒ℎ) ≤ Λℎ(1 +𝑀b)|||𝑢− 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ.

Proof. For 𝑒ℎ ∈ 𝑉ℎ and 𝐼M𝑢 ∈ M(𝒯 ), the Cauchy inequality plus (5.2a) show

𝑎pw((𝐼ℎ − 1)𝐼M𝑢, 𝑒ℎ) ≤ ‖(1− 𝐼ℎ)𝐼M𝑢‖ℎ‖𝑒ℎ‖ℎ.

This and the boundedness of 𝑏ℎ in (5.15) result in

(𝑎pw + 𝑏ℎ)((𝐼ℎ − 1)𝐼M𝑢, 𝑒ℎ) ≤ (1 +𝑀b)‖(1− 𝐼ℎ)𝐼M𝑢‖ℎ‖𝑒ℎ‖ℎ.

The inequality (5.11) with 𝑣M = 𝐼M𝑢 and 𝑣 = 𝑢 reads

‖(1− 𝐼ℎ)𝐼M𝑢‖ℎ ≤ Λℎ|||𝑢− 𝐼M𝑢|||pw.

The combination of the last two displayed inequalities concludes the proof. �
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Lemma 5.9. The assumptions (5.2), (5.11), (5.13), and (5.16) imply

(𝑎pw + 𝑏ℎ)(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) + 𝑐ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ) ≤ (Λdc + Λc(1 + Λℎ))|||𝑢− 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ.

Proof. The discrete consistency condition (5.13) for 𝑣M := 𝐼M𝑢, 𝑤ℎ := 𝑒ℎ, 𝑣 := 𝑢, and 𝑤 := 0 lead to the upper
bound

(𝑎pw + 𝑏ℎ)(𝐼M𝑢, 𝑒ℎ − 𝐼M𝑒ℎ) ≤ Λdc|||𝑢− 𝐼M𝑢|||pw‖𝑒ℎ‖ℎ

for the first term on the left-hand side of the asserted estimate. The remaining contribution 𝑐ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ) is
controlled in (5.16) with 𝑣ℎ := 𝐼ℎ𝐼M𝑢, 𝑤ℎ := 𝑒ℎ, 𝑣 = 𝑢, and 𝑤 = 0 by

𝑐ℎ(𝐼ℎ𝐼M𝑢, 𝑒ℎ) ≤ Λc‖𝑢− 𝐼ℎ𝐼M𝑢‖ℎ‖𝑒ℎ‖ℎ.

A triangle inequality in ‖ ∙ ‖ℎ, (5.11) with 𝑣M := 𝐼M𝑢 and 𝑣 = 𝑢, and (5.2b) show

‖𝑢− 𝐼ℎ𝐼M𝑢‖ℎ ≤ (1 + Λℎ)|||𝑢− 𝐼M𝑢|||pw.

The combination of the resulting inequalities concludes the proof. �

Proof of best-approximation in Theorem 5.4a. The discrete ellipticity (5.1) is followed by Lemma 5.6 with terms
controlled in Lemmas 5.7–5.9. This leads (after a division by ‖𝑒ℎ‖ℎ, if positive) to

𝛼‖𝑒ℎ‖ℎ ≤ (Λ0𝑀M + Λℎ(1 +𝑀b) + Λdc + Λc(1 + Λℎ))|||𝑢− 𝐼M𝑢|||pw.

On the other hand, ‖(𝐼ℎ−1)𝐼M𝑢‖ℎ ≤ Λℎ|||𝑢−𝐼M𝑢|||pw from (5.11) for 𝑣M := 𝐼M𝑢 and 𝑣 := 𝑢. Triangle inequalities
in ‖ ∙ ‖ℎ, (5.2b), and the last two inequalities result in

‖𝑢− 𝑢ℎ‖ℎ ≤ |||𝑢− 𝐼M𝑢|||pw + ‖𝐼M𝑢− 𝐼ℎ𝐼M𝑢‖ℎ + ‖𝑒ℎ‖ℎ ≤ 𝐶qo|||𝑢− 𝐼M𝑢|||pw

with the constant 𝐶qo displayed in the assertion. �

Proof for post-processing in Theorem 5.4b. The assertion (b) is formulated in terms of 𝑢 and 𝑢ℎ but holds for
general 𝑣ℎ ∈ 𝑉ℎ and 𝑣 ∈ 𝑉 and the abbreviation 𝑣M := 𝐼M𝑣ℎ ∈ 𝑀(𝒯 ). A triangle inequality and Lemma 3.7d
prove

|||𝑣 − 𝐽𝑣M||| ≤ |||𝑣 − 𝑣M|||pw + |||(1− 𝐽)𝑣M|||pw ≤ (1 + ΛJ)|||𝑣 − 𝑣M|||pw.

A triangle inequality, (5.2a) twice, and (5.9) show

|||𝑣 − 𝑣M|||pw ≤ |||𝑣 − 𝑣ℎ|||pw + ‖𝑣ℎ − 𝑣M‖ℎ ≤ (1 + ΛM)‖𝑣 − 𝑣ℎ‖ℎ.

The combination of the two displayed estimates reads

|||𝑣 − 𝐽𝑣M||| ≤ (1 + ΛJ)(1 + ΛM)‖𝑣 − 𝑣ℎ‖ℎ.

�

6. Weaker and piecewise Sobolev norm error estimates

6.1. Assumptions and result

This subsection presents one further condition sufficient for a lower-order a priori error estimate for the
discrete problem (5.3) beyond the hypotheses of Sections 5.1–5.4: The dual discrete consistency with a constant
0 ≤ Λddc <∞ asserts that any 𝑣ℎ ∈ 𝑉ℎ, 𝑤M ∈ M(𝒯 ), and any 𝑣, 𝑤 ∈ 𝑉 satisfy

𝑎pw(𝑣ℎ − 𝐼M𝑣ℎ, 𝑤M) + 𝑏ℎ(𝑣ℎ, 𝑤M) ≤ Λddc‖𝑣 − 𝑣ℎ‖ℎ|||𝑤 − 𝑤M|||pw. (6.1)
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Remark 6.1 (Symmetry). If the bilinear form (𝑎pw +𝑏ℎ)(∙, ∙) is symmetric, then (5.13) and (5.14) imply (6.1).
(Rewrite the left-hand side in (6.1) with (5.14) and symmetry into the left-hand side of (5.13) with 𝑣ℎ and 𝑤M

replacing 𝑤ℎ and 𝑣M to establish (6.1).)

Since 𝑢ℎ ∈ 𝑉ℎ may not belong to 𝐻𝑠(Ω) for 2− 𝜎 ≤ 𝑠 ≤ 2 in general, the post-processing 𝐽𝐼M𝑢ℎ ∈ 𝑉 arises
in the duality argument with 0 < 𝜎 ≤ 1 from Example 3.1.

Theorem 6.2 (Lower-order error estimates). Suppose the assumptions of Theorem 5.4, (6.1), and 2−𝜎 ≤ 𝑠 ≤ 2.
Then there exist constants 𝐶4(𝑠), 𝐶5(𝑠) > 0 such that (a) and (b) hold for any 𝐹 ∈ 𝐻−𝑠(Ω) with solution 𝑢 ∈ 𝑉
to (3.1) and the solution 𝑢ℎ ∈ 𝑉ℎ to (5.3). (a) ‖𝑢−𝐽𝐼M𝑢ℎ‖𝐻𝑠(Ω) ≤ 𝐶4](𝑠)ℎ2−𝑠

max‖𝑢−𝑢ℎ‖ℎ and (b), if 𝑢ℎ ∈ 𝑃2(𝒯 ),
then ‖𝑢− 𝑢ℎ‖𝐻𝑠(𝒯 ) ≤ 𝐶5(𝑠)ℎ2−𝑠

max‖𝑢− 𝑢ℎ‖ℎ.

6.2. Duality and algebra

The duality of 𝐻−𝑠(Ω) and 𝐻𝑠
0(Ω) reveals for the exact solution 𝑢 ∈ 𝑉 to (3.1) and the post-processing

𝑣 := 𝐽𝐼M𝑢ℎ ∈ 𝑉 of the discrete solution 𝑢ℎ ∈ 𝑉ℎ to (5.3) that

‖𝑢− 𝑣‖𝐻𝑠(Ω) = sup
0̸=𝐺∈𝐻−𝑠(Ω)

𝐺(𝑢− 𝑣)
‖𝐺‖𝐻−𝑠(Ω)

= 𝐺(𝑢− 𝑣).

The supremum is attained for some 𝐺 ∈ 𝐻−𝑠(Ω) ⊂ 𝑉 * with norm ‖𝐺‖𝐻−𝑠(Ω) = 1 owing to a corollary of the
Hahn–Banach theorem. The functional 𝑎(𝑧, ∙) = 𝐺 ∈ 𝑉 * has a unique Riesz representation 𝑧 ∈ 𝑉 in the Hilbert
space (𝑉, 𝑎); 𝑧 ∈ 𝑉 is the weak solution to the PDE ∆2𝑧 = 𝐺. The elliptic regularity (as in Example 3.1) leads
to 𝑧 ∈ 𝑉 ∩𝐻4−𝑠(Ω) with 2 ≤ 4− 𝑠 ≤ 2 + 𝜎 and (3.2); hence

‖𝑢− 𝑣‖𝐻𝑠(Ω) = 𝑎(𝑢− 𝑣, 𝑧) and ‖𝑧‖𝐻4−𝑠(Ω) ≤ 𝐶reg.

The proof of Theorem 6.2 consists of a series of lemmas to establish an upper bound of 𝑎(𝑢− 𝑣, 𝑧) for the above
𝑧 ∈ 𝑉 ∩𝐻4−𝑠(Ω). The notation

𝑣 := 𝐽𝐼M𝑢ℎ ∈ 𝑉, 𝑧ℎ := 𝐼ℎ𝐼M𝑧 ∈ 𝑉ℎ and 𝜁 := 𝐽𝐼M𝑧ℎ ∈ 𝑉

for the discrete, exact, and dual solution 𝑢ℎ, 𝑢, and 𝑧 applies throughout this section.

Lemma 6.3 (Key identity). It holds

𝑎(𝑢− 𝑣, 𝑧) = 𝑎(𝑢− 𝑣, 𝑧 − 𝜁) + 𝑎pw(𝑢ℎ − 𝑣, 𝜁 − 𝑧ℎ) + 𝑎pw(𝐼M𝑢ℎ − 𝑣, 𝑧ℎ − 𝐼M𝑧ℎ)
+ 𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝐼M𝑧ℎ − 𝜁) +𝐴ℎ(𝑢ℎ, 𝑧ℎ)− 𝑎pw(𝑢ℎ, 𝐼M𝑧ℎ) + 𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝑧ℎ).

Proof. Let 𝜁 ≡ 𝐽𝐼M𝑧ℎ ∈ 𝑉 substitute the test function 𝑣 in (3.1). This and the test function 𝑣ℎ := 𝑧ℎ in (5.3)
lead to

𝑎(𝑢, 𝜁) = 𝐹 (𝜁) = 𝐴ℎ(𝑢ℎ, 𝑧ℎ).

This identity and elementary algebra result in

𝑎(𝑢− 𝑣, 𝜁) = 𝑎pw(𝑢ℎ − 𝑣, 𝜁 − 𝑧ℎ) + 𝑎pw(𝐼M𝑢ℎ − 𝑣, 𝑧ℎ) + 𝑎pw(𝑢ℎ, (1− 𝐽)𝐼M𝑧ℎ)
+𝐴ℎ(𝑢ℎ, 𝑧ℎ)− 𝑎pw(𝑢ℎ, 𝐼M𝑧ℎ) + 𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝑧ℎ).

The formulas 𝑎pw((1 − 𝐽)𝐼M𝑢ℎ, 𝐼M𝑧ℎ) = 0 = 𝑎pw(𝐼M𝑢ℎ, (1 − 𝐽)𝐼M𝑧ℎ) (from (3.5) and (3.9)) and elementary
algebra conclude the proof. �
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6.3. Elementary bounds

Lemma 6.4. Each of the following terms (a) 𝑎(𝑢−𝑣, 𝑧−𝜁), (b) 𝑎pw(𝑢ℎ−𝑣, 𝜁−𝑧ℎ), (c) 𝑎pw(𝐼M𝑢ℎ−𝑣, 𝑧ℎ−𝐼M𝑧ℎ),
and (d) 𝑎pw(𝑢ℎ−𝐼M𝑢ℎ, 𝐼M𝑧ℎ−𝜁) is bounded in modulus by a constant ≤ (1 + (1 + ΛJ)(1 + ΛM))2(1+Λℎ) times
‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

Proof. The assumption (5.9) (with (𝑣, 𝑣ℎ) replaced by (𝑢, 𝑢ℎ) and (𝑧, 𝑧ℎ)) implies

‖𝑢ℎ − 𝐼M𝑢ℎ‖ℎ ≤ ΛM‖𝑢− 𝑢ℎ‖ℎ and ‖𝑧ℎ − 𝐼M𝑧ℎ‖ℎ ≤ ΛM‖𝑧 − 𝑧ℎ‖ℎ. (6.2)

Recall 𝑣 ≡ 𝐽𝐼M𝑢ℎ and 𝜁 ≡ 𝐽𝐼M𝑧ℎ ∈ 𝑉 to deduce from Lemma 3.7d that

|||𝑣 − 𝐼M𝑢ℎ|||pw ≤ ΛJ|||𝑢− 𝐼M𝑢ℎ|||pw and |||𝜁 − 𝐼M𝑧ℎ|||pw ≤ ΛJ|||𝑧 − 𝐼M𝑧ℎ|||pw. (6.3)

The combination of (6.2)-(6.3) with (5.2a) and triangle inequalities lead to

|||𝑢− 𝑣||| ≤ |||𝑢− 𝐼M𝑢ℎ|||pw + |||𝑣 − 𝐼M𝑢ℎ|||pw ≤ (1 + ΛJ)|||𝑢− 𝐼M𝑢ℎ|||pw

≤ (1 + ΛJ)(|||𝑢− 𝑢ℎ|||pw + ‖𝑢ℎ − 𝐼M𝑢ℎ‖ℎ) ≤ (1 + ΛJ)(1 + ΛM)‖𝑢− 𝑢ℎ‖ℎ. (6.4)

The above arguments have not utilized any solution property and hence also apply for (𝑧, 𝜁, 𝑧ℎ) replacing
(𝑢, 𝑣, 𝑢ℎ) to reveal (instead of (6.4))

|||𝑧 − 𝜁||| ≤ (1 + ΛJ)(1 + ΛM)‖𝑧 − 𝑧ℎ‖ℎ. (6.5)

Consider 𝑣M := 𝐼M𝑧 ∈ M(𝒯 ) with 𝑧ℎ ≡ 𝐼ℎ𝐼M𝑧 = 𝐼ℎ𝑣M in (5.11) to show

‖𝑧ℎ − 𝐼M𝑧‖ℎ ≤ Λℎ|||𝑧 − 𝐼M𝑧|||pw. (6.6)

This, a triangle inequality, and (5.2b) result in

‖𝑧 − 𝑧ℎ‖ℎ ≤ (1 + Λℎ)|||𝑧 − 𝐼M𝑧|||pw. (6.7)

The combination of (6.5) and (6.7) proves

|||𝑧 − 𝜁||| ≤ (1 + ΛJ)(1 + ΛM)(1 + Λℎ)|||𝑧 − 𝐼M𝑧|||pw. (6.8)

Proof of (a). This follows from a Cauchy inequality plus (6.4) and (6.8). �

Proof of (b). A triangle inequality, (5.2a), and (6.4) verify

|||𝑢ℎ − 𝑣|||pw ≤ ‖𝑢ℎ − 𝑣‖ℎ ≤ (1 + (1 + ΛJ)(1 + ΛM))‖𝑢− 𝑢ℎ‖ℎ.

The triangle inequality with (5.2a) and (6.7)-(6.8) show

|||𝜁 − 𝑧ℎ|||pw ≤ ‖𝜁 − 𝑧ℎ‖ℎ ≤ (1 + Λℎ)(1 + (1 + ΛJ)(1 + ΛM))|||𝑧 − 𝐼M𝑧|||pw.

A Cauchy inequality and the preceding estimates conclude the proof of (b). �

Proof of (c). The estimate (6.3), a triangle inequality, (5.2a), and (6.2) show

|||𝑣 − 𝐼M𝑢ℎ|||pw ≤ ΛJ|||𝑢− 𝐼M𝑢ℎ|||pw ≤ ΛJ(1 + ΛM)‖𝑢− 𝑢ℎ‖ℎ. (6.9)

The combination of (6.2) and (6.7) after (5.2a) leads to

|||𝑧ℎ − 𝐼M𝑧ℎ|||pw ≤ ‖𝑧ℎ − 𝐼M𝑧ℎ‖ℎ ≤ ΛM(1 + Λℎ)|||𝑧 − 𝐼M𝑧|||pw. (6.10)

A Cauchy inequality and the preceding estimates conclude the proof of (c). �

Proof of (d). This follows from a Cauchy inequality with (5.2a) and the estimates for ‖𝑢ℎ − 𝐼M𝑢ℎ‖ℎ in (6.2)
and |||𝜁 − 𝐼M𝑧ℎ|||pw in (6.3). �
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6.4. Discrete consistency bounds

Lemma 6.5. It holds

𝐴ℎ(𝑢ℎ, 𝑧ℎ)− 𝑎pw(𝑢ℎ, 𝐼M𝑧ℎ) + 𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝑧ℎ)
≤ (1 + Λℎ)((2 +𝑀b)Λ2

M + (Λdc + Λddc)(1 + ΛM)ΛJ + Λc)‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

Proof. Recall 𝑏ℎ(𝐼M𝑢ℎ, 𝐼M𝑧ℎ) = 0 from (5.14) and exploit (5.12) with elementary (but lengthy) algebra to check
that the left-hand side LHS of the assertion is equal to

LHS = (2𝑎pw + 𝑏ℎ)(𝑢ℎ − 𝐼M𝑢ℎ, 𝑧ℎ − 𝐼M𝑧ℎ) + (𝑎pw + 𝑏ℎ)(𝐼M𝑢ℎ, 𝑧ℎ − 𝐼M𝑧ℎ) (6.11)
+ (𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝐼M𝑧ℎ) + 𝑏ℎ(𝑢ℎ, 𝐼M𝑧ℎ)) + 𝑐ℎ(𝑢ℎ, 𝑧ℎ) (6.12)

with the short notation, e.g., (2𝑎pw + 𝑏ℎ)(∙, ∙) := 2𝑎pw(∙, ∙) + 𝑏ℎ(∙, ∙), for the sum of the bilinear forms
announced in Section 5.5. The two lines (6.11) and (6.12) of expressions for the LHS give rise to four estimates.
The continuity of 𝑎pw(∙, ∙) and 𝑏ℎ(∙, ∙) in (5.15), (6.2), and (6.10) prove

(2𝑎pw + 𝑏ℎ)(𝑢ℎ − 𝐼M𝑢ℎ, 𝑧ℎ − 𝐼M𝑧ℎ) ≤ (2 +𝑀b)Λ2
M(1 + Λℎ)‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

The discrete consistency (5.13) leads in the last term in (6.11) to a product of |||𝑣− 𝐼M𝑢ℎ|||pw controlled in (6.9)
and ‖𝑧 − 𝑧ℎ‖ℎ controlled in (6.7). This results in

(𝑎pw + 𝑏ℎ)(𝐼M𝑢ℎ, 𝑧ℎ − 𝐼M𝑧ℎ) ≤ ΛdcΛJ(1 + ΛM)(1 + Λℎ)‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

The dual discrete consistency in (6.1) applies to the first two terms in (6.12) and leads to Λddc‖𝑢− 𝑢ℎ‖ℎ times
|||𝜁 − 𝐼M𝑧ℎ|||pw controlled with (5.2b) in (6.3). This with (6.2b) and (6.7) result in

𝑎pw(𝑢ℎ − 𝐼M𝑢ℎ, 𝐼M𝑧ℎ) + 𝑏ℎ(𝑢ℎ, 𝐼M𝑧ℎ) ≤ ΛddcΛJ(1 + ΛM)(1 + Λℎ)‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

The last term in (6.12) is controlled in (5.16). This and (6.7) show

𝑐ℎ(𝑢ℎ, 𝑧ℎ) ≤ Λc‖𝑢− 𝑢ℎ‖ℎ‖𝑧 − 𝑧ℎ‖ℎ ≤ Λc(1 + Λℎ)‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw.

A combination of the preceding four estimates with (6.11) and (6.12) concludes the proof. �

6.5. Proof of Theorem 6.2

Given 2 − 𝜎 ≤ 𝑠 ≤ 2, there exists a constant 0 < 𝐶int(𝑠) < ∞ (which exclusively depends on the shape
regularity of 𝒯 and 𝑠) such that the solution 𝑧 ∈ 𝑉 of the dual problem in Section 6.2 satisfies (with Lem. 3.2c)
that

|||𝑧 − 𝐼M𝑧|||pw ≤ 𝐶int(𝑠)ℎ2−𝑠
max‖𝑧‖𝐻4−𝑠(Ω) ≤ 𝐶int(𝑠)𝐶reg(𝑠)ℎ2−𝑠

max‖𝐺‖𝐻−𝑠(Ω). (6.13)

Proof of (a). Recall ‖𝑢 − 𝑣‖𝐻𝑠(Ω) = 𝑎(𝑢 − 𝑣, 𝑧) from Section 6.2 and its formula in Lemma 6.3. Lemma 6.4
applies to the first four terms and Lemma 6.5 to the remaining three. The resulting estimate reads

‖𝑢− 𝑣‖𝐻𝑠(Ω) ≤ 𝐶6‖𝑢− 𝑢ℎ‖ℎ|||𝑧 − 𝐼M𝑧|||pw

with 𝐶6 = (1 + Λℎ)
(︀
4(1 + (1 + ΛJ)(1 + ΛM))2 + (2 + 𝑀b)Λ2

M + (Λdc + Λddc)(1 + ΛM)ΛJ + Λc)
)︀
. This and

|||𝑧 − 𝐼M𝑧|||pw ≤ 𝐶int(𝑠)𝐶reg(𝑠)ℎ2−𝑠
max from (6.13) prove Theorem 6.2a. �

Proof of (b). The norm in 𝐻𝑠(𝒯 ) =
∏︀

𝑇∈𝒯 𝐻
𝑠(𝑇 ) is the ℓ2 norm of those contributions ‖∙‖𝐻𝑠(𝑇 ) for all 𝑇 ∈ 𝒯 .

The Sobolev–Slobodeckii semi-norm over Ω involves double integrals over Ω× Ω and so is larger than or equal
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to the sum of the contributions over 𝑇 × 𝑇 for all the triangles 𝑇 ∈ 𝒯 , i.e.,
∑︀

𝑇∈𝒯 | ∙ |2𝐻𝑠(𝑇 ) ≤ | ∙ |
2
𝐻𝑠(Ω) for any

1 < 𝑠 < 2. Hence Theorem 6.2a implies

‖𝑢− 𝐽𝐼M𝑢ℎ‖𝐻𝑠(𝒯 ) ≤ 𝐶4(𝑠)ℎ2−𝑠
max‖𝑢− 𝑢ℎ‖ℎ for all 𝑠 with 2− 𝜎 ≤ 𝑠 ≤ 2. (6.14)

Since 𝑢ℎ ∈ 𝑃2(𝒯 ), Theorem 4.5d provides the estimate

‖𝑢ℎ − 𝐽𝐼M𝑢ℎ‖𝐻𝑠(𝒯 ) . ℎ
2−𝑠
max‖𝑢− 𝑢ℎ‖ℎ.

The triangle inequality in the norm of 𝐻𝑠(𝒯 ) concludes the proof of Theorem 6.2b. �

6.6. Verification of (H) and ̂︂(H)

For the choice 𝑃 = 𝑄 = 𝐽 ∘ 𝐼M, Theorem 4.5c shows that (2.3)–(2.5) hold for all the lowest-order schemes
𝑉ℎ ⊆ 𝑃2(𝒯 ) considered in this paper. This subsection verifies (H) and ̂︂(H).

Lemma 6.6 (Verification of (H) and ̂︂(H)). Suppose the assumptions of Theorems 5.4 and 6.2. Any 𝑣ℎ ∈ 𝑉ℎ,
𝑣 := 𝐽𝐼M𝑣ℎ ∈ 𝑉 , 𝑤ℎ ∈ 𝑉ℎ, and 𝑤 = 𝐽𝐼M𝑤ℎ ∈ 𝑉 satisfy

(H) 𝐴ℎ(𝑣ℎ, 𝑤ℎ)− 𝑎(𝑣, 𝑤) ≤ Λ1‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ‖ℎ,̂︂(H) 𝐴ℎ(𝑣ℎ, 𝑤ℎ)− 𝑎(𝑣, 𝑤) ≤ Λ2‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ − 𝑤‖ℎ

with Λ1 := (1 + ΛM)(Λdc + ΛJ𝑀M‖𝐽‖) + (1 +𝑀b)ΛM + Λc, and Λ2 := Λddc + (1 +𝑀b)Λ2
M + (1 + ΛM)(1 + ΛM +

Λdc) + Λc.

Proof of (H). For 𝑤M := 𝐼M𝑤, and 𝑣M := 𝐼M𝑣, (3.9) implies 𝑤M = 𝐼M𝑤ℎ, and 𝑣M = 𝐼M𝑣ℎ. The definition of
𝐴ℎ(∙, ∙), algebraic manipulations, and (5.14) result in

𝐴ℎ(𝑣ℎ, 𝑤ℎ)− 𝑎(𝑣, 𝑤) = 𝑎pw(𝑣ℎ, 𝑤ℎ) + 𝑏ℎ(𝑣ℎ, 𝑤ℎ) + 𝑐ℎ(𝑣ℎ, 𝑤ℎ)− 𝑎(𝑣, 𝑤)
= 𝑎pw(𝑣ℎ − 𝑣M, 𝑤ℎ) + 𝑏ℎ(𝑣ℎ − 𝑣M, 𝑤ℎ) + 𝑎pw(𝑣M, 𝑤ℎ − 𝑤M) + 𝑏ℎ(𝑣M, 𝑤ℎ − 𝑤M)

+ 𝑐ℎ(𝑣ℎ, 𝑤ℎ) + 𝑎pw(𝑣M, 𝑤M)− 𝑎(𝑣, 𝑤). (6.15)

The boundedness of 𝑎pw(∙, ∙), (5.15), (5.9), and (5.2) prove

𝑎pw(𝑣ℎ − 𝑣M, 𝑤ℎ) + 𝑏ℎ(𝑣ℎ − 𝑣M, 𝑤ℎ) ≤ (1 +𝑀b)ΛM‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ‖ℎ.

The discrete consistency condition (5.13) (with 𝑤 = 0), a triangle inequality, (5.9), and (5.2) show

𝑎pw(𝑣M, 𝑤ℎ − 𝑤M) + 𝑏ℎ(𝑣M, 𝑤ℎ − 𝑤M) ≤ Λdc(1 + ΛM)‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ‖ℎ.

The bound in (5.16) with the choice 𝑤 = 0 implies

𝑐ℎ(𝑣ℎ, 𝑤ℎ) ≤ Λc‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ‖ℎ.

The orthogonality condition (3.5), Lemma 3.7d, (5.9), and (5.10), result in

𝑎pw(𝑣M, 𝑤M)− 𝑎(𝑣, 𝑤) = 𝑎pw((1− 𝐽)𝑣M, 𝐽𝑤M) ≤ ΛJ(1 + ΛM)𝑀M‖𝐽‖‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ‖ℎ.

A combination of the last four displayed estimates in (6.15) leads to the desired result. �
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Proof of ̂︂(H). An alternate split of the left-hand side of the desired estimate leads to

𝐴ℎ(𝑣ℎ, 𝑤ℎ)− 𝑎(𝑣, 𝑤) = 𝑎pw(𝑣ℎ − 𝑣M, 𝑤M) + 𝑏ℎ(𝑣ℎ, 𝑤M) + 𝑎pw(𝑣ℎ − 𝑣M, 𝑤ℎ − 𝑤M)
+ 𝑏ℎ(𝑣ℎ − 𝑣M, 𝑤ℎ − 𝑤M) + 𝑎pw(𝑣M, 𝑤ℎ − 𝑤M) + 𝑏ℎ(𝑣M, 𝑤ℎ − 𝑤M)
+ 𝑎pw(𝑣M, 𝑤M)− 𝑎(𝑣, 𝑤) + 𝑐ℎ(𝑣ℎ, 𝑤ℎ). (6.16)

The discrete consistency condition (6.1) shows

𝑎pw(𝑣ℎ − 𝑣M, 𝑤M) + 𝑏ℎ(𝑣ℎ, 𝑤M) ≤ Λddc‖𝑣 − 𝑣ℎ‖ℎ|||𝑤 − 𝑤M|||pw.

The boundedness of 𝑎pw(∙, ∙), (5.15), and (5.9) prove

𝑎pw(𝑣ℎ − 𝑣M, 𝑤ℎ − 𝑤M) + 𝑏ℎ(𝑣ℎ − 𝑣M, 𝑤ℎ − 𝑤M) ≤ (1 +𝑀b)Λ2
M‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ − 𝑤‖ℎ.

The discrete consistency condition (5.13) and (5.2) lead to

𝑎pw(𝑣M, 𝑤ℎ − 𝑤M) + 𝑏ℎ(𝑣M, 𝑤ℎ − 𝑤M) ≤ Λdc(1 + ΛM)‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ − 𝑤‖ℎ.

The orthogonality condition (3.5) and (5.9) result in

𝑎pw(𝑣M, 𝑤M)− 𝑎(𝑣, 𝑤) = −𝑎pw(𝑣 − 𝑣M, 𝑤 − 𝑤M) ≤ (1 + ΛM)2‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ − 𝑤‖ℎ.

The bound in (5.16) implies

𝑐ℎ(𝑣ℎ, 𝑤ℎ) ≤ Λc‖𝑣ℎ − 𝑣‖ℎ‖𝑤ℎ − 𝑤‖ℎ.

A substitution of the last five displayed estimates in (6.16) leads to the desired result. �

Remark 6.7 (Thm. 2.6 implies Thm. 6.2). For 𝑣 := 𝐽𝐼M𝑢ℎ ∈ 𝑉 , recall ‖𝑢 − 𝑣‖𝐻𝑠(Ω) = 𝑎(𝑢 − 𝑣, 𝑧) from
Section 6.2. Theorem 2.6 applies as Lemma 6.6 holds and with (5.2) leads to 𝑎(𝑢−𝑣, 𝑧) ≤ ̂︂𝐶qo‖𝑢−𝑢ℎ‖ℎ‖𝑧−𝐼M𝑧‖ℎ.

7. Modified dGFEM

The bilinear form 𝐴ℎ(∙, ∙) := 𝐴dG(∙, ∙) [2, 28] is defined, for all 𝑣2, 𝑤2 ∈ 𝑉ℎ := 𝑃2(𝒯 ), by

𝐴dG(𝑣2, 𝑤2) := 𝑎pw(𝑣2, 𝑤2) + 𝑏ℎ(𝑣2, 𝑤2) + 𝑐dG(𝑣2, 𝑤2), (7.1)

𝑏ℎ(𝑣2, 𝑤2) := −Θ𝒥 (𝑣2, 𝑤2)− 𝒥 (𝑤2, 𝑣2), (7.2a)

𝒥 (𝑣2, 𝑤2) :=
∑︁
𝐸∈ℰ

ˆ
𝐸

[∇pw𝑣2]𝐸 ·
⟨︀
𝐷2

pw𝑤2

⟩︀
𝐸
𝜈𝐸 ds (7.2b)

with 𝑐dG(∙, ∙) from (4.3) and given −1 ≤ Θ ≤ 1. Let the jumps [∙]𝐸 across and the averages ⟨∙⟩𝐸 at an
edge 𝐸 ∈ ℰ from Section 4.1 act componentwise. Recall from Theorem 4.1 the equivalent discrete norms
‖ ∙ ‖ℎ ≈ ‖ ∙ ‖dG in 𝐻2(𝒯 ) defined in (4.1), (4.2) and (4.4). Set Θ = 1 (resp. Θ = −1) to obtain the symmetric
(resp. non symmetric) interior penalty Galerkin formulation; see [39] for an alternative formulation. Appropriate
positive parameters 𝜎1, 𝜎2 in (4.3) guarantee (5.1).

Lemma 7.1 (Boundedness and ellipticity of 𝐴dG(∙, ∙) [28,39]). (a) Any 𝑣2, 𝑤2 ∈ 𝑃2(𝒯 ) satisfy 𝐴dG(𝑣2, 𝑤2) .
‖𝑣2‖dG‖𝑤2‖dG. (b) For Θ = −1 and any 𝜎dG = 𝜎1 = 𝜎2 > 0, ‖𝑣2‖2dG ≤ 𝐴dG(𝑣2, 𝑣2) holds for all 𝑣2 ∈ 𝑃2(𝒯 ).
(c) For −1 < Θ ≤ 1 and a sufficiently large parameter 𝜎dG = 𝜎1 = 𝜎2 > 0, there exists 𝛼 > 0 (which depends
on 𝜎dG and the shape regularity of 𝒯 ) such that 𝛼‖𝑣2‖2dG ≤ 𝐴dG(𝑣2, 𝑣2) for all 𝑣2 ∈ 𝑃2(𝒯 ).
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Throughout this paper, the parameter 𝜎dG is chosen to guarantee the ellipticity of 𝐴dG(∙, ∙) in Lemma 7.1
with the short notation 𝜎dG ≈ 1 ≈ 𝛼. The modified dGFEM (5.3) seeks the solution 𝑢dG ∈ 𝑃2(𝒯 ) to

𝐴dG(𝑢dG, 𝑣2) = 𝐹 (𝐽𝐼M𝑣2) for all 𝑣2 ∈ 𝑃2(𝒯 ). (7.3)

Theorem 7.2 (Error estimates). The solution 𝑢 ∈ 𝑉 to (3.1) and the solution 𝑢dG ∈ 𝑃2(𝒯 ) to (7.3) satisfy (a)
‖𝑢 − 𝑢dG‖ℎ . |||𝑢 − 𝐼M𝑢|||pw and (b) if Θ = 1 and 𝐹 ∈ 𝐻−𝑠(Ω) for 2 − 𝜎 ≤ 𝑠 ≤ 2, then ‖𝑢 − 𝐽𝐼M𝑢dG‖𝐻𝑠(Ω) +
‖𝑢− 𝑢dG‖𝐻𝑠(𝒯 ) . ℎ2−𝑠

max‖𝑢− 𝑢dG‖ℎ.

Overview of the proof. The assertion (a) follows from Theorem 5.4 for the particular spaces, operators, norms,
and bilinear forms defined below. The application of Theorem 5.4 requires the proof of the abstract conditions
(5.1) and (5.2), (5.9)–(5.16). The assertion (b) follows from Theorem 6.2 provided (6.1) holds.
Setting and first consequences. Recall 𝑉ℎ := 𝑃2(𝒯 ) and the norms ‖ ∙ ‖ℎ and ‖ ∙ ‖dG in (4.1), (4.2) and (4.4).
Recall the Morley interpolation operator 𝐼M from Definition 3.5 and the companion operator 𝐽 from Lemma 3.7.
Recall that Lemma 7.1 guarantees (5.1) and (5.2). The dGFEM in (7.3) corresponds to (5.3) with the solution
𝑢ℎ := 𝑢dG. Example 5.3 implies (5.9) and (5.10). Set 𝐼ℎ := id and observe (5.11) holds for Λℎ = 0. Recall
𝐴ℎ(∙, ∙) := 𝐴dG(∙, ∙), 𝑏ℎ(∙, ∙) := −Θ𝒥 (∙, ∙)− 𝒥 *(∙, ∙), and 𝑐ℎ(∙, ∙) := 𝑐dG(∙, ∙) in (5.12).

Proof of (5.13). Since the integral
´

𝐸
[∇pw𝑣M]𝐸 ds = 0 vanishes for 𝑣M ∈ M(𝒯 ) and since

⟨︀
𝐷2

pw𝑤2

⟩︀
𝐸

is constant
on any edge 𝐸 ∈ ℰ for any 𝑤2 ∈ 𝑃2(𝒯 ),

𝒥 (𝑣M, 𝑤2) =
∑︁
𝐸∈ℰ

ˆ
𝐸

[∇pw𝑣M]𝐸 ·
⟨︀
𝐷2

pw𝑤2

⟩︀
𝐸
𝜈𝐸 ds = 0. (7.4)

Hence the term Θ𝒥 (𝑣M, 𝑤2 − 𝐼M𝑤2) disappears below in definitions of (𝑎pw + 𝑏ℎ)(∙, ∙), written in the short
notation of Section 5.5; (𝑎pw + 𝑏ℎ)(𝑣M, 𝑤2 − 𝐼M𝑤2) is equal to∑︁

𝑇∈𝒯

ˆ
𝐾

𝐷2
pw𝑣M : 𝐷2

pw(𝑤2 − 𝐼M𝑤2) dx−
∑︁
𝐸∈ℰ

ˆ
𝐸

[∇pw(𝑤2 − 𝐼M𝑤2)]𝐸 ·
⟨︀
𝐷2

pw𝑣M
⟩︀

𝐸
𝜈𝐸 ds.

A piecewise integration by parts of the term 𝑎pw(𝑣M, 𝑤2 − 𝐼M𝑤2) shows equality to∑︁
𝐸∈ℰ

ˆ
𝐸

(︁[︀
∇pw(𝑤2 − 𝐼M𝑤2) · (𝐷2

pw𝑣M 𝜈𝐸)
]︀
𝐸
− [∇pw(𝑤2 − 𝐼M𝑤2)]𝐸 ·

⟨︀
𝐷2

pw𝑣M
⟩︀

𝐸
𝜈𝐸

)︁
ds.

The product rule for the jump terms results in

(𝑎pw + 𝑏ℎ)(𝑣M, 𝑤2 − 𝐼M𝑤2) =
∑︁
𝐸∈ℰ

ˆ
𝐸

⟨∇pw(𝑤2 − 𝐼M𝑤2)⟩𝐸 ·
[︀
𝐷2

pw𝑣M
]︀
𝐸
𝜈𝐸 ds. (7.5)

The further analysis concerns the split of the vector ⟨∇pw(𝑤2 − 𝐼M𝑤2)⟩𝐸∈ 𝑃1(𝐸; R2) ≡ 𝑃1(𝐸)2 into normal and
tangential components,

⟨∇pw(𝑤2 − 𝐼M𝑤2)⟩𝐸 = ⟨𝜕(𝑤2 − 𝐼M𝑤2)/𝜕𝜈𝐸⟩𝐸𝜈𝐸 + ⟨𝜕(𝑤2 − 𝐼M𝑤2)/𝜕𝑠⟩𝐸𝜏𝐸 .

The integral of the normal component ⟨𝜕(𝑤2−𝐼M𝑤2)/𝜕𝜈𝐸⟩𝐸 over an edge 𝐸 ∈ ℰ vanishes by definition of 𝐼M𝑤2

in Definition 3.5. Since the jump
[︀
𝜕2

𝜈𝐸𝜈𝐸
𝑣M

]︀
𝐸

:= 𝜈𝐸 ·
[︀
𝐷2

pw𝑣M
]︀
𝐸
𝜈𝐸 is constant along 𝐸, the integral

´
𝐸
⟨𝜕(𝑤2 −

𝐼M𝑤2)/𝜕𝜈𝐸⟩𝐸
[︀
𝜕2

𝜈𝐸𝜈𝐸
𝑣M

]︀
𝐸

ds = 0 vanishes. The tangential components with
[︀
𝜕2

𝜏𝐸𝜈𝐸
𝑣M

]︀
𝐸

:= 𝜏𝐸 ·
[︀
𝐷2𝑣M

]︀
𝐸
𝜈𝐸

remain in
(𝑎pw + 𝑏ℎ)(𝑣M, 𝑤2 − 𝐼M𝑤2) =

∑︁
𝐸∈ℰ

ˆ
𝐸

⟨𝜕(𝑤2 − 𝐼M𝑤2)/𝜕𝑠⟩𝐸
[︀
𝜕2

𝜏𝐸𝜈𝐸
𝑣M

]︀
𝐸

ds.
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The Hadamard jump condition asserts that the jump in the derivative of a globally continuous function that is
smooth up to the boundary on either side of an interface 𝐸 points merely in the normal direction 𝜈𝐸 only. The
function 𝐽𝑣M has a continuous gradient ∇𝐽𝑣M and ∇𝐽𝑣M is smooth on each triangle ̂︀𝑇 in the HCT refinement
of 𝒯 . Hence

[︀
𝜕2

𝜏𝐸𝜈𝐸
𝐽𝑣M

]︀
𝐸

= 0 along 𝐸. Consequently,

(𝑎pw + 𝑏ℎ)(𝑣M, 𝑤2 − 𝐼M𝑤2) =
∑︁
𝐸∈ℰ

ˆ
𝐸

⟨𝜕(𝑤2 − 𝐼M𝑤2)/𝜕𝑠⟩𝐸
[︀
𝜕2

𝜏𝐸𝜈𝐸
(1− 𝐽)𝑣M

]︀
𝐸

ds. (7.6)

For an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− = 𝜕 ̂︀𝑇+ ∩ 𝜕 ̂︀𝑇− with the neighbouring triangles 𝑇± ∈ 𝒯 and the two
neighbouring sub-triangles ̂︀𝑇± := conv(𝐸,mid(𝑇±)) from the HCT refinement of 𝒯 with patches ̂︀𝜔(𝐸) =
int( ̂︀𝑇+ ∪ ̂︀𝑇−) ⊂ 𝜔(𝐸) = int(𝑇+ ∪ 𝑇−), Cauchy and triangle inequalities show

𝐼(𝐸) :=
ˆ

𝐸

⟨𝜕(𝑤2 − 𝐼M𝑤2)/𝜕𝑠⟩𝐸
[︀
𝜕2

𝜏𝐸𝜈𝐸
(1− 𝐽)𝑣M

]︀
𝐸

ds

≤ 1
2
(︀
‖∇(𝑤2 − 𝐼M𝑤2)|𝑇+‖𝐿2(𝐸) + ‖∇(𝑤2 − 𝐼M𝑤2)|𝑇−‖𝐿2(𝐸)

)︀
×

(︁
‖𝐷2(1− 𝐽)𝑣M|̂︀𝑇+

‖𝐿2(𝐸) + ‖𝐷2(1− 𝐽)𝑣M|̂︀𝑇−‖𝐿2(𝐸)

)︁
.

Since (𝑤2 − 𝐼M𝑤2)|̂︀𝑇± resp. (1 − 𝐽)𝑣M|̂︀𝑇± is a polynomial of degree at most 2 resp. 3 in the triangle ̂︀𝑇±, the
discrete trace inequalities⃦⃦

∇(𝑤2 − 𝐼M𝑤2)|𝑇±
⃦⃦

𝐿2(𝐸)
≤ ℎ

1/2
𝐸 𝐶7]

⃦⃦⃦
ℎ−1

𝑇±
∇pw(𝑤2 − 𝐼M𝑤2)

⃦⃦⃦
𝐿2(̂︀𝑇±)⃦⃦⃦

𝐷2(1− 𝐽)𝑣M|̂︀𝑇±
⃦⃦⃦

𝐿2(𝐸)
≤ ℎ

−1/2
𝐸 𝐶7]|(1− 𝐽)𝑣M|𝐻2(̂︀𝑇±)

hold for a constant 𝐶7 ≈ 1 that solely depends on the shape regularity of ̂︀𝑇± (and so on the shape regularity
of 𝒯 ). This leads to

𝐼(𝐸) ≤ 𝐶2
7

⃦⃦
ℎ−1
𝒯 ∇pw(𝑤2 − 𝐼M𝑤2)

⃦⃦
𝐿2(̂︀𝜔(𝐸))

⃦⃦
𝐷2

pw(1− 𝐽)𝑣M
⃦⃦

𝐿2(̂︀𝜔(𝐸))

for any interior edge 𝐸 ∈ ℰ(Ω) with the reduced edge-patch ̂︀𝜔(𝐸). The same estimate follows for a boundary edge
𝐸 ∈ ℰ(𝜕Ω) (the proof omits 𝑇−, ̂︀𝑇−, and some factor 1/2 above). Since the reduced edge-patches (̂︀𝜔(𝐸) : 𝐸 ∈ ℰ)
have no overlap, the sum of all the above estimates of 𝐼(𝐸) in (7.6) and Cauchy inequalities prove

(𝑎pw + 𝑏ℎ)(𝑣M, 𝑤2 − 𝐼M𝑤2) ≤ 𝐶2
7

⃒⃒
ℎ−1
𝒯 (𝑤2 − 𝐼M𝑤2)

⃒⃒
𝐻1(Ω)

|||(1− 𝐽)𝑣M|||pw. (7.7)

Recall from Theorem 4.3a (with ‖(1−Π0)𝐷2
pw𝑤2‖ = 0 for 𝑤2 ∈ 𝑃2(𝒯 )) that⃒⃒

ℎ−1
𝒯 (𝑤2 − 𝐼M𝑤2)

⃒⃒
𝐻1(𝒯 )

. 𝑗ℎ(𝑤2 − 𝑤) . ‖𝑤2 − 𝑤‖ℎ

for all 𝑤 ∈ 𝑉 . Lemma 3.7d shows |||(1− 𝐽)𝑣M|||pw ≤ ΛJ|||𝑣M − 𝑣|||pw for any 𝑣 ∈ 𝑉 . The combination of this with
(7.7) concludes the proof of (5.13). �

Proof of (5.14). This follows from (7.4). �

Proof of (5.15). This follows from the boundedness of 𝑏ℎ(∙, ∙) (see [28,39]). �

Proof of (5.16). The jump contributions in (4.3) vanish for arguments in 𝑉 , 𝑐dG(𝑣2, 𝑤2) = 𝑐dG(𝑣 − 𝑣2, 𝑤−𝑤2)
on the left-hand side of (5.16). Recall that 𝑐dG(∙, ∙) is a semi-norm scalar product and the Cauchy inequality
with the induced semi-norm | ∙ |𝑐dG := 𝑐dG(∙, ∙)1/2 ≤ ‖ ∙ ‖dG is a part of the discrete norm ‖ ∙ ‖dG. This leads
to (5.16) with Λc = 1. �

Proof of (6.1) for Θ = 1. This follows from Remark 6.1. �
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8. Modified 𝐶0IP method

For the right-hand side 𝐹 ∈ 𝐻−2(Ω), the modified 𝐶0IP method is based on the continuous Lagrange 𝑃2

finite element space 𝑉ℎ := 𝑆2
0(𝒯 ) := 𝑃2(𝒯 )∩𝐻1

0 (Ω) and penalty terms along edges. The scheme is a modification
of the dGFEM in Section 7 but with trial and test functions restricted to 𝑆2

0(𝒯 ) := 𝑃2(𝒯 ) ∩𝐻1
0 (Ω). The norm

‖∙‖IP is ‖ ∙ ‖dG with restriction to 𝑆2
0(𝒯 ) and excludes one of the penalty parameters of the modified dGFEM.

Given 𝜎IP > 0, the bilinear forms [6, 24] for 𝑣IP, 𝑤IP ∈ 𝑆2
0(𝒯 ) are defined by

𝐴IP(𝑣IP, 𝑤IP) := 𝑎pw(𝑣IP, 𝑤IP) + 𝑏ℎ(𝑣IP, 𝑤IP) + 𝑐IP(𝑣IP, 𝑤IP), where (8.1)

𝑐IP(𝑣IP, 𝑤IP) :=
∑︁
𝐸∈ℰ

𝜎IP

ℎ𝐸

ˆ
𝐸

[︂
𝜕𝑣IP
𝜕𝜈𝐸

]︂
𝐸

[︂
𝜕𝑤IP

𝜕𝜈𝐸

]︂
𝐸

ds, (8.2)

and 𝑏ℎ(∙, ∙) = 𝑏ℎ(∙, ∙)|𝑆2
0(𝒯 ) from (7.2a).

The modified 𝐶0IP method is of the form (5.3) and seeks 𝑢IP ∈ 𝑆2
0(𝒯 ) such that

𝐴IP(𝑢IP, 𝑣IP) = 𝐹 (𝐽𝐼M𝑣IP) for all 𝑣IP ∈ 𝑆2
0(𝒯 ). (8.3)

For all 𝑣 + 𝑣IP ∈ 𝑉 + 𝑆2
0(𝒯 ), the discrete norm reads ‖𝑣 + 𝑣IP‖IP := (|||𝑣 + 𝑣IP|||2pw + 𝑐IP(𝑣IP, 𝑣IP))1/2 and

𝑗ℎ(𝑣IP) = (
∑︀

𝐸∈ℰ(
ffl

𝐸
[𝜕𝑣IP/𝜕𝜈𝐸 ]𝐸 ds)2)1/2. Theorem 4.1 shows ‖𝑣IP‖ℎ ≈ ‖𝑣IP‖IP. The coercivity ‖·‖2IP . 𝐴IP(·, ·)

on 𝑆2
0(𝒯 ) holds provided 𝜎IP is sufficiently large [6,24]. The boundedness 𝐴IP(𝑣IP, 𝑤IP) . ‖𝑣IP‖IP‖𝑤IP‖IP holds

for all 𝑣IP, 𝑤IP on 𝑆2
0(𝒯 ) and (8.3) has a unique solution 𝑢IP ∈ 𝑆2

0(𝒯 ).

Theorem 8.1 (Error estimates). The solution 𝑢 ∈ 𝑉 to (3.1) and the solution 𝑢IP ∈ 𝑆2
0(𝒯 ) to (8.3) satisfy (a)

‖𝑢 − 𝑢IP‖ℎ . |||𝑢 − 𝐼M𝑢|||pw and (b) if Θ = 1 and 𝐹 ∈ 𝐻−𝑠(Ω) for 2 − 𝜎 ≤ 𝑠 ≤ 2, then ‖𝑢 − 𝐽𝐼M𝑢IP‖𝐻𝑠(Ω) +
‖𝑢− 𝑢IP‖𝐻𝑠(𝒯 ) . ℎ2−𝑠

max‖𝑢− 𝑢IP‖ℎ.

Remark 8.2. A 𝐶0IP discrete scheme is analysed in [6] for a general 𝐹 ∈ 𝐻𝜎−2(Ω). The consistency of the
scheme allows a best approximation ([6], Lem. 8) (since 𝑉ℎ subset 𝐻2−𝜎(Ω) in the pure Dirichlet problem for
𝐶0IP).

For 𝐹 ∈ 𝐻−2(Ω), a modifed scheme and error estimates for the post-processed solution are derived in (4.17)
and Theorem 4 of [6].

Overview of the proof of Theorem 8.1. The proof follows the lines of that of Theorem 7.2 and partly from the
analysis provided there. The bilinear forms in the 𝐶0IP are exactly the respective bilinear forms of the dGFEM
when restricted to the subspace 𝑆2

0(𝒯 ) +𝑀(𝒯 ). With the single exception of (5.11), all the estimates in (5.9)–
(5.16) and (6.1) for Θ = 1 follow for 𝑉ℎ = 𝑆2

0(𝒯 ) in the 𝐶0IP from the respective properties verified in Section 7
for 𝑉ℎ = 𝑃2(𝒯 ) in the dGFEM. The remaining detail is the analysis of the operator 𝐼ℎ ≡ 𝐼C : M(𝒯 ) → 𝑆2

0(𝒯 )
(denoted by 𝐼*2 in Lem. 3.2 of [23]) defined by averaging the values of a function 𝑣M ∈ M(𝒯 ) at the midpoint
of an interior edge 𝐸,

(𝐼C𝑣M)(𝑧) =

⎧⎪⎨⎪⎩
𝑣M(𝑧) for all 𝑧 ∈ 𝒱,
⟨𝑣M⟩𝐸(𝑧) for 𝑧 = mid(𝐸), 𝐸 ∈ ℰ(Ω),
0 for 𝑧 = mid(𝐸), 𝐸 ∈ ℰ(𝜕Ω).

(8.4)

Proof of (5.11). This is included in Lemma 3.2f of [23] in a slightly different notation. In the notation of this
paper, Lemma 3.2 of [23] shows

‖𝑣M − 𝐼C𝑣M‖2ℎ .
∑︁
𝐸∈ℰ

ℎ−2
𝐸 |[𝑣M]𝐸(mid(𝐸))|2 (8.5)
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for any 𝑣M ∈ M(𝒯 ). Lemma 3.3 of [23] controls the upper bound of (8.5) by the a posteriori terms∑︀
𝐸∈ℰ ℎ𝐸‖

[︀
𝐷2

pw𝑣M
]︀
𝐸
𝜏𝐸‖2𝐿2(𝐸). The latter is efficient, i.e., . |||𝑣M − 𝑣|||pw for any 𝑣 ∈ 𝐻2

0 (Ω). This leads to
(5.11). Theorem 4.5 allows for an alternative proof that departs at (8.5) with the quadratic function [𝑣M]𝐸
along the edge 𝐸 ∈ ℰ . Since [𝑣M]𝐸 vanishes at each end point 𝑧 ∈ 𝒱(𝐸) (owing to the continuity of the Morley
function 𝑣M ∈ M(𝒯 ) at the vertices), the (exact) Simpson’s quadrature rule asserts

[𝑣M]𝐸(mid(𝐸)) = 3/2
 

𝐸

[𝑣M]𝐸 ds.

A Cauchy inequality, the continuity of 𝐽𝑣M ∈ 𝑉 , triangle and trace inequalities lead to

ℎ−2
𝐸 |[𝑣M]𝐸(mid(𝐸))|2 ≤ 9

4
ℎ−3

𝐸 ‖[𝑣M − 𝐽𝑣M]𝐸‖
2
𝐿2(𝐸)

.
1∑︁

ℓ=0

⃒⃒
ℎℓ−2
𝒯 (𝑣M − 𝐽𝑣𝑀 )

⃒⃒2
𝐻ℓ(𝜔(𝐸))

.

This estimate and the finite overlap of the edge-patches (𝜔(𝐸) : 𝐸 ∈ ℰ) lead to an upper bound in (8.5) as in
Theorem 4.5c and so to ‖𝑣M − 𝐼C𝑣M‖ℎ . ‖𝑣M − 𝑣‖ℎ = |||𝑣M − 𝑣|||pw. �

Remark 8.3 (𝑄 is not injective). An illustration shall be given for a triangulation 𝒯 = {𝑇1, 𝑇2} of a convex
quadrilateral Ω̄ = 𝑇1 ∪ 𝑇2 = conv{𝑃1, 𝑃2, 𝑃3, 𝑃4}. There is exactly one basis function 𝑏𝐸 ∈ 𝑆2

0(𝒯 ) = 𝑉ℎ

defined on 𝑇1 = conv {𝑃1, 𝑃2, 𝑃4} and on 𝑇2 = conv {𝑃2, 𝑃3, 𝑃4} by 𝑏𝐸 = 4𝜙2𝜙4 for the nodal basis functions
𝜙1, 𝜙2, 𝜙3, 𝜙4. Given 𝑏𝐸 for the edge 𝐸 = conv {𝑃2, 𝑃4} = 𝜕𝑇1 ∩ 𝜕𝑇2, the normal derivative of 𝑏𝐸 along 𝐸 on
𝑇1 reads in its integral

ˆ
𝐸

𝜕𝑏𝐸 |𝑇1/𝜕𝜈𝐸 ds = 𝜈𝐸 ·
ˆ

𝐸

∇𝑏𝐸 |𝑇1 ds = 4𝜈𝐸 ·
ˆ

𝐸

(𝜙2∇𝜙4|𝑇1 + 𝜙4∇𝜙1|𝑇1) ds

= 2|𝐸|𝜈𝐸 · (∇𝜙2|𝑇1 +∇𝜙4|𝑇1) = −2|𝐸|𝜈𝐸 · ∇𝜙1|𝑇1

with ∇(𝜙1 + 𝜙2 + 𝜙4) = 0 in 𝑇1 in the last step. Elementary geometry shows ∇𝜙1|𝑇1 = 𝜈𝐸/𝜌𝐸,1 for the height
𝜌𝐸,1 = 2|𝑇1|

|𝐸| of 𝐸 in 𝑇1 and 𝜈𝐸 pointing from 𝑇1 into 𝑇2. Consequently,
´

𝐸
𝜕𝑏𝐸 |𝑇1/𝜕𝜈𝐸 ds = |𝐸|2

|𝑇1| . The analogous

calculation for 𝑇2 leads to
´

𝐸
𝜕𝑏𝐸 |𝑇2/𝜕𝜈𝐸 ds = − |𝐸|2

|𝑇2| with a change of sign because ∇𝜙3|𝑇2 = 𝜈𝐸/𝜌𝐸,2. The
definition of 𝐼M𝑏𝐸 takes the average of the two integral means

1
2

(︂ 
𝐸

𝜕𝑏𝐸 |𝑇1/𝜕𝜈𝐸 +
 

𝐸

𝜕𝑏𝐸 |𝑇2/𝜕𝜈𝐸

)︂
ds =

|𝐸|
2

(︀
|𝑇1|−1 − |𝑇2|−1

)︀
as the value for

ffl
𝐸
𝜕𝐼M𝑏𝐸/𝜕𝜈𝐸 ds. Since this is the only degree of freedom in M(𝒯 ) for the triangulation

𝒯 = {𝑇1, 𝑇2}, it follows that 𝐼 : 𝑆2
0(𝒯 ) → M(𝒯 ) is injective if and only of |𝑇1| = |𝑇2|. (This condition is

independent of shape-regularity of 𝒯 and thus more involved.)

9. Comparison

The paper [23] has established equivalence of discrete solutions to Morley FEM, 𝐶0IP and dGFEM up to
oscillations for 𝐹 ∈ 𝐿2(Ω) and for the original schemes with 𝐹ℎ ≡ 𝐹 . The subsequent theorem establishes the
three modified schemes with 𝐹ℎ = 𝐹 ∘ 𝐽 without extra oscillation terms. Throughout this section, the norm
‖ · ‖ℎ is defined in (4.1) and (4.2).

Theorem 9.1. The discrete solutions 𝑢M, 𝑢IP and 𝑢dG of the Morley FEM, 𝐶0IP and dGFEM satisfy

‖𝑢− 𝑢M‖ℎ ≈ ‖𝑢− 𝑢dG‖ℎ ≈ ‖𝑢− 𝑢IP‖ℎ ≈ ‖(1−Π0)𝐷2𝑢‖𝐿2(Ω).

The equivalence constants ≈ depend on shape regularity and on the stabilisation parameters 𝜎dG, 𝜎IP ≈ 1.
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Remark 9.2 (Discrete dG norm equivalence, Theorem 4.1, [23]). The norm ‖·‖ℎ satisfies

‖∙‖ℎ = ||| ∙ |||pw on 𝑉 + M(𝒯 ),

‖∙‖ℎ ≈ ‖∙‖dG on 𝑉 + 𝑃2(𝒯 ),
‖∙‖ℎ ≈ ‖∙‖IP on 𝑉 + 𝑆2

0(𝒯 ).

Proof. Lemma 3.2a, the Pythogoras identity, and Theorem 2.2 of [16] show⃦⃦
(1−Π0)𝐷2𝑢

⃦⃦
𝐿2(Ω)

= |||𝑢− 𝐼M𝑢|||pw ≤ |||𝑢− 𝑢M|||pw . |||𝑢− 𝐼M𝑢|||pw.

The 𝐿2 best-approximation property of Π0𝑢, (5.2a), Theorem 7.2, and Lemma 3.2a lead to

‖(1−Π0)𝐷2𝑢‖𝐿2(Ω) = min
𝑣ℎ∈𝑃2(𝒯 )

‖𝑢− 𝑣ℎ‖ℎ ≤ ‖𝑢− 𝑢dG‖ℎ

. |||𝑢− 𝐼M𝑢|||pw = ‖(1−Π0)𝐷2𝑢‖𝐿2(Ω).

Theorem 8.1 leads to similar results for ‖𝑢−𝑢IP‖ℎ. A combination of the above displayed inequalities concludes
the proof. �

10. Modified WOPSIP method

The weakly over-penalized symmetric interior penalty (WOPSIP) scheme [7] is a penalty method with the
stabilisation term

𝑐P(𝑣pw, 𝑤pw) :=
∑︁
𝐸∈ℰ

∑︁
𝑧∈𝒱(𝐸)

ℎ−4
𝐸 ([𝑣pw]𝐸(𝑧))([𝑤pw]𝐸(𝑧))

+
∑︁
𝐸∈ℰ

ℎ−2
𝐸

(︂ 
𝐸

[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds
)︂(︂ 

𝐸

[𝜕𝑤pw/𝜕𝜈𝐸 ]𝐸 ds
)︂

(10.1)

for piecewise smooth functions 𝑣pw, 𝑤pw ∈ 𝐻2(𝒯 ). This semi-norm scalar product 𝑐P(∙, ∙) is an analog to that
one behind the jump 𝑗ℎ from (4.2) with different powers of the mesh-size. It follows as in Theorem 4.1 that

𝐴P(𝑣pw, 𝑤pw) := 𝑎pw(𝑣pw, 𝑤pw) + 𝑐P(𝑣pw, 𝑤pw) for all 𝑣pw, 𝑤pw ∈ 𝐻2(𝒯 ) (10.2)

defines a scalar product and so ‖ ∙ ‖P := 𝐴P(∙, ∙)1/2 is a norm in 𝐻2(𝒯 ). Consequently, there exists a unique
solution 𝑢P ∈ 𝑉ℎ := 𝑃2(𝒯 ) to

𝐴P(𝑢P, 𝑣2) = 𝐹 (𝐽𝐼M𝑣2) for all 𝑣2 ∈ 𝑃2(𝒯 ). (10.3)

The increased condition number in the over-penalization of the jumps by the negative powers of the mesh-size
in (10.1) can be compensated by some preconditioner ([7], p. 218f) and the entire WOPSIP linear algebra with
(10.3) becomes intrinsically parallel.

Theorem 10.1 (Error estimate). Any 𝐹 ∈ 𝐻−𝑠(Ω) with 2 − 𝜎 ≤ 𝑠 ≤ 2, the solution 𝑢 ∈ 𝑉 to (3.1) and the
solution 𝑢P ∈ 𝑃2(𝒯 ) to (10.3) satisfy

|||𝑢− 𝑢P|||2pw + 𝑐P(𝑢P, 𝑢P) ≤ (1 + Λ2
P)|||𝑢− 𝐼M𝑢|||2pw + Λ2

P|||ℎ𝒯 𝐼M𝑢|||
2
pw;

‖𝑢− 𝐽𝐼M𝑢P‖𝐻𝑠(Ω) + ‖𝑢− 𝑢P‖𝐻𝑠(𝒯 ) ≤ 𝐶8(𝑠)ℎ2−𝑠
max‖𝑢− 𝑢P‖P.

The constant ΛP exclusively depends on the shape regularity of 𝒯 , while 𝐶8 depends on the shape regularity of
𝒯 and on 𝑠.
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The subsequent lemma specifies the constant ΛP in the best-approximation estimate.

Lemma 10.2. There exists some positive ΛP <∞, that exclusively depends on the shape regularity of 𝒯 , such
that |||ℎ−1

𝒯 (𝑣2 − 𝐼M𝑣2)|||2pw + |||(1− 𝐽)𝐼M𝑣2|||2pw ≤ Λ2
P‖𝑣2 − 𝑣‖2P holds for all 𝑣2 ∈ 𝑃2(𝒯 ) and all 𝑣 ∈ 𝑉 .

Proof of Lemma 10.2. The analysis of |||ℎ−1
𝒯 (𝑣2 − 𝐼M𝑣2)|||pw returns to the proof of Theorem 4.3 that eventually

provides (4.11) for one fixed triangle 𝑇 ∈ 𝒯 with its neighourhood Ω(𝑇 ) for any 𝑣2 ∈ 𝑃2(𝒯 ). The substitution of
𝑣2 by ℎ−1

𝑇 𝑣2 (with a fixed scaling factor ℎ𝑇 ) in (4.11) after a standard inverse estimate shows, for all 𝑣2 ∈ 𝑃2(𝒯 ),
that

ℎ−2
𝑇 |𝑣2 − 𝐼M𝑣2|2𝐻2(𝑇 ) . ℎ

−6
𝑇 ‖𝑣2 − 𝐼M𝑣2‖2𝐿2(𝑇 ) . 𝑗ℎ

(︀
ℎ−1

𝑇 𝑣2, 𝑇
)︀2
.

The shape regularity of 𝒯 implies that all edge-sizes in the sub-triangulation 𝒯 (Ω(𝑇 )) that covers the neigh-
bouhood Ω(𝑇 ) (of 𝑇 and one layer of triangles around 𝑇 ) are equivalent to ℎ𝑇 . Hence 𝑗ℎ

(︀
ℎ−1

𝑇 𝑣2, 𝑇
)︀

is equivalent
to the respective contributions in 𝑐P(𝑣2, 𝑣2):

𝑗ℎ(ℎ−1
𝑇 𝑣2, 𝑇 )2 .

∑︁
𝑧∈𝒱(𝑇 )

∑︁
𝐹∈ℰ(𝑧)

ℎ−4
𝐹 ([𝑣2]𝐹 (𝑧))2 +

∑︁
𝐸∈ℰ(𝑇 )

ℎ−2
𝐸

(︂ 
𝐸

[𝜕𝑣pw/𝜕𝜈𝐸 ]𝐸 ds
)︂2

.

The combination of this estimate with the previous one and the sum over all those estimates lead to

|||ℎ−1
𝒯 (𝑣2 − 𝐼M𝑣2)|||2pw . 𝑐P(𝑣2, 𝑣2) (10.4)

owing to the finite overlap of the family (Ω(𝑇 ) : 𝑇 ∈ 𝒯 ). The second term |||(1 − 𝐽)𝐼M𝑣2|||pw is controlled with
Lemma 3.7d and a triangle inequality in

Λ−1
J |||(1− 𝐽)𝐼M𝑣2|||pw ≤ |||𝑣 − 𝐼M𝑣2|||pw ≤ |||𝑣 − 𝑣2|||pw + |||𝑣2 − 𝐼M𝑣2|||pw.

Since the the last term |||𝑣2 − 𝐼M𝑣2|||pw ≤ ℎmax|||ℎ−1
𝒯 (𝑣2 − 𝐼M𝑣2)|||pw is bounded in (10.4), the summary of the

aforementioned estimates concludes the proof of the lemma. �

Proof of energy norm estimate in Theorem 10.1. The equations (3.1) and (10.3) show the key identity

𝑎(𝑢, 𝐽𝐼M𝑒P) = 𝐹 (𝐽𝐼M𝑒P) = 𝑎pw(𝑢P, 𝑒P) + 𝑐P(𝑢P, 𝑒P) for 𝑒P := 𝐼M𝑢− 𝑢P ∈ 𝑃2(𝒯 ).

Remark 4.2 applies verbatim and provides 𝑐P(𝐼M𝑢, 𝑒P) = 0. This, the key identity, and the definition of the
norm ‖ ∙ ‖P := 𝐴P(∙, ∙)1/2 lead to

‖𝑒P‖2P = 𝑎pw(𝐼M𝑢, 𝑒P)− 𝑎(𝑢, 𝐽𝐼M𝑒P) = 𝑎pw(𝑢, 𝑒P − 𝐽𝐼M𝑒P) (10.5)

with (3.5) in the last step. Set 𝑒M := 𝐼M𝑒P ∈ M(𝒯 ) and split 𝑒P − 𝐽𝐼M𝑒P = (𝑒P − 𝑒M) + (1 − 𝐽)𝑒M. The last
term in (10.5) is equal to

𝑎pw(𝑢, 𝑒P − 𝑒M) + 𝑎pw(𝑢, 𝑒M − 𝐽𝑒M) = 𝑎pw(𝐼M𝑢, 𝑒P − 𝑒M) + 𝑎pw(𝑢− 𝐼M𝑢, 𝑒M − 𝐽𝑒M)
≤ |||ℎ𝒯 𝐼M𝑢|||pw|||ℎ

−1
𝒯 (𝑒P − 𝑒M)|||pw + |||𝑢− 𝐼M𝑢|||pw|||𝑒M − 𝐽𝑒M|||pw

≤ ΛP(|||ℎ𝒯 𝐼M𝑢|||2pw + |||𝑢− 𝐼M𝑢|||2pw)1/2‖𝑒P‖P

with (3.5) twice in the first equality, (weighted) Cauchy inequalities for the inequality in the third line, and
Lemma 10.2 (with 𝑣 = 0) in the end. The combination with (10.5) proves

‖𝑒P‖2P ≤ Λ2
P

(︁
|||ℎ𝒯 𝐼M𝑢|||2pw + |||𝑢− 𝐼M𝑢|||2pw

)︁
.

This and the Pythagoras theorem (3.7) conclude the proof. �
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Proof of error estimates in weaker (piecewise) Sobolev norms in Theorem 10.1. The error analysis in weaker
norms adapts the notation of the beginning of Section 6.2 on 𝑣 := 𝐽𝐼M𝑢P ∈ 𝑉 and 𝜁 := 𝐽𝐼M𝑧 ∈ 𝑉 for
the dual solution 𝑧 ∈ 𝑉 with ‖𝑧‖𝐻4−𝑠(Ω) ≤ 𝐶reg and

‖𝑢− 𝑣‖𝐻𝑠(Ω) = 𝑎(𝑢− 𝑣, 𝑧) = 𝑎(𝑢, 𝑧 − 𝜁) + 𝑎pw(𝑢P − 𝑣, 𝑧)

with the key identity 𝑎(𝑢, 𝜁) = 𝐹 (𝜁) = 𝐴P(𝑢P, 𝐼M𝑧) = 𝑎pw(𝑢P, 𝐼M𝑧) = 𝑎pw(𝑢P, 𝑧) (from Rem. 4.2 and (3.5)) in
the last step. Since 𝑎pw(𝐼M𝑢, 𝑧 − 𝜁) = 0 (from (3.5) with 𝐼M𝑧 = 𝐼M𝜁 from (3.9)), the first term

𝑎(𝑢, 𝑧 − 𝜁) = 𝑎pw(𝑢− 𝐼M𝑢, 𝑧 − 𝜁) ≤ (1 + ΛJ)(1 + ΛM)|||𝑢− 𝐼M𝑢|||pw|||𝑧 − 𝐼M𝑧|||pw

is controlled by (6.5) (with 𝑧ℎ = 𝐼M𝑧, 𝐼ℎ = id). The analysis of the second term 𝑎pw(𝑢P − 𝑣, 𝜁) follows the
corresponding lines of the proof of the best-approximation in Theorem 10.1 with 𝑢M := 𝐼M𝑢P, 𝑢P − 𝑣 =
𝑢P − 𝑢M + (1− 𝐽)𝑢M. This shows

𝑎pw(𝑢P − 𝑣, 𝑧) = 𝑎pw(𝑢P − 𝑢M, 𝑧) + 𝑎pw(𝑢M − 𝐽𝑢M, 𝑧)
= 𝑎pw(𝑢P − 𝑢M, 𝐼M𝑧) + 𝑎pw(𝑢M − 𝐽𝑢M, 𝑧 − 𝐼M𝑧)
≤ |||ℎ𝒯 𝐼M𝑧|||pw|||ℎ

−1
𝒯 (𝑢P − 𝑢M)|||pw + |||𝑧 − 𝐼M𝑧|||pw|||𝑢M − 𝐽𝑢M|||pw

≤ ΛP

(︁
|||ℎ𝒯 𝐼M𝑧|||2pw + |||𝑧 − 𝐼M𝑧|||2pw

)︁1/2

‖𝑢− 𝑢P‖P

from Lemma 10.2 with 𝑣 = 𝑢. The final argument is the regularity of 𝑧 and the approximation estimates
|||𝑧 − 𝐼M𝑧|||pw ≤ 𝐶int(𝑠)𝐶reg(𝑠)ℎ2−𝑠

max from Section 6.5. The combination of the above arguments shows

‖𝑢− 𝐽𝐼M𝑢P‖𝐻𝑠(Ω) . ℎ
2−𝑠
max‖𝑢− 𝑢P‖P.

Theorem 4.5d applies to 𝑢P ∈ 𝑃2(𝒯 ) and the remaining arguments follow the last lines in the proof Theorem 6.2b
with a triangle inequality in 𝐻𝑠(𝒯 ) in the end. �

Appendix A.

Proof of Lemma 2.2. For 𝑧 ∈ 𝑌ℎ ∩ 𝑌 , (2.2) implies ‖𝑧 − 𝑄𝑧‖̂︀𝑌 = 0, and hence (2.3) holds. The converse is a
consequence of the finite dimension of 𝑌ℎ. In the context of Peetre–Tartar lemma [40], let ̃︀𝑌 := (1−𝑄)(𝑌ℎ) ⊂ ̂︀𝑌
denote the range of 1 − 𝑄 and abbreviate 𝐴 := 1 − Π𝑌 and 𝐵 := Π𝑌 . Then 𝐴 ∈ 𝐿(̃︀𝑌 ; ̂︀𝑌 ) is injective because
𝐴̃︀𝑦 = 0 means ̃︀𝑦 ∈ ̃︀𝑌 ∩𝑌 for some 𝑦ℎ ∈ 𝑌ℎ with ̃︀𝑦 = (1−𝑄)𝑦ℎ, whence 𝑦ℎ ∈ 𝑌ℎ∩𝑌 and ̃︀𝑦 = 0 from (2.2). Notice
that 𝐵 ∈ 𝐿(̃︀𝑌 ;𝑌 ) is compact (for ̃︀𝑌 has finite dimension). Since ̃︀𝑦 = 𝐴̃︀𝑦+𝐵̃︀𝑦 implies ‖̃︀𝑦‖̂︀𝑌 ≤ ‖𝐴̃︀𝑦‖̂︀𝑌 + ‖𝐵̃︀𝑦‖̂︀𝑌
for all ̃︀𝑦 ∈ ̂︀𝑌 , the Peetre–Tartar lemma proves 𝛾‖̃︀𝑦‖̂︀𝑌 ≤ ‖𝐴̃︀𝑦‖̂︀𝑌 for all ̃︀𝑦 ∈ ̂︀𝑌 and some constant 𝛾 > 0. This
implies for all 𝑦ℎ ∈ 𝑌ℎ that

𝛾‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 ≤ ‖𝐴(𝑦ℎ −𝑄𝑦ℎ)‖̂︀𝑌 = ‖𝑦ℎ −Π𝑌 𝑦ℎ‖̂︀𝑌 ≤ ‖𝑦ℎ − 𝑦‖̂︀𝑌 for all 𝑦 ∈ 𝑌.

This is (2.3) with ΛQ := 1/𝛾 > 0. The point in those compactness arguments is that we do know that 𝛾 =
1/ΛQ > 0 with (2.3) exists, but we do not know how it depends, e.g., on dim 𝑌ℎ. �

Proof of Lemma 2.4. It is obvious that (QO) implies (2.4). The converse follows from a compactness argument
from dim 𝑋ℎ < ∞. The subspace ̃︀𝑋 := (1 −𝑀)𝑋 ⊂ ̂︀𝑋 is complete because 1 −𝑀 : (𝑋ℎ ∩𝑋)⊥ ∩𝑋 → ̃︀𝑋 is
linear, bounded, and bijective for the (complete) orthogonal complement (𝑋ℎ ∩𝑋)⊥ ∩𝑋 of 𝑋ℎ ∩𝑋 in 𝑋. Then
𝐴 := 1−Π𝑋ℎ

∈ 𝐿( ̃︀𝑋; ̂︀𝑋) is injective (as 𝐴̃︀𝑥 = 0 implies ̃︀𝑥 = (1−𝑀)𝑥 ∈ 𝑋ℎ, whence 𝑥 ∈ 𝑋ℎ ∩𝑋 and ̃︀𝑥 = 0 iñ︀𝑋 from (2.4)). Since 𝐵 := Π𝑋ℎ
∈ 𝐿( ̃︀𝑋; ̂︀𝑋ℎ) is compact and ̃︀𝑥 = 𝐴̃︀𝑥+𝐵̃︀𝑥 implies

‖̃︀𝑥‖ ̂︀𝑋 ≤ ‖𝐴̃︀𝑥‖ ̂︀𝑋 + ‖𝐵̃︀𝑥‖ ̂︀𝑋 for all ̃︀𝑥 ∈ ̂︀𝑋,
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the Peetre–Tartar lemma [40] leads to some 𝛾 > 0 with

𝛾‖(1−𝑀)𝑥‖ ̂︀𝑋 ≤ ‖𝐴(1−𝑀)𝑥‖ ̂︀𝑋 = ‖𝑥−Π𝑋ℎ
𝑥‖ ̂︀𝑋 ≤ ‖𝑥− 𝑥ℎ‖ ̂︀𝑋

for all 𝑥 ∈ 𝑋 and (1−𝑀)𝑥 ∈ ̃︀𝑋 and for all 𝑥ℎ ∈ 𝑋ℎ. This is (QO) with 𝐶qo := 1/𝛾. �

Proof of Theorem 2.5. [Proof of “=⇒”] Suppose 𝑀 satisfies (QO) with constant 𝐶qo. Then for all 𝑥ℎ, 𝑦ℎ, the
definition of 𝑀𝑃𝑥ℎ leads to the identity

𝑎ℎ(𝑥ℎ, 𝑦ℎ)− 𝑎(𝑃𝑥ℎ, 𝑄𝑦ℎ) = 𝑎ℎ(𝑥ℎ −𝑀𝑃𝑥ℎ, 𝑄𝑦ℎ) = ⟨𝑄*𝐴ℎ(𝑥ℎ −𝑀𝑃𝑥ℎ), 𝑦ℎ⟩𝑌 *ℎ×𝑌ℎ

≤ ‖𝑄*𝐴ℎ‖ ‖𝑦ℎ‖𝑌ℎ
‖𝑥ℎ −𝑀𝑃𝑥ℎ‖𝑋ℎ

.

It remains to prove that ‖𝑥ℎ −𝑀𝑃𝑥ℎ‖𝑋ℎ
≤ (1 + 𝐶qo)‖𝑥ℎ − 𝑃𝑥ℎ‖ ̂︀𝑋 . This follows from a triangle inequality

‖𝑥ℎ −𝑀𝑃𝑥ℎ‖𝑋ℎ
≤ ‖𝑥ℎ − 𝑃𝑥ℎ‖ ̂︀𝑋 + ‖𝑃𝑥ℎ −𝑀𝑃𝑥ℎ‖ ̂︀𝑋 and (QO) in ‖𝑃𝑥ℎ −𝑀𝑃𝑥ℎ‖ ̂︀𝑋 ≤ 𝐶qo‖𝑃𝑥ℎ − 𝑥ℎ‖ ̂︀𝑋 . In

conclusion, (H) holds with ΛH := ‖𝑄*𝐴ℎ‖(1 + 𝐶qo).

[Proof of “⇐=”] Let Π𝑋ℎ
∈ 𝐿( ̂︀𝑋) denote the orthogonal projection onto the closed subset 𝑋ℎ in the Hilbert

space ̂︀𝑋. Given any 𝑥 ∈ 𝑋, let 𝑥*ℎ := Π𝑋ℎ
𝑥 = arg min𝜉ℎ∈𝑋ℎ

‖𝑥 − 𝜉ℎ‖ ̂︀𝑋 denote the best-approximation of 𝑥 in
𝑋ℎ in the Hilbert space ̂︀𝑋 and set 𝑒ℎ := 𝑥*ℎ −𝑀𝑥 ∈ 𝑋ℎ. The inf-sup condition for 𝑎ℎ(∙, ∙) leads to 𝑦ℎ ∈ 𝑌ℎ

with norm ‖𝑦ℎ‖𝑌ℎ
≤ 1 such that

𝛼ℎ‖𝑒ℎ‖𝑋ℎ
= 𝑎ℎ(𝑒ℎ, 𝑦ℎ) = 𝑎ℎ(𝑥*ℎ, 𝑦ℎ)− 𝑎ℎ(𝑀𝑥, 𝑦ℎ).

Recall the definition of 𝑥ℎ := 𝑀𝑥 = 𝐴−1
ℎ 𝑄*𝐴𝑥 as the discrete solution for the right-hand side 𝑎(𝑥,𝑄∙) to verify

𝑎ℎ(𝑀𝑥, 𝑦ℎ) = 𝑎ℎ(𝑥ℎ, 𝑦ℎ) = 𝑎(𝑥,𝑄𝑦ℎ).

This leads to the identity

𝛼ℎ‖𝑒ℎ‖𝑋ℎ
= 𝑎ℎ(𝑥*ℎ, 𝑦ℎ)− 𝑎(𝑥,𝑄𝑦ℎ). (A.1)

Hypothesis (H) and ‖𝑦ℎ‖𝑌ℎ
≤ 1 lead to the first and (2.5) to the last inequality in

𝑎ℎ(𝑥*ℎ, 𝑦ℎ)− 𝑎(𝑃𝑥*ℎ, 𝑄𝑦ℎ) ≤ ΛH‖𝑥*ℎ − 𝑃𝑥*ℎ‖ ̂︀𝑋 ≤ ΛHΛP‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 . (A.2)

A triangle inequality and (2.5) imply

‖𝑥− 𝑃𝑥*ℎ‖𝑋 ≤ ‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 + ‖𝑥*ℎ − 𝑃𝑥*ℎ‖ ̂︀𝑋 ≤ (1 + ΛP)‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 .

With the operator norm ||𝑄*𝐴|| in 𝐿(𝑋;𝑌 *ℎ ) and the duality brackets ⟨∙, ∙⟩𝑌 *ℎ×𝑌ℎ
in 𝑌 *ℎ ×𝑌ℎ, this and ‖𝑦ℎ‖𝑌ℎ

≤ 1
show

𝑎(𝑃𝑥*ℎ − 𝑥,𝑄𝑦ℎ) = ⟨𝑄*𝐴(𝑃𝑥*ℎ − 𝑥), 𝑦ℎ⟩𝑌 *ℎ×𝑌ℎ
≤ ‖𝑄*𝐴‖(1 + ΛP)‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 . (A.3)

The combination of (A.1)–(A.3) reads

𝛼ℎ‖𝑒ℎ‖𝑋ℎ
≤ (ΛHΛP + ‖𝑄*𝐴‖(1 + ΛP))‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 .

Define 𝐶qo := 1 + 𝛼−1
ℎ (ΛHΛP + ‖𝑄*𝐴‖(1 + ΛP)) and rewrite the last estimate as

‖𝑀𝑥− 𝑥*ℎ‖𝑋ℎ
= ‖𝑒ℎ‖𝑋ℎ

≤ (𝐶qo − 1)‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 . (A.4)

A triangle inequality ‖𝑥−𝑀𝑥‖ ̂︀𝑋 ≤ ‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 + ‖𝑀𝑥− 𝑥*ℎ‖𝑋ℎ
and (A.4) prove (QO) because of ‖𝑥− 𝑥*ℎ‖ ̂︀𝑋 =

min𝑥ℎ∈𝑋ℎ
‖𝑥− 𝑥ℎ‖ ̂︀𝑋 . �
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Proof of Theorem 2.6. [Proof of “=⇒”] Given 𝑥′ℎ ∈ 𝑋 ′
ℎ, let 𝑁 := Ker 𝑀 ⊂ 𝑋; and let 𝑁⊥ denote the

orthogonal complement of 𝑁 in the Hilbert space 𝑋. The restriction 𝑀 |𝑁⊥ : 𝑁⊥ → 𝑋 ′
ℎ of 𝑀 is linear,

bounded, and bijective and hence has a linear and bounded inverse 𝑆 := (𝑀 |𝑁⊥)−1 : 𝑋 ′
ℎ → 𝑁⊥. Since

𝑁 is closed in ̂︀𝑋 = 𝑋 + 𝑋ℎ, the orthogonal projection Π𝑁 ∈ 𝐿( ̂︀𝑋) onto 𝑁 is well-defined and so is its
restriction Π𝑁 |𝑋′ℎ ∈ 𝐿(𝑋 ′

ℎ;𝑋). Given 𝑆 ∈ 𝐿(𝑋 ′
ℎ;𝑋) and Π𝑁 |𝑋′ℎ , define 𝑃 ′ := Π𝑁 + 𝑆 ∈ 𝐿(𝑋 ′

ℎ;𝑋). Let
𝑥 := 𝑃 ′𝑥′ℎ = Π𝑁𝑥

′
ℎ +𝑆𝑥′ℎ ∈ 𝑋 and observe 𝑀𝑋 = 𝑀 |𝑁⊥(𝑆𝑋 ′

ℎ) = 𝑥ℎ and 𝑀𝑃 ′ = id in 𝑋 ′
ℎ. Let 𝜉 := Π𝑋𝑥

′
ℎ ∈ 𝑋

be the best-approximation of 𝑥ℎ in 𝑋 with respect to the norm of ̂︀𝑋. Since 𝜉 −𝑃 ′𝑀𝜉 ∈ 𝑁 ⊥ 𝑥′ℎ −𝑃 ′𝑥′ℎ ∈ 𝑁⊥,
the Pythogoras theorem in ̂︀𝑋 reads

‖𝜉 − 𝑥′ℎ + 𝑃 ′(𝑥′ℎ −𝑀𝜉)‖2̂︀𝑋 = ‖𝑥′ℎ − 𝑃𝑥′ℎ‖
2
̂︀𝑋 + ‖𝜉 − 𝑃 ′𝑀𝜉‖2̂︀𝑋 .

The left-hand side of the above displayed equality is an upper bound of ‖𝑥′ℎ − 𝑃𝑥′ℎ‖2̂︀𝑋 and is smaller than or
equal to the square of

‖𝜉 − 𝑥′ℎ + 𝑃 ′(𝑥′ℎ −𝑀𝜉)‖ ̂︀𝑋 ≤ ‖(1−Π𝑋)𝑥′ℎ‖ ̂︀𝑋 + ‖𝑃 ′‖ ‖𝑥′ℎ −𝑀𝜉‖𝑋ℎ

with the operator norm ‖𝑃 ′‖ of 𝑃 ′ ∈ 𝐿(𝑋 ′
ℎ;𝑋). Consequently,

‖𝑥′ℎ − 𝑃𝑥′ℎ‖ ̂︀𝑋 ≤ ‖(1−Π𝑋)𝑥′ℎ‖ ̂︀𝑋 + ‖𝑃 ′‖ ‖𝑥′ℎ −𝑀𝜉‖𝑋ℎ
.

A triangle inequality and (QO) with ‖𝜉 −𝑀𝜉‖ ̂︀𝑋 ≤ 𝐶qo‖𝜉 − 𝑥′ℎ‖ ̂︀𝑋 show

‖𝑥′ℎ −𝑀𝜉‖𝑋ℎ
≤ ‖𝜉 − 𝑥′ℎ‖ ̂︀𝑋 + 𝐶qo‖𝜉 − 𝑥′ℎ‖ ̂︀𝑋 = (1 + 𝐶qo)‖𝜉 − 𝑥′ℎ‖ ̂︀𝑋 .

The combination of the previous two displayed estimates with ‖(1−Π𝑋)𝑥′ℎ‖ ̂︀𝑋 ≤ ‖𝑥′ℎ−𝑃𝑥′ℎ‖ ̂︀𝑋 (from 𝑃𝑥′ℎ ∈ 𝑋
and the definition of Π𝑋𝑥ℎ) and ΛP′ := 1 + ‖𝑃 ′‖(1 + 𝐶qo) proves

‖𝑥′ℎ − 𝑃 ′𝑥′ℎ‖ ̂︀𝑋 ≤ ΛP′‖𝑥′ℎ − 𝑃𝑥′ℎ‖ ̂︀𝑋 . (A.5)

This and 𝑦 := 𝑄𝑦ℎ ∈ 𝑌 lead in (̂QO) to

𝑎(𝑃 ′𝑥′ℎ − 𝑃𝑀𝑃 ′𝑥′ℎ, 𝑄𝑦ℎ) ≤ ̂︂𝐶qo‖𝑥′ℎ − 𝑃 ′𝑥′ℎ‖ ̂︀𝑋‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 .

Recall the definition of 𝑥ℎ = 𝑀𝑥 = 𝐴−1
ℎ 𝑄*𝐴𝑥 as the discrete solution to the right-hand side 𝑎(𝑥,𝑄∙) to verify

𝑎ℎ(𝑀𝑥, 𝑦ℎ) = 𝑎ℎ(𝑥ℎ, 𝑦ℎ) = 𝑎(𝑥,𝑄𝑦ℎ). The combination with the last displayed inequality with 𝑀𝑃 ′𝑥′ℎ = 𝑥′ℎ
leads to

𝑎(𝑃 ′𝑥′ℎ − 𝑃𝑀𝑃 ′𝑥′ℎ, 𝑄𝑦ℎ) = 𝑎ℎ(𝑥′ℎ, 𝑦ℎ)− 𝑎(𝑃𝑥′ℎ, 𝑄𝑦ℎ) ≤ ̂︂𝐶qo‖𝑥′ℎ − 𝑃𝑥′ℎ‖ ̂︀𝑋‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 .

This and (A.5) prove ̂︂(H) with ̂︁ΛH = ̂︂𝐶qoΛP′ = ̂︂𝐶qo(1 + ‖𝑃 ′‖(1 + 𝐶qo)).
[Proof of “⇐=”] Given any 𝑥 ∈ 𝑋 and 𝑦ℎ ∈ 𝑌ℎ, let 𝑥′ℎ := 𝑀𝑥 ∈ 𝑋ℎ with 𝑎ℎ(𝑥′ℎ, 𝑦ℎ) = 𝑎(𝑥,𝑄𝑦ℎ). This shows in̂︂(H) that

𝑎(𝑥− 𝑃𝑀𝑥,𝑄𝑦ℎ) ≤ Λ′2‖𝑥′ℎ − 𝑃𝑥′ℎ‖ ̂︀𝑋‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 .
This and the operator norm ‖𝑎‖ of 𝑎(∙, ∙) show

𝑎(𝑥− 𝑃𝑀𝑥, 𝑦) = 𝑎(𝑥− 𝑃𝑀𝑥, 𝑦 −𝑄𝑦ℎ) + 𝑎(𝑥− 𝑃𝑀𝑥,𝑄𝑦ℎ)
≤ ‖𝑎‖‖𝑥− 𝑃𝑀𝑥‖𝑋‖𝑦 −𝑄𝑦ℎ‖𝑌 + Λ′2‖𝑀𝑥− 𝑃𝑀𝑥‖ ̂︀𝑋‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 .

This and the elementary inequalities

‖𝑥− 𝑃𝑀𝑥‖𝑋 ≤ ‖𝑥−𝑀𝑥‖ ̂︀𝑋 + ‖𝑀𝑥− 𝑃𝑀𝑥‖ ̂︀𝑋 , ‖𝑀𝑥− 𝑃𝑀𝑥‖ ̂︀𝑋 ≤ ΛP‖𝑥−𝑀𝑥‖ ̂︀𝑋 ,

and
‖𝑦 −𝑄𝑦ℎ‖𝑌 ≤ ‖𝑦 − 𝑦ℎ‖̂︀𝑌 + ‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 , ‖𝑦ℎ −𝑄𝑦ℎ‖̂︀𝑌 ≤ ΛQ‖𝑦 − 𝑦ℎ‖̂︀𝑌

conclude the proof of (̂QO) with ̂︂𝐶qo := ‖𝑎‖(1 + ΛP)(1 + ΛQ) + Λ′2ΛPΛQ. �
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