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Abstract: The solution operator in a Petrov Galerkin scheme in Hilbert spaces is an oblique projection with
quasi-best approximation property. The latter estimate involves a multiplicative constant and the best-possible
of those is the target of the note: We present a new direct proof of the formula of the quasi-best approximation
constant and avoid the direct application of the Kato lemma. In fact, our characterisation leads to another
proof of the Kato oblique projection lemma. The abstract result in Hilbert spaces is embedded in the setting
of the best-approximation of conforming Petrov Galerkin schemes with a rich history that eventually led to the
Tantardini–Veeser formula. A final application discusses the classical nonconforming schemes with a smoother
in this framework.
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1 Quasi-Best Approximation by an Oblique Projection in a Hilbert
Space

This section presents a new short direct proof that the best possible constant in the quasi-best approximation
by an oblique projection is its norm.

Lemma 1 (Constant in Quasi-Best Approximation). Let P ∈ L(H) \ {0, 1} be an oblique projection in the (real or
complex) Hilbert space H different from zero and identity. Then the H-orthogonal projection ΠS onto the closed
range S = R(P) of P satisfies

‖P‖L(H) = sup
t∈H\S ‖t − Pt‖‖t − ΠS t‖

. (1.1)

Proof. Since S := R(P) = N(1 − P) is the kernel of 1 − P and therefore closed, the H-orthogonal projection
ΠS ∈ L(H) onto the closed range S = R(P) of P is well defined. Since Ps = s for any s ∈ S ̸= {0} and P is linear,
the operator norm reads

1 ≤ ‖P‖L(H) = sup
s∈S
t∈H
s+t ̸=0
‖s + Pt‖
‖s + t‖

= sup
t∈H
r∈S

r ̸=Pt−t
‖r‖

‖r + t − Pt‖
= sup

t∈H\S supr∈S ‖r‖
‖r + t − Pt‖

with an elementary transformation r = s + Pt ∈ S and a careful exclusion of t ∈ S (then last quotient is one) in
the last steps. Given any t ∈ H \ S and r ∈ S with norm ϱ := ‖r‖ ≥ 0, the term ‖r + t − Pt‖2 = ϱ2 + 2ℜ⟨r, ΠS t −
Pt⟩H + ‖t − Pt‖2 has a minimum ϱ2 − 2ϱ‖ΠS t − Pt‖ + ‖t − Pt‖2 amongst all r ∈ S with fixed norm ‖r‖ = ϱ
(attained at r = −ϱ(ΠS t − Pt)/‖ΠS t − Pt‖ for ‖ΠS t − Pt‖ > 0). Consequently,

‖P‖2L(H) = sup
t∈H\S supϱ≥0 ϱ2

ϱ2 − 2ϱ‖ΠS t − Pt‖ + ‖t − Pt‖2
= sup

t∈H\S ‖t − Pt‖2

‖t − Pt‖2 − ‖ΠS t − Pt‖2
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with a straightforward computation of the minimum 1 − 2‖ΠS t − Pt‖2/‖t − Pt‖2 of ‖t − Pt‖2/ϱ2 − 2‖ΠS t −
Pt‖/ϱ + 1 amongst all ϱ > 0 in the last step. This and the Pythagoras identity ‖t − Pt‖2 = ‖t − ΠS t‖2 + ‖ΠS t − Pt‖2

conclude the proof.

A typical proof of the quasi-best approximation (1.1) is based on the Kato lemma ‖P‖L(H) = ‖1 − P‖L(H). We refer
to [3, Section 26.3.4] for details, references, and historical remarks. The direct proof of (1.1) does not use explicitly
the Kato lemma, but immediately implies it. This is yet another proof amongst a longer list [4].

Corollary 2 (Kato Oblique Projection Lemma). Under the hypothesis of Lemma 1, ‖P‖L(H) = ‖1 − P‖L(H).
Proof. Since ‖t − Pt‖ = ‖(1 − P)(t − ΠS t)‖ ≤ ‖1 − P‖L(H)‖t − ΠS t‖ for all t ∈ H, Lemma 1 provides that ‖P‖L(H) ≤
‖1 − P‖L(H). Onemay interchange the roles of P and 1 − P to understand that the reverse inequality ‖1 − P‖L(H) ≤
‖P‖L(H) also follows.
2 Oblique Projections from Petrov–Galerkin Methods

Petrov–Galerkin schemes give rise an oblique projection P ∈ L(H) \ {0, 1} in the (real or complex) Hilbert space
H different from zero and identity, but the converse holds as well. This motivates the relevance of quasi-best
approximation (1.1).

Suppose throughout this section that the oblique projection P ∈ L(H) \ {0, 1} has finite range, i.e., the
range S := R(P) := {Px : x ∈ H} is finite-dimensional, say N := dim S ∈ ℕ. (The orthogonality notation ⊥ and
the orthogonal complement U⊥ of a linear subspace U is understood with respect to the scalar product ⟨∙ , ∙⟩H
in the Hilbert space H.)

The smallest singular value σ of (2.2) below leads to an alternative characterisation of the quasi-best approx-
imation constant ‖P‖ = σ−1.
Lemma 3 (Any Oblique Projection Stems from Petrov–Galerkin Scheme). There exists some N-dimensional sub-
space T = N(1 − P∗) of H such that P ∈ L(H) is characterised by

Px ∈ S and x − Px ⊥ T for all x ∈ H. (2.1)

The characterisation (2.1) is unique in that, given any x ∈ H, there is a unique Pxwith (2.1). Moreover, the restricted
orthogonal and oblique projection ΠS|T : T → S and P|T : T → S are isomorphisms, S ∩ T⊥ = {0} = T ∩ S⊥ are
trivial, and the discrete inf-sup constant σ > 0 is positive and equal to the reciprocal operator norm

σ := inf
s∈S‖s‖=1 supt∈T‖t‖=1ℜ⟨s, t⟩H = inft∈T‖t‖=1 sups∈S‖s‖=1ℜ⟨s, t⟩H = ‖P‖−1L(H) > 0. (2.2)

Proof. This is certainly known to the experts and hence we solely sketch the arguments. The finite range of P
makes P a compact operatorwith eigenvalue 1 and eigenspace S (recall idempotence P2 = P for a projection and
infer Ps = s exactly for s ∈ S). The Hilbert space adjoint P∗ ∈ L(H) is also compact and has the eigenvalue 1with
an eigenspace T of the finite dimension N = dim T equal to that of P. Duality implies x − Px ⊥ T for all x ∈ H
because ⟨x − Px, t⟩H = ⟨x, t⟩H − ⟨x, P∗t⟩H = 0 vanishes for any eigenvector t ∈ T of P∗ to the eigenvalue 1. This
establishes (2.1).

The further assertions follow from this. For instance, given any t ∈ T with ‖t‖ = 1, x = t implies in (2.1) that
1 = ‖t‖2 = ⟨Pt, t⟩H = ⟨Pt, ΠS t⟩H (by Pt ∈ S), whence Pt ̸= 0 ̸= ΠS t. Consequently, the restrictions P|T : T → S
and ΠS|T : T → S are isomorphisms. In particular, given any s ∈ Swith ‖s‖ = 1 there exists some t ∈ T \ {0}with
s = ΠS t and so ⟨s, t⟩H = ⟨s, ΠS t⟩H = ‖s‖2 = 1; in other words s ⊥ T and s ∈ S implies s = 0, i.e., S ∩ T⊥ = {0}.
The discrete inf-sup constant σ > 0 is attained in equation (2.2) in that there exists s ∈ S with ‖s‖ = 1 and σ =
supt∈T\{0}ℜ⟨s, t⟩H/‖t‖. The aforementioned calculation with s = ΠS t and t ∈ T \ {0} provides the positive lower
bound ‖t‖−1 ≤ σ. The second equality asserts that the singular values of a matrix and its complex transpose
coincide. Using the second identity for the smallest singular value σ, we infer

σ = inf
t∈T\{0} sups∈S\{0} ℜ⟨s, ΠS t⟩H

‖t‖ ‖s‖
= inf

t∈T\{0} ‖ΠS t‖
‖t‖

(2.3)
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with a Cauchy inequality (and the discussion of the equality sign therein) in the last step. Consequently,

σ−1 = sup
t∈T\{0} ‖t‖‖ΠS t‖

= sup
t∈T\{0} supx∈H\{0} ℜ⟨x, t⟩H‖x‖‖ΠS t‖

= sup
t∈T\{0} supx∈H\{0} ℜ⟨Px, ΠS t⟩H

‖x‖‖ΠS t‖
(2.4)

with ⟨x, t⟩H = ⟨Px, t⟩H = ⟨Px, ΠS t⟩H (by definition of P resp. ΠS) in the last step. An interchange of the two
suprema in the last expression and another Cauchy inequality (with possibly Px = ΠS t) reveals equality to
supx∈H\{0} ‖Px‖/‖x‖ = ‖P‖.
3 Tantardini–Veeser formula for Petrov–Galerkin

The typical application of the above results in a Hilbert space concern the Petrov–Galerkin schemes for Hilbert
spaces Xh ⊂ X and Yh ⊂ Y with finite dimension N := dim Xh = dim Yh ∈ ℕ and a bilinear form b : X × Y → 𝕂
(for the underlying complex or real field 𝕂). The main assumption on the discrete subspaces Xh and Yh of the
same finite dimension N is the discrete inf-sup constant βh > 0, where

βh := inf
xh∈Xh\{0} sup

yh∈Yh\{0} ℜb(xh , yh)‖xh‖X ‖yh‖Y
. (3.1)

Given the situation of a positive βh , textbook analysis defines an operator P ∈ L(X) by

Px ∈ Xh satisfying b(x − Px, yh) = 0 for all yh ∈ Yh . (3.2)

It turns out that the discrete problem with a N × N stiffness matrix, that represents the discrete bilinear form
b|Xh×Yh , is regular and Px is uniquely determined and P is a linear operator and a projection. From now on
we write H := X and S := Xh = R(P) to compare with the results from the previous sections. The quasi-best
approximation in textbooks, however, utilises the immediate estimate

‖P‖L(H) ≤ β−1h ‖b‖
with the continuous bound ‖b‖ of the bilinear form b. This and the Kato lemma provide the quasi-best approx-
imation with a multiplicative (possibly suboptimal) constant β−1h ‖b‖.

In comparison, the finer Tantardini–Veeser characterisation from [5] reads (1.1) with

‖P‖L(H) = sup
yh∈Yh\{0} ‖b( ∙ , yh)‖X∗

‖b( ∙ , yh)‖X∗
h

(3.3)

for the dual norms defined, for the subspace U = Xh and U = X = H, by

‖b( ∙ , yh)‖U∗ := sup
u∈U\{0} ℜb(u, yh)‖u‖ .

Corollary 4 (Tantardini–Veeser). The identity (3.3) is a rewriting of (2.3).

Proof. Let R : H → H∗ denote the Riesz isomorphism in the Hilbert space H = X and let the linear opera-
tor B2h : Yh → H∗ , yh 󳨃→ b( ∙ , yh) be associated to the reduced bilinear form b|H×Yh . Given yh ∈ Yh , set t :=
R−1B2hyh ∈ T := R(R−1B2h) ⊂ H to define a linear surjection R−1B2h : Yh → T . Since N = dim Xh = dim Yh ∈ ℕ
and βh > 0, R−1B2h : Yh → T is injective, whence an isomorphism. We deduce N = dim S = dim T (recall
S := Xh ⊂ H = X) and (2.1): Given any (x, t) ∈ H × T and t = R−1B2hyh for some yh ∈ Yh , the definition of P
for the Petrov–Galerkin scheme (3.2) implies

⟨x − Px, t⟩H = (B2hyh)(x − Px) = b(x − Px, yh) = 0.

Lemma 1 provides quasi-best approximation with the constant ‖P‖L(H) = σ−1 and the proof of Lemma 3 implies
(2.3). The isomorphism R−1B2h : Yh → T rewrites any t = R−1B2hyh ∈ T \ {0} in terms of yh ∈ Yh \ {0} and vice
versa. It follows

‖t‖ = ‖B2hyh‖X∗ = ‖b( ∙ , yh)‖X∗ ,

‖ΠS t‖ = sup
s∈S\{0} ℜ⟨t, s⟩H‖s‖ = sup

s∈S\{0} ℜb(s, yh)‖s‖ = ‖b( ∙ , yh)‖X∗
h
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with ⟨s, t⟩H = (B2hyh)(s) = b(s, yh) in the second last step. Consequently, the substitution of σ−1 = ‖P‖L(H) in
(2.3) (cf. also the first identity in (2.4)) is a rewriting of (3.3).

4 Nonconforming FEM with Smoother

The above examples were all conforming in that Xh = S ⊂ X = H and so there are at least two things very
different with nonconforming schemes. First we need to define a new Hilbert space H := V + Vh out of the
Hilbert space (V, a) on the continuous level and (Vh , ah) on the discrete one. Second there is no quasi-best
approximation in general and we need a smoother J as a game changer [6].

The abstract conditions of this section are satisfied for either the classical lowest-ordernonconformingfinite
element schemes, namely the Crouzeix–Raviart finite element scheme, where V = H1

0(Ω) and a is the energy
scalar product inH1, or theMorley finite element schemewith V = H2

0(Ω) and the energy scalar product a inH2.
Let (V, a) and (Vh , ah) denote two Hilbert spaces and suppose that V and Vh are composed of Lebesgue

functions over some domain Ω so that the sum H := V + Vh is well defined as a linear space. Suppose moreover
that there is a scalar product ⟨∙, ∙⟩H on H that makes H a Hilbert space. The point is that this scalar product is
equal to a = ⟨∙, ∙⟩H |V × V for continuous and equal to ah = ⟨∙, ∙⟩H |Vh × Vh for nonconforming functions. The
aforementioned classical examples are covered by [2, Remark 2.7] and ⟨∙, ∙⟩H is the piecewise version of the
energy scalar products and this semi-scalar product leads in fact to a scalar product ⟨∙, ∙⟩H . From now on we
abbreviate S := Vh as a closed subspace of H of finite dimension N ∈ ℕ.

The discrete schemes comes with an interpolation operator I : V → S with various remarkable properties.
We utilise the orthogonality that makes I a best-approximation and we can, in fact, define I ∈ L(H) by

Ix ∈ S and ⟨x − Ix, s⟩H = 0 for all (s, x) ∈ S × H. (4.1)

This orthogonality makes the interpolation operator I = ΠS equal to the orthogonal projection ΠS of Lemma 1.
The point is that the applications allow for a local definition of I and this miracle allows for the design of a right-
inverse J ∈ L(Vh; V) of I ∈ L(V; Vh); cf. [1, 2, 6] for details or references on the design by local averaging and
bubble-function corrections. In other words the linear operator J : Vh → V satisfies IJ = 1 in S, i.e.,

I(Js) = s for all s ∈ S. (4.2)

The discrete scheme thenmodifies the right-hand side as follows: Given any F = a(u, ∙) ∈ H∗with exact solution
u ∈ V (the Riesz representation of F in (V, a)),

let Pu ∈ S solve ah(Pu, r) = F(Jr) for any r ∈ S (4.3)

(i.e., Pu is the Riesz representation of F ∘ J ∈ V∗h in (Vh , ah)). Since ⟨u, Jr⟩H = a(u, Jr) = F(Jr) = ah(Pu, r) =
⟨Pu, r⟩H and ⟨t, Pu⟩H = ⟨It, Pu⟩H holds for t = Jr ∈ T := J(S) = R(J) (by (4.1)–(4.2) for x = Jr = t and r, Pu ∈ S),
we infer ⟨u − Pu, t⟩H = 0 for all (u, t) ∈ V × T . This defines P ∈ L(V; S) with quasi-best approximation [2, 6]

‖u − Pu‖ ≤ Cqo‖u − ΠSu‖ for all u ∈ V. (4.4)

Lemma 5 ([2, 6]). The nonconforming scheme (4.3) allows for quasi-best approximation (4.4) with best-possible
constant Cqo = ‖J‖L(Vh ;V), the operator norm of J in L(Vh; V).

Proof. The above arguments on thenonconforming scheme (4.3) lead to anoperator P : V → S, whichwe extend
to P ∈ L(H) by

Px ∈ S satisfies ⟨x − Px, t⟩H = 0 for all (x, t) ∈ H × T

for the subspaces S = Vh ⊂ H and T := J(S) = R(J) ⊂ H of the same finite dimension and σ > 0. This is (3.2)
and we obtain quasi-best approximation (1.1) with best possible constant ‖P‖ = σ−1. Another representation
by ‖J‖L(Vh ;V) is derived in the following. Given any t = Jr ∈ T with r ∈ S, recall that r = IJr = It (by (4.2)) and
It = ΠS t (by I = ΠS from (4.1)); whence ΠS t = r. This and t = Jr ∈ T for any r ∈ S \ {0} reveal in (2.3) that

‖P‖L(H) = σ−1 = sup
t∈T\{0} ‖t‖‖ΠS t‖

= sup
s∈S\{0} ‖Js‖‖ΠS Js‖

= sup
s∈S\{0} ‖Js‖‖s‖ = ‖J‖L(Vh ;V) .
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Therefore the multiplicative constant ‖J‖L(Vh ;V) is best possible in the inequality
‖x − Px‖ ≤ ‖J‖L(Vh ;V)‖x − ΠSx‖ for all x ∈ H. (4.5)

The estimate (4.5) implies (4.4) for Cqo replaced by Cqo = ‖J‖L(Vh ;V); but, at this point, there remains a little twist:
Since (4.4) merely asks for u ∈ V (and not for all x ∈ H as in (4.5)), this additional restriction could, in principle,
lead to a better constant. The proof that this is impossible considers any positive κ < 1 so that κ‖J‖L(Vh ;V) cannot
replace the optimal factor ‖J‖L(Vh ;V) > 0 in (4.5). Hence there exists some x ∈ H \ S with

κ‖J‖L(Vh ;V)‖x − ΠSx‖ ≤ ‖x − Px‖.

Since x = v + s for some v ∈ V and s ∈ S = Vh with Ps = s = ΠSs, we deduce x − ΠSx = v − ΠSv ̸= 0 and x − Px =
v − Pv; whence

0 < κ‖J‖L(Vh ;V)‖v − ΠSv‖ ≤ ‖v − Pv‖ ≤ Cqo‖v − ΠSv‖

follows with (4.4) in the last step. We infer first 0 < κ‖J‖L(Vh ;V) ≤ Cqo for all positive κ < 1 and second ‖J‖L(Vh ;V) ≤
Cqo. Recall the converse inequality from above to conclude the proof that ‖J‖L(Vh ;V) = Cqo is best possible
in (4.4).
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