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Please be prepared to present one or more of the following exercises on the
blackboard. If not stated otherwise, algorithms or code can be displayed in Matlab
or pseudocode.

Exercise 1 (Discrete Ladyzhenskaya lemma). Let Ω ⊂ R2 be a convex polygonal domain
with regular triangulation T . Given any p0 ∈ P0(T ) ∩ L20(Ω), i.e., p0 ∈ P0(T ) with

∫
Ω
p dx = 0,

show that there exists some positive generic constant C and vCR ∈ CR
1
0 (T ;R2) with

divvCR = p0 and ‖ DpwvCR‖L2 (Ω) ≤ C‖p0‖L2 (Ω) .

Find out, whether this result can be generalised to higher spatial dimensions and weaker regu-
larity assumptions on Ω.

Hint: Use the continuous version of this result from the lecture and the commutativity divΠCR =
Π0 div of the canonical Crouzeix-Raviart interpolation operator.

Exercise 2 (Divergence-freeCrouzeix-Raviart basis). Find a basis of the piecewise divergence-
free Crouzeix-Raviart functions

ZCR = {vCR ∈ CR
1
0 (T ;R2) : divpwvCR = 0}.

Hint: Find suitable linear independent functions and use a dimension argument. There are two
kinds of divergence-free Crouzeix-Raviart functions. One kind is associated with the interior
edges and are tangential to them. The second kind is associated with interior nodes and look
like curls around these nodes.

Exercise 3 (Nonlinear variational formulation). Given some homogeneous hyperelastic
material lawW : M3

+ → R, consider the weak formulation with u ∈ H 1
D(Ω;R

3) such that∫
Ω
DW (Du) : Dv dx =

∫
Ω
f · v dx −

∫
ΓN

д · v da for every v ∈ H 1
D(Ω;R

3).

Use the Galerkin method with some discrete subspace Uh ⊂ H 1
D(Ω;R

3) and derive a discrete
formulation of this variational formulation. This system of nonlinear equations

A(ξ ) = F

with the coe�cient vector ξ ∈ Rdim(Uh ) of uh can be solved using Newton’s method. Therefore,
describe the computation of A(ξ ), DA(ξ ), and F . Give the pseudocode of the resulting Newton’s
method.
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Exercise 4 (A posteriori error estimation for linear elasticity; implementation). For the
lowest-order pure displacement formulation of the linear elasticity equation from Exercise 3.4,
implement the following residual-based a posteriori error estimator

η2(T ,T ) B
1
µ
|T |2/3‖ f ‖2L2 (T ) + µ |T |

1/3
∑

F∈F (T )\F (ΓD)

‖[σhν]F ‖2L2 (E)

with σh B Cε (uC) in the jump

[σhν]F =



(σh |T+ − σh |T− ) |F ν if F ∈ F (Ω),

σh ν − t if F ∈ F (ΓN).

Add the error estimation to your existing code and create a convergence history plot. Hint: The
code for the convergence history plot will be provided on the lecture’s homepage the upcoming
days.

Literature. The following references concern the prerequisites from functional and numerical
analysis required for this exercise sheet. Every reference is electronically available in the HU
library and from HU intranet (e.g., eduroam).
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• R. Verfürth, A Review of A Posteriori Error Estimation Techniques for Elasticity Problems,
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Mechanics, vol. 47, Elsevier Science, 1998.

– for the de�nition of the residual based a posteriori error estimator for linear elasticity
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