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Please be prepared to present one or more of the following exercises on the
blackboard. If not stated otherwise, algorithms or code can be displayed in Matlab
or pseudocode.

Exercise 1 (A posteriori estimates for LSFEM). (a) Let σ ∈ ΣN and u ∈ UD minimize the
least-squares functional FC−1 with homogeneous boundary conditions. Use the equivalence
from Exercise 6.1 to derive the a posteriori error estimate

‖σ − τh‖
2
H (div,Ω) + ‖u −vh‖

2
H 1 (Ω) ≈ FC−1 (τh,vh; f ) for τh ∈ ΣN(T ), vh ∈ UD(T ).

Do τh and vh have to be discrete minimisers?

(b) Extend this result to admissible Dirichlet and Neumann boundary conditions.

Hint: The exact boundary conditions have to be discretized appropriately and are prescribed
explicitly in the discrete spaces Σ(T ) and U (T ). Use bounded extensions of the boundary data
approximation errors.

Exercise 2 (Higher order least-squares FEM for linear elasticity; implementation). Im-
plement the least-squares FEM for linear elasticity from Exercise 6.1 with conforming discretision
using the next-to-lowest-order Raviart-Thomas RT1 and P2 Lagrange �nite elements. Compare
the results of the adaptive algorithm with those from Exercise 7.2.
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