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Please be prepared to present one or more of the following exercises on the

blackboard.

Exercise 1 (Spurious pressure modes). In the setting of Exercise 2 on Sheet 9, define B :
Q — V*and B}Tl : Qp — V' with

B'g(v) = b(v,q) foranyov eV,
B qn(vp) = b(vp, qn)  for any vy € V.
Set Sj, = Ker B}Tl \ Ker BT. Prove that the discrete inf-sup condition implies Sj, = 0.

Exercise 2 (CR-PO elements for pure homogenous Dirichlet boundary). Let Q ¢ R?
be bdd. polyhedral Lipschitz domain, V}, = (CR(l)(T))Z, endowed with the norm ||vylly, =
| Dpw ©hll12(q), and Qn = Po(T) N LE(Q).

(a) Prove the discrete inf-sup condition

diVUh, h)12
0 < fp < inf sup( q)L(Q).
€0 vpevy,  llonllvy llgnllo

Hint: Use the standard nonconforming operator Inc : Hy(Q) — CRy(7") for the Fortin
interpolation.

(b) Prove that the discrete mixed formulation, find u € Vj, and p, € Qp, such that

(Dpw th, Dpw vn)12(q) = (divpw vp, pr)1z) = Tlo f, vp)izq)  for any vy, € V4,
(divpw up, qn)r2o) = 0 for any gi € Oy,

has a unique solution and derive divp,y up = 0 a.e. in Q.

(c) Suppose thatu € (H*(Q))*NH,(Q) and p € H'(Q)NLE(Q). Prove the optimal convergence
order

| Dpw(u — un)llzzc) + |lp — prllzzo) S hllullazq) + ose(f, 7)),



where (u, p) is the weak solution to

-Au+Vp=f inQ,
divu=0 1in Q.

Hint: You can use the estimate from [Boffi-Brezzi-Fortin Proposition 5.5.6]

| Dpw(u — un)llrzcq) + 1P = prllreo)
< inf ||D - + inf ||p —
S inf | Dpw(u — vp)llr2ce) Jnf P = qnllizco)

+ (£, 0)rzo) — o f, @)r2(0)llv; + [[(Du, Dpw ) = (divpy @, p) = (f, @)lly;-

Note that the dual norm of V}, is defined by

lgllv; = sup g(on)/l[vnllv,-
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