The Yamabe invariant

B. Ammann ${ }^{1} \quad$ M. Dahl ${ }^{2} \quad$ E. Humbert ${ }^{3}$
${ }^{1}$ Universität Regensburg
Germany
${ }^{2}$ Kungliga Tekniska Högskolan, Stockholm Sweden
${ }^{3}$ Université François-Rabelais, Tours
France
Conformal geometry and Spectral Theory
HU Berlin 2016

Einstein-Hilbert functional

Let M be a compact n-dimensional manifold, $n \geq 3$. The renormalised Einstein-Hilbert functional is

$$
\mathcal{E}: \mathcal{M} \rightarrow \mathbb{R}, \quad \mathcal{E}(g):=\frac{\int_{M} \operatorname{scal}^{g} d v^{g}}{\operatorname{vol}(M, g)^{(n-2) / n}}
$$

$\mathcal{M}:=\{$ metrics on $M\}$.
$[g]:=\left\{u^{4 /(n-2)} g \mid u>0\right\}$.
Stationary points of $\mathcal{E}:[g] \rightarrow \mathbb{R}=$ metrics with constant scalar curvature

Stationary points of $\mathcal{E}: \mathcal{M} \rightarrow \mathbb{R}=$ Einstein metrics

Conformal Yamabe constant

Inside a conformal class

$$
Y(M,[g]):=\inf _{\tilde{g} \in[g]} \mathcal{E}(\tilde{g})>-\infty .
$$

This is the conformal Yamabe constant.

$$
Y(M,[g]) \leq Y\left(\mathbb{S}^{n}\right)
$$

where \mathbb{S}^{n} is the sphere with the standard structure.
Solution of the Yamabe problem (Trudinger, Aubin, Schoen-Yau) $\mathcal{E}:[g] \rightarrow \mathbb{R}$ attains its infimum.
Remark $Y(M,[g])>0$ if and only if $[g]$ contains a metric of positive scalar curvature.

Obata's theorem

Theorem (Obata)

Assume:

- M is connected and compact
- g_{0} is an Einstein metric on M
- $g=u^{4 /(n-2)} g_{0}$ with scal ${ }^{g}$ constant
- $\left(M, g_{0}\right)$ not conformal to \mathbb{S}^{n}

Then u is constant.

Conclusion If g_{0} is Einstein, then $\mathcal{E}\left(g_{0}\right)=Y\left(M,\left[g_{0}\right]\right)$.
This conclusion also holds if g_{0} is a non-Einstein metric with scal $=$ const ≤ 0 (Maximum principle).
So in these two cases, we have determined $Y\left(M,\left[g_{0}\right]\right)$. However in general it is difficult to get explicit "good" lower bounds for $Y\left(M,\left[g_{0}\right]\right)$.

On the set of conformal classes

$$
\sigma(M):=\sup _{[g] \subset \mathcal{M}} Y(M,[g]) \in\left(-\infty, Y\left(\mathbb{S}^{n}\right)\right]
$$

The smooth Yamabe invariant. Introduced by O. Kobayashi and R. Schoen.

Remark $\sigma(M)>0$ if and only if M caries a metric of positive scalar curvature.
Supremum attained?
Depends on M.

Example $\mathbb{C} P^{2}$
The Fubini-Study g_{FS} metric is Einstein and

$$
53.31 \ldots=\mathcal{E}\left(g_{\mathrm{FS}}\right)=Y\left(\mathbb{C} P^{2},\left[g_{\mathrm{FS}}\right]\right)=\sigma\left(\mathbb{C} P^{2}\right)
$$

Supremum attained in the Fubini-Study metric.
LeBrun '97 Seiberg-Witten theory
LeBrun \& Gursky '98 Twisted Dirac operators

Similar examples

- $\sigma\left(S^{n}\right)=n(n-1) \omega_{n}^{2 / n}$.
- Gromov \& Lawson, Schoen \& Yau $\approx^{\prime} 83$: Tori $\mathbb{R}^{n} / \mathbb{Z}^{n}$. $\sigma\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)=0$. Enlargeable Manifolds
- LeBrun '99: All Kähler-Einstein surfaces with non-positive scalar curvature. Seiberg-Witten theory
- Bray \& Neves '04: $\mathbb{R} P^{3} . \sigma\left(\mathbb{R} P^{3}\right)=2^{-2 / 3} \sigma\left(S^{3}\right)$. Inverse mean curvature flow
- Perelman, M. Anderson '06 (sketch), Kleiner-Lott '08 compact quotients of 3-dimensional hyperbolic space Ricci flow

Example where supremum is not attained
Schoen: $\sigma\left(S^{n-1} \times S^{1}\right)=\sigma\left(S^{n}\right)$.
The supremum is not attained.

Some known values of σ

- All examples above.
- Akutagawa \& Neves '07: Some non-prime 3-manifolds, e.g.

$$
\sigma\left(\mathbb{R} P^{3} \#\left(S^{2} \times S^{1}\right)\right)=\sigma\left(\mathbb{R} P^{3}\right) .
$$

- Compact quotients of nilpotent Lie groups: $\sigma(M)=0$.

Unknown cases

- Nontrivial quotients of spheres, except $\mathbb{R} P^{3}$.
- $S^{k} \times S^{m}$, with $k, m \geq 2$.
- No example of dimension ≥ 5 known with $\sigma(M) \neq 0$ and $\sigma(M) \neq \sigma\left(S^{n}\right)$.

Positive scalar curvature $\Leftrightarrow \mathrm{psc} \Leftrightarrow \sigma(M)>0$
Suppose $n \geq 5$.

1. $\sigma(M)>0$ is a "bordism invariant".
2. Bordism classes admitting psc metrics form a subgroup in the bordism group $\Omega_{n}^{\text {spin }}\left(B \pi_{1}\right)$.
3. If $P^{p} \xrightarrow{\pi} B^{b}$ is a fiber bundle, equipped with a family of vertical metrics $\left(g_{p}\right)_{p \in B}$ with scal $g_{\rho}>0 \forall p \in B$, then $\sigma(P)>0$.

Guiding questions of our work, $\epsilon>0$

1. Is $\sigma(M)>\epsilon$ a "bordism invariant"? Yes for $0<\epsilon<\Lambda_{n}^{\prime}, \Lambda_{5}^{\prime}=45.1, \Lambda_{6}^{\prime}=49.9$, ADH
2. Do $\sigma(M)>\epsilon$-classes form a subgroup? Yes for $0<\epsilon<\Lambda_{n}^{\prime}$, ADH
3. If $P^{p} \xrightarrow{\pi} B^{b}$ is a fiber bundle, equipped with a family of vertical metrics $\left(g_{p}\right)_{p \in B}$ with $Y\left(\pi^{-1}(p),\left[g_{p}\right]\right)>0$, $f=p-b \geq 3, b=\operatorname{dim} B \geq 3$, then

$$
\sigma(P)^{p} \geq c_{b, f}\left(\min _{p \in B} Y\left(\pi^{-1}(p),\left[g_{p}\right]\right)\right)^{f}
$$

ADH + M. Streil

Explicit values for Λ_{n}

Theorem (ADH)

Let M be a compact simply connected manifold, $n=\operatorname{dim} M$. Then

$$
\begin{array}{ll}
n=5: & 45.1=\Lambda_{5}^{\prime} \leq \sigma(M) \leq \sigma\left(S^{5}\right)=78.9 \ldots \\
n=6: & 49.9=\Lambda_{6}^{\prime} \leq \sigma(M) \leq \sigma\left(S^{6}\right)=96.2 \ldots
\end{array}
$$

Gap theorems

Theorem (ADH)
Let M is a 2 -connected compact manifold of dimension $n \geq 5$. If $\alpha(M) \neq 0$, then $\sigma(M)=0$.
If $\alpha(M)=0$, then

$n=$	5	6	7	8	9	10	11
$\sigma(M) \geq$	78.9	87.6	74.5	92.2	109.2	97.3	135.9
$\sigma\left(S^{n}\right)=$	78.9	96.2	113.5	130.7	147.8	165.0	182.1

Theorem (ADH)

Let Γ be group whose homology is finitely generated in each degree. In the case $n \geq 5$, we know that

$$
\left\{\sigma(M) \mid \pi_{1}(M)=\Gamma, \operatorname{dim} M=n\right\} \cap\left[0, \Lambda_{n}\right]
$$

is a well-ordered set (with respect to the standard order \leq).
In other words: there is no sequence of n-dimensional manifolds M_{i} with $\pi_{1}\left(M_{i}\right)=\Gamma$ such that $\sigma\left(M_{i}\right) \in\left[0, \Lambda_{n}\right]$ and such that $\sigma\left(M_{i}\right)$ is strictly decreasing.
On the other hand it is conjectured that

$$
\sigma\left(S^{n} / \Gamma\right) \rightarrow 0 \quad \text { for } \quad \# \Gamma \rightarrow \infty
$$

Techniques

Key ingredients
(1) A monotonicity formula for surgery, ADH
(2) A lower bound for products, ADH

Other techniques
(3a) Rearranging functions on $\mathbb{H}_{c}^{r} \times \mathbb{S}^{s}$ to test functions on $\mathbb{R}^{r} \times \mathbb{S}^{s}$, ADH
(3b) Conformal Yamabe constants of $Y\left(\mathbb{R}^{2} \times \mathbb{S}^{n-2}\right)$, Petean-Ruiz
(4) Are L^{p}-solutions of the Yamabe equation on complete manifolds already L^{2} ? Results by ADH
(5) Obata's theorem about constant scalar metrics conformal to Einstein manifolds
(6) Standard bordism techniques: Smale, ..., Gromov-Lawson, Stolz

(1) A Monotonicity formula for surgery

 Let $\Phi: S^{k} \times \overline{B^{n-k}} \hookrightarrow M^{n}$ be an embedding. We define$$
M_{k}^{\Phi}:=M \backslash \Phi\left(S^{k} \times B^{n-k}\right) \cup\left(B^{k+1} \times S^{n-k-1}\right) / \sim
$$

where / ~ means gluing the boundaries via

$$
M \ni \Phi(x, y) \sim(x, y) \in S^{k} \times S^{n-k-1}
$$

We say that M_{k}^{ϕ} is obtained from M by surgery of dimension k.

Example: 0-dimensional surgery on a surface.

Let M_{k}^{ϕ} be obtained from M by k-dimensional surgery, $0 \leq k \leq n-3$.

Theorem (ADH, \# 1)
There is $\Lambda_{n, k}>0$ with

$$
\sigma\left(M_{k}^{\phi}\right) \geq \min \left\{\sigma(M), \Lambda_{n, k}\right\}
$$

Furthermore $\Lambda_{n, 0}=Y\left(\mathbb{S}^{n}\right)$.
Special cases were already proved by Gromov-Lawson, Schoen-Yau, Kobayashi, Petean.
Thm \# 1 follows directly from Thm \# 2.
Theorem (ADH, \#2)
For any metric g on M there is a sequence of metrics g_{i} on M_{k}^{Φ} such that

$$
\lim _{i \rightarrow \infty} Y\left(M_{k}^{\Phi},\left[g_{i}\right]\right)=\min \left\{Y(M,[g]), \Lambda_{n, k}\right\}
$$

Construction of the metrics

Let $\Phi: S^{k} \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding. We write close to $S:=\Phi\left(S^{k} \times\{0\}\right), r(x):=d(x, S)$

$$
\left.g \approx g\right|_{s}+d r^{2}+r^{2} g_{\text {round }}^{n-k-1}
$$

where $g_{\text {round }}^{n-k-1}$ is the round metric on S^{n-k-1}.
$t:=-\log r$.

$$
\left.\frac{1}{r^{2}} g \approx e^{2 t} g\right|_{s}+d t^{2}+g_{\text {round }}^{n-k-1}
$$

We define a metric

$$
g_{i}= \begin{cases}g & \text { for } r>r_{1} \\ \frac{1}{r^{2}} g & \text { for } r \in\left(\rho, r_{0}\right) \\ \left.f^{2}(t) g\right|_{s}+d t^{2}+g_{\text {round }}^{n-k-1} & \text { for } r<\rho\end{cases}
$$

that extends to a metric on M_{k}^{ϕ}.

Proof of Theorem \#2, continued

Any class [g_{i}] contains a minimizing metric written as $u_{i}^{4 /(n-2)} g_{i}$. We obtain a PDE:

$$
\begin{gathered}
4 \frac{n-1}{n-2} \Delta^{g_{i}} u_{i}+\operatorname{scal} g_{i} u_{i}=\lambda_{i} u_{i}^{\frac{n+2}{n-2}} \\
u_{i}>0, \quad \int u_{i}^{2 n /(n-2)} d v^{g_{i}}=1, \quad \lambda_{i}=Y\left(\left[g_{i}\right]\right)
\end{gathered}
$$

This sequence might:

- Concentrate in at least one point. Then lim inf $\lambda_{i} \geq Y\left(\mathbb{S}^{n}\right)$.
- Concentrate on the old part $M \backslash S$. Then $\lim \inf \lambda_{i} \geq Y([g])$.
- Concentrate on the new part. Gromov-Hausdorff convergence of pointed spaces. Limit spaces:

$$
\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}, \quad c \in[0,1]
$$

\mathbb{H}_{c}^{k+1} : simply connected, complete, $K=-c^{2}$ Then $\lim \inf \lambda_{i} \geq Y\left(\mathbb{M}_{c}\right)$.

The numbers $\Lambda_{n, k}$

(Disclaimer: Additional conditions for $k+3=n \geq 7$ See Ammann-Große 2016 for some related questions)

$$
\begin{aligned}
\Lambda_{n, k} & :=\inf _{c \in[0,1]} Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right) \\
Y(N) & :=\inf _{u \in C_{c}^{\infty}(N)} \frac{\int_{N} 4 \frac{n-1}{n-2}|d u|^{2}+\text { scal } u^{2}}{\left(\int_{N} u^{p}\right)^{2 / p}}
\end{aligned}
$$

Note: $\mathbb{H}_{1}^{k+1} \times \mathbb{S}^{n-k-1} \cong \mathbb{S}^{n} \backslash \mathbb{S}^{k}$.
$k=0: \Lambda_{n, k}=Y\left(\mathbb{R} \times \mathbb{S}^{n-1}\right)=Y\left(\mathbb{S}^{n}\right)$
$k=1, \ldots, n-3: \wedge_{n, k}>0$
$\Lambda_{n}:=\min \left\{\Lambda_{n, 2}, \ldots, \Lambda_{n, n-3}\right\}$
Notation: Λ_{n}^{\prime} is a positive explicit lower bound for Λ_{n}.

Conjecture \#1: $Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right) \geq Y\left(\mathbb{R}^{k+1} \times \mathbb{S}^{n-k-1}\right)$
Conjecture \#2: The infimum in the definition of $Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right)$ is attained by an $O(k+1) \times O(n-k)$ invariant function if $0 \leq c<1$.
$O(n-k)$-invariance is difficult, $O(k+1)$-invariance follows from standard reflection methods Comments If we assume Conjecture \#2, then Conjecture \#1 reduces to an ODE and $Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right)$ can be calculated numerically. Assuming Conjecture \#2, a maple calculation confirmed Conjecture \#1 for all tested n, k and c.
The conjecture would imply:

$$
\sigma\left(S^{2} \times S^{2}\right) \geq \Lambda_{4,1}=59.4 \ldots
$$

Compare this to

$$
Y\left(\mathbb{S}^{4}\right)=61.5 \ldots \quad Y\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=50.2 \ldots \quad \sigma\left(\mathbb{C} P^{2}\right)=53.31 .
$$

Values for $\Lambda_{n, k}$

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured	$Y\left(\mathbb{S}^{n}\right)$
3	0	43.8	43.8	43.8
4	0	61.5	61.5	61.5
4	1	38.9	59.4	61.5
5	0	78.9	78.9	78.9
5	1	56.6	78.1	78.9
5	2	45.1	75.3	78.9
6	0	96.2	96.2	96.2
6	1	>0	95.8	96.2
6	2	54.7	94.7	96.2
6	3	49.9	91.6	96.2
7	0	113.5	113.5	113.5
7	1	>0	113.2	113.5
7	2	74.5	112.6	113.5
7	3	74.5	111.2	113.5
7	4	>0	108.1	113.5

(2) A lower bound for products

$$
a_{n}:=4(n-1) /(n-2)
$$

Theorem (ADH)
Let (V, g) and (W, h) be Riemannian manifolds of dimensions $v, w \geq 3$. Assume that $Y(V,[g]) \geq 0, Y(W,[h]) \geq 0$ and that

$$
\begin{equation*}
\frac{\mathrm{Scal}^{g}+\text { Scal }^{h}}{a_{v+w}} \geq \frac{\mathrm{Scal}^{g}}{a_{v}}+\frac{\text { Scal }^{h}}{a_{w}} \tag{1}
\end{equation*}
$$

Then,

$$
\frac{Y(V \times W,[g+h])}{(v+w) a_{v+w}} \geq\left(\frac{Y(V,[g])}{v a_{v}}\right)^{\frac{v}{m}}\left(\frac{Y(W,[h])}{w a_{w}}\right)^{\frac{w}{m}}
$$

Main technique: Iterated Hölder inequality.

How good is this bound?

$$
1 .
$$

Application to $\Lambda_{n, k}$

\mathbb{H}_{c}^{k+1} conformal to a subset of \mathbb{S}^{k+1}
$\Rightarrow \quad Y\left(\mathbb{H}_{c}^{k+1}\right)=Y\left(\mathbb{S}^{k+1}\right)$
Thus for $2 \leq k \leq n-k-4$:

$$
\begin{aligned}
\Lambda_{n, k} & =\inf _{c \in[0,1]} Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right) \\
& \geq n b_{k+1, n-k-1}\left(\frac{Y\left(\mathbb{S}^{k+1}\right)}{k+1}\right)^{(k+1) / n}\left(\frac{Y\left(\mathbb{S}^{n-k-1}\right)}{n-k-1}\right)^{(n-k-1) / n}
\end{aligned}
$$

Applying the product formula to fiber bundles

Assume $F^{f} \rightarrow P^{n} \rightarrow B^{b}$ is a fiber bundle, with a psc-metric g_{F} on F, structure group in $\operatorname{Isom}(F), f=\operatorname{dim} F \geq 3$.

Shrink the psc metric g_{F} on F.
We see: $\sigma(P) \geq Y\left(\left(F, g_{F}\right) \times \mathbb{R}^{b}\right)(M$. Streil, PhD thesis).
For $b \geq 3$:

$$
Y\left(\left(F, g_{F}\right) \times \mathbb{R}^{b}\right) \geq n b_{f, b}\left(\frac{Y\left(F,\left[g_{F}\right]\right)}{f}\right)^{t / n}\left(\frac{Y\left(\mathbb{S}^{b}\right)}{b}\right)^{b / n}
$$

If g_{F} carries an Einstein metric, then Petean-Ruiz can provide lower bounds for $Y\left(F \times \mathbb{R},\left[g_{F}+d t^{2}\right]\right)$ and $Y\left(F \times \mathbb{R}^{2},\left[g_{F}+d t^{2}+d s^{2}\right]\right)$.

Important building blocks

For the following manifolds we have lower bounds on the smooth Yamabe invariant and the conformal Yamabe constant.

- Smooth Yamabe invariant of total spaces of bundles with fiber $\mathbb{C} P^{2}$. These total spaces generate the oriented bordism classes.
- Smooth Yamabe invariant of total spaces of bundles with fiber $\mathbb{H} P^{2}$. These total spaces generate the kernel of $\alpha: \Omega_{n}^{\text {spin }} \rightarrow K O_{n}$
- Conformal Yamabe constant of Einstein manifolds: $\mathrm{SU}(3) / \mathrm{SO}(3), \mathbb{C} P^{2}, \mathbb{H} P^{2}$
- $\mathbb{H} P^{2} \times \mathbb{R}, \mathbb{H} P^{2} \times \mathbb{R}^{2}, \mathbb{C} P^{2} \times \mathbb{R}, \mathbb{C} P^{2} \times \mathbb{R}$ Petean-Ruiz
- Conformal Yamabe constant of $\mathbb{R}^{2} \times \mathbb{S}^{n-2}$. Particularly important for $n=4,5,9,10$. Petean-Ruiz
- Conformal Yamabe constant of $\mathbb{R}^{3} \times \mathbb{S}^{2}$. Petean-Ruiz

Thanks for your attention!

Literature by the authors

圊 B．Ammann，M．Dahl，E．Humbert，Smooth Yamabe invariant and surgery， J．Diff．Geom．94，1－58（2013）

國＿The conformal Yamabe constant of product manifolds， Proc．AMS 141 295－307（2013）
嗇 ，Square－integrability of solutions of the Yamabe equation，
Commun．Anal．Geom．21，891－916（2013）
囯 Low－dimensional surgery and the Yamabe invariant，
J．Math．Soc．Japan 67，159－182（2015）
击 B．Ammann，N－Große，Relations between threshold constants for Yamabe type bordism invariants，to appear in J．Geom．Anal．

Related Literature

目 K．Akutagawa，L．Florit，J．Petean，On the Yamabe constant of Riemannian products，Comm．Anal．Geom．2007， http：／／arxiv．org／abs／math／0603486．
围 N．Große，The Yamabe equation on manifolds of bounded geometry，http：／／arxiv．org／abs／0912．4398v2．

嗇 J．Petean，J．M．Ruiz，Isoperimetric profile comparisons and Yamabe constants，AGAG 2011，
http：／／arxiv．org／abs／1010．3642．
嗇 ，On the Yamabe constants of $S^{2} \times \mathbb{R}^{3}$ and $S^{3} \times \mathbb{R}^{2}$ ， http：／／arxiv．org／abs／1202．1022．
目 M．Streil，Yamabe Constants of Collapsing Riemannian Submersions，PhD thesis Regensburg 2016

Possible application to $\mathbb{C} P^{3}$

Lemma
Assume that the surgery monotoncity formula holds for the conjectured values

$$
\Lambda_{6.2}=94.7 \ldots \quad \Lambda_{6.3}=91.6 \ldots
$$

Then $\sigma\left(\mathbb{C} P^{3}\right) \geq \min \left\{\Lambda_{6.2}, \Lambda_{6.3}\right\} \geq 91.6 \ldots$
Compare to the Fubini-Study metric $g_{F S}$ $\mu\left(\mathbb{C} P^{3},\left[g_{F S}\right]\right)=82.9864 \ldots$.

Proof.
$\mathbb{C} P^{3}$ is spin-bordant to S^{6}. Find such a bordism W such that that W is 2-connected. Then one can obtain $\mathbb{C} P^{3}$ by surgeries of dimension 2 and 3 out of S^{6}.

Application to connected sums

Assume that M is compact, connected of dimension at least 5 with $0<\sigma(M)<\min \left\{\Lambda_{n, 1}, \ldots \Lambda_{n, n-3}\right\}=: \widehat{\Lambda}_{n}$. Let $p, q \in \mathbb{N}$ be relatively prime. Then

$$
\sigma(\underbrace{M \# \cdots \# M}_{p \text { times }})=\sigma(M)
$$

or

$$
\sigma(\underbrace{M \# \cdots \# M}_{q \text { times }})=\sigma(M)
$$

Are there such manifolds M ?
Schoen conjectured: $\sigma\left(S^{n} / \Gamma\right)=\sigma\left(S^{n}\right) /(\# \Gamma)^{2 / n} \in\left(0, \widehat{\Lambda}_{n}\right)$ for $\# \Gamma$ large.

Application to connected sums $M \# N$

Assume that M and N are compact, connected of dimension at least 5 with

$$
0<\sigma(N)>\sigma(M)<\widehat{\Lambda}_{n} .
$$

Then

$$
\sigma(M)=\sigma(M \# N)
$$

More values of $\Lambda_{n, k}$

- Back

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured	$Y\left(\mathbb{S}^{n}\right)$
8	0	130.7	130.7	130.7
8	1	>0	130.5	130.7
8	2	92.2	130.1	130.7
8	3	95.7	129.3	130.7
8	4	92.2	127.9	130.7
8	5	>0	124.7	130.7
9	0	147.8	147.8	147.8
9	1	109.2	147.7	147.8
9	2	109.4	147.4	147.8
9	3	114.3	146.9	147.8
9	4	114.3	146.1	147.8
9	5	109.4	144.6	147.8
9	6	>0	141.4	147.8

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured

