The Yamabe invariant

B. Ammann¹ M. Dahl² E. Humbert³

¹Universität Regensburg Germany

²Kungliga Tekniska Högskolan, Stockholm Sweden

³Université François-Rabelais, Tours France

Conformal geometry and Spectral Theory HU Berlin 2016

Einstein-Hilbert functional

Let *M* be a compact *n*-dimensional manifold, $n \ge 3$. The renormalised Einstein-Hilbert functional is

$$\mathcal{E}: \mathcal{M} o \mathbb{R}, \qquad \mathcal{E}(\boldsymbol{g}) := rac{\int_{\boldsymbol{M}} \operatorname{scal}^{\boldsymbol{g}} dv^{\boldsymbol{g}}}{\operatorname{vol}(\boldsymbol{M}, \boldsymbol{g})^{(n-2)/n}}$$

 $\mathcal{M} := \{ \text{metrics on } M \}. \\ [g] := \{ u^{4/(n-2)}g \, | \, u > 0 \}.$

Stationary points of $\mathcal{E}:[g] \to \mathbb{R}$ = metrics with constant scalar curvature

Stationary points of $\mathcal{E}:\mathcal{M}\rightarrow\mathbb{R}$ = Einstein metrics

Conformal Yamabe constant

Inside a conformal class

$$Y(M,[g]):=\inf_{ ilde{g}\in [g]}\mathcal{E}(ilde{g})>-\infty.$$

This is the conformal Yamabe constant.

 $Y(M,[g]) \leq Y(\mathbb{S}^n)$

where \mathbb{S}^n is the sphere with the standard structure.

Solution of the Yamabe problem (Trudinger, Aubin, Schoen-Yau) $\mathcal{E} : [g] \to \mathbb{R}$ attains its infimum.

Remark Y(M, [g]) > 0 if and only if [g] contains a metric of positive scalar curvature.

Obata's theorem

Theorem (Obata)

Assume:

- M is connected and compact
- ▶ g₀ is an Einstein metric on M
- $g = u^{4/(n-2)}g_0$ with scal ^g constant
- (M, g_0) not conformal to \mathbb{S}^n

Then u is constant.

Conclusion If g_0 is Einstein, then $\mathcal{E}(g_0) = Y(M, [g_0])$. This conclusion also holds if g_0 is a non-Einstein metric with scal $= const \le 0$ (Maximum principle).

So in these two cases, we have determined $Y(M, [g_0])$. However in general it is difficult to get explicit "good" lower bounds for $Y(M, [g_0])$.

On the set of conformal classes

$$\sigma(\boldsymbol{M}) := \sup_{[\boldsymbol{g}] \subset \mathcal{M}} \boldsymbol{Y}(\boldsymbol{M}, [\boldsymbol{g}]) \in (-\infty, \boldsymbol{Y}(\mathbb{S}^n)]$$

The smooth Yamabe invariant. Introduced by O. Kobayashi and R. Schoen.

Remark $\sigma(M) > 0$ if and only if *M* caries a metric of positive scalar curvature.

Supremum attained? Depends on *M*.

Example $\mathbb{C}P^2$ The Fubini-Study g_{FS} metric is Einstein and

$$53.31... = \mathcal{E}(g_{\text{FS}}) = Y(\mathbb{C}P^2, [g_{\text{FS}}]) = \sigma(\mathbb{C}P^2).$$

Supremum attained in the Fubini-Study metric.

LeBrun '97 Seiberg-Witten theory LeBrun & Gursky '98 Twisted Dirac operators

Similar examples

$$\bullet \ \sigma(S^n) = n(n-1)\omega_n^{2/n}.$$

- Gromov & Lawson, Schoen & Yau ≈' 83: Tori ℝⁿ/ℤⁿ. σ(ℝⁿ/ℤⁿ) = 0. Enlargeable Manifolds
- LeBrun '99: All Kähler-Einstein surfaces with non-positive scalar curvature. Seiberg-Witten theory
- Bray & Neves '04: ℝP³. σ(ℝP³) = 2^{-2/3}σ(S³). Inverse mean curvature flow
- Perelman, M. Anderson '06 (sketch), Kleiner-Lott '08 compact quotients of 3-dimensional hyperbolic space Ricci flow

Example where supremum is not attained Schoen: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$. The supremum is not attained.

Some known values of σ

- All examples above.
- Akutagawa & Neves '07: Some non-prime 3-manifolds, e.g.

$$\sigma(\mathbb{R}P^3\#(S^2\times S^1))=\sigma(\mathbb{R}P^3).$$

• Compact quotients of nilpotent Lie groups: $\sigma(M) = 0$.

Unknown cases

- ▶ Nontrivial quotients of spheres, except ℝP³.
- $S^k \times S^m$, with $k, m \ge 2$.
- ▶ No example of dimension ≥ 5 known with $\sigma(M) \neq 0$ and $\sigma(M) \neq \sigma(S^n)$.

Positive scalar curvature \Leftrightarrow psc $\Leftrightarrow \sigma(M) > 0$ Suppose $n \ge 5$.

- 1. $\sigma(M) > 0$ is a "bordism invariant".
- 2. Bordism classes admitting psc metrics form a subgroup in the bordism group $\Omega_n^{\text{spin}}(B\pi_1)$.
- If P^p ^π→ B^b is a fiber bundle, equipped with a family of vertical metrics (g_p)_{p∈B} with scal ^{g_p} > 0 ∀p ∈ B, then σ(P) > 0.

Guiding questions of our work, $\epsilon > 0$

- Is σ(M) > ε a "bordism invariant"? Yes for 0 < ε < Λ'_n, Λ'₅ = 45.1, Λ'₆ = 49.9, ADH
- 2. Do $\sigma(M) > \epsilon$ -classes form a subgroup? Yes for $0 < \epsilon < \Lambda'_n$, ADH
- 3. If $P^p \xrightarrow{\pi} B^b$ is a fiber bundle, equipped with a family of vertical metrics $(g_p)_{p \in B}$ with $Y(\pi^{-1}(p), [g_p]) > 0$, $f = p b \ge 3$, $b = \dim B \ge 3$, then

$$\sigma(\boldsymbol{P})^{\boldsymbol{p}} \geq c_{\boldsymbol{b},f} \left(\min_{\boldsymbol{p}\in \boldsymbol{B}} Y(\pi^{-1}(\boldsymbol{p}), [\boldsymbol{g}_{\boldsymbol{p}}]) \right)^{f}.$$

ADH + M. Streil

Theorem (ADH)

Let M be a compact simply connected manifold, $n = \dim M$. Then

$$n = 5: \quad 45.1 = \Lambda'_5 \le \sigma(M) \le \sigma(S^5) = 78.9...$$
$$n = 6: \quad 49.9 = \Lambda'_6 \le \sigma(M) \le \sigma(S^6) = 96.2...$$

Theorem (ADH)

Let *M* is a 2-connected compact manifold of dimension $n \ge 5$. If $\alpha(M) \ne 0$, then $\sigma(M) = 0$.

If $\alpha(M) = 0$, then

					9		
$\sigma(M) \geq$							
$\sigma(S^n) =$	78.9	96.2	113.5	130.7	147.8	165.0	182.1

Theorem (ADH)

Let Γ be group whose homology is finitely generated in each degree. In the case $n \ge 5$, we know that

 $\{\sigma(M) \mid \pi_1(M) = \Gamma, \dim M = n\} \cap [0, \Lambda_n]$

is a well-ordered set (with respect to the standard order \leq). In other words: there is no sequence of n-dimensional manifolds M_i with $\pi_1(M_i) = \Gamma$ such that $\sigma(M_i) \in [0, \Lambda_n]$ and such that $\sigma(M_i)$ is strictly decreasing.

On the other hand it is conjectured that

$$\sigma(\mathcal{S}^n/\Gamma) o 0$$
 for $\#\Gamma o \infty$

Techniques

Key ingredients

- (1) A monotonicity formula for surgery, ADH
- (2) A lower bound for products, ADH

Other techniques

- (3a) Rearranging functions on $\mathbb{H}^r_c \times \mathbb{S}^s$ to test functions on $\mathbb{R}^r \times \mathbb{S}^s$, ADH
- (3b) Conformal Yamabe constants of $Y(\mathbb{R}^2 \times \mathbb{S}^{n-2})$, Petean-Ruiz
 - (4) Are L^p-solutions of the Yamabe equation on complete manifolds already L²? Results by ADH
 - (5) Obata's theorem about constant scalar metrics conformal to Einstein manifolds
 - (6) Standard bordism techniques: Smale, ..., Gromov-Lawson, Stolz

(1) A Monotonicity formula for surgery

Let $\Phi: S^k \times \overline{B^{n-k}} \hookrightarrow M^n$ be an embedding. We define

$$M^{\Phi}_k := M \setminus \Phi(S^k imes B^{n-k}) \cup (B^{k+1} imes S^{n-k-1}) / \sim$$

where $/ \sim$ means gluing the boundaries via

$$M
i \Phi(x,y) \sim (x,y) \in S^k \times S^{n-k-1}$$

We say that M_k^{Φ} is obtained from *M* by surgery of dimension *k*.

Example: 0-dimensional surgery on a surface.

Let M_k^{Φ} be obtained from *M* by *k*-dimensional surgery, $0 \le k \le n-3$.

Theorem (ADH, # 1)

There is $\Lambda_{n,k} > 0$ with

$$\sigma(\mathbf{M}_{k}^{\Phi}) \geq \min\{\sigma(\mathbf{M}), \Lambda_{n,k}\}$$

Furthermore $\Lambda_{n,0} = Y(\mathbb{S}^n)$.

Special cases were already proved by Gromov-Lawson, Schoen-Yau, Kobayashi, Petean. Thm # 1 follows directly from Thm # 2.

Theorem (ADH, #2)

For any metric g on M there is a sequence of metrics g_i on M_k^{Φ} such that

$$\lim_{i\to\infty} Y(M_k^{\Phi},[g_i]) = \min\left\{Y(M,[g]),\Lambda_{n,k}\right\}.$$

Construction of the metrics

Let $\Phi : S^k \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding. We write close to $S := \Phi(S^k \times \{0\}), r(x) := d(x, S)$

$$g pprox g|_{S} + dr^2 + r^2 g_{round}^{n-k-1}$$

where g_{round}^{n-k-1} is the round metric on S^{n-k-1} . $t := -\log r$. $\frac{1}{r^2}g \approx e^{2t}g|_S + dt^2 + g_{round}^{n-k-1}$

We define a metric

$$g_i = \begin{cases} g & \text{for } r > r_1 \\ \frac{1}{r^2}g & \text{for } r \in (\rho, r_0) \\ f^2(t)g|_S + dt^2 + g_{round}^{n-k-1} & \text{for } r < \rho \end{cases}$$

that extends to a metric on M_k^{Φ} .

Proof of Theorem #2, continued

Any class $[g_i]$ contains a minimizing metric written as $u_i^{4/(n-2)}g_i$. We obtain a PDE:

$$4\frac{n-1}{n-2}\Delta^{g_i}u_i + \operatorname{scal}^{g_i}u_i = \lambda_i u_i^{\frac{n+2}{n-2}}$$
$$u_i > 0, \qquad \int u_i^{2n/(n-2)} dv^{g_i} = 1, \qquad \lambda_i = Y([g_i])$$

This sequence might:

- Concentrate in at least one point. Then $\liminf \lambda_i \ge Y(\mathbb{S}^n)$.
- Concentrate on the old part $M \setminus S$. Then $\liminf \lambda_i \ge Y([g])$.
- Concentrate on the new part. Gromov-Hausdorff convergence of pointed spaces. Limit spaces:

$$\mathbb{H}^{k+1}_{\boldsymbol{c}} \times \mathbb{S}^{n-k-1}, \quad \boldsymbol{c} \in [0,1]$$

 \mathbb{H}_{c}^{k+1} : simply connected, complete, $\mathcal{K} = -c^{2}$ Then $\liminf \lambda_{i} \geq Y(\mathbb{M}_{c})$.

The numbers $\Lambda_{n,k}$

(Disclaimer: Additional conditions for $k + 3 = n \ge 7$ See Ammann–Große 2016 for some related questions)

$$\Lambda_{n,k} := \inf_{c \in [0,1]} \Upsilon(\mathbb{H}_c^{k+1} \times \mathbb{S}^{n-k-1})$$

$$Y(N) := \inf_{u \in C_c^{\infty}(N)} \frac{\int_N 4\frac{n-1}{n-2} |du|^2 + \text{scal } u^2}{(\int_N u^p)^{2/p}}$$

Note:
$$\mathbb{H}_1^{k+1} \times \mathbb{S}^{n-k-1} \cong \mathbb{S}^n \setminus \mathbb{S}^k$$
.
 $k = 0: \Lambda_{n,k} = Y(\mathbb{R} \times \mathbb{S}^{n-1}) = Y(\mathbb{S}^n)$
 $k = 1, \dots, n-3: \Lambda_{n,k} > 0$

$$\Lambda_n := \min\{\Lambda_{n,2}, \ldots, \Lambda_{n,n-3}\}$$

Notation: Λ'_n is a positive explicit lower bound for Λ_n .

Conjecture #1: $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}) \geq Y(\mathbb{R}^{k+1} \times \mathbb{S}^{n-k-1})$

Conjecture #2: The infimum in the definition of $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1})$ is attained by an $O(k+1) \times O(n-k)$ invariant function if $0 \le c < 1$.

O(n-k)-invariance is difficult,

O(k + 1)-invariance follows from standard reflection methods **Comments** If we assume Conjecture #2, then Conjecture #1 reduces to an ODE and $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1})$ can be calculated numerically. Assuming Conjecture #2, a maple calculation confirmed Conjecture #1 for all tested *n*, *k* and *c*. The conjecture **would** imply:

$$\sigma(S^2 \times S^2) \ge \Lambda_{4,1} = 59.4...$$

Compare this to

$$Y(\mathbb{S}^4) = 61.5...$$
 $Y(\mathbb{S}^2 \times \mathbb{S}^2) = 50.2...$ $\sigma(\mathbb{C}P^2) = 53.31...$

• More values of $\Lambda_{n,k}$

Values for $\Lambda_{n,k}$

n	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
3	0	43.8	43.8	43.8
4	0	61.5	61.5	61.5
4	1	38.9	59.4	61.5
5	0	78.9	78.9	78.9
5	1	56.6	78.1	78.9
5	2	45.1	75.3	78.9
6	0	96.2	96.2	96.2
6	1	> 0	95.8	96.2
6	2	54.7	94.7	96.2
6	3	49.9	91.6	96.2
7	0	113.5	113.5	113.5
7	1	> 0	113.2	113.5
7	2	74.5	112.6	113.5
7	3	74.5	111.2	113.5
7	4	> 0	108.1	113.5

(2) A lower bound for products

$$a_n := 4(n-1)/(n-2)$$

Theorem (ADH)

Let (V, g) and (W, h) be Riemannian manifolds of dimensions $v, w \ge 3$. Assume that $Y(V, [g]) \ge 0, Y(W, [h]) \ge 0$ and that

$$\frac{\operatorname{Scal}^g + \operatorname{Scal}^h}{a_{v+w}} \ge \frac{\operatorname{Scal}^g}{a_v} + \frac{\operatorname{Scal}^h}{a_w}.$$
 (1)

Then,

$$\frac{Y(V \times W, [g+h])}{(v+w)a_{v+w}} \ge \left(\frac{Y(V, [g])}{va_v}\right)^{\frac{v}{m}} \left(\frac{Y(W, [h])}{wa_w}\right)^{\frac{w}{m}}$$

Main technique: Iterated Hölder inequality.

How good is this bound?

$$b_{\nu,w} \leq \frac{Y(V \times W, [g+h])}{(\nu+w)\left(\frac{Y(V,[g])}{\nu}\right)^{\frac{\nu}{\nu+w}}\left(\frac{Y(W,[h])}{w}\right)^{\frac{W}{\nu+w}}} \leq 1,$$

$$b_{v,w} := rac{a_{v+w}}{a_v^{v/(v+w)}a_w^{w/(v+w)}} < 1.$$

$b_{v,w}$	w=3	w=4	w=5	w=6	w=7
	0.625				
4	0.7072	0.7777	0.8007	0.8367	0.8537
5	0.7515	0.8007	0.8427	0.8631	0.8772
6	0.7817	0.8367	0.8631	0.88	0.8921
7	0.8042	0.8537	0.8772	0.8921	0.9027

Application to $\Lambda_{n,k}$

$$\mathbb{H}_{c}^{k+1} \text{ conformal to a subset of } \mathbb{S}^{k+1} \Rightarrow Y(\mathbb{H}_{c}^{k+1}) = Y(\mathbb{S}^{k+1})$$

Thus for $2 \le k \le n - k - 4$:

Applying the product formula to fiber bundles

Assume $F^f \to P^n \to B^b$ is a fiber bundle, with a psc-metric g_F on F, structure group in Isom(F), $f = \dim F \ge 3$.

Shrink the psc metric g_F on F.

We see: $\sigma(P) \ge Y((F, g_F) \times \mathbb{R}^b)$ (M. Streil, PhD thesis). For $b \ge 3$:

$$Y((F,g_F) imes \mathbb{R}^b) \ge n b_{f,b} \left(rac{Y(F,[g_F])}{f}
ight)^{f/n} \left(rac{Y(\mathbb{S}^b)}{b}
ight)^{b/n}$$

If g_F carries an Einstein metric, then Petean-Ruiz can provide lower bounds for $Y(F \times \mathbb{R}, [g_F + dt^2])$ and $Y(F \times \mathbb{R}^2, [g_F + dt^2 + ds^2])$.

Important building blocks

For the following manifolds we have lower bounds on the smooth Yamabe invariant and the conformal Yamabe constant.

- Smooth Yamabe invariant of total spaces of bundles with fiber CP². These total spaces generate the oriented bordism classes.
- Smooth Yamabe invariant of total spaces of bundles with fiber $\mathbb{H}P^2$. These total spaces generate the kernel of $\alpha : \Omega_n^{\text{spin}} \to KO_n$
- Conformal Yamabe constant of Einstein manifolds: SU(3)/SO(3), CP², ℍP²
- $\blacktriangleright \ \mathbb{H}P^2 \times \mathbb{R}, \ \mathbb{H}P^2 \times \mathbb{R}^2, \ \mathbb{C}P^2 \times \mathbb{R}, \ \mathbb{C}P^2 \times \mathbb{R} \text{ Petean-Ruiz}$
- ► Conformal Yamabe constant of ℝ² × Sⁿ⁻². Particularly important for n = 4, 5, 9, 10. Petean-Ruiz
- ▶ Conformal Yamabe constant of $\mathbb{R}^3 \times \mathbb{S}^2$. Petean-Ruiz

Thanks for your attention!

Literature by the authors

- B. Ammann, M. Dahl, E. Humbert, Smooth Yamabe invariant and surgery,
 J. Diff. Geom. 94, 1–58 (2013)
- _____, The conformal Yamabe constant of product manifolds, Proc. AMS 141 295-307 (2013)
- _____, Square-integrability of solutions of the Yamabe equation,
 Commun. Anal. Geom. 21, 891-916 (2013)
- _____, Low-dimensional surgery and the Yamabe invariant,
 J. Math. Soc. Japan 67, 159-182 (2015)
- B. Ammann, N- Große, *Relations between threshold constants for Yamabe type bordism invariants*, to appear in J. Geom. Anal.

Related Literature

- K. Akutagawa, L. Florit, J. Petean, On the Yamabe constant of Riemannian products, Comm. Anal. Geom. 2007, http://arxiv.org/abs/math/0603486.
- N. Große, *The Yamabe equation on manifolds of bounded geometry*, http://arxiv.org/abs/0912.4398v2.
- J. Petean, J. M. Ruiz, *Isoperimetric profile comparisons and Yamabe constants*, AGAG 2011, http://arxiv.org/abs/1010.3642.
- $\underbrace{ \quad , \text{ On the Yamabe constants of } S^2 \times \mathbb{R}^3 \text{ and } S^3 \times \mathbb{R}^2, \\ \text{http://arxiv.org/abs/1202.1022.}$
- M. Streil, *Yamabe Constants of Collapsing Riemannian Submersions*, PhD thesis Regensburg 2016

Possible application to $\mathbb{C}P^3$

Lemma

Assume that the surgery monotoncity formula holds for the conjectured values

$$\Lambda_{6.2} = 94.7...$$
 $\Lambda_{6.3} = 91.6...$

Then $\sigma(\mathbb{C}P^3) \ge \min\{\Lambda_{6.2}, \Lambda_{6.3}\} \ge 91.6...$

Compare to the Fubini-Study metric g_{FS} $\mu(\mathbb{C}P^3, [g_{FS}]) = 82.9864...$

Proof.

 $\mathbb{C}P^3$ is spin-bordant to S^6 . Find such a bordism W such that that W is 2-connected. Then one can obtain $\mathbb{C}P^3$ by surgeries of dimension 2 and 3 out of S^6 .

Application to connected sums

Assume that *M* is compact, connected of dimension at least 5 with $0 < \sigma(M) < \min\{\Lambda_{n,1}, \dots, \Lambda_{n,n-3}\} =: \widehat{\Lambda}_n$. Let $p, q \in \mathbb{N}$ be relatively prime. Then

$$\sigma(\underbrace{M \# \cdots \# M}_{p \text{ times}}) = \sigma(M)$$

or

$$\sigma(\underbrace{M\#\cdots\#M}_{q \text{ times}}) = \sigma(M).$$

Are there such manifolds *M*? Schoen conjectured: $\sigma(S^n/\Gamma) = \sigma(S^n)/(\#\Gamma)^{2/n} \in (0, \widehat{\Lambda}_n)$ for $\#\Gamma$ large.

Application to connected sums M # N

Assume that M and N are compact, connected of dimension at least 5 with

$$0 < \sigma(N) > \sigma(M) < \widehat{\Lambda}_n.$$

Then

$$\sigma(\boldsymbol{M}) = \sigma(\boldsymbol{M} \# \boldsymbol{N}).$$

More values of $\Lambda_{n,k}$

▶ Back

п	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
8	0	130.7	130.7	130.7
8	1	> 0	130.5	130.7
8	2	92.2	130.1	130.7
8	3	95.7	129.3	130.7
8	4	92.2	127.9	130.7
8	5	> 0	124.7	130.7
9	0	147.8	147.8	147.8
9	1	109.2	147.7	147.8
9	2	109.4	147.4	147.8
9	3	114.3	146.9	147.8
9	4	114.3	146.1	147.8
9	5	109.4	144.6	147.8
9	6	> 0	141.4	147.8

► Back

n	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
10	0	165.0		165.02
10	1	102.6		165.02
10	2	126.4		165.02
10	3	132.0		165.02
10	4	133.3		165.02
10	5	132.0		165.02
10	6	126.4		165.02
10	7	> 0		165.02
11	0	182.1		182.1
11	1	> 0		182.1
11	2	143.3		182.1
11	3	149.4		182.1
11	4	151.3		182.1
11	5	151.3		182.1
11	6	149.4		182.1
11	7	143.3		182.1
11	8	> 0		182.1

