Conformal structures with linear Fefferman-Graham equations

Paweł Nurowski

Centrum Fizyki Teoretycznej Polska Akademia Nauk

Joint work with I. Anderson, Th. Leistner, A. Lischewski

Workshop Conformal Geometry and Spectral Theory in honor of ANDREAS JUHL

Berlin November 11-13, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plan

- Ambient metrics and distributions
- Fefferman-Graham construction
- Ambient metrics for special conformal structures
- Pefferman-Graham equations in terms of a perturbation h
 Passing from g_ρ to g + h_ρ

- Theorems
- New examples

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Plan

- Ambient metrics and distributions
 Fefferman-Graham construction
- Ambient metrics for special conformal structures
- Fefferman-Graham equations in terms of a perturbation *h* Passing from g_ρ to g + h_ρ
- 3 Results
 - Theorems
 - New examples

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric

- Let (Mⁿ, [g]) be a conformal structure with metrics g of signature (n₊, n₋).
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product $\tilde{M} =]0, +\infty[\times M^n \times] - \epsilon, \epsilon[, \epsilon > 0,$

with respective coordinates (t, x^i, ρ) . Choose *g* from the conformal class of [*g*]. Then the *ambient metric* \tilde{g} associated with (M^n, g) is an $(n_+ + 1, n_- + 1)$ -signature metric on \tilde{M} given by:

 $\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2 g(x^i, \rho)$

such that

$$g(x^i,\rho)|_{\rho=0}=g(x^i),$$

and

 ${\it Ric}({ ilde g})=0$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric

- Let (*Mⁿ*, [*g*]) be a conformal structure with metrics *g* of signature (n₊, *n*₋).
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product

with respective coordinates (t, x^i, ρ) . Choose g from the conformal class of [g]. Then the *ambient metric* \tilde{g} associated with (M^n, g) is an $(n_+ + 1, n_- + 1)$ -signature metric on \tilde{M} given by:

 $\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2 g(x^i, \rho)$

such that

$$g(x^i,\rho)_{|\rho=0}=g(x^i),$$

and

 ${\it Ric}({ ilde g})=0$

Fefferman-Graham construction Fefferman-Graham equations in terms of a perturbation h Results

Ambient metric

- Let $(M^n, [g])$ be a conformal structure with metrics g of signature (n_+, n_-) .
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product $\tilde{M} =]0, +\infty[\times M^n \times] - \epsilon, \epsilon[,$ $\epsilon > 0.$

$$g(x^i,\rho)|_{\rho=0}=g(x^i),$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric

- Let (Mⁿ, [g]) be a conformal structure with metrics g of signature (n₊, n₋).
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product $\tilde{M} =]0, +\infty[\times M^n \times] - \epsilon, \epsilon[, \epsilon > 0,$

with respective coordinates (t, x^i, ρ) . Choose g from the conformal class of [g]. Then the *ambient metric* \tilde{g} associated with (M^n, g) is an $(n_+ + 1, n_- + 1)$ -signature metric on \tilde{M} given by:

 $\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2 g(x^i, \rho)$

such that

$$g(x^i,\rho)_{|\rho=0}=g(x^i),$$

and

 ${\it Ric}({ ilde g})=0$

Fefferman-Graham construction Ambient metrics for special conformal structure

Fefferman-Graham equations in terms of a perturbation *h* Results

Ambient metric

- Let (*Mⁿ*, [*g*]) be a conformal structure with metrics *g* of signature (n₊, n₋).
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product $\tilde{M} =]0, +\infty[\times M^n \times] - \epsilon, \epsilon[, \epsilon > 0,$

with respective coordinates (t, x^i, ρ) . Choose g from the conformal class of [g]. Then the *ambient metric* \tilde{g} associated with (M^n, g) is an $(n_+ + 1, n_- + 1)$ -signature metric on \tilde{M} given by:

 $\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2 g(x^i, \rho)$

such that

$$g(x^i,\rho)|_{\rho=0}=g(x^i),$$

and

 $\mathsf{Ric}(\widetilde{g})=0$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric

- Let (Mⁿ, [g]) be a conformal structure with metrics g of signature (n₊, n₋).
- An ambient space \tilde{M} for $(M^n, [g])$ is locally a product $\tilde{M} =]0, +\infty[\times M^n \times] - \epsilon, \epsilon[, \epsilon > 0,$

with respective coordinates (t, x^i, ρ) . Choose *g* from the conformal class of [*g*]. Then the *ambient metric* \tilde{g} associated with (M^n, g) is an $(n_+ + 1, n_- + 1)$ -signature metric on \tilde{M} given by:

$$\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2 g(x^i, \rho)$$

such that

$$g(x^i,\rho)_{|\rho=0}=g(x^i),$$

and

 $Ric(\tilde{g}) = 0.$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

• If [g] contains an *Einstein* metric g_0 , $Ric(g_0) = \Lambda g_0$, then

$$\tilde{g} = 2\mathrm{d}t\mathrm{d}(\rho t) + t^2(1 + \frac{\Lambda\rho}{2(n-1)})^2 g_0$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

• If [g] contains an *Einstein* metric g_0 , $Ric(g_0) = \Lambda g_0$, then

$$ilde{g}=2\mathrm{d}t\mathrm{d}(
ho t)+t^2(1+rac{\Lambda
ho}{2(n-1)})^2g_0.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

• If [g] contains an *Einstein* metric g_0 , $Ric(g_0) = \Lambda g_0$, then

$$ilde{g}=2\mathrm{d}t\mathrm{d}(
ho t)+t^2(1+rac{\Lambda
ho}{2(n-1)})^2g_0.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

• If [g] contains an *Einstein* metric g_0 , $Ric(g_0) = \Lambda g_0$, then

$$ilde{g}=2\mathrm{d}t\mathrm{d}(
ho t)+t^2(1+rac{\Lambda
ho}{2(n-1)})^2g_0.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

 Write g(x^k, ρ) = g_{ij}dxⁱdx^j then Ric(ğ) = 0 for ğ = 2dtd(ρt) + t²g(x^k, ρ) is equivalent to the following system of PDE's:

$$\begin{split} \rho \ddot{g}_{ij} &- (\frac{n}{2} - 1) \dot{g}_{ij} - \rho g^{kl} \dot{g}_{ik} \dot{g}_{jl} + \frac{1}{2} \rho g^{kl} \dot{g}_{kl} \dot{g}_{ij} - \frac{1}{2} g^{kl} \dot{g}_{kl} g_{ij} + R_{ij} = 0, \\ g^{kl} \left(\nabla_k \dot{g}_{il} - \nabla_i \dot{g}_{kl} \right) &= 0, \\ g^{kl} \ddot{g}_{kl} + \frac{1}{2} g^{kl} g^{pq} \dot{g}_{pk} \dot{g}_{ql} &= 0. \end{split}$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

$$\begin{split} \rho \ddot{g}_{ij} &- (\frac{n}{2} - 1) \dot{g}_{ij} - \rho g^{kl} \dot{g}_{ik} \dot{g}_{jl} + \frac{1}{2} \rho g^{kl} \dot{g}_{kl} \dot{g}_{ij} - \frac{1}{2} g^{kl} \dot{g}_{kl} g_{ij} + R_{ij} = 0, \\ g^{kl} \left(\nabla_k \dot{g}_{il} - \nabla_i \dot{g}_{kl} \right) &= 0, \\ g^{kl} \ddot{g}_{kl} + \frac{1}{2} g^{kl} g^{pq} \dot{g}_{pk} \dot{g}_{ql} &= 0. \end{split}$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

$$\begin{split} \rho \ddot{g}_{ij} &- (\frac{n}{2} - 1) \dot{g}_{ij} - \rho g^{kl} \dot{g}_{ik} \dot{g}_{jl} + \frac{1}{2} \rho g^{kl} \dot{g}_{kl} \dot{g}_{ij} - \frac{1}{2} g^{kl} \dot{g}_{kl} g_{ij} + R_{ij} = 0, \\ g^{kl} \left(\nabla_k \dot{g}_{il} - \nabla_i \dot{g}_{kl} \right) &= 0, \\ g^{kl} \ddot{g}_{kl} + \frac{1}{2} g^{kl} g^{pq} \dot{g}_{pk} \dot{g}_{ql} &= 0. \end{split}$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Explicit ambient metrics?

$$\begin{split} \rho \ddot{g}_{ij} &- (\frac{n}{2} - 1) \dot{g}_{ij} - \rho g^{kl} \dot{g}_{ik} \dot{g}_{jl} + \frac{1}{2} \rho g^{kl} \dot{g}_{kl} \dot{g}_{ij} - \frac{1}{2} g^{kl} \dot{g}_{kl} g_{ij} + R_{ij} = 0, \\ g^{kl} \left(\nabla_k \dot{g}_{il} - \nabla_i \dot{g}_{kl} \right) &= 0, \\ g^{kl} \ddot{g}_{kl} + \frac{1}{2} g^{kl} g^{pq} \dot{g}_{pk} \dot{g}_{ql} &= 0. \end{split}$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Plan

- Ambient metrics and distributionsFefferman-Graham construction
 - Ambient metrics for special conformal structures
- Fefferman-Graham equations in terms of a perturbation h
 Passing from g_ρ to g + h_ρ
- 3 Results
 - Theorems
 - New examples

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if
 - \mathcal{D} has rank 2,
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

Results

• A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if

• \mathcal{D} has rank 2,

- $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
- $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if
 - \mathcal{D} has rank 2,
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if
 - \mathcal{D} has rank 2,
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if
 - \mathcal{D} has rank 2,
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- A distribution \mathcal{D} on a 5-manifold M^5 is called (2,3,5) if
 - \mathcal{D} has rank 2,
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}]$ has rank 3, and
 - $\mathcal{D} + [\mathcal{D}, \mathcal{D}] + [\mathcal{D}, [\mathcal{D}, \mathcal{D}]]$ has rank 5.
- Every (2,3,5) distribution \mathcal{D} canonically defines a (3,2) signature conformal structure $[g_{\mathcal{D}}]$ on M^5 , which encodes the geometry of the distribution.

Fefferman-Graham equations in terms of a perturbation *h* Results

Ambient metrics for my favorite conformal structure

• For example a distribution

$$\mathcal{D} = (\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z)$$

is (2,3,5) iff the function F = F(x, y, p, q, z) satisfies $F_{qq} \neq 0$.

• Taking $F = q^2 + f(x, p) + bz$ with b = const, the conformal class $[g_D]$ may be represented by a metric g_D in a relatively simple form:

$$g_{\mathcal{D}=}8\left(\mathrm{d}p-q\mathrm{d}x\right)^2-6\left(\mathrm{d}z-2q\mathrm{d}p+(q^2-f-bz)\mathrm{d}x\right)\mathrm{d}x-\\2\left(\mathrm{d}y-p\mathrm{d}x\right)\left(6\mathrm{d}q-2b\mathrm{d}p-(\frac{2}{5}b^2+\frac{9}{10}f_{\rho\rho})(\mathrm{d}y-p\mathrm{d}x)-(4bq+3f_{\rho})\mathrm{d}x\right).$$

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

• For example a distribution

$$\mathcal{D} = (\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z)$$

is (2,3,5) iff the function F = F(x, y, p, q, z) satisfies $F_{qq} \neq 0$.

• Taking $F = q^2 + f(x, p) + bz$ with b = const, the conformal class $[g_D]$ may be represented by a metric g_D in a relatively simple form:

$$g_{\mathcal{D}=8}\left(\mathrm{d}p-q\mathrm{d}x\right)^2 - 6\left(\mathrm{d}z-2q\mathrm{d}p+(q^2-f-bz)\mathrm{d}x\right)\mathrm{d}x - \\ 2\left(\mathrm{d}y-p\mathrm{d}x\right)\left(6\mathrm{d}q-2b\mathrm{d}p-(\frac{2}{5}b^2+\frac{9}{10}f_{\rho\rho})(\mathrm{d}y-p\mathrm{d}x)-(4bq+3f_{\rho})\mathrm{d}x\right).$$

Ambient metrics for my favorite conformal structure

• For example a distribution

$$\mathcal{D} = (\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z)$$

is (2,3,5) iff the function F = F(x, y, p, q, z) satisfies $F_{qq} \neq 0$.

• Taking $F = q^2 + f(x, p) + bz$ with b = const, the conformal class $[g_D]$ may be represented by a metric g_D in a relatively simple form:

 $g_{\mathcal{D}=8} \left(dp - q dx \right)^{2} - 6 \left(dz - 2q dp + (q^{2} - f - bz) dx \right) dx - 2 \left(dy - p dx \right) \left(6 dq - 2b dp - (\frac{2}{5}b^{2} + \frac{9}{10}f_{pp})(dy - p dx) - (4bq + 3f_{p}) dx \right).$

Ambient metrics for my favorite conformal structure

• For example a distribution

$$\mathcal{D} = (\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z)$$

is (2,3,5) iff the function F = F(x, y, p, q, z) satisfies $F_{qq} \neq 0$.

• Taking $F = q^2 + f(x, p) + bz$ with b = const, the conformal class $[g_D]$ may be represented by a metric g_D in a relatively simple form:

$$g_{\mathcal{D}=8}\left(\mathrm{d}p-q\mathrm{d}x\right)^2 - 6\left(\mathrm{d}z-2q\mathrm{d}p+(q^2-f-bz)\mathrm{d}x\right)\mathrm{d}x - \\ 2\left(\mathrm{d}y-p\mathrm{d}x\right)\left(6\mathrm{d}q-2b\mathrm{d}p-(\frac{2}{5}b^2+\frac{9}{10}f_{\rho\rho})(\mathrm{d}y-\rho\mathrm{d}x)-(4bq+3f_{\rho})\mathrm{d}x\right).$$

Ambient metrics for my favorite conformal structure

• For example a distribution

$$\mathcal{D} = (\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z)$$

is (2,3,5) iff the function F = F(x, y, p, q, z) satisfies $F_{qq} \neq 0$.

• Taking $F = q^2 + f(x, p) + bz$ with b = const, the conformal class $[g_D]$ may be represented by a metric g_D in a relatively simple form:

$$g_{\mathcal{D}=8}\left(\mathrm{d}p-q\mathrm{d}x\right)^2 - 6\left(\mathrm{d}z-2q\mathrm{d}p+(q^2-f-bz)\mathrm{d}x\right)\mathrm{d}x - \\ 2\left(\mathrm{d}y-p\mathrm{d}x\right)\left(6\mathrm{d}q-2b\mathrm{d}p-(\frac{2}{5}b^2+\frac{9}{10}f_{\rho\rho})(\mathrm{d}y-\rho\mathrm{d}x)-(4bq+3f_{\rho})\mathrm{d}x\right).$$

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

• Denoting by $\omega^1 = dy - pdx$ and by $\omega^4 = 3dx$ I make an ansatz for the metric $g(x^i, \rho)$ which stays in the definition of \tilde{g} by putting $g_{\rho} = \left(g_{\mathcal{D}} + A \cdot (\omega^1)^2 + 2B \cdot \omega^1 \omega^4 + C \cdot (\omega^4)^2\right)$.

• That is to say that I look for an ambient metric in the form

 $egin{aligned} ilde{g}_{\mathcal{D}} &= 2 \mathrm{d} t \mathrm{d} (
ho t) + \ t^2 \Big(g_{\mathcal{D}} + A \cdot (\omega^1)^2 + 2 B \cdot \omega^1 \omega^4 + C \cdot (\omega^4)^2 \Big), \end{aligned}$

with *unknown* functions $A = A(x, p, \rho)$, $B = B(x, p, \rho)$ and $C = C(x, p, \rho)$.

Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metrics for my favorite conformal structure

- Denoting by $\omega^1 = dy pdx$ and by $\omega^4 = 3dx$ I make an ansatz for the metric $g(x^i, \rho)$ which stays in the definition of \tilde{g} by putting $g_{\rho} = \left(g_{\mathcal{D}} + A \cdot (\omega^1)^2 + 2B \cdot \omega^1 \omega^4 + C \cdot (\omega^4)^2\right)$.
- That is to say that I look for an ambient metric in the form

$$\begin{split} \tilde{g}_{\mathcal{D}} &= 2 \mathrm{d} t \mathrm{d} (\rho t) + \\ t^2 \Big(g_{\mathcal{D}} + \mathbf{A} \cdot (\omega^1)^2 + 2 \mathbf{B} \cdot \omega^1 \omega^4 + \mathbf{C} \cdot (\omega^4)^2 \Big), \end{split}$$

with *unknown* functions $A = A(x, p, \rho)$, $B = B(x, p, \rho)$ and $C = C(x, p, \rho)$.

Fefferman-Graham construction Ambient metrics for special conformal structures

Theorem

The metric $\tilde{g}_{\mathcal{D}}$, as above, is an ambient metric for the conformal class $(M^5, [g_{\mathcal{D}_f}])$, if and only if the unknown functions $A = A(x, p, \rho)$, $B = B(x, p, \rho)$ and $C = C(x, p, \rho)$, satisfy the initial conditions $A_{|\rho=0} \equiv 0$, $B_{|\rho=0} \equiv 0$, $C_{|\rho=0} \equiv 0$ and the following system of PDEs:

Results

$$LA = \frac{9}{40} f_{pppp}$$

$$LB = -\frac{1}{36} A_{p} + \frac{3}{40} f_{ppp}$$

$$LC = -\frac{1}{18} B_{p} + \frac{1}{324} A + \frac{1}{30} f_{pp} - \frac{2}{15} b^{2},$$

with the linear operator L given by

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - 3\frac{\partial}{\partial \rho} - \frac{1}{8}\frac{\partial^2}{\partial \rho^2}.$$

Fefferman-Graham construction Ambient metrics for special conformal structures

Theorem

The metric $\tilde{g}_{\mathcal{D}}$, as above, is an ambient metric for the conformal class $(M^5, [g_{\mathcal{D}_f}])$, if and only if the unknown functions $A = A(x, p, \rho)$, $B = B(x, p, \rho)$ and $C = C(x, p, \rho)$, satisfy the initial conditions $A_{|\rho=0} \equiv 0$, $B_{|\rho=0} \equiv 0$, $C_{|\rho=0} \equiv 0$ and the following system of PDEs:

Results

$$\begin{split} LA &= \frac{9}{40} f_{pppp} \\ LB &= -\frac{1}{36} A_p + \frac{3}{40} f_{ppp} \\ LC &= -\frac{1}{18} B_p + \frac{1}{324} A + \frac{1}{30} f_{pp} - \frac{2}{15} b^2, \end{split}$$

with the *linear* operator L given by

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - 3\frac{\partial}{\partial \rho} - \frac{1}{8}\frac{\partial^2}{\partial \rho^2}.$$

Fefferman-Graham construction Ambient metrics for special conformal structures

Theorem

The metric $\tilde{g}_{\mathcal{D}}$, as above, is an ambient metric for the conformal class $(M^5, [g_{\mathcal{D}_f}])$, if and only if the unknown functions $A = A(x, p, \rho)$, $B = B(x, p, \rho)$ and $C = C(x, p, \rho)$, satisfy the initial conditions $A_{|\rho=0} \equiv 0$, $B_{|\rho=0} \equiv 0$, $C_{|\rho=0} \equiv 0$ and the following system of PDEs:

Results

$$LA = \frac{9}{40} f_{pppp}$$

$$LB = -\frac{1}{36} A_p + \frac{3}{40} f_{ppp}$$

$$LC = -\frac{1}{18} B_p + \frac{1}{324} A + \frac{1}{30} f_{pp} - \frac{2}{15} b^2,$$

with the *linear* operator L given by

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - 3\frac{\partial}{\partial \rho} - \frac{1}{8}\frac{\partial^2}{\partial \rho^2}.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric g iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which g is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g̃ = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations *Ric*(g̃) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

and with the linear operator given by

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n 2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g
 [´] = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations *Ric*(g̃) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

and with the linear operator given by

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$
Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g̃ = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations *Ric*(g̃) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g
 [´] = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations Ric(ğ) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form ğ = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations Ric(ğ) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g
 [˜]g = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations *Ric*(g
 [˜]g) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

Ambient metric for *pp*-waves

- A conformal manifold $(M^n, [g])$ contains a *pp*-wave metric *g* iff it admits coordinates (u, r, x^i) , i = 1, 2, ..., n-2 in which *g* is given by $g = 2du(dr + fdu) + \sum_{i=1}^{n-2} (dx^i)^2$. Here $f = f(x^i, u)$ is a differentiable function.
- Similar theorem: making an ansatz for the ambient metric in the form g
 [˜]g = dtd(ρt) + t²(g + hdu²) with a differentiable function h = h(xⁱ, u, ρ), one shows that the equations *Ric*(g
 [˜]g) = 0 are equivalent to

$$Lh = \Delta f$$
, with $\Delta = \sum_{i=1}^{n-2} \frac{\partial^2}{(\partial x^i)^2}$,

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho} - \Delta.$$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u)\rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the *Fefferman Graham obstruction*. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition A^m f = 0_e, e

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u)\rho^k$.
- Short calculation shows that

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the *Fefferman Graham obstruction*. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition A^m_f = 0_e, e

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u) \rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the *Fefferman Graham obstruction*. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition A^m_f = 0_e, e

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u) \rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product ∏^k_{j=1}(2j n) in the denominator, one sees that if the dimension n of the manifold Mⁿ is even, n = 2m, then if j = m the formula for h blows up. Thus analytic solutions exists only up to order k = m 1, unless △^m f = 0.
 This is the origin of the *Fefferman Graham obstruction*.
- The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function f satisfies the vanishing obstruction condition $A^m f = 0$.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u) \rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the *Fefferman Graham obstruction*. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition A^m f = 0_e, e

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u) \rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the Fefferman Graham obstruction. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition A^m_f = 0^a, a or

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

- Let us look for solutions to $Lh = \Delta f$ in the form $h = \sum_{k=1}^{\infty} a_k(x^i, u) \rho^k$.
- Short calculation shows that

$$h = \sum_{k=1}^{\infty} \frac{\Delta^k f}{k! \prod_{j=1}^k (2j-n)} \rho^k.$$

- Since we have the product $\prod_{j=1}^{k} (2j n)$ in the denominator, one sees that if the dimension *n* of the manifold M^n is even, n = 2m, then if j = m the formula for *h* blows up. Thus *analytic* solutions exists only up to order k = m 1, *unless* $\Delta^m f = 0$.
- This is the origin of the *Fefferman Graham obstruction*. The only 2*m*-dimensional *pp*-waves that admit *analytic* solutions are those for which the defining function *f* satisfies the vanishing obstruction condition Δ^mf = 0.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

But there are nonanalytic ones

Theorem

When n = 2m the most general solutions *h* with $h(\rho) \rightarrow 0$ when $\rho \downarrow 0$ are:

$$\begin{split} h &= \rho^{m} \Big(\alpha + \sum_{k=1}^{\infty} \frac{\Delta^{k} \alpha}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k} \Big) + \sum_{k=1}^{m-1} \frac{\Delta^{k} h}{k! \prod_{i=1}^{k} (2i-n)} \rho^{k} \\ &+ c_{n} \rho^{m} \left(\sum_{k=0}^{\infty} (\log(\rho) - q_{k}) \frac{\Delta^{m+k} h}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k} \right) + c_{n} \rho^{m} \mathcal{Q} * \sum_{k=0}^{\infty} \frac{\Delta^{m+k} h}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k}, \end{split}$$

where $\alpha = \alpha(x^i, u)$ and $Q = Q(x^i, u)$ are arbitrary functions of their variables, * denotes the convolution of two functions with respect to the x^i -variables, and the constants are given as follows

$$c_n := -\frac{1}{(m-1)!\prod_{i=0}^{m-1}(2i-n)}, \ q_0 := 0, \ q_k := \sum_{i=1}^k \frac{n+4i}{i(n+2i)}$$

for k = 1, 2, ...

In particular, only when $\Delta^m h \equiv 0$ there are solutions that are analytic in ρ in a neighbourhood of $\rho = 0$ and with $h(\mathbf{0}) \models \mathbf{0}$. $\Xi = \mathfrak{I} \mathfrak{I}$

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

But there are nonanalytic ones

Theorem

When n = 2m the most general solutions *h* with $h(\rho) \rightarrow 0$ when $\rho \downarrow 0$ are:

$$\begin{split} h &= \rho^{m} \Big(\alpha + \sum_{k=1}^{\infty} \frac{\Delta^{k} \alpha}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k} \Big) + \sum_{k=1}^{m-1} \frac{\Delta^{k} h}{k! \prod_{i=1}^{k} (2i-n)} \rho^{k} \\ &+ c_{n} \rho^{m} \left(\sum_{k=0}^{\infty} (\log(\rho) - q_{k}) \frac{\Delta^{m+k} h}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k} \right) + c_{n} \rho^{m} Q * \sum_{k=0}^{\infty} \frac{\Delta^{m+k} h}{k! \prod_{i=1}^{k} (2i+n)} \rho^{k}, \end{split}$$

where $\alpha = \alpha(x^i, u)$ and $Q = Q(x^i, u)$ are arbitrary functions of their variables, * denotes the convolution of two functions with respect to the x^i -variables, and the constants are given as follows

$$c_n := -\frac{1}{(m-1)!\prod_{i=0}^{m-1}(2i-n)}, \ q_0 := 0, \ q_k := \sum_{i=1}^k \frac{n+4i}{i(n+2i)},$$

for k = 1, 2,

In particular, only when $\Delta^m h \equiv 0$ there are solutions that are analytic in ρ in a neighbourhood of $\rho = 0$ and with h(0) = 0.

14/34

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.
- PROBLEM: explain what is the reason for such a phenomenon; or characterize those [g] for which Fefferman-Graham equations reduce to linear PDEs.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Fefferman-Graham equations in terms of a perturbation *h* Results Fefferman-Graham construction Ambient metrics for special conformal structures

More examples

There are known more examples of conformal structures for which the Fefferman-Graham equations reduce to systems of linear PDEs. These include

- conformal classes of signature (3,3) corresponding to special types of (3,6) distributions,
- conformal Patterson-Walker metrics.

Passing from g_{ρ} to $g + h_{\rho}$

Plan

- Ambient metrics and distributions
 - Fefferman-Graham construction
 - Ambient metrics for special conformal structures

Results

Pefferman-Graham equations in terms of a perturbation h
 Passing from g_ρ to g + h_ρ

3 Results

- Theorems
- New examples

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

• We take *g* from [*g*], where (*Mⁿ*, [*g*]) is any conformal structure, and write the Fefferman-Graham metric as:

 $\tilde{g} = \mathrm{d}t\mathrm{d}(\rho t) + t^2(g+h),$

where $h = h(x^{i}, \rho)$ and $h(x^{i}, 0) = 0$.

- The goal is to rewrite the Fefferman-Graham equations in terms of $h = h_{ij} dx^i dx^j$ rather than in terms of $g(x^k, \rho)_{ij}$.
- This would be a pain for general *h* but we additionally assume that $h^i_{\ j} = g^{ik}h_{kj}$ is *2-step nilpotent*, $h^i_{\ j}h^j_{\ k} = 0$. This is equivalent to the assumption that

$$\textit{Im}(h^{i}{}_{j}) \subset \mathcal{N},$$

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

• We take *g* from [*g*], where (*Mⁿ*, [*g*]) is any conformal structure, and write the Fefferman-Graham metric as:

$$\tilde{g} = \mathrm{d}t\mathrm{d}(\rho t) + t^2(g+h),$$

where $h = h(x^i, \rho)$ and $h(x^i, 0) = 0$.

- The goal is to rewrite the Fefferman-Graham equations in terms of $h = h_{ij} dx^i dx^j$ rather than in terms of $g(x^k, \rho)_{ij}$.
- This would be a pain for general *h* but we additionally assume that $h^i_{\ j} = g^{ik}h_{kj}$ is *2-step nilpotent*, $h^j_{\ j}h^j_{\ k} = 0$. This is equivalent to the assumption that

$$Im(h^{i}{}_{j})\subset\mathcal{N},$$

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

• We take *g* from [*g*], where (*Mⁿ*, [*g*]) is any conformal structure, and write the Fefferman-Graham metric as:

$$\tilde{g} = \mathrm{d}t\mathrm{d}(\rho t) + t^2(g+h),$$

where $h = h(x^i, \rho)$ and $h(x^i, 0) = 0$.

- The goal is to rewrite the Fefferman-Graham equations in terms of $h = h_{ij} dx^i dx^j$ rather than in terms of $g(x^k, \rho)_{ij}$.
- This would be a pain for general *h* but we additionally assume that $h^i_{\ j} = g^{ik}h_{kj}$ is *2-step nilpotent*, $h^i_{\ j}h^j_{\ k} = 0$. This is equivalent to the assumption that

$$\textit{Im}(h^{i}{}_{j}) \subset \mathcal{N},$$

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

• We take *g* from [*g*], where (*Mⁿ*, [*g*]) is any conformal structure, and write the Fefferman-Graham metric as:

$$\tilde{g} = \mathrm{d}t\mathrm{d}(\rho t) + t^2(g+h),$$

where $h = h(x^i, \rho)$ and $h(x^i, 0) = 0$.

- The goal is to rewrite the Fefferman-Graham equations in terms of $h = h_{ij} dx^i dx^j$ rather than in terms of $g(x^k, \rho)_{ij}$.
- This would be a pain for general *h* but we additionally assume that $h^i{}_j = g^{ik}h_{kj}$ is 2-step nilpotent, $h^i{}_jh^j{}_k = 0$. This is equivalent to the assumption that

 $Im(h^{i}_{j}) \subset \mathcal{N},$

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

• We take *g* from [*g*], where (*Mⁿ*, [*g*]) is any conformal structure, and write the Fefferman-Graham metric as:

$$\tilde{g} = \mathrm{d}t\mathrm{d}(\rho t) + t^2(g+h),$$

where $h = h(x^i, \rho)$ and $h(x^i, 0) = 0$.

- The goal is to rewrite the Fefferman-Graham equations in terms of $h = h_{ij} dx^i dx^j$ rather than in terms of $g(x^k, \rho)_{ij}$.
- This would be a pain for general *h* but we additionally assume that $h^i_{\ j} = g^{ik}h_{kj}$ is 2-step nilpotent, $h^i_{\ j}h^j_{\ k} = 0$. This is equivalent to the assumption that

$$\mathit{Im}(h^{i}{}_{j}) \subset \mathcal{N},$$

Passing from g_{ρ} to $g + h_{\rho}$

Perturbation h and a crucial observation

- The assumption about 2-step nilpotency of *h* solves the problem of getting inverses g(x^k, ρ)^{ij} of g(x^k, ρ)_{ij}.
- We have g(x^k, ρ)_{ij} = g_{ij} + h_{ij}, and because of the 2-step nilpotency of h, we get

$$g(x^k,\rho)^{ij}=g^{ij}-h^{ij}.$$

- We note that all our examples of structures with linear Fefferman-Graham equations presented here have h which are 2-step nilpotent.
- We also note that since $Im(h) \subset \mathcal{N}$, then Tr(h) = 0.

Passing from g_o to $g + h_o$

Perturbation and a crucial observation

- The assumption about 2-step nilpotency of h solves the problem of getting inverses $g(x^k, \rho)^{ij}$ of $g(x^k, \rho)_{ij}$.

$$g(x^k,\rho)^{ij}=g^{ij}-h^{ij}.$$

Passing from g_o to $g + h_o$

Perturbation and a crucial observation

- The assumption about 2-step nilpotency of h solves the problem of getting inverses $g(x^k, \rho)^{ij}$ of $g(x^k, \rho)_{ij}$.
- We have $g(x^k, \rho)_{ii} = g_{ii} + h_{ii}$, and because of the 2-step nilpotency of h, we get

$$g(x^k,\rho)^{ij}=g^{ij}-h^{ij}.$$

Perturbation

Passing from a_0 to $a + h_0$

and a crucial observation

- The assumption about 2-step nilpotency of h solves the problem of getting inverses $g(x^k, \rho)^{ij}$ of $g(x^k, \rho)_{ij}$.
- We have $g(x^k, \rho)_{ii} = g_{ii} + h_{ii}$, and because of the 2-step nilpotency of h, we get

$$g(x^k,\rho)^{ij}=g^{ij}-h^{ij}.$$

- We note that all our examples of structures with linear Fefferman-Graham equations presented here have h which are 2-step nilpotent.

Passing from a_0 to $a + h_0$

Perturbation and a crucial observation

- The assumption about 2-step nilpotency of h solves the problem of getting inverses $g(x^k, \rho)^{ij}$ of $g(x^k, \rho)_{ij}$.
- We have $g(x^k, \rho)_{ii} = g_{ii} + h_{ii}$, and because of the 2-step nilpotency of h, we get

$$g(x^k,\rho)^{ij}=g^{ij}-h^{ij}.$$

- We note that all our examples of structures with linear Fefferman-Graham equations presented here have h which are 2-step nilpotent.
- We also note that since $Im(h) \subset \mathcal{N}$, then Tr(h) = 0.

Passing from g_{ρ} to $g + h_{\rho}$

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition

Assume that $Im(h) \subset N$, with N totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

$$g^{kl} \nabla_k \dot{h}_{il} = 0,$$

 $Lh_{ij} + 2 \nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} + Q^{(3)}_{ij} + Q^{(4)}_{ij} = 0.$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4 depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).

Passing from g_{ρ} to $g + h_{\rho}$

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition Assume that $Im(h) \subset N$, with N totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl} \nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} + Q^{(3)}_{ij} + Q^{(4)}_{ij} = 0.$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4 depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).
Passing from g_{ρ} to $g + h_{\rho}$

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition

Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

$$g^{kl} \nabla_k \dot{h}_{il} = 0,$$

$$Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} + Q^{(3)}_{ij} + Q^{(4)}_{ij} = 0.$$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4 depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).

Passing from g_{ρ} to $g + h_{\rho}$

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition

Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

$$g^{kl} \nabla_k \dot{h}_{il} = 0,$$

$$Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} + Q^{(3)}_{ij} + Q^{(4)}_{ij} = 0.$$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4 depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).

Passing from g_{ρ} to $g + h_{\rho}$

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition

Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl} \nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + \mathbf{Q}^{(2)}_{ij} + \mathbf{Q}^{(3)}_{ij} + \mathbf{Q}^{(4)}_{ij} = 0.$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2)\frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).

Fefferman-Graham equations in terms of h s.t. $h^2 = 0$

Proposition

Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null. Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

$$g^{kl} \nabla_k \dot{h}_{il} = 0,$$

$$Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} + Q^{(3)}_{ij} + Q^{(4)}_{ij} = 0.$$

Here L is the linear operator

$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho},$$

 R_{ij} is the Ricci tensor of g and the red terms $Q^{(i)}$, i = 2, 3, 4 depend on h quadratically (i=2), cubically (i=3) and quartically (i=4).

Plan

- Ambient metrics and distributions
 - Fefferman-Graham construction
 - Ambient metrics for special conformal structures
- Fefferman-Graham equations in terms of a perturbation *h* Passing from g_ρ to $g + h_ρ$
- Results
 Theorems
 New examples

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset N$, with N totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g+h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}
abla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2
abla^k
abla_{(i}h_{j)k} -
abla^k
abla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g+h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}
abla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2
abla^k
abla_{(i} h_{j)k} -
abla^k
abla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g+h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}
abla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2
abla^k
abla_{(i} h_{j)k} -
abla^k
abla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl} \nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl} \nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}\nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i}h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + Q^{(2)}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}\nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i}h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + \boldsymbol{Q^{(2)}}_{ij} = 0.$

Theorems New examples

First simplification

Proposition Assume that $Im(h) \subset \mathcal{N}$, with \mathcal{N} totally null, and that

 \mathcal{N}^{\perp} is integrable.

Then the equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are equivalent to the following two sets of PDEs:

 $g^{kl}\nabla_k \dot{h}_{il} = 0,$ $Lh_{ij} + 2\nabla^k \nabla_{(i}h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} + \boldsymbol{Q^{(2)}}_{ij} = 0.$

Theorems New examples

The best theorem we have

Theorem

Let *g* be a representative of a conformal class [*g*] on a manifold M^n , let \mathcal{N} be a totally null distribution on M^n , and $h = h(x^i, \rho)$ be a 1-parameter family of bilinear forms on M^n such that:

Im(h) $\subset \mathcal{N}$ with \mathcal{N}^{\perp} integrable,

Then all the Fefferman-Graham equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are *linear* in *h*. Explicitly:

$$egin{aligned} g^{kl}
abla_k\dot{h}_{il} &= 0,\ Lh_{ij} + 2
abla^k
abla_{(i}h_{j)k} -
abla^k
abla_kh_{ij} + 2R_{ij} &= 0. \end{aligned}$$

with
$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$$
.

Theorems New examples

The best theorem we have

Theorem

Let *g* be a representative of a conformal class [*g*] on a manifold M^n , let \mathcal{N} be a totally null distribution on M^n , and $h = h(x^i, \rho)$ be a 1-parameter family of bilinear forms on M^n such that:

•
$$Im(h) \subset \mathcal{N}$$
 with \mathcal{N}^{\perp} integrable,

Then all the Fefferman-Graham equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are *linear* in *h*. Explicitly:

$$g^{kl}
abla_k\dot{h}_{il} = 0,$$

 $Lh_{ij} + 2
abla^k
abla_{(i}h_{j)k} -
abla^k
abla_kh_{ij} + 2R_{ij} = 0.$

with
$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$$
.

Theorems New examples

The best theorem we have

Theorem

Let *g* be a representative of a conformal class [*g*] on a manifold M^n , let \mathcal{N} be a totally null distribution on M^n , and $h = h(x^i, \rho)$ be a 1-parameter family of bilinear forms on M^n such that:

•
$$Im(h) \subset \mathcal{N}$$
 with \mathcal{N}^{\perp} integrable,

Then all the Fefferman-Graham equations $Ric(\tilde{g}) = 0$ for $\tilde{g} = dtd(\rho t) + t^2(g + h)$ are *linear* in *h*. Explicitly:

$$g^{kl} \nabla_k \dot{h}_{il} = 0,$$

$$Lh_{ij} + 2\nabla^k \nabla_{(i} h_{j)k} - \nabla^k \nabla_k h_{ij} + 2R_{ij} = 0.$$

th $L = 2n \frac{\partial^2}{\partial r} - (n-2) \frac{\partial}{\partial r}$

with $L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$

ロト (聞) (言) (言) 言) のへで

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

(A) $Im(\mathbf{P}) \subset \mathcal{N}$,

(B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

(A) $Im(\mathbf{P}) \subset \mathcal{N}$,

(B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $\mathit{Im}(\mathbf{P}) \subset \mathcal{N},$
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $\mathit{Im}(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} .

QUESTION: What if I restrict to null Ricci Walker metrics and take *h* such that its image is in the same \mathcal{N} as image of **P**? IMMEDIATE ANSWER: Fefferman-Graham equations will be at most *quadratic* in *h*. But...maybe more...

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} .

QUESTION: What if I restrict to null Ricci Walker metrics and take h such that its image is in the same N as image of **P**? IMMEDIATE ANSWER: Fefferman-Graham equations will be at most *quadratic* in h. But...maybe more...

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $\mathit{Im}(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} . QUESTION: What if I restrict to null Ricci Walker metrics and take *h* such that its image is in the same \mathcal{N} as image of **P**?

IMMEDIATE ANSWER: Fefferman-Graham equations will be at most *quadratic* in *h*. But...maybe more...

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $\mathit{Im}(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} . QUESTION: What if I restrict to null Ricci Walker metrics and

take *h* such that its image is in the same \mathcal{N} as image of **P**? IMMEDIATE ANSWER: Fefferman-Graham equations will be at

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- (A) $Im(\mathbf{P}) \subset \mathcal{N}$,
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} . QUESTION: What if I restrict to null Ricci Walker metrics and take *h* such that its image is in the same \mathcal{N} as image of **P**? IMMEDIATE ANSWER: Fefferman-Graham equations will be at

most quadratic in h. But...maybe more...

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- $(\mathsf{A}) \ \textit{Im}(\mathsf{P}) \subset \mathcal{N},$
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Every Walker metric (hence every null Ricci Walker metric) with its defining totally null plane \mathcal{N} has *integrable* \mathcal{N}^{\perp} . QUESTION: What if I restrict to null Ricci Walker metrics and take *h* such that its image is in the same \mathcal{N} as image of **P**? IMMEDIATE ANSWER: Fefferman-Graham equations will be at

most quadratic in h. But...maybe more...

Theorems New examples

Null Ricci Walker metrics

Let **P** be a Schouten tensor for a metric g on M^n and let \mathcal{N} be a totally null distribution on M^n . Consider two conditions

- $(\mathsf{A}) \ \textit{Im}(\mathsf{P}) \subset \mathcal{N},$
- (B) \mathcal{N} is parallel, i.e. $\nabla_X \mathcal{N} \subset \mathcal{N}$ for all $X \in TM^n$.

If *g* satisfies condition (A) it is called *null Ricci*. If *g* satisfies condition (B) it is called *Walker*. Metrics *g* satisfying both conditions (A) and (B) are called *null Ricci Walker*. Fact

Results

Theorems New examples

Null Ricci Walker metrics and conformal holonomy

Theorem

A conformal holonomy of [g] on a manifold M^n admits an invariant totally null subspace V of dimension k + 1, with k > 0, if and only if the conformal class [g] contains a null Ricci Walker metric g with N of rank k.

Theorems New examples

Null Ricci Walker metrics and conformal holonomy

Theorem

A conformal holonomy of [g] on a manifold M^n admits an invariant totally null subspace V of dimension k + 1, with k > 0, if and only if the conformal class [g] contains a null Ricci Walker metric g with \mathcal{N} of rank k.

Theorems New examples

Null Ricci Walker metrics and divergencefree h

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null distribution \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *divergencefree h* such that $Im(h) \subset \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of PDEs:

 $Lh_{ij} - \nabla^{k} \nabla_{k} h_{ij} + 2R^{k}{}_{ij}{}^{l} h_{kl} + 2R_{ij} + h^{kl} \nabla_{k} \nabla_{l} h_{ij} + \nabla_{k} h_{li} \nabla^{l} h^{k}{}_{j} = 0,$ with $L = 2\rho \frac{\partial^{2}}{\partial \rho^{2}} - (n-2) \frac{\partial}{\partial \rho}.$

Null Ricci Walker metrics and divergencefree h

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null distribution \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric

 $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *divergencefree h* such that $Im(h) \subset \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of PDEs:

 $Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} + h^{kl} \nabla_k \nabla_l h_{ij} + \nabla_k h_{li} \nabla^l h^k{}_j = 0,$

with $L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$.

Theorems New examples

Null Ricci Walker metrics and divergencefree h

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null distribution \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *divergencefree h* such that $Im(h) \subset \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of PDEs:

$$Lh_{ij} - \nabla^{k} \nabla_{k} h_{ij} + 2R^{k}{}_{ij}{}^{l} h_{kl} + 2R_{ij} + h^{kl} \nabla_{k} \nabla_{l} h_{ij} + \nabla_{k} h_{li} \nabla^{l} h^{k}{}_{j} = 0,$$

with $L = 2\rho \frac{\partial^{2}}{\partial \rho^{2}} - (n-2) \frac{\partial}{\partial \rho}.$

Theorems New examples

Null Ricci Walker metrics with $\mathcal N$ of rank 1

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null *line* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all X alligned with \mathcal{N} , satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k_{ij}{}^I h_{kl} + 2R_{ij} = 0,$$

with $L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$.
Theorems New examples

Null Ricci Walker metrics with $\mathcal N$ of rank 1

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null *line* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric

 $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with h such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all X alligned with \mathcal{N} , satisfies $Ric(\tilde{g}) = 0$ if and only if h satisfies the following system of LINEAR PDEs:

$$Lh_{ij}-\nabla^k\nabla_kh_{ij}+2R^k_{ij}{}^lh_{kl}+2R_{ij}=0,$$

Theorems New examples

Null Ricci Walker metrics with $\mathcal N$ of rank 1

Theorem

Let (M, g) be a null Ricci Walker manifold with parallel totally null *line* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$. Then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all X alligned with \mathcal{N} , satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

Null Ricci Walker metrics with *Riemann*($\mathcal{N}, .., ..$) = 0

Theorem

Let (M^n, g) be a null Ricci Walker manifold with parallel totally null *plane* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$ and such that $Riemann(\mathcal{N}, .., ..) = 0$. Then if the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ is an ambient metric for g then $\mathcal{L}_X h = O(\rho^m)$ for all $X \in \mathcal{N}$. Here $m = \infty$ if n is odd, and n = 2m otherwise. In such a case the Fefferman-Graham equations for h are again given by linear PDEs:

$$Lh_{ij} -
abla^k
abla_k h_{ij} + 2R^k_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

Null Ricci Walker metrics with *Riemann*($\mathcal{N}, .., ..$) = 0

Theorem

Let (M^n, g) be a null Ricci Walker manifold with parallel totally null plane \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$ and such that $Riemann(\mathcal{N}, ..., ...) = 0$. Then if the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ is an ambient metric for g then $\mathcal{L}_X h = O(\rho^m)$ for all $X \in \mathcal{N}$. Here $m = \infty$ if n is odd, and n = 2m otherwise. In such a case the Fefferman-Graham equations for h are again given by linear PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

Null Ricci Walker metrics with *Riemann*($\mathcal{N}, .., ..$) = 0

Theorem

Let (M^n, g) be a null Ricci Walker manifold with parallel totally null *plane* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$ and such that $Riemann(\mathcal{N}, ..., ...) = 0$. Then if the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ is an ambient metric for g then $\mathcal{L}_X h = O(\rho^m)$ for all $X \in \mathcal{N}$. Here $m = \infty$ if n is odd, and n = 2m otherwise. In such a case the Fefferman-Graham equations for h are again given by linear PDEs:

$$Lh_{ij}-\nabla^k\nabla_kh_{ij}+2R^k_{ij}{}^lh_{kl}+2R_{ij}=0,$$

Null Ricci Walker metrics with *Riemann*($\mathcal{N}, .., ..$) = 0

Theorem

Let (M^n, g) be a null Ricci Walker manifold with parallel totally null *plane* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$ and such that $Riemann(\mathcal{N}, ..., .) = 0$. Then if the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ is an ambient metric for g then $\mathcal{L}_X h = O(\rho^m)$ for all $X \in \mathcal{N}$. Here $m = \infty$ if n is odd, and n = 2m otherwise. In such a case the Fefferman-Graham equations for h are again given by linear PDEs:

$$Lh_{ij}-\nabla^k\nabla_kh_{ij}+2R^k_{ij}{}^lh_{kl}+2R_{ij}=0,$$

Null Ricci Walker metrics with *Riemann*($\mathcal{N}, .., ..) = 0$

Theorem

Let (M^n, g) be a null Ricci Walker manifold with parallel totally null *plane* \mathcal{N} such that $Im(\mathbf{P}) \subset \mathcal{N}$ and such that $Riemann(\mathcal{N}, ..., .) = 0$. Then if the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ is an ambient metric for g then $\mathcal{L}_X h = O(\rho^m)$ for all $X \in \mathcal{N}$. Here $m = \infty$ if n is odd, and n = 2m otherwise. In such a case the Fefferman-Graham equations for h are again given by linear PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

Theorems New examples

In which class are G_2 examples?

- It turns out that all known examples of not conformally Einstein metrics with explicit Fefferman-Graham metrics correspond to null Ricci Walker metrics, EXCEPT the examples associated to (2,3,5) distributions.
- The metrics g of these examples are null Ricci (satisfy condition (A), i.e. *Im*(P ⊂ N), but they are NOT Walker (condition (B) is NOT satisfied, i.e. N is not parallel).
- It is convenient to give a label, say (C), to a condition which says that in the metric g the distribution N[⊥] orthogonal to the totally null distribution N is *integrable*, [N[⊥], N[⊥]] ⊂ N[⊥].
- Metrics g which satisfy both (A) and (C), are null Ricci metrics with integrable N[⊥] and Im(P) ⊂ N.

Theorems New examples

- It turns out that all known examples of not conformally Einstein metrics with explicit Fefferman-Graham metrics correspond to null Ricci Walker metrics, EXCEPT the examples associated to (2,3,5) distributions.
- The metrics g of these examples are null Ricci (satisfy condition (A), i.e. Im(P ⊂ N), but they are NOT Walker (condition (B) is NOT satisfied, i.e. N is not parallel).
- It is convenient to give a label, say (C), to a condition which says that in the metric g the distribution N[⊥] orthogonal to the totally null distribution N is *integrable*, [N[⊥], N[⊥]] ⊂ N[⊥].
- Metrics g which satisfy both (A) and (C), are null Ricci metrics with integrable N[⊥] and Im(P) ⊂ N.

Theorems New examples

- It turns out that all known examples of not conformally Einstein metrics with explicit Fefferman-Graham metrics correspond to null Ricci Walker metrics, EXCEPT the examples associated to (2,3,5) distributions.
- The metrics g of these examples are null Ricci (satisfy condition (A), i.e. Im(P ⊂ N), but they are NOT Walker (condition (B) is NOT satisfied, i.e. N is not parallel).
- It is convenient to give a label, say (C), to a condition which says that in the metric g the distribution N[⊥] orthogonal to the totally null distribution N is *integrable*, [N[⊥], N[⊥]] ⊂ N[⊥].
- Metrics g which satisfy both (A) and (C), are null Ricci metrics with integrable N[⊥] and Im(P) ⊂ N.

Theorems New examples

- It turns out that all known examples of not conformally Einstein metrics with explicit Fefferman-Graham metrics correspond to null Ricci Walker metrics, EXCEPT the examples associated to (2,3,5) distributions.
- The metrics g of these examples are null Ricci (satisfy condition (A), i.e. Im(P ⊂ N), but they are NOT Walker (condition (B) is NOT satisfied, i.e. N is not parallel).
- It is convenient to give a label, say (C), to a condition which says that in the metric *g* the distribution N[⊥] orthogonal to the totally null distribution N is *integrable*, [N[⊥], N[⊥]] ⊂ N[⊥].
- Metrics g which satisfy both (A) and (C), are null Ricci metrics with integrable N[⊥] and Im(P) ⊂ N.

Theorems New examples

- It turns out that all known examples of not conformally Einstein metrics with explicit Fefferman-Graham metrics correspond to null Ricci Walker metrics, EXCEPT the examples associated to (2,3,5) distributions.
- The metrics g of these examples are null Ricci (satisfy condition (A), i.e. Im(P ⊂ N), but they are NOT Walker (condition (B) is NOT satisfied, i.e. N is not parallel).
- It is convenient to give a label, say (C), to a condition which says that in the metric *g* the distribution N[⊥] orthogonal to the totally null distribution N is *integrable*, [N[⊥], N[⊥]] ⊂ N[⊥].
- Metrics *g* which satisfy both (A) and (C), are null Ricci metrics with integrable N[⊥] and Im(P) ⊂ N.

Theorems New examples

In which class are G₂ examples?

Theorem

Let (M, g) be a null Ricci manifold with $Im(\mathbf{P}) \subset \mathcal{N}$ and integrable \mathcal{N}^{\perp} . If in addition $L_X \mathbf{P} = 0$ for each $X \in \mathcal{N}$, then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all $X \in \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

with
$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$$
.

It is this class of g in which seats our g_D for a (2,3,5) distribution D. This theorem describes why the FG equations are linear in this case.

Theorems New examples

In which class are G₂ examples?

Theorem

Let (M, g) be a null Ricci manifold with $Im(\mathbf{P}) \subset \mathcal{N}$ and integrable \mathcal{N}^{\perp} . If in addition $L_X \mathbf{P} = 0$ for each $X \in \mathcal{N}$, then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all $X \in \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k_{ij} h_{kl} + 2R_{ij} = 0,$$

with
$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$$

It is this class of g in which seats our g_D for a (2,3,5) distribution D. This theorem describes why the FG equations are linear in this case.

Theorems New examples

In which class are G₂ examples?

Theorem

Let (M, g) be a null Ricci manifold with $Im(\mathbf{P}) \subset \mathcal{N}$ and integrable \mathcal{N}^{\perp} . If in addition $L_X \mathbf{P} = 0$ for each $X \in \mathcal{N}$, then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all $X \in \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

with
$$L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$$

It is this class of g in which seats our $g_{\mathcal{D}}$ for a (2,3,5) distribution \mathcal{D} . This theorem describes why the FG equations are linear in this case.

Theorems New examples

In which class are G₂ examples?

Theorem

Let (M, g) be a null Ricci manifold with $Im(\mathbf{P}) \subset \mathcal{N}$ and integrable \mathcal{N}^{\perp} . If in addition $L_X \mathbf{P} = 0$ for each $X \in \mathcal{N}$, then the metric $\tilde{g} = dtd(\rho t) + t^2(g + h)$ with *h* such that $Im(h) \subset \mathcal{N}$ and such that $\mathcal{L}_X h = 0$ for all $X \in \mathcal{N}$, satisfies $Ric(\tilde{g}) = 0$ if and only if *h* satisfies the following system of LINEAR PDEs:

$$Lh_{ij} - \nabla^k \nabla_k h_{ij} + 2R^k{}_{ij}{}^l h_{kl} + 2R_{ij} = 0,$$

with $L = 2\rho \frac{\partial^2}{\partial \rho^2} - (n-2) \frac{\partial}{\partial \rho}$.

It is this class of g in which seats our g_D for a (2,3,5) distribution D. This theorem describes why the FG equations are linear in this case.

Theorems New examples

Plan

- Ambient metrics and distributions
 - Fefferman-Graham construction
 - Ambient metrics for special conformal structures
- Fefferman-Graham equations in terms of a perturbation h
 Passing from g_ρ to g + h_ρ
- 3 Results
 - Theorems
 - New examples

Explicit FG metrics for conformal classes on groups

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ j with [m, m] ⊂ j, and j is the center of n. We set dim j = p < q = dim j.
- Take a Lie group H of dim H = p, and let h be the Lie algebra of H.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h k_φ n = h k_φ (m ⊕ 3).

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ j with [m, m] ⊂ j, and j is the center of n. We set dim j = p < q = dim j.
- Take a Lie group H of dim H = p, and let η be the Lie algebra of H.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h κ_φ n = h κ_φ (m ⊕ β).

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ j with [m, m] ⊂ j, and j is the center of n. We set dim j = p < q = dim j.
- Take a Lie group H of dim H = p, and let η be the Lie algebra of H.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h k_φ n = h k_φ (m ⊕ 3).

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ 3 with [m, m] ⊂ 3, and 3 is the center of n. We set dim 3 = p < q = dim 3.
- Take a Lie group H of dim H = p, and let h be the Lie algebra of H.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h k_φ n = h k_φ (m ⊕ 3).

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ 3 with [m, m] ⊂ 3, and 3 is the center of n. We set dim 3 = p < q = dim 3.
- Take a Lie group H of dim H = p, and let h be the Lie algebra of H.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h k_φ n = h k_φ (m ⊕ 3).

- Take n to be a 2-step nilpotent Lie algebra. This means that n = m ⊕ 3 with [m, m] ⊂ 3, and 3 is the center of n. We set dim 3 = p < q = dim 3.
- Take a Lie group *H* of dim *H* = *p*, and let *h* be the Lie algebra of *H*.
- Take ANY homomorphism $\phi : \mathfrak{h} \to \mathfrak{der}(\mathfrak{n})$.
- Define g as semidirect product of h with n by the homomorphism φ, g = h κ_φ n = h κ_φ (m ⊕ β).

Explicit FG metrics for conformal classes on groups

- Take a Lie group G with Lie algebra g = h k ∉ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($e_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (e_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_{*A*}), A = p + 1, p + 2, ..., q basis for **m**.

• Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.

• Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($\mathbf{e}_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (e_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_{*A*}), A = p + 1, p + 2, ..., q basis for **m**.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

Explicit FG metrics for conformal classes on groups

Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.

• We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with

- $(\mathbf{e}_{\bar{a}}), \, \bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
- (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
- (**e**_A), A = p + 1, p + 2, ..., q basis for **m**.

• Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.

• Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($\mathbf{e}_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_A), A = p + 1, p + 2, ..., q basis for **m**.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($e_{\bar{a}}$), $\bar{a} = 1, 2, ..., p$ basis for \mathfrak{h} ,
 - (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_A), A = p + 1, p + 2, ..., q basis for m.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($e_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_A), A = p + 1, p + 2, ..., q basis for **m**.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($e_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_A), A = p + 1, p + 2, ..., q basis for **m**.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\overline{c}}\theta^{a}\theta^{\overline{c}} + 2g_{AB}\theta^{A}\theta^{B}$ with $g_{a\overline{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

- Take a Lie group G with Lie algebra g = h k_φ (3 ⊕ m), and a basis (e_µ) of left invariant vector fields on G.
- We have $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$ with
 - ($e_{\bar{a}}$), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{h} ,
 - (\mathbf{e}_a), $\bar{a} = 1, 2, \dots, p$ basis for \mathfrak{z} ,
 - (**e**_A), A = p + 1, p + 2, ..., q basis for **m**.
- Let $\theta^{\mu} = (\theta^{\bar{a}}, \theta^{A}, \theta^{a})$ be the dual basis to $(\mathbf{e}_{\mu}) = (\mathbf{e}_{\bar{a}}, \mathbf{e}_{A}, \mathbf{e}_{a})$.
- Define $g = 2g_{a\bar{c}}\theta^a\theta^{\bar{c}} + 2g_{AB}\theta^A\theta^B$ with $g_{a\bar{c}}$ and g_{AB} real constants so that the symmetric bilinear form g on G is nondegenerate.

Theorems New examples

Explicit FG metrics for conformal classes on groups

Theorem

The metric g is a left invariant *null Ricci Walker* on G with parallel distribution \mathcal{N} given by left invariant vector fields forming \mathfrak{Z} . Moreover

$$ilde{g}=2 ext{d}t ext{d}(
ho t)+t^2(g+rac{2 extsf{Ric}(g)}{
ho+q-2}
ho)$$

Theorems New examples

Explicit FG metrics for conformal classes on groups

Theorem

The metric g is a left invariant *null Ricci Walker* on G with parallel distribution \mathcal{N} given by left invariant vector fields forming \mathfrak{z} . Moreover

$$ilde{g} = 2 \mathrm{d} t \mathrm{d}(
ho t) + t^2 (g + rac{2 \mathrm{\it Ric}(g)}{
ho + q - 2}
ho)$$

Theorems New examples

Explicit FG metrics for conformal classes on groups

Theorem

The metric g is a left invariant *null Ricci Walker* on G with parallel distribution \mathcal{N} given by left invariant vector fields forming \mathfrak{z} . Moreover

$$ilde{g} = 2 \mathrm{d} t \mathrm{d}(
ho t) + t^2 (g + rac{2 \mathrm{Ric}(g)}{
ho + q - 2}
ho)$$

Theorems New examples

Explicit FG metrics for conformal classes on groups

Theorem

The metric g is a left invariant *null Ricci Walker* on G with parallel distribution \mathcal{N} given by left invariant vector fields forming \mathfrak{z} . Moreover

$$ilde{g} = 2 \mathrm{d} t \mathrm{d}(
ho t) + t^2 (g + rac{2 extsf{Ric}(g)}{
ho + q - 2}
ho)$$

Theorems New examples

Happy Birthday Andreas!

THANK YOU!
Ambient metrics and distributions Fefferman-Graham equations in terms of a perturbation *h* Results

Theorems New examples

Happy Birthday Andreas!

THANK YOU!

・ロト・日本・日本・日本・日本・今日・

34/34