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Standard questions in Representation Theory

A representation of a group G is a specific way to realize G by linear transformations
(symmetries) on some vector spaces.

1. Classification of elementary blocks (irreducible representations) and the
unitary dual Ĝ .

a. Sn - Partitions, Compact Lie group - Borel-Weil-Bott theorem.
b. Nilpotent Lie group - Kirillov’s Orbit method.
c. Real reductive Lie group - parabolic, cohomological induction,

Harish-Chandra theory. No general understanding of Ĝ .

2. Branching rules G ↓ G ′ :

π∣
G ′

= ∫
Ĝ ′

m(π, ν)νdµ(ν), m(π, ν) ∶ Ĝ ′ → N ∪ {∞}.

Clebsch-Gordan coefficients, Littlewood-Richardson rules, θ-correspondence,
Plancherel formulæ, Gross-Prassad conjecture, fusion rules (G = G ′ ×G ′,
G ′ ≃ diagG ′ ×G ′ and π = π1 ⊠ π2), T. Kobayashi’s ABC-program.
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Clebsch-Gordan coefficients, Littlewood-Richardson rules, θ-correspondence,
Plancherel formulæ, Gross-Prassad conjecture, fusion rules (G = G ′ ×G ′,
G ′ ≃ diagG ′ ×G ′ and π = π1 ⊠ π2), T. Kobayashi’s ABC-program.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 2

/ 35



Standard questions in Representation Theory

Control of dµ and m(π, ν) is a difficult and subtle problem. Best situation :
m(π, ν) ≤ 1 for any ν ∈ Ĝ ′.

Example 1. The Abelian compact Lie group G1 = G ′
1 = SO(2) ≃ S1 ≃ R/2πZ acts

(reducibly) on L2(S1) by (L(g)f )(h) = f (g−1h), with g ,h ∈ SO(2).
Plancherel Theorem for square integrable 2π-periodic functions says

L =∑
n∈Z

⊕
χn,

where χn ∶ G1 → C× is given by χn(e iφ) = e inφ. Uniqueness of the Fourier coeffi-
cients ⇔ m(L, χn) = 1 for every n ∈ Z (≃ Ĝ1).
Example 2. Similarly, for the Abelian noncompact Lie group G2 = G ′

2 = R we have

L ≃ ∫
⊕

R̂≃R
χλdλ,

where χλ ∶ G2 → C× is given by χλ(x) = e2iπxλ, with λ ∈ R ≃ Ĝ2.
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Abstract branching law

Example 3. G3 = G ′
3×G ′

3, where G ′
3 = SL(2,R) nonabelian, noncompact real simple

Lie group.

Ĝ ′
3 contains a discrete family {πk}k>1. The holomorphic discrete series

representations πk acts on H2
k(Π) ∶= O(Π) ∩ L2(Π, yk−2dxdy) by

(πk(g)f )) (z) = (cz + d)−k f (az + b

cz + d
) ,

where g−1 = ( a b
c d

) ∈ SL(2,R) and Π = {z = x+iy , x ∈ R, y > 0} ≃ SL(2,R)/SO(2).

Abstract branching (fusion) rule. [V. Molchanov 1979]

The branching rule for the tensor product of two holomorphic discrete series
representations of SL(2,R) is given by :

πk1 ⊗ πk2 ≃∑
a∈N

⊕
πk1+k2+2a. (1)
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Standard questions in Representation Theory

3. Give a geometric realization of irreducible representations and implement
branching rules by explicit intertwining operators in those models.

Example 1. G1 = SO(2),

L =∑
n∈Z

⊕
χn,

where χn ∶ G1 → C× is given by χn(e iφ) = e inφ.
Symmetry breaking operators :

f ↦ cn(f ) = ⟨f , χn⟩ =
1

2π ∫
2π

0
g(φ)e−inφdφ.

Symmetry breaking operators

f ↦ cn(f ) =
1

2π ∫
2π

0
g(φ)e−inφdφ = 1

2iπ ∮
f (z)
zn+1

dz = f (n)(0)
n!

= δ
(n)(f )
n!

.
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Standard questions in Representation Theory

1 Example 3. G3.

Rankin-Cohen brackets on the upper half-plane Π

RC a
k1,k2

(f1, f2)(z) =
a

∑
j=0

(−1)j (k1 + a − 1
j

)(k2 + a − 1
a − j

) f (a−j)1 (z)f (j)2 (z),

where fj ∈H2
kj
(Π), j = 1,2 and f (`)(z) ∶= ∂`f

∂zk
.

Equivariance

The RCa
k1,k2

are intertwining operators for the abstract branching rule (1), i.e.

RCa
k1,k2

(πk1(g)f1, πk2(g)f2) = πk1+k2+2a(g)RCa
k1,k2

(f1, f2).

for every a ∈ N,g ∈ SL(2,R), fj ∈H2
kj
(Π), j = 1,2.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 6

/ 35



Standard questions in Representation Theory

1 Example 3. G3.

Rankin-Cohen brackets on the upper half-plane Π

RC a
k1,k2

(f1, f2)(z) =
a

∑
j=0

(−1)j (k1 + a − 1
j

)(k2 + a − 1
a − j

) f (a−j)1 (z)f (j)2 (z),

where fj ∈H2
kj
(Π), j = 1,2 and f (`)(z) ∶= ∂`f

∂zk
.

Equivariance

The RCa
k1,k2

are intertwining operators for the abstract branching rule (1), i.e.

RCa
k1,k2

(πk1(g)f1, πk2(g)f2) = πk1+k2+2a(g)RCa
k1,k2

(f1, f2).

for every a ∈ N,g ∈ SL(2,R), fj ∈H2
kj
(Π), j = 1,2.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 6

/ 35



Standard questions in Representation Theory

1 Example 3. G3.

Rankin-Cohen brackets on the upper half-plane Π

RC a
k1,k2

(f1, f2)(z) =
a

∑
j=0

(−1)j (k1 + a − 1
j

)(k2 + a − 1
a − j

) f (a−j)1 (z)f (j)2 (z),

where fj ∈H2
kj
(Π), j = 1,2 and f (`)(z) ∶= ∂`f

∂zk
.

Equivariance

The RCa
k1,k2

are intertwining operators for the abstract branching rule (1), i.e.

RCa
k1,k2

(πk1(g)f1, πk2(g)f2) = πk1+k2+2a(g)RCa
k1,k2

(f1, f2).

for every a ∈ N,g ∈ SL(2,R), fj ∈H2
kj
(Π), j = 1,2.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 6

/ 35



Rankin-Cohen brackets-motivations

Numerous applications :

- Explicit construction of holomorphic modular forms.

- Modular and quasimodular forms (special values of L-functions, the
Ramanujan and Chazy differential equations, van der Pol and Niebur
equalities).

- Covariant quantization, noncommutative geometry, cyclic cohomology.

- Differential Geometry (conformal, parabolic geometries).

Why (−1)j (k1 + a − 1
j

)(k2 + a − 1
a − j

) ?
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Ranin-Cohen brackets

There exists several explicit constructions of RCa
k1,k2

:

- Recursions (Howe).
- Taylor coefficients for Jacobi forms (Eichler-Zagier).
- Reproducing kernels for Hilbert spaces (Zhang).
- Dual pairs correspondence (Ibukiyama).

Transvectants (Überschiebungen), Cayley Ω-process.

Notice that Rankin-Cohen operators are differential operators.

New and broader approach : F-method based on branching rules and
symmetry breaking operators for symmetric pairs, i.e.
(G ′ = Gσ = {g ∈ G ∶ σ(g) = g} for a certain involution σ of G ).
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Notice that Rankin-Cohen operators are differential operators.

New and broader approach : F-method based on branching rules and
symmetry breaking operators for symmetric pairs, i.e.
(G ′ = Gσ = {g ∈ G ∶ σ(g) = g} for a certain involution σ of G ).
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Geometric framework

G ′ ⊂ G a symmetric pair of Lie groups, p ∶ Y → X a smooth map between two
manifolds and G acts on X and G ′ acts on Y .

Let W Ð→ Y and V Ð→ X be G ′ (resp. G ) homogeneous vector bundles and
assume p is G ′-equivariant.

DiffG ′(VX ,WY ) ∶= DiffG ′(O(X ,V),O(Y ,W)).

If W = p∗V then f ↦ f ∣
Y

is a 0-th order G ′-equivariant differential operator.
If Y ⊂ X the restrictions of normal derivatives are G ′-equivariant diff. operators.
How to describe DiffG ′(VX ,WY ) ⊂ HomG ′(O(X ,V),O(Y ,W)) ?
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Black box

F-method

Algebraic Fourier Transform for generalized Verma modules.

Orbits reduction.

T-saturation for equvariant sheaves of D-modules.
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Algebraic Fourier Transform for generalized Verma modules

F-method

Let G ⊃ G ′ be a pair of real reductive Lie groups, and P ⊃ P ′ a pair of parabolic
subgroups with compatible Levi decompositions P = LN+ ⊃ P ′ = L′N ′

+ such that
L ⊃ L′ and N+ ⊃ N ′

+. Let (σλ,V ) and (τν ,W ) be finite-dimensional
representations of P and P ′ with trivial actions of N+ and N ′

+, respectively.

1 (duality) There is a natural isomorphism :

DX→Y ∶Homg′,P′(indg′

p′(W
∨), indg

p(V ∨)) ∼→ DiffG ′(VX ,WY ).

2 (extension) The restriction WZ ∣Y ≃WY with (Z = G/P ′) induces the
bijection

RestY ∶DiffG(VX ,WZ)
∼Ð→ DiffG ′(VX ,WY ).
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Algebraic Fourier Transform for generalized Verma modules

F-method

For ψ ∈ (Pol(n+)⊗V ∨)⊗W ≃ HomC(V ,W ⊗Pol(n+)), consider a system of
partial differential equations

( ̂dπ(σ,λ)∗(C)⊗ idW )ψ = 0 for allC ∈ n′+, (2)

and set

Sol(n+;σλ, τν) ∶= {ψ ∈ HomL′(V ,W ⊗Pol(n+)) ∶ ψ solves (2)} .

Then there is a natural isomorphism

Homg′,P′(indg′

p′(W
∨), indg

p(V ∨)) ∼Ð→ Sol(n+;σλ, τν).
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Algebraic Fourier Transform for generalized Verma modules

F-method (T. Kobayashi-P. 2015)

Assume that the nilradical n+ is abelian. Then, the system (2) is of second order,
and the following diagram commutes :

Sol(n+;σλ, τν)

RestY ○ Symb−1

##

DiffG (VX ,WZ )

RestY **

OO

Homg′,P′(indg′

p′
(W ∨

), indg
p(V

∨
))

DX→Z

33

DX→Y

//

Fc⊗id

88

DiffG ′(VX ,WY )
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Revealing examples : hermitian symmetric spaces

T. Kobayashi-P. 2015. Part II.

1 G/K is Hermitian sym. space.
2 dimV = 1.
3 V and W are irreducible.
4 The symmetric pair (G ,G ′) is of holomorphic type of split rank one.

That is, we consider equivariant embeddings Y ↪ X in 6 different
geometries :

1. PnC ↪ PnC × PnC 4. Grp−1(Cp+q
) ↪ Grp(Cp+q

)

2. LGr(C2n−2
) × LGr(C2

) ↪ LGr(C2n
) 5. PnC ↪ Q2nC

3. QnC ↪ Qn+1C 6. IGrn−1(C2n−2
) ↪ IGrn(C2n

)
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Revealing examples : hermitian symmetric spaces

The equivariant embeddings Y ↪ X :

1. PnC ↪ PnC × PnC 4. Grp−1(Cp+q
) ↪ Grp(Cp+q

)

2. LGr(C2n−2
) × LGr(C2

) ↪ LGr(C2n
) 5. PnC ↪ Q2nC

3. QnC ↪ Qn+1C 6. IGrn−1(C2n−2
) ↪ IGrn(C2n

)

correspond to six symmetric pairs (G ,G ′
) :

1. (U(n,1) ×U(n,1),U(n,1)) 4. (SU(p,q),S(U(1) ×U(p − 1,q))
2. (Sp(n,R),Sp(n − 1,R) × Sp(1,R)) 5. (SO(2,2n),U(n,1))
3. (SO(n,2),SO(n − 1,2)) 6. (SO∗

(2n),SO(2) × SO∗
(2n − 2))

Theorem (T. Kobayashi-P. 2015)

(1) Any G ′-intertwining operator from O(X ,Lλ) to O(Y ,W) is given by normal derivatives
with respect to the equivariant embedding Y ↪ X of type (4), (5) or (6).
(2) None of normal derivatives of positive order is a G ′-intertwining operator for Y ↪ X of type
(1), (2) and (3).
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Examples

In this situation the system of PDE on symbols of symmetry breaking operators

d̂πµ(n′+)ψ = 0

reduces, by the method of T-saturation of the underlying D-modules to the Gauss
hypergeometric equation :

(z(1 − z) d2

dz2
− (c − (a + b + 1)z) d

dz
− ab)u(z) = 0.
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Answers

Let

Cα` (t) =

[
`
2
]

∑

k=0

(−1)k
Γ(` − k + α)

Γ(α)Γ(k + 1)Γ(` − 2k + 1)
(2t)`−2k .

be the Gegenbauer polynomial.

and

Pα,β` (t) =
Γ(α + ` + 1)

Γ(α + β + ` + 1)

`

∑

m=0

(
`
m
)

Γ(α + β + ` +m + 1)

`!Γ(α +m + 1)
(
t − 1

2
)

m

.

the Jacobi polynomial.

Let

(I`C̃
µ
` ) ∶= x

`
2 Cα` (

y
√

x
) =

[
`
2
]

∑

k=0

(−1)k
Γ(` − k + α)

Γ(α)Γ(k + 1)Γ(` − 2k + 1)
(2y)`−2kxk .

(I`P
α,β
` )(x , y) ∶= y `Pα,β` (2

x

y
+ 1) .
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Answers

Let Lλ be a homogeneous line bundle and Wa
λ a homogeneous vector bundle

G τ ×P′ (Sa(nτ+)⊗Cλ).

Theorem D1 : (U(n,1) ×U(n,1), U(n,1))

The differential operator

DX→Y ,a ∶= (IaPλ
′
−1,−λ′−λ′′−2a+1

a )
⎛
⎝

n

∑
i=1

vi
∂

∂zi
,

n

∑
j=1

vj
∂

∂zj

⎞
⎠

intertwines O(Y ,L(λ′1,λ
′
2)
)⊗O(Y ,L(λ′′1 ,λ

′′
2 )
) with O(Y ,Wa

(λ′1+λ
′′
1 ,λ

′
2+λ

′′
2 )
), where

λ′1, λ
′′
1 , λ

′
2, λ

′′
2 ∈ Z, λ′ = λ′1 − λ′2, λ′′ = λ′′1 − λ′′2 , and a ∈ N.

If n = 1 one recovers the Rankin-Cohen brackets :

RCaλ′,λ′′ = (−1)aPλ
′
−1,1−λ′−λ′′−2a

a ( ∂

∂z1
,
∂

∂z2
) ∣

z1=z2=z
.
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Answers

Let Lλ be a homogeneous line bundle and Wa
λ a homogeneous vector bundle

G τ ×P′ (Sa(nτ+)⊗Cλ).

Theorem D1 : (U(n,1) ×U(n,1), U(n,1))

The differential operator

DX→Y ,a ∶= (IaPλ
′
−1,−λ′−λ′′−2a+1

a )
⎛
⎝

n

∑
i=1

vi
∂

∂zi
,

n

∑
j=1

vj
∂

∂zj

⎞
⎠

intertwines O(Y ,L(λ′1,λ
′
2)
)⊗O(Y ,L(λ′′1 ,λ

′′
2 )
) with O(Y ,Wa

(λ′1+λ
′′
1 ,λ

′
2+λ

′′
2 )
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′′
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′
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Answers

Theorem D2 : (Sp(n,R),Sp(n − 1,R) × Sp(1,R))
The differential operator

DX→Y ,a ∶= (IaCλ−1
a )

⎛
⎝ ∑

1≤i,j≤n−1

2vivj
∂2

∂zij∂znn
, ∑

1≤j≤n−1

vj
∂

∂zjn

⎞
⎠

intertwines O(X ,Lλ) and O(Y ,Wa
λ), where λ ∈ Z, a ∈ N.
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Answers

Theorem D3 : (SO(n,2),SO(n − 1,2))

The differential operator

DX→Y ,a ∶= (IaC
λ− n−1

2
a ) (−∆Cn−1 ,

∂

∂zn
)

intertwines O(X ,Lλ) and O(Y ,Lλ+a), where λ ∈ Z and a ∈ N.

It is a holomorphic version of A. Juhl’s operators.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 20

/ 35



Answers

Theorem D3 : (SO(n,2),SO(n − 1,2))

The differential operator

DX→Y ,a ∶= (IaC
λ− n−1

2
a ) (−∆Cn−1 ,

∂

∂zn
)

intertwines O(X ,Lλ) and O(Y ,Lλ+a), where λ ∈ Z and a ∈ N.

It is a holomorphic version of A. Juhl’s operators.

F-method
Workshop on Conformal geometry and Spectral Theory on the occasion of Andreas Juhl’s 60th birthday Berlin, November 12, 2016 20

/ 35



Applications

Control of multiplicities of branching rules by the dimension of the space SolJacobi(α,β, `)∩
Pol`[t]. of polynomial solutions to the Jacobi ODE :

(z(1 − z) d2

dz2
− (c − (a + b + 1)z) d

dz
− ab)u(z) = 0. (3)

Interesting phenomenon occurs even for the tensor products of Verma modules of
sl(2,R) relying on Kummer connection formulas.
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Applications in conformal geometry

Conformal Symmetry breaking operators
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F-method in Conformal geometry

Let (X ,g) be a pseudo-Riemannian manifold and a Lie group G act conformally
on X . I.e. ∃Ω ∈ C∞(G ×X ,R>0) such that

L∗hgh⋅x = Ω(h, x)2gx for allh ∈ G , x ∈ X

When X is orientable, define or ∶G×X Ð→ {±1} by or(h)(x) = 1 if (Lh)∗x ∶TxX Ð→
TLhxX is orientation-preserving, and = −1 if it is orientation-reversing. Form a

family of representations $
(i)
u,δ of G with u ∈ C and δ ∈ Z/2Z on the space E i(X )

of i-forms on X (0 ≤ i ≤ dimX )

$
(i)
u,δ(h)α ∶= or(h)δΩ(h−1, ⋅)uL∗h−1α, (h ∈ G).

We also write E i(X )u,δ for these ’conformal representations’ on i-forms.
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F-method in Conformal geometry

Let Y be an orientable submanifold s.t. g is nondegenerate on the tangent space
TyY for all y ∈ Y . Then Y is endowed with a pseudo-Riemannian structure g ∣Y ,

and we introduce representations $
(j)
v ,ε on E j(Y ) (v ∈ C, ε ∈ Z/2Z,0 ≤ j ≤ dimY )

of the group
G ′ ∶= {h ∈ G ∶ h ⋅Y = Y }

which acts conformally on (Y ,g ∣Y ).

We investigate differential operators

Di→j ∶E i(X )Ð→ E j(Y )

that intertwine the two representations $
(i)
u,δ ∣G ′ and $

(j)
v ,ε of G ′.

We say that such Di→j is a differential symmetry breaking operator and denote by
DiffG ′(E i(X )u,δ,E j(Y )v ,ε) the space of differential symmetry breaking operators.
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F-method in Conformal geometry

Problem 1

Find a necessary and sufficient condition on 6-tuple (i , j ,u, v , δ, ε) such that there
exist nontrivial differential symmetry breaking operators. More precisely,
determine the dimension of DiffG ′ (E i(X )u,δ,E j(Y )v ,ε).

Problem 2

Construct explicitly a basis of DiffG ′ (E i(X )u,δ,E j(Y )v ,ε).
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Conformal symmetry breaking operators : examples

If X = Y , G = G ′, and i = j = 0, a classical prototype of such operators is the
Yamabe operator (conformal Laplacian)

∆ + n − 2

4(n − 1)
κ ∈ DiffG(E0(X ) n

2−1,δ,E0(X ) n
2+1,δ),

where n is the dimension of the manifold X , ∆ is the Laplace–Beltrami
operator, and κ is the scalar curvature.

Higher order conformally equivariant differential operators : the Paneitz
operator (fourth order), and more generally the GJMS operators.

Analogous differential operators on forms (i = j case) were studied by
Branson.

The exterior derivative d and the codifferential d∗ also give examples of
conformally covariant operators on forms, for j = i + 1 and i − 1, respectively,
with appropriate choice of (u, v , δ, ε).
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Conformal symmetry breaking operators : examples

Let Y ≠ X and G ′ ≠ G . Then the restriction operator
RestY ∈ DiffG ′ (E i(X )u,δ,E i(Y )v ,ε) if u = v and δ ≡ ε ≡ 0 mod 2.

Another example, when Y is of codimension one in X , is
RestY ○ ιNY (X) ∈ DiffG ′ (E i(X )u,δ,E i−1(Y )v ,ε) with v = u + 1 and
δ ≡ ε ≡ 1 mod 2.

In the model space (X ,Y ) = (Sn,Sn−1), the pair (G ,G ′) of conformal
groups amounts to (O(n + 1,1),O(n,1)) modulo center, and Problems 1
and 2 have been recently solved for i = j = 0 by Juhl and Kobayashi.

The case n = 2 with (i , j) = (1,0) gives another interpretation of the
Rankin–Cohen brackets using the fact that there are natural homomorphisms

GC ∶= SL(2,C)→O(3,1),
∪ ∪

GR ∶= SL(2,R)→O(2,1),

and appropriate isomorphisms of GC-equivariant line bundles over P1C
[Kobayashi, Kubo, P. 2015].
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Conformal symmetry breaking operators : main results

(T. Kobayashi, T. Kubo-P. 2016)Solution to Problem 1 for (Sn,Sn−1
)

Let n ≥ 3. Suppose 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1, u, v ∈ C, δ, ε ∈ Z/2Z. Then the
following three conditions on 6-tuple (i , j ,u, v , δ, ε) are equivalent :

(i) DiffO(n,1)(E i(Sn)u,δ,E j(Sn−1)v ,ε) ≠ {0},

(ii) dimC DiffO(n,1)(E i(Sn)u,δ,E j(Sn−1)v ,ε) = 1,

(iii) One of the following conditions holds.

Case (I). j = i − 2, 2 ≤ i ≤ n − 1, (u, v) = (n − 2i, n − 2i + 3), δ ≡ ε ≡ 1 mod 2.

Case (I′). (i, j) = (n, n − 2), u ∈ −n − N, v = 3 − n, δ ≡ ε ≡ u + n + 1 mod 2.

Case (II). j = i − 1, 1 ≤ i ≤ n, v − u ∈ N+, δ ≡ ε ≡ v − u mod 2.

Case (III). j = i , 0 ≤ i ≤ n − 1, v − u ∈ N, δ ≡ ε ≡ v − u mod 2.

Case (IV). j = i + 1, 1 ≤ i ≤ n − 2, (u, v) = (0, 0), δ ≡ ε ≡ 0 mod 2.

Case (IV′). (i, j) = (0, 1), u ∈ −N, v = 0, δ ≡ ε ≡ u mod 2.

Case (∗I). j = n − i + 1, 2 ≤ i ≤ n − 1, u = n − 2i , v = 0, δ ≡ 1, ε ≡ 0 mod 2.

Case (∗I′). (i, j) = (n, 1), u ∈ −n − N, v = 0, δ ≡ ε + 1 ≡ u + n + 1 mod 2.

Case (∗II). j = n − i , 1 ≤ i ≤ n, v − n + n − 2i ∈ N, δ ≡ ε + 1 ≡ v − u + n + 1 mod 2.

Case (∗III). j = n − i − 1, 0 ≤ i ≤ n − 1, v − u + n − 2i − 1 ∈ N, δ ≡ ε + 1 ≡ v − u + n + 1 mod 2.

Case (∗IV). j = n − i − 2, 1 ≤ i ≤ n − 2, (u, v) = (0, 2i − n + 3), δ ≡ 0, ε ≡ 1 mod 2.

Case (∗IV′). (i, j) = (0, n − 2), u ∈ −N, v = 3 − n, δ ≡ ε + 1 ≡ u mod 2.
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Conformal symmetry breaking operators : main results

Recall

(I`C̃µ` )(x , y) ∶= x
`
2 C̃µ` ( y√

x
)

and define a family of A. Juhl’s scalar-valued differential operators on Rn of order
`

Dµ` ∶= (I`C̃µ` ) (−∆Rn−1 ,
∂

∂xn
) .

For instance,

Dµ0 = 1,

Dµ1 = 2
∂

∂xn
,

Dµ2 = ∆Rn−1 + 2(µ + 1) ∂
2

∂x2
n

,

Dµ3 = 2∆Rn−1

∂

∂xn
+ 4

3
(µ + 2) ∂

3

∂x3
n

,⋯
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Conformal symmetry breaking operators : main results

Thus Di→i−1
u,a ∶E i(Rn)→ E i−1(Rn−1) with u ∈ C, a ∈ N is given by

Di→i−1
u,a ∶=Restxn=0 ○ (−Dµ+1

a−2 dRnd∗Rn ι ∂
∂xn

− γ(µ, a)Dµ+1
a−1 d

∗
Rn +

1

2
(u + 2i − n)Dµa ι ∂

∂xn
)

= Restxn=0 ○ (−Dµ+1
a−2 d

∗
Rn ι ∂

∂xn
dRn + 1

2
(u + 2i − n + a)Dµa ι ∂

∂xn
)

− γ(µ − 1

2
, a)d∗Rn−1 ○Restxn=0 ○Dµa−1,

where γ(µ, a) ∶= Γ(µ+1+[ a
2 ])

Γ(µ+[ a+1
2 ])

= { [l]1 if a is odd,
µ + a

2
if a is even.

Relaies on a finite hierarchy of Fuchsian ODEs coming from the analysis of matrix-
valued diff. operators of degree 2

d̂πσ,λ(Y ) = S +V

where V is a scalar-valued diff.op. of second order depending only on λ and V a
matrix-valued diff.op. of first order.
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Conformal symmetry breaking operators : main results

Examples :

D1→0
u,a = Restxn=0 ○ (−γ(u −

n − 3

2
, a)Du− n−5

2

a−1 d∗Rn +
1

2
(u + 2 − n)Du− n−3

2
a ι ∂

∂xn
) ,

Dn→n−1
u,a = 1

2
(u + n + a)Restxn=0 ○D

u+ n+1
2

a ι ∂
∂xn
,

Di→i−1
u,0 = 1

2
(u + 2i − n)Restxn=0 ○ ι ∂

∂xn
,

Di→i−1
u,1 = Restxn=0 ○ (−d∗Rn + (u + 2i − n) ∂

∂xn
ι ∂
∂xn

) ,

Di→i−1
u,2 = Restxn=0 ○D,

where D = (−dRnd∗Rn + 1
2
(u + 2i − n) (∆Rn−1 + (n + 2i + 5) ∂

2

∂x2
n
)) ι ∂

∂xn
− (2u − n+ 2i +

3) ∂
∂xn

d∗Rn .
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Conformal symmetry breaking operators : factorization
identities

It may happen :

E i(X )u,δ
DX→Y //

&&

E j(Y )v ,ε

TY

��
E i

′

(X )u′,δ′

TX

OO 88

E j
′

(Y )v ′,ε′

(1) Di→i−1
u+2`,a ○ T

(i)
2` = −(n

2
− i − `)K`,aDi→i−1

u,a+2` if i ≠ 0.

(2) Di→i
u+2`,a ○ T

(i)
2` = −(n

2
− i + `)K`,aDi→i

u,a+2` if i ≠ n.

with K`,a ∶=∏`k=1 ([ a2] + k) .
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Conformal symmetry breaking operators : factorization
identities

In some specific cases

(1) Di+1→i
0,a ○ d = γ(i + 1 − n

2
, a)Di→i

0,a+1, 0 ≤ i ≤ n − 1, δ ≡ a + 1 mod 2.

(2) Di+1→i+1
0,a ○ d = 0, 0 ≤ i ≤ n − 1, δ ≡ 0 mod 2.

(3) Di−1→i−1
n−2i+2,a ○ d∗ = −γ(−i + 1 + n

2
, a)Di→i−1

n−2i,a+1, 1 ≤ i ≤ n, δ ≡ a mod 2.

(4) Di−1→i−2
n−2i+2,a ○ d∗ = 0, 2 ≤ i ≤ n, δ ≡ 1 mod 2.
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Thank you !
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