Calculus on symplectic and conformal Fedosov manifolds

Jan Slovák
joint work with Michael Eastwood

11 October, 2016
Humboldt University, Berlin
The structure of the lecture

1. Motivation and links
2. Calculus on CSM
3. Conformally Fedosov
4. Curvature
5. Tractor Connection
6. BGG sequences
<table>
<thead>
<tr>
<th></th>
<th>Motivation and links</th>
<th>Calculus on CSM</th>
<th>Conformally Fedosov</th>
<th>Curvature</th>
<th>Tractor Connection</th>
<th>BGG sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation and links</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Calculus on CSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Conformally Fedosov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Curvature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tractor Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BGG sequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After years, we published the preprint:

and the project continues.
Eastwood, M.; Goldschmidt, H., Zero-energy fields on complex projective space. J. Differential Geom. 94 (2013), pp. 129-157. \(\mathbb{CP}_n\) comes with nice structures:

<table>
<thead>
<tr>
<th>Riemannian</th>
<th>(g_{ab})</th>
<th>Fubini-Study metric</th>
<th>(g_{ab} = J_a^c J_{bc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex</td>
<td>(J_a^b)</td>
<td>complex structure</td>
<td>(J_a^b = g^{bc} J_{ac})</td>
</tr>
<tr>
<td>symplectic</td>
<td>(J_{ab})</td>
<td>Kähler form</td>
<td>(J_{ab} = J_a^c g_{bc})</td>
</tr>
</tbody>
</table>

- symplectic form and Levi Civita connection are nicely linked.
- Special complexes of operators allow for strong theorems.
- The complexes are longer than the usual de Rahm complex.
- The \(\mathbb{CP}_n\) seems to be the only Kähler manifold with the Ricci type holonomy (as symplectic manifold), cf. Proposition 4.3 in the paper on the c-projective geometry by Calderbank et al, http://arxiv.org/pdf/1512.04516v1.pdf.
Čap – Salač

- Contact manifold $M^\#$ together with a transversal infinitesimal automorphism ξ provides a conformally symplectic structure on the quotient M.
- The Rumin complex on $M^\#$ can be pushed down to M.
- Similarly to the parabolic tractor calcul, we would like to couple this complex with non-trivial representations.
Čap – Salač

- Contact manifold $M_\#$ together with a transversal infinitesimal automorphism ξ provides a conformally symplectic structure on the quotient M.
- The Rumin complex on $M_\#$ can be pushed down to M.
- Similarly to the parabolic tractor calcul, we would like to couple this complex with non-trivial representations.

A lot of nice development in recent papers by Čap and Salač:
1. Motivation and links

2. Calculus on CSM

3. Conformally Fedosov

4. Curvature

5. Tractor Connection

6. BGG sequences
Conformally symplectic manifolds

A *conformally symplectic* manifold is an even-dimensional manifold M of dimension at least four equipped with a non-degenerate 2-form J such that

$$dJ = 2\alpha \wedge J$$

for some closed 1-form α. It is called the *Lee form* and it is automatically closed in dimensions $m \geq 6$.
Conformally symplectic manifolds

A *conformally symplectic* manifold is an even-dimensional manifold M of dimension at least four equipped with a non-degenerate 2-form J such that

$$dJ = 2\alpha \wedge J$$

for some closed 1-form α. It is called the *Lee form* and it is automatically closed in dimensions $m \geq 6$.

If we rescale $\hat{J} = \Omega^2 J$ by a positive smooth function, then the existence of the Lee form remains valid with α replaced by $\hat{\alpha} = \alpha + \Upsilon$ for $\Upsilon \equiv d \log \Omega$.

Definition (Reformulation)

A *conformally symplectic* manifold is a pair $(M, [J])$ where $[J]$ is an equivalence class of non-degenerate 2-forms with existing Lee forms, where J and \hat{J} are said to be equivalent if and only if $\hat{J} = \Omega^2 J$ for some positive smooth function Ω.
we say that a connection ∇_a on a given smooth vector bundle E over a conformally symplectic manifold $(M, [J])$ is \textit{symplectically flat} if and only if

$$(\nabla_a \nabla_b - \nabla_b \nabla_a)\sigma = 2J_{ab}\Theta\sigma$$

for some endomorphism Θ of E.

(As usual, one chooses an arbitrary torsion-free connection on Λ^1 to define the left hand side, which then does not depend on this choice.)

Evidently, if J_{ab} is replaced by $\hat{J}_{ab} = \Omega^2 J_{ab}$, then symplectic flatness persists with Θ replaced by $\hat{\Theta} = \Omega^{-2}\Theta$.
There are several ways to find the elliptic complex

\[0 \rightarrow \Lambda^0 \xrightarrow{d-2\alpha} \Lambda^1 \rightarrow \Lambda^2_\perp \rightarrow \Lambda^3_\perp \rightarrow \cdots \rightarrow \Lambda^n_\perp \]

\[0 \leftarrow \Lambda^0 \leftarrow \Lambda^1 \leftarrow \Lambda^2_\perp \leftarrow \Lambda^3_\perp \leftarrow \cdots \leftarrow \Lambda^n_\perp \]

on a conformally symplectic manifold, where all operators are first order except for the middle operator, which is second order.
(Here \(\Lambda^k_\perp \) denotes the bundle of \(k \)-forms that are trace-free with respect to \(J \).)

Notice, the length of such a complex is by one longer than that of the de Rham complex.

For symplectically flat connections \(\nabla_a \) on \(E \), our first aim is to construct a version of the above complex coupled to \(E \).
The operator

\[D_a = \nabla_a - 2\alpha_a : E \to \Lambda^1 \otimes E \]

is a connection whose curvature is again

\[(D_a D_b - D_b D_a)\sigma = (\nabla_a \nabla_b - \nabla_b \nabla_a)\sigma = 2J_{ab} \Theta \sigma. \]

and it is quite clear how to continue:

\[E \xrightarrow{\nabla - 2\alpha \otimes \text{Id}} \Lambda^1 \otimes E \xrightarrow{} \Lambda^2_{\perp} \otimes E, \]

where \(\Gamma(\Lambda^1 \otimes E) \ni \varphi_a \mapsto \nabla_{[a} \varphi_{b]} - 2\alpha_{[a} \varphi_{b]} \mod J_{ab} \).
Lemma

The endomorphism $\Theta : E \to E$ has constant rank.

Proof.

We may choose an auxiliary connection on M and fix J to be covariantly constant. Then the Bianchi identity for ∇_a implies

$$0 = \nabla_a [J_{bc} \Theta] = J_{[bc} \nabla_a] \Theta.$$

Thus we may consider the bundles $\ker \Theta$ and $\coker \Theta = E/\operatorname{im} \Theta$. Remarkably, the connection D_a provides a flat connection on both. We shall write $\ker \Theta$ and $\coker \Theta$ for the sheaf of germs of covariantly constant sections of the bundles, respectively.
Lemma

There is a natural elliptic complex:

\[\begin{array}{ccccccc}
E & \xrightarrow{D} & \Lambda^1 \otimes E & \xrightarrow{D} & \Lambda^2 \otimes E & \xrightarrow{D} & \Lambda^3 \otimes E & \xrightarrow{D} & \Lambda^4 \otimes E \\
\oplus & & \oplus & & \oplus & & \oplus \\
E & \xrightarrow{\otimes} & \Lambda^1 \otimes E & \xrightarrow{\otimes} & \Lambda^2 \otimes E & \xrightarrow{\otimes} & \Lambda^3 \otimes E & \xrightarrow{\otimes} & \Lambda^4 \otimes E \\
\end{array} \]

where the differentials are given by

\[
\begin{align*}
\sigma &\mapsto \begin{bmatrix}
D\sigma \\
\Theta\sigma
\end{bmatrix} \\
\varphi &\mapsto \begin{bmatrix}
D\varphi - J \otimes \eta \\
D\eta - \Theta\varphi
\end{bmatrix} \\
\omega &\mapsto \begin{bmatrix}
D\omega + J \wedge \psi \\
D\psi + \Theta\omega
\end{bmatrix}
\end{align*}
\]

It is locally exact, except for the zeroth and first cohomologies which may be identified with \(\ker \Theta \) and \(\text{coker} \Theta \), respectively.
Suppose \((M, [J])\) is a conformally symplectic manifold and \(\nabla_a\) is a symplectically flat connection on a vector bundle \(E\) over \(M\). Choose \(J_{ab} \in [J]\) and define \(\Theta : E \to E\) by means of (2). Then there is a natural elliptic complex

\[
\begin{array}{ccccccc}
0 & \to & E & \to & \Lambda^1 \otimes E & \to & \Lambda^2_{\perp} \otimes E & \to & \cdots & \to & \Lambda^n_{\perp} \otimes E \\
0 & \leftarrow & E & \leftarrow & \Lambda^1 \otimes E & \leftarrow & \Lambda^2_{\perp} \otimes E & \leftarrow & \cdots & \leftarrow & \Lambda^n_{\perp} \otimes E
\end{array}
\]

where all operators are first order save for the middle operator, which is second order. This differential complex is locally exact save for its zeroth and first cohomologies, which may be identified with \(\text{ker} \Theta\) and \(\text{coker} \Theta\), respectively.
short proof

Rearranging the complex from the main Lemma as

$$
E \rightarrow \Lambda^1 \otimes E \rightarrow \Lambda^2 \otimes E \rightarrow \Lambda^3 \otimes E \rightarrow \Lambda^4 \otimes E \rightarrow \cdots
$$

one sees a filtered complex, the spectral sequence of which has as its E_1-level

$$
E \rightarrow \Lambda^1 \otimes E \rightarrow \Lambda^2 \otimes E \rightarrow \cdots \rightarrow \Lambda^n \otimes E \rightarrow 0
$$

$$
0 \rightarrow \Lambda^1 \otimes E \rightarrow \cdots \rightarrow \Lambda^n \otimes E \rightarrow \Lambda^2 \otimes E \rightarrow \Lambda^1 \otimes E \rightarrow E.
$$

Passing to the E_2-level constructs the requested complex and main Lemma gives its cohomology.
1. Motivation and links
2. Calculus on CSM
3. Conformally Fedosov
4. Curvature
5. Tractor Connection
6. BGG sequences
A *projective structure* on a manifold M is an equivalence class of torsion-free affine connections on M, where two connections ∇_a and $\hat{\nabla}_a$ are said to be projectively equivalent if and only if

$$\hat{\nabla}_a \phi_b = \nabla_a \phi - \nu_a \phi_b - \nu_b \phi_a$$

for some 1-form ν_a.
A *projective structure* on a manifold M is an equivalence class of torsion-free affine connections on M, where two connections ∇_a and $\hat{\nabla}_a$ are said to be projectively equivalent if and only if

$$\hat{\nabla}_a \varphi_b = \nabla_a \varphi - \nu_a \varphi_b - \nu_b \varphi_a$$

for some 1-form ν_a. If J_{ab} is skew, then $\hat{\nabla}_{(aJ_b)c} = \nabla_{(aJ_b)c} - 3\nu_{(aJ_b)c}$.

Lemma

If J_{ab} is skew, then the requirement that

$$\nabla_{(aJ_b)c} = \beta_{(aJ_b)c}$$

for some 1-form β_a is projectively invariant.
The first version of Conformally Fedosov

For torsion-free ∇ on a conformally symplectic manifold $(M, [J])$ we get $\nabla_{[aJ_{bc}]} = 2\alpha_{[aJ_{bc}]}$. Let us insist on $\nabla_{(aJ_{b})c} = \beta_{(aJ_{b})c}$.
The first version of Conformally Fedosov

For torsion-free ∇ on a conformally symplectic manifold $(M, [J])$ we get $\nabla_{[aJ_{bc}]} = 2\alpha_{[aJ_{bc}]}$. Let us insist on $\nabla_{(aJ_{b})_c} = \beta_{(aJ_{b})_c}$.

A conformally Fedosov manifold is a triple $(M, [J], [\nabla])$ where

- M is a smooth manifold of dimension $2n \geq 4$,
- $[J]$ is an equivalence class of non-degenerate 2-forms defined up to rescaling $J \mapsto \hat{J} = \Omega^2 J$ for some positive function Ω,
- $[\nabla]$ is a projective structure, i.e. an equivalence class of torsion-free connections defined up to projective change for some 1-form ν_a,
- the following equations hold

\[\nabla_{[aJ_{bc}]} = 2\alpha_{[aJ_{bc}]} \quad \nabla_{[a\alpha_b]} = 0 \quad \nabla_{(aJ_{b})_c} = \beta_{(aJ_{b})_c} \quad (1) \]

for some 1-forms α_a and β_a.
Lemma

Let \((\mathcal{M}, [J], [\nabla])\) be a conformally Fedosov manifold. Any representatives \(J_{ab}\) and \(\nabla_a\) of the structure uniquely determine the 1-forms \(\alpha_a\) and \(\beta_a\) and, conversely,

\[
\nabla_a J_{bc} = 2\alpha_{[a}J_{bc]} + \frac{2}{3}\beta_{(a}J_{b)c} - \frac{2}{3}\beta_{(a}J_{c)b}
\]

(2)
determines the full covariant derivative \(\nabla_a J_{bc}\).

Lemma

For any conformally Fedosov manifold \((\mathcal{M}, [J], [\nabla])\), if a representative 2-form \(J_{ab}\) is chosen, then there is a unique torsion-free connection in the projective class such that

\[
\nabla_a J_{bc} = 2J_{a[b}\alpha_{c]}.
\]

(3)
An alternative definition of a conformally Fedosov manifold is as follows. Firstly, define an equivalence relation on pairs \((J, \nabla)\) consisting of a non-degenerate symplectic form \(J_{ab}\) and a torsion-free connection \(\nabla_a\) by allowing simultaneous replacements

\[
\begin{align*}
J_{ab} & \mapsto \hat{J}_{ab} = \Omega^2 J_{ab} \\
\nabla_a \phi_b & \mapsto \hat{\nabla}_a \phi_b = \nabla_a \phi_b - \gamma_a \phi_b - \gamma_b \phi_a,
\end{align*}
\]

(4)

where \(\gamma_a = \nabla_a \log \Omega\).
An alternative definition of a conformally Fedosov manifold is as follows. Firstly, define an equivalence relation on pairs \((J, \nabla)\) consisting of a non-degenerate symplectic form \(J_{ab}\) and a torsion-free connection \(\nabla_a\) by allowing simultaneous replacements

\[
J_{ab} \mapsto \hat{J}_{ab} = \Omega^2 J_{ab}
\]

\[
\nabla_a \varphi_b \mapsto \hat{\nabla}_a \varphi_b = \nabla_a \varphi_b - \gamma_a \varphi_b - \gamma_b \varphi_a,
\]

where \(\gamma_a = \nabla_a \log \Omega\).

Definition

Writing \([J, \nabla]\) for the equivalence class of such pairs, a conformally Fedosov manifold may then be defined as a pair \((M, [J, \nabla])\) such that

\[
\nabla_a J_{bc} = 2J_a[b \alpha_c]
\]

holds.

We can check directly that (3) is invariant under (4) if one decrees that \(\alpha_a \mapsto \hat{\alpha}_a = \alpha_a + \gamma_a\).
Any conformally symplectic manifold \((M, [J])\) can be extended to a conformally Fedosov structure \((M, [J, \nabla])\).
Remarks

Any conformally symplectic manifold \((M, [J])\) can be extended to a conformally Fedosov structure \((M, [J, \nabla])\). Equation (3) is equivalent to

\[
\nabla_a J^{bc} = 2\alpha^a [b \delta^c_a],
\]

where \(\alpha^a \equiv J^{bc} \alpha_c\).

As a corollary we see, that a projective structure \([\nabla]\) cannot necessarily be extended to a conformally Fedosov structure. Indeed, the equation (5) hold for some vector field \(\alpha^a\) is equivalent to requiring that

\[
\text{the trace-free part of } (\nabla_a J^{bc}) = 0,
\]

which is a system of finite type. Hence, there are obstructions to its solution (and writing it as (5) is the first step in its prolongation).
1 Motivation and links
2 Calculus on CSM
3 Conformally Fedosov
4 Curvature
5 Tractor Connection
6 BGG sequences
Choosing any representatives for $(M, [J, \nabla])$, the curvature $R_{ab}{}^c{}_d$ of ∇_a may be uniquely written as

$$R_{ab}{}^c{}_d = W_{ab}{}^c{}_d + \delta^c_a P_{bd} - \delta^c_b P_{ad},$$

where P_{ab} is a symmetric tensor and $W_{ab}{}^c{}_d$ satisfies

$$W_{ab}{}^c{}_d = W_{[ab]}{}^c{}_d \quad W_{[ab}{}^c{}_d] = 0 \quad W_{ab}{}^a{}_d = 0.$$

Under conformal rescaling (4), the tensor $W_{ab}{}^c{}_d$ is unchanged whilst

$$\hat{P}_{ab} = P_{ab} - \nabla_a \gamma_b + \gamma_a \gamma_b.$$
Choosing any representatives for \((M, [J, \nabla])\), the curvature \(R^{c}_{ab d}\) of \(\nabla\) may be uniquely written as

\[
R^{c}_{ab d} = W^{c}_{ab d} + \delta^{c}_{a}P_{bd} - \delta^{c}_{b}P_{ad},
\]

where \(P_{ab}\) is a symmetric tensor and \(W^{c}_{ab d}\) satisfies

\[
W^{c}_{ab d} = W_{[ab]}^{c d} \quad W_{[ab] d} = 0 \quad W_{ab}^{a d} = 0.
\]

Under conformal rescaling (4), the tensor \(W^{c}_{ab d}\) is unchanged whilst

\[
\hat{P}_{ab} = P_{ab} - \nabla_{a} \gamma_{b} + \gamma_{a} \gamma_{b}.
\]

Furthermore, the tensor \(W_{abcd}\) may be uniquely decomposed as

\[
W_{abcd} = V_{abcd} - \frac{3}{2n-1} J_{ac} \Phi_{bd} + \frac{3}{2n-1} J_{bc} \Phi_{ad} + J_{ad} \Phi_{bc} - J_{bd} \Phi_{ac} + 2J_{ab} \Phi_{cd},
\]

where

\[
V_{abcd} = V_{[ab](cd)} \quad V_{[abc]d} = 0 \quad J^{ab} V_{abcd} = 0
\]

and \(\Phi_{ab}\) is symmetric.
The curvature of \mathbb{CP}^n with its standard Fubini-Study metric is given by

$$R_{abcd} = g_{bd}J_{ac} - g_{ad}J_{bc} - g_{ac}J_{bd} + g_{bc}J_{ad} + 2J_{ab}g_{cd}$$

and one easily computes that

$$P_{ab} = \frac{2(n+1)}{2n-1} g_{ab} \quad \Phi_{ab} = g_{ab} \quad V_{abcd} = 0.$$
Fedosov gauge

It is often convenient locally to work in a gauge in which $\alpha_a = 0$ for then $\nabla_a J_{bc} = 0$ and the curvature R_{abcd} decomposes in a more simple way into three components $\text{Sp}(2n, \mathbb{R})$-irreducible parts,

$$V_{abcd} \in \begin{array}{llll} 2 & 1 & 0 & \cdots \end{array} \Phi_{ab} \in \begin{array}{llll} 2 & 0 & 0 & \cdots \end{array} \quad P_{ab} \in \begin{array}{llll} 2 & 0 & 0 & \cdots \end{array}$$

according to

$$R_{abcd} = V_{abcd} + 2J_{ab} \Phi_{cd} - 2\Phi_{c[a} J_{b]d} + \frac{6}{2n-1} J_{c[a} \Phi_{b]d} - 2J_{c[a} P_{b]d}$$

with

$$(2n - 1)P_{ab} = 2(n + 1)\Phi_{ab}.$$
Fedosov gauge

It is often convenient locally to work in a gauge in which $\alpha_a = 0$ for then $\nabla_a J_{bc} = 0$ and the curvature R_{abcd} decomposes in a more simple way into three components $\text{Sp}(2n, \mathbb{R})$-irreducible parts,

$$V_{abcd} \in \begin{array}{cccc} 2 & 1 & 0 & \ldots \end{array} \Phi_{ab} \in \begin{array}{cccc} 2 & 0 & 0 & \ldots \end{array} P_{ab} \in \begin{array}{cccc} 2 & 0 & 0 & \ldots \end{array}$$

according to

$$R_{abcd} = V_{abcd} + 2J_{ab}\Phi_{cd} - 2\Phi_{c[a}J_{b]d} + \frac{6}{2n-1}J_{c[a}\Phi_{b]d} - 2J_{c[a}P_{b]d}$$

with

$$(2n-1)P_{ab} = 2(n+1)\Phi_{ab}.$$

We shall refer to a choice of pair (J_{ab}, ∇_a) from a conformally Fedosov structure $[J_{ab}, \nabla_a]$ for which $\nabla_a J_{bc} = 0$ as a Fedosov gauge. This is in accordance with the notion of Fedosov manifold.
Kähler case

Now, the Fedosov gauge ∇_a is the Levi-Civita connection of a metric g_{ab} and $J^b_a \equiv J_{ac}g^{bc}$ is an almost complex structure on M whose integrability is equivalent to the vanishing of $\nabla_a J_{bc}$. The curvature decomposes as follows:

$$R_{ab}{}^c{}_d = U_{ab}{}^c{}_d + \ldots$$

where indices have been raised using g^{ab} and $U_{ab}{}^c{}_d$ is totally trace-free with respect to g^{ab}, $J_{a}{}^{b}$, and J^{ab}.
Kähler case

Now, the Fedosov gauge ∇_a is the Levi-Civita connection of a metric g_{ab} and $J^a_b = J_{ac}g^{bc}$ is an almost complex structure on M whose integrability is equivalent to the vanishing of $\nabla_a J_{bc}$. The curvature decomposes as follows:

$$
R_{ab}{}^c{}_d = U_{ab}{}^c{}_d \\
+ \delta_a{}^c\Xi_{bd} - \delta_b{}^c\Xi_{ad} - g_{ad}\Xi_b{}^c + g_{bd}\Xi_a{}^c \\
+ \\
+
$$

where indices have been raised using g^{ab} and

- $U_{ab}{}^c{}_d$ is totally trace-free with respect to g^{ab}, J^a_b, and J^{ab},
- Ξ_{ab} is trace-free symmetric
Now, the Fedosov gauge ∇_a is the Levi-Civita connection of a metric g_{ab} and $J_a^b \equiv J_{ac}g^{bc}$ is an almost complex structure on M whose integrability is equivalent to the vanishing of $\nabla_a J_{bc}$.

The curvature decomposes as follows:

$$R_{ab}^\ c\ d = U_{ab}^\ c\ d$$
$$+ \delta_a^\ c\ \Xi_{bd} - \delta_b^\ c\ \Xi_{ad} - g_{ad}\Xi^\ c_b + g_{bd}\Xi^\ c_a$$
$$+ J_a^\ c\Sigma_{bd} - J_b^\ c\Sigma_{ad} - J_{ad}\Sigma^\ c_b + J_{bd}\Sigma^\ c_a + 2J_{ab}\Sigma^\ c_d + 2J^\ c_d\Sigma_{ab} +$$

where indices have been raised using g^{ab} and
- $U_{ab}^\ c\ d$ is totally trace-free with respect to g^{ab}, J_{ab}, and J^{ab},
- Ξ_{ab} is trace-free symmetric
- $\Sigma_{ab} \equiv J_a^\ c\Xi_{bc}$ is skew.
Kähler case

Now, the Fedosov gauge ∇_a is the Levi-Civita connection of a metric g_{ab} and $J^a_b \equiv J_{ac}g^{bc}$ is an almost complex structure on M whose integrability is equivalent to the vanishing of $\nabla_a J_{bc}$.

The curvature decomposes as follows:

$$R_{ab}{}^c{}_d = U_{ab}{}^c{}_d + \delta_b{}^c{}^{ad} - \delta_a{}^c{}^{bd} - g_{ad}\Xi^{bc} + g_{bd}\Xi^a{}_c$$

$$+ J_a{}^c{}^{bd} - J_b{}^c{}^{ad} - J_{ad}\Sigma^{bc} + J_{bd}\Sigma^a{}_c + 2J_{ab}\Sigma^c{}_d + 2J^c{}^d\Sigma_{ab}$$

$$+ \Lambda(\delta_a{}^c{}^{bd} - \delta_b{}^c{}^{ad} + J_a{}^c{}^{bd} - J_b{}^c{}^{ad} + 2J_{ab}J^c{}^d),$$

where indices have been raised using g^{ab} and

- $U_{ab}{}^c{}_d$ is totally trace-free with respect to g^{ab}, J^a_b, and J^{ab},
- Ξ_{ab} is trace-free symmetric
- $\Sigma_{ab} \equiv J_a{}^c{}^{bc}$ is skew.
Consequently,

\[R_{bd} \equiv R_{ab}^a d = 2(n + 2)\Xi_{bd} + 2(n + 1)\Lambda g_{bd} \]

\[\Phi_{ab} = \frac{n+2}{n+1} \Xi_{ab} + \Lambda g_{ab}. \]

\[J_c^a R_{ab}^c d = J_c^a V_{ab}^c d - J_{bd} \Phi_a^a - 2J_b^a \Phi_{da} \]

\[= J_c^a V_{ab}^c d - 2\frac{n+2}{n+1} \Sigma_{bd} - 2(n + 1)\Lambda J_{bd}. \]

\[J_c^a V_{ab}^c d - 2\frac{n+2}{n+1} \Sigma_{bd} = -2(n + 2)\Sigma_{bd} \]

and we have established:

Lemma

Concerning the symplectic curvature decomposition on a Kähler manifold,

\[J_c^a V_{ab}^c d = -2 \frac{n(n+2)}{n+1} \Sigma_{bd}. \]
1. Motivation and links
2. Calculus on CSM
3. Conformally Fedosov
4. Curvature
5. Tractor Connection
6. BGG sequences
The standard tractor bundle \mathbb{T} on a conformal Riemannian manifold is defined in the presence of a chosen metric g_{ab} to be the direct sum

$$\mathbb{T} = \Lambda^0[1] \oplus \Lambda^1[1] \oplus \Lambda^0[-1]$$

but if the metric is rescaled as $\hat{g}_{ab} = \Omega^2 g_{ab}$, then this decomposition is mandated to change according to

$$\begin{bmatrix} \hat{\sigma} \\ \hat{\mu}_b \\ \hat{\rho} \end{bmatrix} = \begin{bmatrix} \sigma \\ \mu_b + \gamma_b \sigma \\ \rho - \gamma^b \mu_b - \frac{1}{2} \gamma^b \gamma_b \sigma \end{bmatrix}, \text{ where } \gamma_a \equiv \nabla_a \log \Omega.$$
For a chosen metric g_{ab} in the conformal class, the tractor connection can be computed or defined by

$$\nabla_a \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_a \sigma - \mu_a \\ \nabla_a \mu_b + g_{ab} \rho + P_{ab} \sigma \\ \nabla_a \rho - P_a {}^b \mu_b \end{bmatrix},$$

where $\nabla_a \mu_b$ is the Levi-Civita connection of g_{ab}.
For a chosen metric g_{ab} in the conformal class, the \textit{tractor connection} can be computed or defined by

$$\nabla_a \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_a \sigma - \mu_a \\ \nabla_a \mu_b + g_{ab} \rho + P_{ab} \sigma \\ \nabla_a \rho - P_a {^b} \mu_b \end{bmatrix},$$

where $\nabla_a \mu_b$ is the Levi-Civita connection of g_{ab}.

We shall proceed analogously for the conformally Fedosov manifolds now.
For chosen representatives, the vector bundle T is defined as

$$T = \Lambda^0[1] \oplus \Lambda^1[1] \oplus \Lambda^0[-1]$$

but this splitting is decreed to change as

$$\begin{bmatrix} \hat{\sigma} \\ \hat{\mu}_b \\ \hat{\rho} \end{bmatrix} = \begin{bmatrix} \sigma \\ \mu_b + \gamma_b \sigma \\ \rho - \gamma^b \mu_b + \gamma^b \alpha_b \sigma \end{bmatrix}$$

under (4), where α_a is defined by (3). A direct check reveals that this decree is self-consistent.
There is a non-degenerate skew form defined on \mathbb{T} by

$$\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}. \quad (7)$$
There is a non-degenerate skew form defined on \mathbb{T} by

$$
\left\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \right\rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}. \quad (7)
$$

Let us first consider the connection D_a on \mathbb{T} defined by

$$
D_a \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_a \sigma - \mu_a \\ \nabla_a \mu_b - J_{a b} \rho + P_{a b} \sigma \\ \nabla_a \rho - P_a^b \mu_b \end{bmatrix}.
$$
There is a non-degenerate skew form defined on \mathbb{T} by

$$\left\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \right\rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}. \quad (7)$$

Let us first consider the connection D_a on \mathbb{T} defined by

$$D_a \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_a \sigma - \mu_a \\ \nabla_a \mu_b - J_{ab} \rho + P_{ab} \sigma - J_{ab} \alpha^c \mu_c \\ \nabla_a \rho - P_a^b \mu_b - \alpha^b (2P_{ab} + \nabla_a \alpha_b) \sigma \end{bmatrix}.$$

This connection is well-defined, i.e. is independent of choice of representatives (J_{ab}, ∇_a), and preserves the skew form (7). (The check is straightforward but quite tedious.)
Improving the tractor connection

The following two homomorphisms \(T \rightarrow \Lambda^1 \otimes T \)

\[
\begin{bmatrix}
\sigma \\
\mu_b \\
\rho
\end{bmatrix} \mapsto
\begin{bmatrix}
0 \\
\Phi_{ab}\sigma \\
\Phi_{ab}\mu^b + 2(\nabla^b\Phi_{ab})\sigma
\end{bmatrix}
\text{ or }
\begin{bmatrix}
0 \\
0 \\
(\nabla^b\Phi_{ab} + \alpha^a\Phi_{ab})\sigma
\end{bmatrix}
\]

are invariantly defined.
Improving the tractor connection

The following two homomorphisms $T \rightarrow \Lambda^1 \otimes T$

$$\begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ \Phi_{ab} \sigma \\ \Phi_{ab} \mu^b + 2(\nabla^b \Phi_{ab})\sigma \end{bmatrix} \text{ or } \begin{bmatrix} 0 \\ 0 \\ (\nabla^b \Phi_{ab} + \alpha^a \Phi_{ab})\sigma \end{bmatrix}$$

are invariantly defined.

Thus we can change the connection D_a by appropriate multiples of these. The *tractor connection* on T is defined by

$$\nabla_a \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} \equiv \begin{bmatrix} \nabla_a \sigma - \mu_a \\ \nabla_a \mu_b - J_{ab} \rho + P_{ab} \sigma - \frac{3}{2n-1} \Phi_{ab} \sigma \\ \nabla_a \rho + P_{ab} \mu^b - \frac{3}{2n-1} \Phi_{ab} \mu^b - \frac{1}{2n+1}(\nabla^b \Phi_{ab})\sigma \end{bmatrix}$$
Improving the tractor connection

The following two homomorphisms $\mathbb{T} \to \Lambda^1 \otimes \mathbb{T}$

$$
\begin{bmatrix}
\sigma \\
\mu_b \\
\rho
\end{bmatrix}
\mapsto
\begin{bmatrix}
0 \\
\Phi_{ab}\sigma \\
\Phi_{ab}\mu^b + 2(\nabla^b\Phi_{ab})\sigma
\end{bmatrix}
$$
or

$$
\begin{bmatrix}
0 \\
0 \\
(\nabla^b\Phi_{ab} + \alpha^a\Phi_{ab})\sigma
\end{bmatrix}
$$

are invariably defined.

Thus we can change the connection D_a by appropriate multiples of these. The *tractor connection* on \mathbb{T} is defined by

$$
\nabla_a
\begin{bmatrix}
\sigma \\
\mu_b \\
\rho
\end{bmatrix}
\equiv
\begin{bmatrix}
\nabla_a\sigma - \mu_a \\
\nabla_a\mu_b - J_{ab}\rho + P_{ab}\sigma - \frac{3}{2n-1}\Phi_{ab}\sigma - J_{ab}\alpha^c\mu_c \\
\nabla_a\rho + P_{ab}\mu^b - \frac{3}{2n-1}\Phi_{ab}\mu^b - \frac{1}{2n+1}(\nabla^b\Phi_{ab})\sigma \\
- (2\alpha^bP_{ab} + \alpha^b\nabla_a\alpha_b - \frac{10n+7}{(2n+1)(2n-1)}\alpha^b\Phi_{ab})\sigma
\end{bmatrix}
$$
The tractor connection preserves the skew form (7) and, in the Fedosov gauge, its curvature is given by

\[
(\nabla_a \nabla_b - \nabla_b \nabla_a) \begin{bmatrix} \sigma \\ \mu_c \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ V_{abcd} \mu^d + Y_{abc} \sigma \\ Y_{abc} \mu^c - \frac{1}{2n} (\nabla^c Y_{abc} - V_{abce} \Phi^{ce}) \sigma \end{bmatrix} - 2J_{ab} \begin{bmatrix} \rho \\ S_c \sigma - \Phi_{cd} \mu^d \\ S_c \mu^c - \frac{1}{2n} (\Phi_{de} \Phi^{de} + \nabla^c S_c) \sigma \end{bmatrix}
\]

Here the quantity \(Y_{abc} \) stays for the gradient of \(V_{abcd} \), while \((2n + 1)S_a \) is the gradient of \(\Phi_{ab} \).
The curvature of the tractor connection has the form
\[(\nabla_a \nabla_b - \nabla_b \nabla_a)\Sigma = 2J_{ab}\Theta\Sigma\]
for some endomorphism \(\Theta\) of \(\mathbb{T}\) if and only if \(V_{abcd} \equiv 0\).
The curvature of the tractor connection has the form

\[(\nabla_a \nabla_b - \nabla_b \nabla_a)\Sigma = 2J_{ab} \Theta \Sigma\]

for some endomorphism \(\Theta \) of \(\mathbb{T} \) if and only if \(V_{abcd} \equiv 0 \).

If \(V_{abcd} = 0 \), then

\[(\nabla_a \Phi^{bc})_\circ = 0 \]

in Fedosov gauge, where \((\)_\circ\) means to take the trace-free part.
The curvature of the tractor connection has the form

\[(\nabla_a \nabla_b - \nabla_b \nabla_a)\Sigma = 2J_{ab} \Theta \Sigma\]

for some endomorphism \(\Theta\) of \(T\) if and only if \(V_{abcd} \equiv 0\).

If \(V_{abcd} = 0\), then

\[(\nabla_a \Phi^{bc})_\circ = 0\]

in Fedosov gauge, where \((\)_\circ\) means to take the trace-free part.

The symplectic tractor connection on a Kähler manifold is symplectically flat if and only if the metric has constant holomorphic sectional curvature.
<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation and links</td>
</tr>
<tr>
<td>2</td>
<td>Calculus on CSM</td>
</tr>
<tr>
<td>3</td>
<td>Conformally Fedosov</td>
</tr>
<tr>
<td>4</td>
<td>Curvature</td>
</tr>
<tr>
<td>5</td>
<td>Tractor Connection</td>
</tr>
<tr>
<td>6</td>
<td>BGG sequences</td>
</tr>
</tbody>
</table>
Suppose \((M, [\nabla, J])\) is a conformally symplectic manifold with the curvature \(V_{abcd}\) vanishing, \(\nabla_a\) be the symplectically flat connection on any vector bundle \(E\) over \(M\) induced by the standard tractor bundle. Then there is a natural elliptic complex

\[
\begin{array}{cccccc}
0 & \to & E & \to & \Lambda^1 \otimes E & \to & \Lambda^2 \otimes E & \to & \cdots & \to & \Lambda^n \otimes E & \\
0 & \leftarrow & E & \leftarrow & \Lambda^1 \otimes E & \leftarrow & \Lambda^2 \otimes E & \leftarrow & \cdots & \leftarrow & \Lambda^n \otimes E
\end{array}
\]

where all operators are first order save for the middle operator, which is second order. This differential complex is locally exact save for its zeroth and first cohomologies, which may be identified with \(\ker \Theta \) and \(\coker \Theta \), respectively, where \(\Theta \) is the endomorphism induced from the curvature of the tractor connection.
Theorem

Suppose \((M, [J, \nabla])\) is a conformally Fedosov manifold of dimension \(2n\) whose invariant curvature \(V_{abcd}\) vanishes. Then for any \(n + 1\) non-negative integers \(a, b, c, \cdots d, e\) there is a differential complex

\[
\begin{array}{ccccccc}
 a & b & c & \cdots & d & e \\
\end{array}
\xrightarrow{\nabla^{a+1}}
\begin{array}{ccccccc}
 -a-2 & a+b+1 & c & \cdots & d & e \\
\end{array}
\]

which is locally exact save at the 0th and 1st positions, where its local cohomology may be identified with the locally constant sheaves \(\ker \Theta\) and \(\text{coker } \Theta\), respectively.
Theorem

Suppose \((M, [J, \nabla])\) is a conformally Fedosov manifold of dimension \(2n\) whose invariant curvature \(V_{abcd}\) vanishes. Then for any \(n + 1\) non-negative integers \(a, b, c, \ldots, d, e\) there is a differential complex

\[
\begin{array}{ccccccccc}
a & b & c & \cdots & d & e & \nabla^{a+1} & \rightarrow & -a-2 & a+b+1 & c & \cdots & d & e \\
\nabla^{b+1} & \rightarrow & -a-b-3 & a & b+c+1 & d & e & \nabla^{c+1} & \rightarrow & \cdots \\
\end{array}
\]

which is locally exact save at the 0th and 1st positions, where its local cohomology may be identified with the locally constant sheaves \(\ker \Theta\) and \(\coker \Theta\), respectively.

Here, \(\Theta \in \text{Aut} \left(\begin{array}{ccccc} a & b & c & \cdots & d & e \end{array} \right)(\mathbb{T})\) is induced by \(\Theta : \mathbb{T} \rightarrow \mathbb{T}\) and \(\begin{array}{ccccc} a & b & c & \cdots & d & e \end{array}(\mathbb{T})\) is the bundle associated to \(\mathbb{T}\) via the \(\text{Sp}(2n + 2, \mathbb{R})\)-module \(\begin{array}{ccccc} a & b & c & \cdots & d & e \end{array}\), bearing in mind that the non-degenerate skew form \((7)\) reduces the structure group of \(\mathbb{T}\) to \(\text{Sp}(2n + 2, \mathbb{R})\).
A few examples

In dimension 4, $TM = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

$\Lambda^1 = \begin{pmatrix} -2 & 1 & 0 \\ -2 & 1 & 0 & 0 \end{pmatrix}$

$\Lambda^2 = \begin{pmatrix} -3 & 0 & 1 \\ -3 & 0 & 1 & 0 \end{pmatrix}$
A few examples

In dimension 4, $TM = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 1 & 0 \end{pmatrix}$, $\Lambda^1 = \begin{pmatrix} -3 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$.

$T = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

In particular the Rumin-Seshadri complex is

$$0 \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ -3 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 1 & 1 \\ -6 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -7 & 2 & 0 \\ -7 & 0 & 0 \end{pmatrix} \rightarrow$$
A few examples

In dimension 4, $TM = \begin{pmatrix} 0 & 1 & 0 \\ \end{pmatrix}$, $\Lambda^1 = \begin{pmatrix} -2 & 1 & 0 \\ \end{pmatrix}$, and $\Lambda^2 = \begin{pmatrix} -3 & 0 & 1 \\ \end{pmatrix}$.

$T = \begin{pmatrix} 1 & 0 & 0 \\ \end{pmatrix} \oplus \begin{pmatrix} -1 & 1 & 0 \\ \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 & 0 \\ \end{pmatrix}$

In particular the Rumin-Seshadri complex is

$0 \to 1 \begin{pmatrix} 0 & 0 \\ \end{pmatrix} \stackrel{\nabla^2}{\to} \begin{pmatrix} -3 & 2 & 0 \\ \end{pmatrix} \to \begin{pmatrix} -4 & 1 & 1 \\ \end{pmatrix} \to \begin{pmatrix} -6 & 1 & 1 \\ \end{pmatrix} \to \begin{pmatrix} -7 & 2 & 0 \\ \end{pmatrix} \to \begin{pmatrix} -7 & 0 & 0 \\ \end{pmatrix} \to 0$

Similarly, the initial portion

$0 \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \end{pmatrix} \begin{pmatrix} \nabla^2 & -2 & 2 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \end{pmatrix} \begin{pmatrix} \nabla^2 & -4 & 0 & 2 \\ \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \end{pmatrix}$

on $\mathbb{C}P^n$ appears in the Eastwood-Goldschmidt paper, where it is shown that the second operator provides exactly the integrability conditions for the range of the Killing operator on $\mathbb{C}P^n$. This conclusion is immediate from our Theorem here: since $\mathbb{C}P^n$ is simply-connected, there is no global cohomology arising from $\text{coker } \Theta$.