Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

Calculus on symplectic and conformal Fedosov manifolds

Jan Slovák joint work with Michael Eastwood

11 October, 2016 Humboldt University, Berlin

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences			
000	00000000	00000	00000	0000000	000			
The structure of the lecture								

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The structure of the lecture

- Motivation and links
- 2 Calculus on CSM
- 3 Conformally Fedosov
- 4 Curvature
- 5 Tractor Connection
- 6 BGG sequences

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

- 2 Calculus on CSM
- Conformally Fedosov
- 4 Curvature
- 5 Tractor Connection

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
•00	0000000	00000	00000	0000000	000

After years, we published the preprint:

Eastwood, Michael G.; Slovák, Jan, Conformally Fedosov manifolds, (2016) 28 p., http://arxiv.org/abs/1210.5597

and the project continues.

	00000000	00000	00000	0000000	000
Eastwood -	- Goldschn	nidt			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Eastwood, M.; Goldschmidt, H., Zero-energy fields on complex projective space. J. Differential Geom. 94 (2013), pp. 129-157.

Motivation and links ○●○	Calculus on CSM	Conformally Fedosov	Curvature 00000	Tractor Connection	BGG sequences
Fastwood	– Goldschr	midt			

Eastwood, M.; Goldschmidt, H., Zero-energy fields on complex projective space. J. Differential Geom. 94 (2013), pp. 129-157. \mathbb{CP}_n comes with nice structures:

Riemannian	g _{ab}	Fubini-Study metric	$g_{ab} = J_a{}^c J_{bc}$
complex	J _a b	complex structure	$J_a{}^b = g^{bc} J_{ac}$
symplectic	J _{ab}	Kähler form	$J_{ab} = J_a{}^c g_{bc}$

- symplectic form and Levi Civita connection are nicely linked.
- Special complexes of operators allow for strong theorems.
- The complexes are longer than the usual de Rahm complex.
- The CP_n seems to be the only Kähler manifold with the Ricci type holonomy (as symplectic manifold), cf. Proposition 4.3 in the paper on the c-projective geometry by Calderbank et al, http://arxiv.org/pdf/1512.04516v1.pdf.

Motivation and links 00●	Calculus on CSM 00000000	Conformally Fedosov	Curvature 00000	Tractor Connection	BGG sequences
Čap – Sala	č				

Andreas Čap; Tomáš Salač, Pushing down the Rumin complex to conformally symplectic quotients, Diff. Geom. Appl., 35 (2014), 255-265.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature 00000	Tractor Connection	BGG sequences
Čap – Sala	č				

Andreas Čap; Tomáš Salač, Pushing down the Rumin complex to conformally symplectic quotients, Diff. Geom. Appl., 35 (2014), 255-265.

- Contact manifold M_β together with a transversal infinitesimal automorphism ξ provides a conformally symplectic structure on the quotient M.
- The Rumin complex on M_{\sharp} can be pushed down to M.
- Similarly to the parabolic tractor calcul, we would like to couple this complex with non-trivial representations.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature 00000	Tractor Connection	BGG sequences
Čap – Sala	č				

Andreas Čap; Tomáš Salač, Pushing down the Rumin complex to conformally symplectic quotients, Diff. Geom. Appl., 35 (2014), 255-265.

- Contact manifold M_{\sharp} together with a transversal infinitesimal automorphism ξ provides a conformally symplectic structure on the quotient M.
- The Rumin complex on M_{\sharp} can be pushed down to M.
- Similarly to the parabolic tractor calcul, we would like to couple this complex with non-trivial representations.

A lot of nice development in recent papers by Čap and Salač: arXiv:1605.01161, Parabolic conformally symplectic structures I; definition and distinguished connections, 25 p. arXiv:1605.01897, Parabolic conformally symplectic structures II; parabolic contactification, 29 p.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

- 2 Calculus on CSM
- 3 Conformally Fedosov
- 4 Curvature
- 5 Tractor Connection

Motivation and links Calculus on CSM Conformally Fedosov Conformally Symplectic manifolds

A conformally symplectic manifold is an even-dimensional manifold M of dimension at least four equipped with a non-degenerate 2-form J such that

$$dJ = 2\alpha \wedge J$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for some closed 1-form α . It is called the *Lee form* and it is automatically closed in dimensions $m \ge 6$.

A conformally symplectic manifold is an even-dimensional manifold M of dimension at least four equipped with a non-degenerate 2-form J such that

$$dJ = 2\alpha \wedge J$$

for some closed 1-form α . It is called the *Lee form* and it is automatically closed in dimensions $m \ge 6$.

If we rescale $\hat{J} = \Omega^2 J$ by a positive smooth function, then the existence of the Lee form remains valid with α replaced by $\hat{\alpha} = \alpha + \Upsilon$ for $\Upsilon \equiv d \log \Omega$.

Definition (Reformulation)

A conformally symplectic manifold is a pair (M, [J]) where [J] is an equivalence class of non-degenerate 2-forms with existing Lee forms, where J and \hat{J} are said to be equivalent if and only if $\hat{J} = \Omega^2 J$ for some positive smooth function Ω . Motivation and links Calculus on CSM Conformally Fedosov Curvature Tractor Connection BGG sequences 0000000 Symplectically flat connections

Definition

we say that a connection ∇_a on a given smooth vector bundle E over a conformally symplectic manifold (M, [J]) is symplectically flat if and only if

$$(\nabla_{a}\nabla_{b}-\nabla_{b}\nabla_{a})\sigma=2J_{ab}\Theta\sigma$$

for some endomorphism Θ of E.

(As usual, one chooses an arbitrary torsion-free connection on Λ^1 to define the left hand side, which then does not depend on this choice.)

Evidently, if J_{ab} is replaced by $\hat{J}_{ab} = \Omega^2 J_{ab}$, then symplectic flatness persists with Θ replaced by $\hat{\Theta} = \Omega^{-2}\Theta$.

Motivation and links Calculus on CSM Conformally Fedosov Curvature Tractor Connection BGG sequences oco concernance oco concer

There are several ways to find the elliptic complex

on a conformally symplectic manifold, where all operators are first order except for the middle operator, which is second order. (Here Λ^k_{\perp} denotes the bundle of *k*-forms that are trace-free with respect to *J*.)

Notice, the length of such a complex is by one longer than that of the de Rham complex.

For symplectically flat connections ∇_a on E, our first aim is to construct a version of the above complex coupled to E.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
	0000000				

The operator

$$D_{a} = \nabla_{a} - 2\alpha_{a} : E \to \Lambda^{1} \otimes E$$

is a connection whose curvature is again

$$(D_a D_b - D_b D_a)\sigma = (\nabla_a \nabla_b - \nabla_b \nabla_a)\sigma = 2J_{ab}\Theta\sigma.$$

and it is quite clear how to continue:

$$E \xrightarrow{\nabla - 2\alpha \otimes \mathrm{Id}} \Lambda^1 \otimes E \longrightarrow \Lambda^2_{\perp} \otimes E,$$

where $\Gamma(\Lambda^1 \otimes E) \ni \varphi_a \mapsto \nabla_{[a} \varphi_{b]} - 2\alpha_{[a} \varphi_{b]} \mod J_{ab}$

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
	00000000				

Lemma

The endomorphism $\Theta: E \to E$ has constant rank.

Proof.

We may choose an auxiliary connection on M and fix J to be covariantly constant. Then the Bianchi identity for ∇_a implies $0 = \nabla_{[a}(J_{bc}]\Theta) = J_{[bc}\nabla_{a]}\Theta.$

Thus we may consider the bundles ker Θ and coker $\Theta = E / \operatorname{im} \Theta$. Remarkably, the connection D_a provides a flat connection on both. We shall write ker Θ and coker Θ for the sheaf of germs of covariantly constant sections of the bundles, respectively.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
	00000000				

Lemma

There is a natural elliptic complex:

where the differentials are given by

$$\sigma \mapsto \begin{bmatrix} D\sigma \\ \Theta\sigma \end{bmatrix} \quad \begin{bmatrix} \varphi \\ \eta \end{bmatrix} \mapsto \begin{bmatrix} D\varphi - J \otimes \eta \\ D\eta - \Theta\varphi \end{bmatrix} \quad \begin{bmatrix} \omega \\ \psi \end{bmatrix} \mapsto \begin{bmatrix} D\omega + J \wedge \psi \\ D\psi + \Theta\omega \end{bmatrix} \cdots$$

It is locally exact, except for the zeroth and first cohomologies which may be identified with ker Θ and coker Θ , respectively.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
	00000000				

Theorem (The coupled Rumin–Seshadri complex)

Suppose (M, [J]) is a conformally symplectic manifold and ∇_a is a symplectically flat connection on a vector bundle E over M. Choose $J_{ab} \in [J]$ and define $\Theta : E \to E$ by means of (2). Then there is a natural elliptic complex

where all operators are first order save for the middle operator, which is second order. This differential complex is locally exact save for its zeroth and first cohomologies, which may be identified with ker Θ and coker Θ , respectively.

Motivation and links	Calculus on CSM 0000000●	Conformally Fedosov	Curvature 00000	Tractor Connection	BGG sequences
short proof					

Rearranging the complex from the main Lemma as

one sees a filtered complex, the spectral sequence of which has as its E_1 -level

$$E \to \Lambda^1 \otimes E \to \Lambda^2_{\perp} \otimes E \to \dots \to \Lambda^n_{\perp} \otimes E \quad 0$$
$$0 \quad \Lambda^n_{\perp} \otimes E \to \dots \to \Lambda^2_{\perp} \otimes E \to \Lambda^1 \otimes E \to E.$$

Passing to the E_2 -level constructs the requested complex and main Lemma gives its cohomology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

- 2 Calculus on CSM
- 3 Conformally Fedosov

4 Curvature

5 Tractor Connection

A projective structure on a manifold M is an equivalence class of torsion-free affine connections on M, where two connections ∇_a and $\hat{\nabla}_a$ are said to be projectively equivalent if and only if

$$\hat{\nabla}_{a}\varphi_{b} = \nabla_{a}\varphi - \nu_{a}\varphi_{b} - \nu_{b}\varphi_{a}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for some 1-form ν_a .

A projective structure on a manifold M is an equivalence class of torsion-free affine connections on M, where two connections ∇_a and $\hat{\nabla}_a$ are said to be projectively equivalent if and only if

$$\hat{\nabla}_{\mathbf{a}}\varphi_{\mathbf{b}} = \nabla_{\mathbf{a}}\varphi - \nu_{\mathbf{a}}\varphi_{\mathbf{b}} - \nu_{\mathbf{b}}\varphi_{\mathbf{a}}$$

for some 1-form ν_a . If J_{ab} is skew, then $\hat{\nabla}_{(a}J_{b)c} = \nabla_{(a}J_{b)c} - 3\nu_{(a}J_{b)c}$.

Lemma

If J_{ab} is skew, then the requirement that

$$\nabla_{(a}J_{b)c} = \beta_{(a}J_{b)c}$$

(日)、

э

for some 1-form β_a is projectively invariant.

Motivation and links Calculus on CSM Conformally Fedosov Curvature OCOCO BGG sequences OCOCO Conformally Fedosov OCOCO Conformally Fedosov

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For torsion-free ∇ on a conformally symplectic manifold (M, [J])we get $\nabla_{[a}J_{bc]} = 2\alpha_{[a}J_{bc]}$. Let us insist on $\nabla_{(a}J_{b)c} = \beta_{(a}J_{b)c}$.

The first version of Conformally Fedosov

00000

Calculus on CSM

Motivation and links

For torsion-free ∇ on a conformally symplectic manifold (M, [J])we get $\nabla_{[a}J_{bc]} = 2\alpha_{[a}J_{bc]}$. Let us insist on $\nabla_{(a}J_{b)c} = \beta_{(a}J_{b)c}$.

Conformally Fedosov

A conformally Fedosov manifold is a triple $(M, [J], [\nabla])$ where

- M is a smooth manifold of dimension $2n \ge 4$,
- [J] is an equivalence class of non-degenerate 2-forms defined up to rescaling J → Ĵ = Ω²J for some positive function Ω,
- [∇] is a projective structure, i.e. an equivalence class of torsion-free connections defined up to projective change for some 1-form ν_a,
- the following equations hold

$$\nabla_{[a}J_{bc]} = 2\alpha_{[a}J_{bc]} \quad \nabla_{[a}\alpha_{b]} = 0 \quad \nabla_{(a}J_{b)c} = \beta_{(a}J_{b)c} \quad (1)$$

for some 1-forms α_a and β_a .

Tractor Connection

BGG sequences

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
		00000			

Lemma

Let $(M, [J], [\nabla])$ be a conformally Fedosov manifold. Any representatives J_{ab} and ∇_a of the structure uniquely determine the 1-forms α_a and β_a and, conversely,

$$\nabla_{a}J_{bc} = 2\alpha_{[a}J_{bc]} + \frac{2}{3}\beta_{(a}J_{b)c} - \frac{2}{3}\beta_{(a}J_{c)b}$$
⁽²⁾

determines the full covariant derivative $\nabla_a J_{bc}$.

Lemma

For any conformally Fedosov manifold $(M, [J], [\nabla])$, if a representative 2-form J_{ab} is chosen, then there is a unique torsion-free connection in the projective class such that

$$\nabla_{a} J_{bc} = 2 J_{a[b} \alpha_{c]}. \tag{3}$$

Motivation and links Calculus on CSM Conformally Fedosov Ourvature Tractor Connection BGG sequences

An alternative definition of a conformally Fedosov manifold is as follows. Firstly, define an equivalence relation on pairs (J, ∇) consisting of a non-degenerate symplectic form J_{ab} and a torsion-free connection ∇_a by allowing simultaneous replacements

$$\begin{aligned} & J_{ab} \mapsto \hat{J}_{ab} = \Omega^2 J_{ab} \\ \nabla_a \varphi_b \mapsto \hat{\nabla}_a \varphi_b = \nabla_a \varphi_b - \Upsilon_a \varphi_b - \Upsilon_b \varphi_a, \end{aligned}$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\Upsilon_a = \nabla_a \log \Omega$.

 Motivation and links
 Calculus on CSM
 Conformally Fedosov
 Curvature
 Tractor Connection
 BGG sequences

 000
 000000
 00000
 000000
 000000
 000000
 000

An alternative definition of a conformally Fedosov manifold is as follows. Firstly, define an equivalence relation on pairs (J, ∇) consisting of a non-degenerate symplectic form J_{ab} and a torsion-free connection ∇_a by allowing simultaneous replacements

$$\begin{aligned} & J_{ab} \mapsto \hat{J}_{ab} = \Omega^2 J_{ab} \\ \nabla_a \varphi_b \mapsto \hat{\nabla}_a \varphi_b = \nabla_a \varphi_b - \Upsilon_a \varphi_b - \Upsilon_b \varphi_a, \end{aligned}$$
(4)

where $\Upsilon_a = \nabla_a \log \Omega$.

Definition

Writing $[J, \nabla]$ for the equivalence class of such pairs, a conformally Fedosov manifold may then be defined as a pair $(M, [J, \nabla])$ such that $\nabla_a J_{bc} = 2J_{a[b}\alpha_{c]}$ holds.

We can check directly that (3) is invariant under (4) if one decrees that $\alpha_a \mapsto \hat{\alpha}_a = \alpha_a + \Upsilon_a$.

Motivation and links	Calculus on CSM	Conformally Fedosov 0000●	Curvature 00000	Tractor Connection	BGG sequences
Remarks					

Any conformally symplectic manifold (M, [J]) can be extended to a conformally Fedosov structure $(M, [J, \nabla])$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation and links	Calculus on CSM	Conformally Fedosov 0000●	Curvature 00000	Tractor Connection	BGG sequences 000
Remarks					

Any conformally symplectic manifold (M, [J]) can be extended to a conformally Fedosov structure $(M, [J, \nabla])$. Equation (3) is equivalent to

$$\nabla_{\mathbf{a}} J^{bc} = 2\alpha^{[b} \delta_{\mathbf{a}}{}^{c]},\tag{5}$$

where $\alpha^b \equiv J^{bc} \alpha_c$. As a corollary we see, that a projective structure $[\nabla]$ cannot necessarily be extended to a conformally Fedosov structure. Indeed, the equation (5) hold for some vector field α^a is equivalent to requiring that

the trace-free part of
$$(
abla_a J^{bc}) = 0,$$

which is a system of finite type. Hence, there are obstructions to its solution (and writing it as (5) is the first step in its prolongation).

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

1 Motivation and links

2 Calculus on CSM

3 Conformally Fedosov

5 Tractor Connection

6 BGG sequences

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
			•0000		

Choosing any representatives for $(M, [J, \nabla])$, the curvature $R_{ab}{}^{c}{}_{d}$ of ∇_{a} may be uniquely written as

$$R_{ab}{}^{c}{}_{d} = W_{ab}{}^{c}{}_{d} + \delta_{a}{}^{c}\mathsf{P}_{bd} - \delta_{b}{}^{c}\mathsf{P}_{ad},$$

where P_{ab} is a symmetric tensor and $W_{ab}{}^{c}{}_{d}$ satisfies

$$W_{ab}{}^{c}{}_{d} = W_{[ab]}{}^{c}{}_{d} \qquad W_{[ab}{}^{c}{}_{d]} = 0 \qquad W_{ab}{}^{a}{}_{d} = 0.$$

Under conformal rescaling (4), the tensor $W_{ab}{}^{c}{}_{d}$ is unchanged whilst

$$\hat{\mathsf{P}}_{ab} = \mathsf{P}_{ab} - \nabla_a \Upsilon_b + \Upsilon_a \Upsilon_b.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
			00000		

Choosing any representatives for $(M, [J, \nabla])$, the curvature $R_{ab}{}^{c}{}_{d}$ of ∇_{a} may be uniquely written as

$$R_{ab}{}^{c}{}_{d} = W_{ab}{}^{c}{}_{d} + \delta_{a}{}^{c}\mathsf{P}_{bd} - \delta_{b}{}^{c}\mathsf{P}_{ad},$$

where P_{ab} is a symmetric tensor and $W_{ab}{}^{c}{}_{d}$ satisfies

$$W_{ab}{}^{c}{}_{d} = W_{[ab]}{}^{c}{}_{d} \qquad W_{[ab}{}^{c}{}_{d]} = 0 \qquad W_{ab}{}^{a}{}_{d} = 0.$$

Under conformal rescaling (4), the tensor $W_{ab}{}^{c}{}_{d}$ is unchanged whilst

$$\hat{\mathsf{P}}_{ab} = \mathsf{P}_{ab} - \nabla_a \Upsilon_b + \Upsilon_a \Upsilon_b.$$

Furthermore, the tensor W_{abcd} may be uniquely decomposed as

$$W_{abcd} = V_{abcd} - \frac{3}{2n-1} J_{ac} \Phi_{bd} + \frac{3}{2n-1} J_{bc} \Phi_{ad} + J_{ad} \Phi_{bc} - J_{bd} \Phi_{ac} + 2J_{ab} \Phi_{cd},$$

where

$$V_{abcd} = V_{[ab](cd)} \qquad V_{[abc]d} = 0 \qquad J^{ab}V_{abcd} = 0$$

and Φ_{ab} is symmetric.

・ロト・西ト・ヨト・ヨー シック

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov 00000	Curvature 0●000	Tractor Connection	BGG sequences
Back to $\mathbb{C}\mathbb{I}$	₽n				

The curvature of \mathbb{CP}_n with its standard Fubini-Study metric is given by

$$R_{abcd} = g_{bd}J_{ac} - g_{ad}J_{bc} - g_{ac}J_{bd} + g_{bc}J_{ad} + 2J_{ab}g_{cd}$$

and one easily computes that

$$\mathsf{P}_{ab} = \frac{2(n+1)}{2n-1}g_{ab} \qquad \Phi_{ab} = g_{ab} \qquad V_{abcd} = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature 00●00	Tractor Connection	BGG sequences
Fedosov ga	uge				

It is often convenient locally to work in a gauge in which $\alpha_a = 0$ for then $\nabla_a J_{bc} = 0$ and the curvature R_{abcd} decomposes in a more simple way into three components $\operatorname{Sp}(2n, \mathbb{R})$ -irreducible parts,

$$V_{abcd} \in \underbrace{\begin{smallmatrix} 2 & 1 & 0 \\ \bullet & \bullet \\ \bullet$$

according to

$$R_{abcd} = V_{abcd} + 2J_{ab}\Phi_{cd} - 2\Phi_{c[a}J_{b]d} + \frac{6}{2n-1}J_{c[a}\Phi_{b]d} - 2J_{c[a}\mathsf{P}_{b]d}$$

with

$$(2n-1)\mathsf{P}_{ab}=2(n+1)\Phi_{ab}.$$

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature 00●00	Tractor Connection	BGG sequences
Fedosov ga	uge				

It is often convenient locally to work in a gauge in which $\alpha_a = 0$ for then $\nabla_a J_{bc} = 0$ and the curvature R_{abcd} decomposes in a more simple way into three components $\operatorname{Sp}(2n, \mathbb{R})$ -irreducible parts,

$$V_{abcd} \in \overset{2}{\bullet} \overset{1}{\bullet} \overset{0}{\bullet} \cdots \overset{0}{\bullet} \overset{0}{\bullet} \Phi_{ab} \in \overset{2}{\bullet} \overset{0}{\bullet} \overset{0}{\bullet} \cdots \overset{0}{\bullet} \overset{0}{\bullet} \mathsf{P}_{ab} \in \overset{2}{\bullet} \overset{0}{\bullet} \cdots \overset{0}{\bullet} \overset{0}{\bullet} \overset{0}{\bullet} \mathsf{P}_{ab}$$

according to

$$R_{abcd} = V_{abcd} + 2J_{ab}\Phi_{cd} - 2\Phi_{c[a}J_{b]d} + \frac{6}{2n-1}J_{c[a}\Phi_{b]d} - 2J_{c[a}\mathsf{P}_{b]d}$$

with

$$(2n-1)\mathsf{P}_{ab}=2(n+1)\Phi_{ab}.$$

We shall refer to a choice of pair (J_{ab}, ∇_a) from a conformally Fedosov structure $[J_{ab}, \nabla_a]$ for which $\nabla_a J_{bc} = 0$ as a *Fedosov* gauge. This is in accordance with the notion of Fedosov manifold.

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov	Curvature 000●0	Tractor Connection	BGG sequences
Kähler case	9				

$$R_{ab}{}^{c}{}_{d} = U_{ab}{}^{c}{}_{d}$$
+
+
+

where indices have been raised using g^{ab} and

• $U_{ab}{}^{c}{}_{d}$ is totally trace-free with respect to g^{ab} , $J_{a}{}^{b}$, and J^{ab} ,

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov	Curvature 000●0	Tractor Connection	BGG sequences 000
Kähler case	9				

$$R_{ab}{}^{c}{}_{d} = U_{ab}{}^{c}{}_{d}$$
$$+ \delta_{a}{}^{c}\Xi_{bd} - \delta_{b}{}^{c}\Xi_{ad} - g_{ad}\Xi_{b}{}^{c} + g_{bd}\Xi_{a}{}^{c}$$
$$+$$
$$+$$

where indices have been raised using g^{ab} and

• $U_{ab}{}^{c}{}_{d}$ is totally trace-free with respect to g^{ab} , $J_{a}{}^{b}$, and J^{ab} ,

• Ξ_{ab} is trace-free symmetric

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov	Curvature 000●0	Tractor Connection	BGG sequences 000
Kähler case	9				

$$R_{ab}{}^{c}{}_{d} = U_{ab}{}^{c}{}_{d}$$

$$+ \delta_{a}{}^{c}\Xi_{bd} - \delta_{b}{}^{c}\Xi_{ad} - g_{ad}\Xi_{b}{}^{c} + g_{bd}\Xi_{a}{}^{c}$$

$$+ J_{a}{}^{c}\Sigma_{bd} - J_{b}{}^{c}\Sigma_{ad} - J_{ad}\Sigma_{b}{}^{c} + J_{bd}\Sigma_{a}{}^{c} + 2J_{ab}\Sigma^{c}{}_{d} + 2J^{c}{}_{d}\Sigma_{ab}$$

$$+$$

where indices have been raised using g^{ab} and

• $U_{ab}{}^{c}{}_{d}$ is totally trace-free with respect to g^{ab} , $J_{a}{}^{b}$, and J^{ab} ,

• Ξ_{ab} is trace-free symmetric

•
$$\Sigma_{ab} \equiv J_a{}^c \Xi_{bc}$$
 is skew.

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov	Curvature 000●0	Tractor Connection	BGG sequences
Kähler case	9				

$$\begin{aligned} R_{ab}{}^{c}{}_{d} &= U_{ab}{}^{c}{}_{d} \\ &+ \delta_{a}{}^{c}\Xi_{bd} - \delta_{b}{}^{c}\Xi_{ad} - g_{ad}\Xi_{b}{}^{c} + g_{bd}\Xi_{a}{}^{c} \\ &+ J_{a}{}^{c}\Sigma_{bd} - J_{b}{}^{c}\Sigma_{ad} - J_{ad}\Sigma_{b}{}^{c} + J_{bd}\Sigma_{a}{}^{c} + 2J_{ab}\Sigma^{c}{}_{d} + 2J^{c}{}_{d}\Sigma_{ab} \\ &+ \Lambda(\delta_{a}{}^{c}g_{bd} - \delta_{b}{}^{c}g_{ad} + J_{a}{}^{c}J_{bd} - J_{b}{}^{c}J_{ad} + 2J_{ab}J^{c}{}_{d}), \end{aligned}$$

where indices have been raised using g^{ab} and

• $U_{ab}{}^{c}{}_{d}$ is totally trace-free with respect to g^{ab} , $J_{a}{}^{b}$, and J^{ab} ,

• Ξ_{ab} is trace-free symmetric

•
$$\Sigma_{ab} \equiv J_a{}^c \Xi_{bc}$$
 is skew.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
			00000		

Consequently,

 $R_{bd} \equiv R_{ab}{}^{a}{}_{d} = 2(n+2)\Xi_{bd} + 2(n+1)\Lambda g_{bd}$ $\Phi_{ab} = \frac{n+2}{n+1}\Xi_{ab} + \Lambda g_{ab}.$ $J_{c}{}^{a}R_{ab}{}^{c}{}_{d} = J_{c}{}^{a}V_{ab}{}^{c}{}_{d} - J_{bd}\Phi_{a}{}^{a} - 2J_{b}{}^{a}\Phi_{da}$ $= J_{c}{}^{a}V_{ab}{}^{c}{}_{d} - 2\frac{n+2}{n+1}\Sigma_{bd} - 2(n+1)\Lambda J_{bd}.$ $J_{c}{}^{a}V_{ab}{}^{c}{}_{d} - 2\frac{n+2}{n+1}\Sigma_{bd} = -2(n+2)\Sigma_{bd}$

and we have established:

Lemma

Concerning the symplectic curvature decomposition on a Kähler manifold,

$$J_c{}^aV_{ab}{}^c{}_d = -2\frac{n(n+2)}{n+1}\Sigma_{bd}.$$

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

1 Motivation and links

- 2 Calculus on CSM
- 3 Conformally Fedosov

4 Curvature

5 Tractor Connection

6 BGG sequences

- ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → 重 → のへで

The standard tractor bundle \mathbb{T} on a conformal Riemannian manifold is defined in the presence of a chosen metric g_{ab} to be the direct sum

$$\mathbb{T} = \Lambda^0[1] \oplus \Lambda^1[1] \oplus \Lambda^0[-1]$$

but if the metric is rescaled as $\hat{g}_{ab} = \Omega^2 g_{ab}$, then this decomposition is mandated to change according to

$$\begin{bmatrix} \hat{\sigma} \\ \hat{\mu}_b \\ \hat{\rho} \end{bmatrix} = \begin{bmatrix} \sigma \\ \mu_b + \Upsilon_b \sigma \\ \rho - \Upsilon^b \mu_b - \frac{1}{2} \Upsilon^b \Upsilon_b \sigma \end{bmatrix}, \text{ where } \Upsilon_a \equiv \nabla_a \log \Omega.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				000000	

For a chosen metric g_{ab} in the conformal class, the *tractor* connection can be computed or defined by

$$\nabla_{\mathbf{a}} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_{\mathbf{a}} \sigma - \mu_{\mathbf{a}} \\ \nabla_{\mathbf{a}} \mu_{b} + g_{\mathbf{a}b} \rho + \mathsf{P}_{\mathbf{a}b} \sigma \\ \nabla_{\mathbf{a}} \rho - \mathsf{P}_{\mathbf{a}}{}^{b} \mu_{b} \end{bmatrix},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\nabla_a \mu_b$ is the Levi-Civita connection of g_{ab} .

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				000000	

For a chosen metric g_{ab} in the conformal class, the *tractor* connection can be computed or defined by

$$\nabla_{\mathbf{a}} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_{\mathbf{a}} \sigma - \mu_{\mathbf{a}} \\ \nabla_{\mathbf{a}} \mu_{b} + g_{\mathbf{a}b} \rho + \mathsf{P}_{\mathbf{a}b} \sigma \\ \nabla_{\mathbf{a}} \rho - \mathsf{P}_{\mathbf{a}}{}^{b} \mu_{b} \end{bmatrix},$$

where $\nabla_a \mu_b$ is the Levi-Civita connection of g_{ab} .

We shall proceed analogously for the conformally Fedosov manifolds now.

Motivation and links Calculus on CSM Conformally Fedosov Curvature Tractor Connection BGG sequences (Conformally) symplectic tractors

For chosen representatives, the vector bundle ${\mathbb T}$ is defined as

$$\mathbb{T} = \Lambda^0[1] \oplus \Lambda^1[1] \oplus \Lambda^0[-1]$$

but this splitting is decreed to change as

$$\begin{bmatrix} \hat{\sigma} \\ \hat{\mu}_b \\ \hat{\rho} \end{bmatrix} = \begin{bmatrix} \sigma \\ \mu_b + \Upsilon_b \sigma \\ \rho - \Upsilon^b \mu_b + \Upsilon^b \alpha_b \sigma \end{bmatrix}$$
(6)

under (4), where α_a is defined by (3). A direct check reveals that this decree is self-consistent.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				0000000	

There is a non-degenerate skew form defined on ${\mathbb T}$ by

$$\left\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \right\rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}.$$
(7)

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				0000000	

There is a non-degenerate skew form defined on ${\mathbb T}$ by

$$\left\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \right\rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}.$$
(7)

Let us first consider the connection D_a on \mathbb{T} defined by

$$D_{a} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_{a}\sigma - \mu_{a} \\ \nabla_{a}\mu_{b} - J_{ab}\rho + \mathsf{P}_{ab}\sigma \\ \nabla_{a}\rho - \mathsf{P}_{a}{}^{b}\mu_{b} \end{bmatrix}$$

|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				0000000	

There is a non-degenerate skew form defined on ${\mathbb T}$ by

$$\left\langle \begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix}, \begin{bmatrix} \tilde{\sigma} \\ \tilde{\mu}_c \\ \tilde{\rho} \end{bmatrix} \right\rangle = \sigma \tilde{\rho} - J^{bc} \mu_b \tilde{\mu}_c - \rho \tilde{\sigma} = \sigma \tilde{\rho} + \mu^b \tilde{\mu}_b - \rho \tilde{\sigma}.$$
(7)

Let us first consider the connection D_a on $\mathbb T$ defined by

$$D_{a} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} = \begin{bmatrix} \nabla_{a}\sigma - \mu_{a} \\ \nabla_{a}\mu_{b} - J_{ab}\rho + \mathsf{P}_{ab}\sigma - J_{ab}\alpha^{c}\mu_{c} \\ \nabla_{a}\rho - \mathsf{P}_{a}{}^{b}\mu_{b} - \alpha^{b}(2\mathsf{P}_{ab} + \nabla_{a}\alpha_{b})\sigma \end{bmatrix}$$

This connection is well-defined, i.e. is independent of choice of representatives (J_{ab}, ∇_a) , and preserves the skew form (7). (The check is straightforward but quite tedious.)

 Motivation and links
 Calculus on CSM
 Conformally Fedosov
 Curvature
 Tractor Connection
 BGG sequences

 000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000

Improving the tractor connection

The following two homomorphisms $\mathbb{T} \to \Lambda^1 \otimes \mathbb{T}$

$$\begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ \Phi_{ab}\sigma \\ \Phi_{ab}\mu^b + 2(\nabla^b\Phi_{ab})\sigma \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 \\ 0 \\ (\nabla^b\Phi_{ab} + \alpha^a\Phi_{ab})\sigma \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

are invariantly defined.

Motivation and links Calculus on CSM Conformally Fedosov Curvature Tractor Connection BGG sequences 000 0000000 00000 0000000 0000000 0000000 00000000

Improving the tractor connection

The following two homomorphisms $\mathbb{T} \to \Lambda^1 \otimes \mathbb{T}$

$$\begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ \Phi_{ab}\sigma \\ \Phi_{ab}\mu^b + 2(\nabla^b\Phi_{ab})\sigma \end{bmatrix} \text{ or } \begin{bmatrix} 0 \\ 0 \\ (\nabla^b\Phi_{ab} + \alpha^a\Phi_{ab})\sigma \end{bmatrix}$$

are invariantly defined.

Thus we can change the connection D_a by appropriate multiples of these. The *tractor connection* on \mathbb{T} is defined by

$$\nabla_{a} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} \equiv \begin{bmatrix} \nabla_{a}\mu_{b} - J_{ab}\rho + \mathsf{P}_{ab}\sigma - \frac{3}{2n-1}\Phi_{ab}\sigma \\ \nabla_{a}\rho + \mathsf{P}_{ab}\mu^{b} - \frac{3}{2n-1}\Phi_{ab}\mu^{b} - \frac{1}{2n+1}(\nabla^{b}\Phi_{ab})\sigma \end{bmatrix}$$

Motivation and links Calculus on CSM Conformally Fedosov Curvature Tractor Connection BGG sequences 000 0000000 00000 0000000 0000000 0000000 0000000

Improving the tractor connection

The following two homomorphisms $\mathbb{T} \to \Lambda^1 \otimes \mathbb{T}$

$$\begin{bmatrix} \sigma \\ \mu_b \\ \rho \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ \Phi_{ab}\sigma \\ \Phi_{ab}\mu^b + 2(\nabla^b \Phi_{ab})\sigma \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 \\ 0 \\ (\nabla^b \Phi_{ab} + \alpha^a \Phi_{ab})\sigma \end{bmatrix}$$

are invariantly defined.

Thus we can change the connection D_a by appropriate multiples of these. The *tractor connection* on \mathbb{T} is defined by

$$\nabla_{a} \begin{bmatrix} \sigma \\ \mu_{b} \\ \rho \end{bmatrix} \equiv \begin{bmatrix} \nabla_{a} \sigma - \mu_{a} \\ \nabla_{a} \mu_{b} - J_{ab} \rho + \mathsf{P}_{ab} \sigma - \frac{3}{2n-1} \Phi_{ab} \sigma - J_{ab} \alpha^{c} \mu_{c} \\ \nabla_{a} \rho + \mathsf{P}_{ab} \mu^{b} - \frac{3}{2n-1} \Phi_{ab} \mu^{b} - \frac{1}{2n+1} (\nabla^{b} \Phi_{ab}) \sigma \\ - (2\alpha^{b} \mathsf{P}_{ab} + \alpha^{b} \nabla_{a} \alpha_{b} - \frac{10n+7}{(2n+1)(2n-1)} \alpha^{b} \Phi_{ab}) \sigma \end{bmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature 00000	Tractor Connection 00000●0	BGG sequences
Curvature					

The tractor connection preserves the skew form (7) and, in the Fedosov gauge, its curvature is given by

$$(\nabla_a \nabla_b - \nabla_b \nabla_a) \begin{bmatrix} \sigma \\ \mu_c \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ V_{abcd} \mu^d + Y_{abc} \sigma \\ Y_{abc} \mu^c - \frac{1}{2n} (\nabla^c Y_{abc} - V_{abce} \Phi^{ce}) \sigma \end{bmatrix}$$
$$- 2J_{ab} \begin{bmatrix} \rho \\ S_c \sigma - \Phi_{cd} \mu^d \\ S_c \mu^c - \frac{1}{2n} (\Phi_{de} \Phi^{de} + \nabla^c S_c) \sigma \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here the quantity Y_{abc} stays for the gradient of V_{abcd} , while $(2n+1)S_a$ is the gradient of Φ_{ab} .

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				000000	

Theorem

The curvature of the tractor connection has the form

$$(
abla_a
abla_b -
abla_b
abla_a)\Sigma = 2J_{ab}\Theta\Sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some endomorphism Θ of \mathbb{T} if and only if $V_{abcd} \equiv 0$.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				000000	

Theorem

The curvature of the tractor connection has the form

$$(
abla_{a}
abla_{b} -
abla_{b}
abla_{a})\Sigma = 2J_{ab}\Theta\Sigma$$

for some endomorphism Θ of \mathbb{T} if and only if $V_{abcd} \equiv 0$.

Theorem

If $V_{abcd} = 0$, then

$$(\nabla_a \Phi^{bc})_\circ = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

in Fedosov gauge, where $()_{\circ}$ means to take the trace-free part.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
				000000	

Theorem

The curvature of the tractor connection has the form

$$(
abla_a
abla_b-
abla_b
abla_a)\Sigma=2J_{ab}\Theta\Sigma$$

for some endomorphism Θ of \mathbb{T} if and only if $V_{abcd} \equiv 0$.

Theorem

If $V_{abcd} = 0$, then

$$(\nabla_a \Phi^{bc})_\circ = 0$$

in Fedosov gauge, where () $_{\circ}$ means to take the trace-free part.

Theorem

The symplectic tractor connection on a Kähler manifold is symplectically flat if and only if the metric has constant holomorphic sectional curvature.

Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

Motivation and links

- 2 Calculus on CSM
- 3 Conformally Fedosov
- 4 Curvature
- **5** Tractor Connection

Notivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences
					•00

Theorem (The coupled Rumin–Seshadri complex)

Suppose $(M, [\nabla, J])$ is a conformally symplectic manifold with the curvature V_{abcd} vanishing, ∇_a be the symplectically flat connection on any vector bundle E over M induced by the standard tractor bundle. Then there is a natural elliptic complex

where all operators are first order save for the middle operator, which is second order. This differential complex is locally exact save for its zeroth and first cohomologies, which may be identified with $\underline{\ker \Theta}$ and $\underline{\operatorname{coker} \Theta}$, respectively, where Θ is the endomorphism induced from the curvature of the tractor connection.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet} \cdots \overset{d}{\bullet} \overset{e}{\bullet} (\mathbb{T})$ is the bundle associated to \mathbb{T} via the $\operatorname{Sp}(2n+2,\mathbb{R})$ -module $\overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet} \cdots \overset{d}{\bullet} \overset{e}{\bullet}$, bearing in mind that the non-degenerate skew form (7) reduces the structure group of \mathbb{T} to $\operatorname{Sp}(2n+2,\mathbb{R})$.

Motivation and links	Calculus on CSM 00000000	Conformally Fedosov 00000	Curvature 00000	Tractor Connection	BGG sequences 00●
A four over	malaa				

A few examples

In dimension 4,
$$TM = \overset{0}{\times} \overset{1}{\bullet} \overset{0}{\bullet} \overset{1}{\times} \overset{0}{\bullet} \overset{1}{\bullet} \overset{0}{\bullet} \overset{1}{\times} \overset{1}{\bullet} \overset{0}{\bullet} \overset{1}{\times} \overset{1}{\bullet} \overset{0}{\bullet} \overset{1}{\times} \overset{1}{\bullet} \overset{1}{\bullet}$$

000	0000000	00000	00000	0000000	000		
Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences		

A few examples

In dimension 4,
$$TM = \overset{0}{\times} \overset{1}{\overset{0}{\leftarrow}} \overset{0}{\overset{0}{\leftarrow}} \qquad \Lambda^{1} = \overset{-2}{\overset{1}{\times}} \overset{1}{\overset{0}{\leftarrow}} \qquad \Lambda^{2}_{\perp} = \overset{-3}{\overset{0}{\times}} \overset{0}{\overset{1}{\leftarrow}} \overset{1}{\overset{0}{\leftarrow}}$$

$$\mathbb{T} = \overset{1}{\overset{0}{\times}} \overset{0}{\overset{0}{\leftarrow}} \oplus \overset{-1}{\overset{1}{\overset{0}{\leftarrow}}} \oplus \overset{-1}{\overset{0}{\overset{0}{\leftarrow}}} \overset{0}{\overset{0}{\leftarrow}}$$

In particular the Rumin-Seshadri complex is

 $0 \to \overset{1}{\times} \overset{0}{\bullet} \overset{0}{\longrightarrow} \overset{\nabla^2}{\times} \overset{-3}{\bullet} \overset{2}{\bullet} \overset{0}{\bullet} \overset{\nabla}{\longrightarrow} \overset{-4}{\times} \overset{1}{\bullet} \overset{1}{\bullet} \overset{\nabla^2}{\longrightarrow} \overset{-6}{\times} \overset{1}{\bullet} \overset{1}{\longrightarrow} \overset{\nabla}{\longrightarrow} \overset{-7}{\times} \overset{2}{\bullet} \overset{0}{\leftrightarrow} \overset{\nabla^2}{\longrightarrow} \overset{-7}{\times} \overset{0}{\bullet} \overset{0}{\longrightarrow} \overset{0}{\longrightarrow} \overset{-1}{\times} \overset{0}{\bullet} \overset{1}{\longrightarrow} \overset{1}{\times} \overset{0}{\to} \overset{1}{\times} \overset{0}{\to} \overset{1}{\to} \overset{1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Δ C					
					000
Motivation and links	Calculus on CSM	Conformally Fedosov	Curvature	Tractor Connection	BGG sequences

A few examples

In dimension 4,
$$TM = \overset{0}{\times} \overset{1}{\overset{0}{\leftarrow}} \overset{0}{\overset{0}{\leftarrow}} \qquad \Lambda^{1} = \overset{-2}{\overset{1}{\times}} \overset{1}{\overset{0}{\leftarrow}} \qquad \Lambda^{2}_{\perp} = \overset{-3}{\overset{0}{\times}} \overset{0}{\overset{1}{\leftarrow}} \overset{1}{\overset{0}{\leftarrow}}$$

$$\mathbb{T} = \overset{1}{\overset{0}{\times}} \overset{0}{\overset{0}{\leftarrow}} \oplus \overset{-1}{\overset{1}{\overset{0}{\leftarrow}}} \oplus \overset{-1}{\overset{0}{\overset{0}{\leftarrow}}} \overset{0}{\overset{0}{\leftarrow}}$$

In particular the Rumin-Seshadri complex is

$$0 \to \overset{1}{\times} \overset{0}{\longrightarrow} \overset{0}{\longrightarrow} \overset{\nabla^2}{\xrightarrow} \overset{-3}{\times} \overset{2}{\longleftarrow} \overset{0}{\longrightarrow} \overset{\nabla}{\xrightarrow} \overset{-4}{\longleftarrow} \overset{1}{\longrightarrow} \overset{1}{\longrightarrow} \overset{\nabla^2}{\xrightarrow} \overset{-6}{\longleftarrow} \overset{1}{\longrightarrow} \overset{1}{\longrightarrow} \overset{\nabla}{\xrightarrow} \overset{-7}{\xrightarrow} \overset{2}{\longleftarrow} \overset{0}{\longrightarrow} \overset{\nabla^2}{\xrightarrow} \overset{-7}{\xrightarrow} \overset{0}{\longleftarrow} \overset{0}{\longrightarrow} \overset{\nabla}{\xrightarrow} \overset{1}{\longrightarrow} \overset{0}{\longrightarrow} \overset{1}{\longrightarrow} \overset{1}{\overset}{\overset{1}{\longrightarrow} \overset{1}{\longrightarrow} \overset{1}{\overset}{\overset{1}{\longrightarrow} \overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{\overset}{\overset{1}{$$

Similarly, the initial portion

$$\overset{0}{\times} \overset{1}{\bullet} \overset{0}{\bullet} \cdots \overset{0}{\bullet} \overset{0}{\bullet} \overset{\nabla}{\to} \overset{-2}{\times} \overset{2}{\bullet} \overset{0}{\bullet} \cdots \overset{0}{\bullet} \overset{0}{\bullet} \overset{\nabla^2}{\to} \overset{-4}{\times} \overset{0}{\bullet} \overset{0}$$

on \mathbb{CP}_n appears in the Eastwood-Goldschmidt paper, where it is shown that the second operator provides exactly the integrability conditions for the range of the Killing operator on \mathbb{CP}_n . This conclusion is immediate from our Theorem here: since \mathbb{CP}_n is simply-connected, there is no global cohomology arising from <u>coker Θ </u>.