

Übungsblatt 6

Schriftliche Abgabe: Dienstag 27. November 2018

Schreiben Sie auf jede Lösung bitte ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe (Wochentag + Übungsleiter + ev. Zeit)

Aufgabe 6.1 (3+2 Punkte) Sei (X,d) ein metrischer Raum und sei für $x,y \in X$

$$d^*(x,y) := \frac{d(x,y)}{1 + d(x,y)}, \qquad \widetilde{d}(x,y) := \min\{1, d(x,y)\}.$$

- a) Zeigen Sie, dass (X, d^*) und (X, \widetilde{d}) metrische Räume sind.
- b) Untersuchen Sie, wie die ε -Kugeln von (X, d^*) und (X, \widetilde{d}) im Fall $X = \mathbb{C}$ und d(x, y) = |x y| aussehen.

Aufgabe 6.2 (4 Punkte) Sei (X, d) ein metrischer Raum und $A \subseteq X$. Zeigen Sie:

a) Int(A) ist die größte offene Menge, die in A enhalten ist, d.h. es gilt

$$Int(A) = \bigcup_{\substack{U \subset A \\ U \text{ offen}}} U$$

b) cl(A) ist die kleinste absgeschlossene Menge, die A enthält, d.h. es gilt

$$cl(A) = \bigcap_{\substack{F \supset A \\ F \text{ abgeschlossen}}} F$$

Aufgabe 6.3 (5 Punkte)

a) Bestimmen Sie in R den Abschluss, den Rand und das Innere der Menge

$$A = \left\{ \left(-\frac{1}{2} \right)^n + \frac{1}{m} \,\middle|\, n, m \in \mathbb{N} \right\}$$

b) Bestimmen Sie in $\mathbb R$ die Häufungspunkte der Mengen

$$B = \bigcup_{k \in \mathbb{N}} \left(\frac{1}{\sqrt{k+1}}, \frac{1}{\sqrt{k}} \right], \qquad C = \mathbb{Q}.$$

Aufgabe 6.4 (4 Punkte) Untersuchen Sie, ob die folgenden Folgen reeller Zahlen konvergieren und bestimmen Sie ggf. den Grenzwert (mit Beweis!)

$$a_n = \frac{n}{n^2 - 6}, \qquad b_n = \sqrt{n+1} - \sqrt{n}, \qquad c_n = \frac{2^n}{n!}.$$

Schriftliche Zusatzaufgabe 6.Z (3 Punkte)

Wieviele verschiedene Mengen können aus einer Menge $A \subset \mathbb{R}$ maximal entstehen, wenn Sie nacheinander den Abschluss oder das Innere bilden?

Die folgenden Aufgaben werden teilweise in den Übungen besprochen.

Aufgabe 6.A Sei (X, d) ein metrischer Raum und $p \in X$. Wir definieren eine Abbildung

$$d: X \times X \to \mathbb{R}, \qquad d_p(x,y) = \begin{cases} d(x,p) + d(y,p), & \text{wenn } x \neq y, \\ 0 & \text{wenn } x = y \end{cases}$$

Beweisen Sie, dass d_p eine Metrik auf X ist, und skizzieren Sie die ε -Kugeln von d_p , wenn $X = \mathbb{C}, d(x, y) = |x - y|$ und p = 0.

Aufgabe 6.B Betrachten Sie den \mathbb{R} -Vektorraum \mathbb{R}^n . Eine Abbildung $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ heißt eine *Norm*, wenn die folgenden Bedingungen erfüllt sind:

- (N1) $||v|| \ge 0$ für alle $x \in \mathbb{R}^n$, und ||v|| = 0 genau dann, wenn v = 0.
- (N2) $\|\lambda v\| = |\lambda| \cdot \|v\|$ für alle $\lambda \in \mathbb{R}$ und $v \in \mathbb{R}^n$.
- (N3) $||v + w|| \le ||v|| + ||w||$ für alle $v, w \in \mathbb{R}^n$.
 - a) Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^n . Zeigen Sie, dass die folgende Abbildung eine Metrik auf \mathbb{R}^n ist:

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \qquad (v, w) \mapsto ||v - w||.$$

b) Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ definieren wir

$$||x||_1 := \sum_{k=1}^n |x_i|, \qquad ||x||_2 := \sqrt{\sum_{i=1}^n |x_i|^2}, \qquad ||x||_\infty := \max\{|x_1|, \dots, |x_n|\}.$$

Zeigen Sie dass $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$ Normen auf \mathbb{R}^n sind.

c) Seien d_1, d_2 und d_{∞} die Metriken auf \mathbb{R}^2 , die den Normen $\|\cdot\|_1, \|\cdot\|_2$ und $\|\cdot\|_{\infty}$ entsprechen. Skizzieren sie die Kugeln

$$K_1^1(0) = \{ v \in \mathbb{R}^2 \mid d_1(0, v) < 1 \}, \qquad K_1^2(0) = \{ v \in \mathbb{R}^2 \mid d_2(0, v) < 1 \},$$

$$K_1^{\infty}(0) = \{ v \in \mathbb{R}^n \mid d_{\infty}(0, v) < 1 \}.$$

Aufgabe 6.C Betrachten Sie \mathbb{R} mit der Euklidische Metrik d(x,y) = |x-y|. Sei $A \subseteq \mathbb{R}$ eine beschränkte Menge. Zeigen Sie dass

$$\sup A \in cl(A), \quad \inf A \in cl(A).$$

Aufgabe 6.D Sei (X, d) ein metrischer Raum. Für $x \in X$ und $\varepsilon > 0$, seien

$$K_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \}, \qquad C_{\varepsilon}(x) := \{ y \in X \mid d(x, y) \le \varepsilon \}.$$

- a) Beweisen Sie, dass $C_{\varepsilon}(x)$ abgeschlossen ist und dass $C_{\varepsilon}(x) \supset cl(K_{\varepsilon}(x))$.
- b) Gilt $C_{\varepsilon}(x) = cl(K_{\varepsilon}(x))$? (Beweis oder Gegenbeispiel)

Aufgabe 6.E

Bestimmen Sie in $\mathbb R$ den Abschluss, den Rand, das Innere und die Häufungspunkte der Mengen

$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}, \qquad B = \left\{ \frac{n^3 + 7n}{n^2 - 6} \mid n \in \mathbb{N} \right\}$$