Problem Set 1

Differential Geometry
WS 2019/20

Problem 1
(a) Let \(\tilde{\gamma} : [a, b] \to \mathbb{R}^n \) be a regular, differentiable curve and denote by \(\gamma : [0, \ell(\gamma)] \to \mathbb{R}^n \) its arclength reparametrization. Show that \(\gamma \) is differentiable and \(\|\dot{\gamma}(t)\| = 1 \) for all \(t \in [0, \ell(\gamma)] \).
(b) What can be said if \(\tilde{\gamma} \) is not necessarily regular but nowhere constant?

Problem 2
(a) Let \(\tilde{\gamma} : [a, b] \to \mathbb{R}^2 \) be a regular, twice differentiable curve. Compute the curvature \(\kappa : [a, b] \to \mathbb{R} \) in terms of its first and second derivative.
(b) Let \(f : [a, b] \to \mathbb{R} \) be a \(C^2 \)-function; let \(\gamma : [a, b] \to \mathbb{R}^2 \) be given by \(\gamma(t) = (t, f(t)) \). Derive formulas for the length of \(\gamma \) and its curvature. Show that the curvature is negative, positive, zero exactly where \(f \) is concave, convex or has an inflection point, respectively.
(c) Compute the turning number of \(\gamma \) in (b).

Problem 3
(a) Compute the length and the curvature of the following curves:
\(\alpha : [a, b] \to \mathbb{R}^3; \alpha(t) = (r \cos t, r \sin t, kt) \) (the helix)
\(\beta : (0, \pi) \to \mathbb{R}^2; \beta(t) = (\sin t, \cos t + \ln \tan(t/2)) \) (tractrix).
\(\gamma : (-1, 1) \to \mathbb{R}^2; \gamma(t) = (t^2, t^3) \) (semicubic parabola).
\(\delta : [0, 2\pi] \to \mathbb{R}^2; \delta(t) = (\cos t, \sin(2t)) \) (lemniscate of Gerono).
(b) Compute the turning number of \(\delta \).