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1 Introduction

Let M be a compact smooth Riemannian manifold and f : M → R a Morse function.

De�nition. (1) The set of critical points of f is denoted Crit(f) := {x ∈M | df(x) =
0}.

(2) For x ∈ Crit(f), the Hessian d2f(x) : TxM ×TxM → R is given in local coordinates

by the matrix
(

∂2f
∂xi∂xj

)
i,j
.

(3) A function f : M → R is called Morse function if every critical point of f is

nondegenerate, i.e. d2f(x) is nondegenerate (i.e. the above matrix is nonsingular.

Remark. Note that df2(x) is symmetric, hence diagonalizable. The Hessian is indepen-

dent of the choice of coordinates if df(x) = 0: for the Levi-Civita connection ∇, one
has

〈∇ξ∇f(x), η〉 = d2f(x)(ξ, η)

where one de�nes ∇2f(x) : TxM → TxM by ∇2f(x)ξ := ∇ξ∇f(x).

Proof. The above equation holds because for ei =
∂
∂xi

,

〈∇ei∇f(x), ej〉 = ei (〈∇f(x), ej〉)− 〈∇f(x),∇eiej〉
= ei (df(x) (ej))− df(x) (∇eiej)

=
∂

∂xi

Ç
∂f

∂xj

å
= df2(x) (ei, ej)

Consider the negative gradient �ow

u̇ = −∇f(u) (1)

and denote by ϕt : M →M the �ow.
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De�nition/Theorem. The stable and unstable manifolds

W s(x, f) :=
{
x ∈M | lim

s→∞
ϕs(z) = x

}
,

W u(x, f) :=

ß
x ∈M | lim

s→−∞
ϕs(z) = x

™
are smooth submanifolds of M for every x ∈ Crit(f). The Morse index of x is

indf (x) := dimW u(x, f) = ν−
Ä
df2(x)

ä
where ν−(df2(x)) is the number of negative eigenvalues of the matrix of second derivatives

of f , counted with multiplicities.

Since df2(x) is diagonalizable and invertible,

dimW u(x, f) + dimW s(x, f) = ν−(df2(x)) + ν+(df2(x)) = n

The gradient �ow 1 is called a Morse-Smale system if, for any pair x, y ∈ Crit(f), the
stable and unstable manifolds intersect transversely (i.e. their tangent spaces span the

tangent space of M at each point of intersection). In that case the set

M(y, x, f) :=W s(x, f) ∩W u(y, f)

of points in M whose gradient lines connect y to x, is a smooth submanifold of M with

dimension

dimM(y, x, f) = n− (n− dimW s(x, f))− (n− dimW u(y, f))

= dimW s(x, f) + dimW u(y, f)− n
= dimW s(x, f)− dimW s(y, f)

= indf (y)− indf (x).

We interpret M(y, x, f) as the space of gradient �ow lines u : R → M from y =
lims→−∞ u(s) to x = lims→∞ u(s). The group R acts on M(y, x, f) smoothly, freely

and properly, so one can take the quotient ”M(y, x, f) which is a manifold of dimension

indf (y)− indf (x)− 1. Thus indf (x) < indf (y) if there is a connecting orbit from y to x.
One can easily see that f is monotonically decreasing along �ow lines. In short, both f
and the index decrease along �ow lines.

An example of a gradient �ow that is not Morse-Smale is the torus, embedded in R3,

with Morse function one of the coordinate projections.

Remark. We will see later that the space ”M(y, x, f) of gradient �ow lines from y to x
is a �nite set if the index di�erence is 1. With this in mind, we can de�ne the Morse-

Smale-Witten complex.
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De�nition. TheMorse-Smale-Witten complex in Z2 coe�cients has the chain groups

CMk(f) =
⊕

x∈Crit(f)
indf (x)=k

Z2〈x〉

with boundary operator ∂ = ∂M : CMk(f)→ CMk−1(f),

∂M 〈y〉 =
∑

x∈Crit(f)
indf (x)=k−1

#”M(y, x, f)〈x〉

Remark. We de�ne the Morse-Smale-Witten complex only for coe�cients in Z2. It can

be de�ned in Z coe�cients but that requires careful consideration of orientations, which

we omit here.

Theorem. Given a Morse-Smale �ow with CM(f) and ∂M de�ned as above, then ∂M

is well-de�ned, ∂M ◦ ∂M = 0 and there is a natural isomorphism

HMk(M,f) =
ker ∂Mk
im ∂Mk+1

→ Hk(M,Z2)

of the Morse homology and the singular homology ofM . In particular the Morse homology

does not depend on the choice of the Morse function and metric.

Example. Let T 2 = R2/Z2 with the Morse function f : T 2 → R, f(x, y) = cos(2πx) +
cos(2πy).

We see Crit(f) = {x, u, v, z} for x = (0.5, 0.5), u = (0.5, 0), v = (0, 0.5), z = (0, 0). The

chain groups are given by

CM2(f) = Z2〈x〉,
CM1(f) = Z2〈u〉+ Z2〈v〉,
CM0(f) = Z2〈z〉
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Figure 1.1: A Morse-Smale gradient �ow on the real projective plane.

And the boundary operators are given by:

∂〈x〉 = 2〈u〉+ 2〈v〉 = 0

∂〈u〉 = 2〈z〉 = 0, ∂〈v〉 = 2〈z〉 = 0

∂〈z〉 = 0.

Hence we obtain H2(T
2,Z2) = Z2, H2(T

2,Z2) = Z2
2, H2(T

2,Z2) = Z2.

Example. Consider the RP 2 with gradient �ow as in 1.1. We have critical points x, u, z.

CM2(f) = Z2〈x〉,
CM1(f) = Z2〈u〉,
CM0(f) = Z2〈z〉

And the boundary operators are given by:

∂〈x〉 = 2〈u〉 = 0

∂〈u〉 = 2〈z〉 = 0

∂〈z〉 = 0.

Hence Hi(RP 2,Z2) = Z2 for i = 0, 1, 2.

Sketch of proof. We sketch the proof of ∂M ◦ ∂M = 0 and that ”M(y, x) is �nite if

indf (y) = indf (x) − 1. Showing that ∂2 = 0 is equivalent to showing that for each

x, z ∈ Crit(f) with indf (z)− indf (x) = 2,∑
y∈Crit(f)
indf (y)=k

#”M(y, x, f)#”M(z, y, f) = #
⋃

y∈Crit(f)
indf (y)=k

”M(y, x, f)× ”M(z, y, f) ∈ 2Z.

Consider the one dimensional manifold ”M(z, x, f). It su�ces to show that the ends of

this space are in a bijection with the above set. Since the boundary points of a compact

1-manifold come in pairs, this would prove the proposition.
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We de�ne a compacti�cation of ”M(y, x, f) by”MC(y, x, f) :=
⋃

xi∈Crit(f)

”M(y, x1, f)× ”M(x1, x2, f)× . . .× ”M(xk, x, f)

It is possible (although not easy) to equip this with a topology such that it is compact

and ”M(y, x, f) ⊆ ”MC(y, x, f) is a dense open subspace.

From this it follows in particular that for indf (y)− indf (x) = 1, the space ”M(y, x, f) ⊆”MC(y, x, f) is also compact and zero-dimensional, hence �nite, so ∂M is well-de�ned.

For indf (y)− indf (x) = 2 we see that ”MC(y, x, f) is a compact 1-dimensional manifold

with boundary. In the boundary we can only have simply broken trajectories: there

cannot be more than one intermediate critical point because the index decreases strictly

monotonically along �ow lines, and if the trajectory were not broken then it would be

part of the interior.

The density part of the above proposition is called the gluing theorem. We state this

explicitly because a similar statement will appear later in the seminar. The following is

a special case of theorem 3 as given in Schwarz, M.: Morse Homology.

Theorem. Given (u, v) ∈ ”M(z, y) × ”M(y, x), there is a smooth map #̂ : [ρ(u,v),∞) →”M(z, x) mapping ρ to u#̂ρv such that u#̂ρv → (u, v) in ”MC(z, x) as ρ → ∞. On the

other hand, any sequence of unparametrized trajectories converging to a simply broken

trajectory eventually lies in the range of such a gluing map #̂.

xz

y

u v

u#̂ρv

Thus we see that the

∂
Ä”MC(z, x)

ä
= #

⋃
y∈Crit(f)
indf (y)=k

”M(y, x, f)× ”M(z, y, f)

This concludes the proof that ∂2 = 0.

What follows is an intuitive argument why the homologies should be isomorphic. Con-

sider again the torus example from above. One can equip it with a cw-complex structure

such that every cell interior of a k-cell is given by W u(y, f) for some y ∈ Crit(f),
ind(y) = k. One checks by hand that the assignment 〈y〉 7→ 〈cell of W u(y, f)〉 gives an
isomorphism of CMk(f) → Ccw(T 2) and that this is a chain map, i.e. it preserves the

boundary operator, hence we have an isomorphism of HMk(T
2, f)→ Hcw

k (T 2).
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This however does not easily give a general proof of the isomorphism. One could hope to

obtain in general a cell decomposition on M with the interiors of cells given by unstable

manifolds of critical points and to show that the resulting chain complex is isomorphic to

the Morse Smale Witten complex. The issue is with constructing the cell decomposition.

One can show using ϕt that the unstable manifolds are homeomorphic to open balls.

However to construct a cw complex we need a map from a closed ball to a subset of M ,

which on the interior is a homeomorphism. Notice that limt→∞ ϕ
t(x) ∈ Crit(f), so ϕt

cannot map to the entire boundary as t → ∞. Hence we cannot directly use the �ow

map to construct the cw structure on M .

Corollary (Morse-Inequalities). Let f : M → R be a Morse function and denote ck =
#{x ∈ Crit(f) | indf (x) = k} and bk = rankHk(M,Z) the k-th Betti number. Then

ck − ck−1 + · · ·+ (−1)kc0 ≥ bk − bk−1 + · · ·+ (−1)kb0

for 0 ≤ k ≤ n = dimM with equality for k = n and ck ≥ bk.

Proof. Because bk = rank ker ∂k − rank im ∂k+1 and ck = rank ker ∂k + rank im ∂k,

ck − ck−1 + · · ·+±c0 = rankCMk(f)− rankCMk−1(f) + · · · ± rankCM0(f)

= rank ker ∂k + rank im ∂k − rank ker ∂k−1 − rank im ∂k−1 + · · ·+
∓ rank ker ∂1 ∓ rank im ∂1 ± rank ker ∂0 ± rank im ∂0

= rank im ∂k+1 + bk − bk−1 + · · · ± b0
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