Statistics of Stochastic Processes
(Statistik stochastischer Prozesse)
Notes for the course
in winter semester 2014/15

If you find any mistakes in the script, please send an e-mail to
shevcher@student.hu-berlin.de

Markus Reiβ
Humboldt-Universität zu Berlin

Preliminary version, February 12, 2015

Contents

1 Time series 1
 1.1 Stationary processes ... 1
 1.2 Autoregressive and moving average processes 5
 1.3 The Yule-Walker estimator and a CLT for martingale differences 10

2 Statistics for continuous-time processes 23
 2.1 Diffusion processes .. 23
 2.2 Nonparametric drift estimation 28
 2.3 Nonparametric volatility estimation with high frequency data . 33
 2.4 Introduction to high-frequency statistics 40
 2.5 Volatility estimation from high frequency data in a nutshell 43
 2.5.1 Direct observation model 43
 2.5.2 Noisy observation model 44
1 Time series

1.1 Stationary processes

Idea: A process is stationary if its law is invariant with respect to time shifts.

1.1 Examples.

• Annual rainfall,
• EUR-USD-exchange rate,
• car accidents,
• heartbeat of a healthy person.

1.2 Counterexamples.

• Tide level at Hamburg harbour,
• stock price of Siemens since 1960,
• population of ladybirds per year.

Taking out trends/cycles this might still yield stationary time series.

1.3 Definition. Let \(T \subseteq \mathbb{R} \) with \(t, s \in T \Rightarrow t + s \in T \) be a time set, mostly \(T \in \{ \mathbb{N}_0, \mathbb{Z}, \mathbb{R}^+_0, \mathbb{R} \} \). A family \((X_t, t \in T)\) of random variables on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\) is a stochastic process. For \(T \in \{ \mathbb{N}_0, \mathbb{Z} \} \) we call \(X \) also time series. \(X \) is called (strictly) stationary if

\[
\forall n \in \mathbb{N}, t_1, \ldots, t_n, t \in T: (X_{t_1}, \ldots, X_{t_n}) \overset{d}{=} (X_{t_1+t}, \ldots, X_{t_n+t}),
\]

i.e. \(\forall A \in \mathfrak{B}_{\mathbb{R}^n} : \mathbb{P}((X_{t_1}, \ldots, X_{t_n}) \in A) = \mathbb{P}((X_{t_1+t}, \ldots, X_{t_n+t}) \in A) \).

If \(X \) is in \(L^2 \), i.e. \(\mathbb{E}[X_t^2] < \infty \) for all \(t \in T \), then \(X \) is called weakly stationary (second order stationary) if the expectation function \(t \mapsto \mu(t) := \mathbb{E}[X_t] \) is constant and the covariance function satisfies \(\text{Cov}(X_u, X_s) = \text{Cov}(X_{u+t}, X_{s+t}) \) for all \(u, s, t \in T \). In that case \(t \mapsto c(t) := \text{Cov}(X_s, X_{s+t}) \) (s \(\in T \) arbitrary) is called autocovariance function.

1.4 Example. If \((X_t)_{t \in T}\) are i.i.d., then \(X \) is strictly stationary.

1.5 Lemma. We have: \(X \) is \(L^2 \) and strictly stationary \(\Rightarrow X \) is weakly stationary.

Proof. Identity in law and \(L^2 \)-property imply identity of expectations and covariances.

Problem 1

(a) Find a weakly stationary process that is not strictly stationary.
(b) Prove that for a Gaussian process both notions of stationarity are equivalent.

First statistical problem: Let X be a weakly stationary time series with expectation $\mu = \mathbb{E}[X_t]$. Estimate μ from observations X_1, \ldots, X_n.

A natural approach is the empirical mean

$$\hat{\mu}_n := \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Note that $\hat{\mu}_n$ is a measurable function of the observations (X_1, \ldots, X_n) and as such a random variable. We call $\hat{\mu}_n$ an estimator. For realisations x_1, \ldots, x_n of (X_1, \ldots, X_n), i.e. $x_k = X_k(\omega_0)$ for some $\omega_0 \in \Omega$, the value (real number) $\hat{\mu}_n(\omega_0) = \frac{1}{n} \sum_{i=1}^{n} x_i$ is called estimated value. Here, we see that $\hat{\mu}_n$ is an unbiased estimator of μ:

$$\mathbb{E}[\hat{\mu}_n] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i]^{\text{station.}} = \mu.$$

1.6 Examples.

(a) If $c(t) = 0$ for $t \neq 0$ (X_t and X_s are uncorrelated for $t \neq s$), then by the weak law of large numbers (LLN) $\hat{\mu}_n \to \mu$ in probability as $n \to \infty$.

(b) Take some $Y \in L^2$ and set $X_i := Y$ for all $i \in \mathbb{N}_0$. Then $(X_i)_{i \in \mathbb{N}_0}$ is weakly stationary ($\mu = \mathbb{E}[Y]$, $c(t) = \text{Cov}(X_i, X_{i+t}) = \text{Var}(Y)$). We see immediately that $\hat{\mu}_n = Y$ does not converge (in probability) to μ, unless $\mathbb{P}(Y = \mu) = 1$.

1.7 Proposition. If $(X_t, t \in \mathbb{Z})$ is weakly stationary with autocovariance function c and mean μ, then we have for $\hat{\mu}_n := \frac{1}{n} \sum_{i=1}^{n} X_i$:

(a) $\text{Var}(\hat{\mu}_n) \to 0$ if $\lim_{n \to \infty} c(n) = 0$, in particular $\hat{\mu}_n \to \mu$ in probability and in L^2;

(b) $n \text{Var}(\hat{\mu}_n) \to \sum_{k=-\infty}^{\infty} c(k)$ if $\sum_{k=-\infty}^{\infty} |c(k)| < \infty$.

Proof. (a)

$$\lim_{n \to \infty} c(n) = 0 \Rightarrow \text{Var}(\hat{\mu}_n) = \frac{1}{n^2} \sum_{i,j=1}^{n} \text{Cov}(X_i, X_j) = \sum_{k=-(n-1)}^{n-1} \frac{n - |k|}{n^2} c(k) \leq \frac{1}{n} \sum_{k=-(n-1)}^{n-1} |c(k)| = \frac{2n - 1}{n} \left(\frac{1}{2n - 1} \sum_{k=-(n-1)}^{n-1} |c(k)| \right) \xrightarrow{\text{Césaro mean}} 0.$$

$$\mathbb{E}[(\hat{\mu}_n - \mu)^2] = \text{Var}(\hat{\mu}_n) \to 0 \iff \hat{\mu}_n \overset{L^2}{\to} \mu \Rightarrow \hat{\mu}_n \overset{\mathbb{P}}{\to} \mu.$$
\[\sum_{k \in \mathbb{Z}} |c(k)| < \infty \Rightarrow \sup_n (n \text{Var}(\hat{\mu}_n)) \leq \sup_n \sum_{k=-(n-1)}^{n-1} |c(k)| < \infty. \]

Dominated convergence theorem (DCT):
\[\lim_{n \to \infty} (n \text{Var}(\hat{\mu}_n)) = \lim_{n \to \infty} \sum_{k=-(n-1)}^{n-1} \left(1 - \frac{|k|}{n} \right) c(k) = \sum_{k \in \mathbb{Z}} c(k). \]

\[\sum_{k \in \mathbb{Z}} |c(k)| < \infty \Rightarrow \sup_n (n \text{Var}(\hat{\mu}_n)) \leq \sup_n \sum_{k=-(n-1)}^{n-1} |c(k)| < \infty. \]

1.8 Remarks. Part (a) shows in particular that \(\hat{\mu}_n \) is a consistent estimator: \(\hat{\mu}_n \overset{p}{\to} \mu \). Part (b) shows that the rate of convergence is \(\frac{1}{\sqrt{n}} \): \(\sqrt{n}(\hat{\mu}_n - \mu) \) is bounded in \(L^2 \) (and then also in probability).

If \(\sum_{k \in \mathbb{Z}} |c(k)| \) is finite, the time series is said to have short range dependence, otherwise it is called long range dependent.

Question: Do we even have \(\hat{\mu}_n \overset{a.s.}{\to} \mu \)? What if \(X \) is strictly stationary, but \(X_t \in L^1 \setminus L^2 \)? (cf. strong LLN)

Tool: Birkhoff’s ergodic theorem (\(T \) left shift on sequence space, \(J \) \(T \)-invariant \(\sigma \)-algebra):
\[\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X \circ T^i \overset{a.s.}{\to} L^1 \mathbb{E}[X | J]. \]

If \(T \) (respectively \((X_t) \)) is ergodic, i.e. \(J \) is trivial, then \(\mathbb{E}[X | J] \overset{a.s.}{=} \mathbb{E}[X] = \mu \).

Problem 2: Let \((X_n, n \in \mathbb{N}_0) \) be a strictly stationary process. Construct another strictly stationary process \((\tilde{X}_m, m \in \mathbb{Z}) \) such that \((\tilde{X}_{m+n}, n \in \mathbb{N}_0) \overset{d}{=} (X_n, n \in \mathbb{N}_0) \) for all \(m \in \mathbb{Z} \). \(\tilde{X} \) is the canonical extension of \(X \) from \(\mathbb{N}_0 \) to \(\mathbb{Z} \).

Problem 3: Consider a weakly stationary process \((X_t, t \in \mathbb{R}) \) such that \((t, \omega) \mapsto X_t(\omega) \) is \(\mathcal{B}_{\mathbb{R}} \otimes \mathcal{F} \)-measurable (i.e. \(X \) is a measurable process). Construct an estimator \(\hat{\mu}_T \) of \(\mu = \mathbb{E}[X_t] \) based on observing \((X_t, t \in [0, T]) \) (analogous to \(\hat{\mu}_n \)). Study its mean and asymptotic variance under suitable conditions for \(c \).

For statistical inference, e.g. confidence intervals, an (asymptotic) distribution of \(\sqrt{n}(\hat{\mu}_n - \mu) \) in the previous proposition would be desirable.

Conjecture: \(\sqrt{n}(\hat{\mu}_n - \mu) \to N(0, \sum_{k \in \mathbb{Z}} c(k)) \) under suitable conditions.

Even if we had such a result, a priori we do not know the asymptotic variance \(\sum_{k \in \mathbb{Z}} c(k) \) and we need to estimate it. Alternative approach is a resampling/bootstrap approach.
1.9 Lemma. The autocovariance function $c : \mathbb{Z} \rightarrow \mathbb{R}$ of a weakly stationary process $(X_t, t \in \mathbb{Z})$ satisfies:

(a) c is symmetric: $c(-k) = c(k)$, $k \in \mathbb{Z}$,

(b) $c(0) \geq 0$ and $|c(k)| \leq c(0)$,

(c) c is positive semi-definite:

$$\forall m \in \mathbb{N}, a_1, \ldots, a_m \in \mathbb{R} : \sum_{i,j=1}^{m} a_i a_j c(i - j) \geq 0.$$

Proof. (a) $\text{Cov}(X_s, X_t) = \text{Cov}(X_t, X_s)$,

(b) $c(0) = \text{Var}(X_t) \geq 0$,

$$c(k)^2 = \text{Cov}(X_k, X_0)^2 \leq \text{Var}(X_k) \text{Var}(X_0) = c(0)^2,$$

(c) $\sum_{i,j=1}^{m} a_i a_j c(i - j) = \text{Var}(\sum_{i=1}^{m} a_i X_i) \geq 0.$$

1.10 Definition. The 'canonical' estimator $\hat{c}(k)$ of the autocovariance function at lag k from observing X_1, \ldots, X_n, $n \geq k$, is given by

$$\hat{c}(k) = \frac{1}{n} \sum_{i=1}^{n-k} (X_i - \hat{\mu}_n)(X_{i+k} - \hat{\mu}_n).$$

Set $\hat{c}(-k) := \hat{c}(k)$. The empirical autocovariance matrix is then

$$\hat{C}_n := \begin{pmatrix} \hat{c}(0) & \hat{c}(1) & \ldots & \hat{c}(n-1) \\ \hat{c}(1) & \hat{c}(0) & \ldots & \hat{c}(n-2) \\ \vdots & \ddots & \ddots & \vdots \\ \hat{c}(n-1) & \ldots & \hat{c}(1) & \hat{c}(0) \end{pmatrix}.$$

Problem 4:

(a) Verify the bias-variance decomposition for an estimator $\hat{\vartheta}$ of $\vartheta \in \mathbb{R}$ with $E[\hat{\vartheta}^2] < \infty$:

$$E[(\hat{\vartheta} - \vartheta)^2] = \underbrace{(E[\hat{\vartheta}] - \vartheta)^2}_\text{Bias^2} + \text{Var}(\hat{\vartheta}).$$

(b) Let $Y_1, \ldots, Y_n \text{i.i.d.} N(\mu, \sigma^2)$ and $\hat{\sigma}_n^2 = \frac{\alpha}{n-1} \sum_{i=1}^{n} (Y_i - \hat{\mu}_n)^2$,

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i, \ \alpha > 0.$$ Show that $\hat{\sigma}_n^2$ is unbiased iff $\alpha = 1$ and determine $\alpha = \alpha_{\text{opt}} > 0$ such that $E[(\hat{\sigma}_n^2 - \sigma^2)^2]$ is minimal. How would you choose α in practice?

1.11 Lemma. \hat{C}_n (or \hat{c} on $\{-n+1, \ldots, n-1\}$) is positive semi-definite:

$$\forall a_1, \ldots, a_n \in \mathbb{R} : \sum_{i,j=1}^{n} a_i a_j \hat{c}(i - j) \geq 0.$$
1.12 Remark. For this it is essential that the prefactor before the sum in $\hat{c}(k)$ does not depend on k.

Proof. Set $Y_i = (X_i - \hat{\mu}_n)1_{i \leq n}$, $i \in \mathbb{Z}$.

\[
\sum_{i,j=1}^{n} a_i a_j \hat{c}(i-j) = \frac{1}{n} \sum_{i,j=1}^{n} a_i a_j \sum_{l \in \mathbb{Z}} Y_l Y_{l+i-j}.
\]

\[
= \frac{1}{n} \sum_{l \in \mathbb{Z}} \sum_{i,j=1}^{n} a_i a_j Y_l Y_{l+i-j} = \frac{1}{n} \sum_{l \in \mathbb{Z}} \sum_{i,j=1}^{n} a_i a_j Y_{l-i} Y_{l-j}.
\]

\[
= \frac{1}{n} \sum_{l \in \mathbb{Z}} \left(\sum_{i=1}^{n} a_i Y_{l-i} \right)^2 \geq 0.
\]

\[
\square
\]

1.13 Example. If X is Gaussian and $\mu = 0$ is known (i.e. $\hat{\mu}_n = \mu = 0$), then $E[\hat{c}(k)] = \frac{n-k}{n} c(k)$, $n \text{Var}(\hat{c}(k)) \rightarrow \sum_{l \in \mathbb{Z}} (c(l)^2 + c(l+k) c(l-k))$ if $(c(l))_{l \in \mathbb{Z}} \in l^2$ (see class notes \Rightarrow products of four Gaussian random variables). $\Rightarrow \hat{c}(k)$ has convergence rate $\frac{1}{\sqrt{n}}$ as well (for k fixed).

1.2 Autoregressive and moving average processes

1.14 Definition. A weakly stationary process $(\varepsilon_t, t \in \mathbb{Z})$ with mean 0 and autocovariance function $c(t) = \begin{cases} \sigma^2, & t = 0, \\ 0, & t \neq 0. \end{cases}$ is called white noise, $\varepsilon_t \sim \text{WN}(0, \sigma^2)$. If (ε_t) is even i.i.d. and $(\varepsilon_t) \sim \text{WN}(0, \sigma^2)$ we write $(\varepsilon_t) \sim \text{IID}(0, \sigma^2)$.

Consider discrete dynamical systems (with initial values x_0, X_0):

- $x_t = a x_{t-1}, t \in \mathbb{N} \Rightarrow x_t = a^t x_0$.

Asymptotics for large t:

\[
\begin{cases}
 a > 1 : & x_t \rightarrow \infty, \\
 a = 1 : & x_t = x_0, \\
 0 < a < 1 : & x_t \rightarrow 0, \\
 a < 0 : & \text{similar cases}.
\end{cases}
\]

- $X_t = a X_{t-1} + \varepsilon_t, t \in \mathbb{N}$.

We obtain: $X_t = a^t X_0 + \sum_{i=0}^{t-1} a^i \varepsilon_{t-i}$,

$E[X_t] = a^t E[X_0]$ (\sim determinstic dynamics),

$\text{Cov}(X_t, X_s) \begin{cases}
 \text{assume } t \geq s : & \text{Cov}(a^{t-s} X_s + \sum_{i=0}^{t-s-1} a^i \varepsilon_{t-i}, X_s) \\
 \text{supp. \forall t: Cov}(X_0, \varepsilon_t) = 0: & a^{t-s} \text{Var}(X_s).
\end{cases}$
Moreover,

$$\text{Var}(X_s) = a^{2s} \text{Var}(X_0) + \sigma^2 \sum_{i=0}^{s-1} a^{2i} \frac{a^{\pm 1}}{a^2 - 1} \text{Var}(X_0) + \sigma^2 a^{2s} - 1.$$

Asymptotics:

I $|a| > 1$: If $E[X_0] > 0$, then $E[X_t] \to +\infty$ or $-\infty$ for $a > 1$, $a < -1$ geometrically fast; $\text{Var}(X_t) \to \infty$ holds as well. After normalisation, however, we have that $E[X_0^2], \text{Var}(X_0^2)$ remain bounded (but usually do not tend to zero) \sim unstable behaviour.

II $a = \pm 1$: $a = 1$: random walk, usually $\limsup_{t \to \infty} X_t = +\infty$, $\liminf_{t \to \infty} X_t = -\infty$. $a = -1$: alternating random walk-type process with similar asymptotic properties.

III $|a| < 1$: $E[X_t] \to 0$, $\text{Var}(X_t) \to \frac{\sigma^2}{1 - a^2}$ (independent of X_0).

Correlation for $|a| < 1$:

$$\text{Corr}(X_t, X_s) \approx \frac{a^{t-s} \text{Var}(X_s)}{\sqrt{\text{Var}(X_s) \text{Var}(X_t)}} \text{ for large } t, s \approx a^{t-s}.$$

More precisely: $\lim_{s \to \infty} \text{Corr}(X_{s+m}, X_s) = a^m$. This means that for large m X_s and X_{s+m} are nearly uncorrelated. The time series 'forgets the initial condition' as $t \to \infty$.

1.15 Definition. For white noise $(\varepsilon_t) \sim \text{WN}(0, \sigma^2)$, $p, q \in \mathbb{N}$; $\varphi_1, \ldots, \varphi_p, \vartheta_1, \ldots, \vartheta_q \in \mathbb{R}$ and random variables X_0, \ldots, X_{p+1} which are uncorrelated to (ε_t)

$$X_t = \varphi_1 X_{t-1} + \cdots + \varphi_p X_{t-p} + \varepsilon_t + \vartheta_1 \varepsilon_{t-1} + \cdots + \vartheta_q \varepsilon_{t-q}, t \in \mathbb{N}$$

defines an autoregressive-moving average process, ARMA(p, q)-process for short. With polynomials $\varphi(z) := 1 - \varphi_1 z - \cdots - \varphi_p z^p$, $\vartheta(z) := 1 + \vartheta_1 z + \cdots + \vartheta_q z^q$ and the backward shift operator $B X_t := X_{t-1}$ ($B^2 X_t = X_{t-2}, B^0 X_t = X_t$ etc.) we obtain more concisely $\varphi(B) X_t = \vartheta(B) \varepsilon_t, t \in \mathbb{N}$. Any process $(X_t, t \in \mathbb{Z})$ solving (*) is called an ARMA(p, q)-process on \mathbb{Z}.

If $\vartheta(z) = 1$, then X is called autoregressive process or AR(p)-process. If $\varphi(z) = 1$, then X is called moving average process or MA(q)-process.

Problem 5: Consider the deterministic dynamics for $x_t \in \mathbb{C}$ with $\varphi(B)x_t = 0$. Show that $x_t = a^t$ is a solution (for suitable initial values) if a^{-1} is a zero of φ. Conclude that in the case where φ has p distinct zeroes, any solution can be written as $x_t = \sum_{j=1}^p c_j a_j^t$ with $a_1, \ldots, c_p \in \mathbb{C}$ and $a_1^{-1}, \ldots, a_p^{-1}$ zeroes of φ. What happens in the case of multiple zeroes?
Problem 6:

(a) Let \(x_t(x_0, \ldots, x_{-p+1}) \) be the solution of \(\varphi(B)x_t = 0, \ t \geq 1 \), with initial values \(x_0, \ldots, x_{-p+1} \). Prove that the AR\((p)\)-process \(X \) satisfies the variation of constants formula

\[
X_t = x_t(X_0, \ldots, X_{-p+1}) + \sum_{j=1}^{t} x_{t-j}(1, 0, 0, \ldots, 0) \varepsilon_j, \tag{fundamental solution}
\]

(b) Determine the solution and its expectation as well as its covariance function explicitly for the stochastic Fibonacci dynamics:

\[
X_t = X_{t-1} + X_{t-2} + \varepsilon_t, \ X_0 = X_{-1} = 1.
\]

(c) Give an example of an AR\((2)\)-process that admits a weakly stationary solution.

1.16 Lemma. The AR\((1)\)-process on \(\mathbb{Z} \) \((X_t, t \in \mathbb{Z}) \) \(X_t = aX_{t-1} + \varepsilon_t, \ t \in \mathbb{Z} \), has a weakly stationary solution if \(|a| \neq 1 \). For \(a \in (-1, 1) \) this solution has the representation \(X_t = \sum_{i=0}^{\infty} a^i \varepsilon_{t-i} \), for \(|a| > 1 \) it has the representation \(X_t = -\sum_{i=1}^{\infty} a^{-i} \varepsilon_{t+i} \).

Proof. The case \(|a| < 1 \) follows immediately from the formulas above when inserting \(X_0 = \sum_{i=0}^{\infty} a^i \varepsilon_{-i}, \) cf. also the more general example from the class. The case \(|a| > 1 \): note that \(\sum_{i=1}^{\infty} a^{-i} \varepsilon_{t+i} \) is well-defined as a limit in \(L^2 \) since \(\sum_{i=1}^{\infty} a^{-2i} < \infty \). We then have \(aX_{t-1} = -\sum_{i=1}^{\infty} a^{-i} \varepsilon_{t-1+i} = -\varepsilon_t + X_t \Rightarrow X \) is AR\((1)\)-process. Weak stationarity is checked by calculating expectation, covariance function as for \(|a| < 1 \). \(\square \)

1.17 Definition. A weakly stationary ARMA\((p, q)\)-process is called causal if there is \((\psi_i) \in \ell^1 \) such that \(X_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}, \ t \in \mathbb{Z} \). The latter is called an infinite moving average representation (or MA\((\infty)\)).

1.18 Remarks.

(a) For the AR\((1)\)-process above \(X \) is causal if \(|a| < 1 \) and not causal for \(|a| > 1 \).

(b) Compare with the concept of adaptedness for stochastic processes.

Problem 7: Show that there is a weakly stationary solution of an MA\((q)\)-process. Discuss its expectation and autocovariance functions and simulate some examples.

We are now prepared for the main theorem on causal ARMA\((p, q)\)-processes.

First, we need some basic power series calculus for the backward shift operator \(B \).
1.19 Lemma. If \((X_t, t \in \mathbb{Z})\) is a process bounded in \(L^1\) (i.e. \(\sup_t \mathbb{E}[|X_t|] < \infty\)) and \((a_j)_{j \in \mathbb{Z}}\) in \(\ell^1\) then the series
\[
a(B)X_t = \sum_{j \in \mathbb{Z}} a_j B^j X_t = \sum_{j \in \mathbb{Z}} a_j X_{t-j}
\]
converges absolutely with probability one (=a.s.). If \(X\) is bounded in \(L^2\), then the series is bounded in \(L^2\) and converges in \(L^2\) to the same limit.

Proof. By Tonelli theorem:
\[
\mathbb{E}\left[\sum_{j \in \mathbb{Z}} |a_j||X_{t-j}|\right] = \sum_{j \in \mathbb{Z}} |a_j| \mathbb{E}[|X_{t-j}|] \leq \|a_j\|_{\ell^1} \mathbb{E}[|X_t|] < \infty.
\]
It follows that \(\mathbb{P}(\sum_{j \in \mathbb{Z}} |a_j||X_{t-j}| < \infty) = 1\) and the series converges a.s. absolutely.

If \(X\) is \(L^2\)-bounded, then for \(n > m > 0\)
\[
\mathbb{E}\left[\left(\sum_{m<j \leq n} a_j X_{t-j} \right)^2 \right] = \sum_{m<j \leq n} a_j a_k \mathbb{E}[X_{t-j}X_{t-k}] \leq \left(\sum_{m<j \leq n} |a_j|^2 \right) \sup_{t} \mathbb{E}[X_t^2] m,n \to \infty 0
\]
Hence, the sum forms a Cauchy sequence in \(L^2\) and thus converges in \(L^2\), which must be the same limit. \(\square\)

1.20 Lemma. If \(X\) is weakly stationary with autocovariance function \(c_X\) and if \((a_j) \in \ell^1\), then \(Y_t = a(B)X_t = \sum_{j \in \mathbb{Z}} a_j X_{t-j}, t \in \mathbb{Z}\), is again weakly stationary with autocovariance function
\[
c_Y(t) = \sum_{j,k \in \mathbb{Z}} a_j a_k c_X(t-j+k).
\]

Proof. \(Y\) is well-defined by the preceding lemma noting
\[
\mathbb{E}[X_t^2] = \mathbb{E}[X_t]^2 + \text{Var}(X_t) = \mu_X^2 + c_X(0) < \infty.
\]
Hence,
\[
\mathbb{E}[Y_t] \stackrel{L^2-\text{conv.}}{=} \lim_{n \to \infty} \mathbb{E}\left[\sum_{j=-n}^{n} a_j X_{t-j} \right] = \lim_{n \to \infty} \sum_{j=-n}^{n} a_j \mu_X = \mu_X \sum_{j=-\infty}^{\infty} a_j =: \mu_Y \text{ (independent of } t)\,
\]
\[
\mathbb{E}[Y_t Y_s] \stackrel{L^2-\text{conv.}}{=} \lim_{n \to \infty} \mathbb{E}\left[\left(\sum_{j=-n}^{n} a_j X_{t-j} \right) \left(\sum_{k=-n}^{n} a_k X_{s-k} \right) \right] = \sum_{-n \leq j,k \leq n} a_j a_k \mathbb{E}[X_{t-j}X_{s-k}] = \left(\sum_{j,k \in \mathbb{Z}} a_j a_k c_X(t-s-j+k) \right) + \mu_Y^2.
\]
It is finite:
\[
\sum_{j,k \in \mathbb{Z}} \left| a_j a_k c_X(t - s - j + k) \right| \leq c_X(0) \| a \|_{l^1}^2 < \infty
\]
and depends on \((t, s)\) only via \((t - s)\).
Consequently, \(Y\) is weakly stationary and \(c_Y\) is as asserted. \(\square\)

1.21 Remark. The lemma justifies the formal convolution algebra calculations for \((a_j), (b_j) \in \ell^1:\)
\[
a(B)b(B)X_t = c(B)X_t
\]
with \(c(z) = \sum_{j=0}^{\infty} c_j z^j, c_j = \sum_{k \in \mathbb{Z}} a_k b_{j-k} (c = a * b = b * a)\) for \(X \) \(L^2\)-bounded.

1.22 Theorem. Let \(X\) be a weakly stationary ARMA(p, q)-process on \(\mathbb{Z}\) with no common zeroes of \(\varphi\) and \(\vartheta\) on \(\{z \in \mathbb{C} | |z| \leq 1\}\). Then \(X\) is causal if and only if \(\varphi(z) \neq 0\) for \(z \in \mathbb{C}\) with \(|z| \leq 1\). In that case \(X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}\) holds where \(\psi(z) := \sum_{j=0}^{\infty} \psi_j z^j = \frac{\vartheta(z)}{\varphi(z)}\) for \(|z| \leq 1\). In particular, such a process \(X\) is unique.

1.23 Remark. Note that \(\varphi(z) \neq 0\) for \(z \in \mathbb{C}\) with \(|z| \leq 1\) implies that all solutions of the deterministic equation \(\varphi(B)x_t = 0\) are asymptotically stable, i.e. \(\lim_{t \to \infty} x_t = 0\) (use Problem 5).

1.24 Corollary. Suppose \(\varphi(z) \neq 0\) for \(z \in \mathbb{C}\) with \(|z| \leq 1\) and define (for white noise \((\varepsilon_j)_{j \in \mathbb{Z}} \sim \text{WN}(0, \sigma^2))\) \(X_k := \sum_{j=0}^{\infty} \psi_j \varepsilon_{k-j}\) for \(k = 0, \ldots, -p + 1\) and with \(\psi(z) = \frac{\vartheta(z)}{\varphi(z)}\). Then the ARMA(p, q)-process \(\varphi(B)X_t = \vartheta(B)\varepsilon_t, t \geq 1\), with initial values \(X_0, \ldots, X_{-p+1}\) is weakly stationary on \(\mathbb{N}\) (or \(\mathbb{N} \cup \{0, \ldots, -p+1\}\)) with \(c(t) = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t+j}\).

1.25 Remark. Often, e.g. in the Gaussian case, \(X_0, X_1, \ldots, X_{-p+1}\) can be constructed explicitly without simulating all \((\varepsilon_j)_{j \leq 0}\).

Proof of Corollary. Clear from Theorem. \(\square\)

Proof of Theorem.

\(\Leftarrow\) Suppose \(\varphi(z) \neq 0\) for \(|z| \leq 1\). Since \(\varphi\) has only finitely many zeroes, there is an \(\varepsilon > 0\) such that \(\frac{1}{\varphi(z)} = \sum_{j=0}^{\infty} \xi_j z^j = \xi(z)\) holds for \(|z| \leq 1 + \varepsilon\) (\(\frac{1}{\varphi}\) is holomorphic there).
This implies \(\sum_{j=0}^{\infty} |\xi_j| (1 + \varepsilon)^j < \infty \Rightarrow (\xi_j) \in \ell^1\).
By the previous lemma,
\[
X_t = \left(\xi \varphi\right)(B)X_t = \xi(B)(\vartheta(B)\varepsilon_t) = \psi(B)\varepsilon_t
\]
with \(\psi(z) = \xi(z)\vartheta(z) = \frac{\vartheta(z)}{\varphi(z)}\) for \(|z| \leq 1\).
\((\varepsilon_t)\) weakly stat. \(X\) is causal since \(\psi\) is holomorphic, \((\psi_j) \in \ell^1\).
Suppose X is causal, $X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$ for some $(\psi_j) \in \ell^1$. Then
\[\vartheta(B) \varepsilon_t = \varphi(B) X_t = \varphi(B) \psi(B) \varepsilon_t. \]

Since $(\varepsilon_t) \sim WN(0, \sigma^2)$, we have for $s \leq t$
\[E[(\vartheta(B) \varepsilon_t) \varepsilon_s] = \sigma^2 \vartheta_{t-s}, \quad E[(\varphi \psi)(B) \varepsilon_t \varepsilon_s] = \sigma^2 a_{t-s} \]
for $a(z) = (\varphi \psi)(z) = \sum a_j z^j$.
\[\Rightarrow \quad \vartheta_{t-s} = a_{t-s} \Rightarrow \vartheta(z) = a(z) = \varphi(z) \psi(z), \quad |z| \leq 1. \]
Since ϑ and φ do not have common zeroes on the unit disk, we cannot have $\varphi(z) = 0$ for some $|z| \leq 1$ (otherwise $\vartheta(z) = 0$ follows by finiteness of ψ on unit disk).

Statistical problem: Prediction/Forecasting
Focus on AR(p)-process $X_{t+1} = \varphi_1 X_t + \cdots + \varphi_p X_{t-p+1} + \varepsilon_{t+1}$ ($t \in \mathbb{Z}$) and observations X_0, \ldots, X_t ($t \geq p$).
\[\hat{X}_{t+1} = \varphi_1 X_t + \cdots + \varphi_p X_{t-p+1} + E[\varepsilon_{t+1}] \]
is the best linear predictor of X_{t+1} based on X_0, \ldots, X_t;
$E[(\hat{X}_{t+1} - X_{t+1})^2|X_0, \ldots, X_t]$ is minimal for this choice (it equals σ^2).
Best nonlinear predictor (in general):
\[\hat{X}_{t+1} = E[X_{t+1}|X_0, \ldots, X_t]. \]
They coincide if $(\varepsilon_t) \sim IID(0, \sigma^2)$ (and X_0, \ldots, X_{-p+1} independent of $(\varepsilon_t)_{t \geq 0}$).
In practice, we have to estimate $\varphi_1, \ldots, \varphi_p$.

Problem 8: See class notes.

Problem 9:
(a) Prove the optimality of \hat{X}_{t+1} formally.
(b) What is the optimal k-step linear predictor \hat{X}_{t+k}?
(c) Show that \hat{X}_{t+1} is also the best linear predictor of X_{t+1} based on X_t, \ldots, X_{t-p+1} for any weakly stationary process (not necessarily AR(p)) when $\varphi_1, \ldots, \varphi_p$ solve $C_p \varphi = c_p$ (see notation below).

1.3 The Yule-Walker estimator and a CLT for martingale differences

Here we focus on causal (weakly stationary) AR(p)-processes on \mathbb{Z} with
\[X_t = \varphi_1 X_{t-1} + \cdots + \varphi_p X_{t-p} + \varepsilon_t, \quad t \in \mathbb{Z}, \quad (\varepsilon_t) \sim WN(0, \sigma^2). \]
Ansatz: Moment estimation method
1st moments: X has zero mean \sim no information on φ_k.

2nd moments: X has autocovariance function

$$c(k) = \text{Cov}(X_t, X_{t-k}) = \text{Cov}(\varphi_1 X_{t-1} + \cdots + \varphi_p X_{t-p} + \varepsilon_t, X_{t-k})$$

$$= \varphi_1 c(k-1) + \cdots + \varphi_p c(k-p) \text{ for } k \geq 1$$

$$c(0) = \text{Cov}(X_t, X_t) = \text{Cov}(\varphi_1 X_{t-1} + \cdots + \varphi_p X_{t-p} + \varepsilon_t, X_t)$$

$$= \varphi_1 c(-1) + \cdots + \varphi_p c(-p) + \sigma^2$$

Hence, the autocovariance function satisfies a linear recurrence equation and is uniquely determined by its initial values $c(0), \ldots, c(p-1)$, given $\varphi_1, \ldots, \varphi_p$.

We can identify $\varphi_1, \ldots, \varphi_p$ from p recurrence equations: (use $c(-k) = c(k)$)

$$c(1) = \varphi_1 c(0) + \cdots + \varphi_p c(p-1)$$

$$\vdots$$

$$c(p) = \varphi_1 c(p-1) + \cdots + \varphi_p c(0) \Rightarrow c_p = C_p \varphi$$

with $c_p = (c(1), \ldots, c(p))^T$, $C_p = (c(i-j))_{1 \leq i, j \leq p}$, $\varphi = (\varphi_1, \ldots, \varphi_p)^T$.

If $C_p \in \mathbb{R}^{p \times p}$ is positive definite (i.e. non-singular), then φ can be identified from C_p, c_p: $\varphi = C_p^{-1} c_p$.

Empirical version: Define $\hat{\varphi} = (\hat{\varphi}_1, \ldots, \hat{\varphi}_p)^T$ via $\hat{C}_p \hat{\varphi} = \hat{c}_p$ with empirical autocovariance $\hat{c}(k) = \frac{1}{n} \sum_{i=1}^{n-k} X_i X_{i+k}$ (knowing that $E[X_t] = 0$).

1.26 Definition. This $\hat{\varphi}$ is called Yule-Walker estimator.

What about σ^2?

The recurrence for $k = 0$ yields $\sigma^2 = c(0) - \langle \varphi, c_p \rangle_{\mathbb{R}^p}$

\sim standard estimator: $\hat{\sigma}^2 = \hat{c}(0) - \langle \hat{\varphi}, \hat{c}_p \rangle_{\mathbb{R}^p}$.

1.27 Example (AR(1)).

$$\hat{\varphi}_1 = \hat{C}_1^{-1} c_1 = \frac{\sum_{i=1}^{n-1} X_i X_{i+1}}{\sum_{i=1}^{n} X_i^2} \text{ is } \text{AR(1)} \Rightarrow \frac{\sum_{i=1}^{n-1} X_i (\varphi_1 X_i + \varepsilon_{i+1})}{\sum_{i=1}^{n} X_i^2}$$

$$= \varphi_1 \frac{\sum_{i=1}^{n-1} X_i^2}{\sum_{i=1}^{n} X_i^2} + \frac{\sum_{i=1}^{n-1} X_i \varepsilon_{i+1}}{\sum_{i=1}^{n} X_i^2}.$$

Look at $\varphi_1^* \approx \hat{\varphi}_1$:

$$\varphi_1^* = \frac{\sum_{i=1}^{n-1} X_i X_{i+1}}{\sum_{i=1}^{n-1} X_i^2} = \varphi_1 + \frac{\sum_{i=1}^{n-1} X_i \varepsilon_{i+1}}{\sum_{i=1}^{n-1} X_i^2}.$$

If $(\varepsilon_i) \sim \text{IID}(0, \sigma^2)$ and X causal ($\sim \varepsilon_{i+1}$ independent of $X_i, X_{i-1}, \ldots, \varepsilon_i, \varepsilon_{i-1}, \ldots$),

$$\varphi_1^* = \varphi_1 + \frac{M_n}{\sigma^2 \langle M \rangle_n},$$
where \(M_n = \sum_{i=2}^{n} X_{i-1} \varepsilon_i, n \geq 2 \), is an \(L^2 \)-martingale w.r.t. \(\mathcal{F}_n = \{ \varepsilon_k, k \leq n \} \) (causality: \(X_k \) is \(\mathcal{F}_k \)-measurable) and \(\langle M \rangle_n = \sum_{i=2}^{n} \mathbb{E}[(M_i - M_{i-1})^2 | \mathcal{F}_{i-1}] \) where \(M_0 = M_1 = 0 \).

In Stochastics II: If \(\langle M \rangle_n \to \infty \) a.s., then \(\frac{M_n}{\langle M \rangle_n} \xrightarrow{a.s.} 0 \) for \(L^2 \)-martingales \(\langle M \rangle_n \) with \(\mathbb{E}[M_n] = 0 \) and \(\alpha > \frac{1}{2} \).

We want to prove:

1.28 Theorem. Let \(X \) be a causal (weakly stationary) AR(\(p \))-process with \((\varepsilon_t) \sim \text{IID}(0, \sigma^2) \). Then the Yule-Walker estimator \(\hat{\varphi}^{(n)} \) satisfies

\[
\sqrt{n}(\hat{\varphi}^{(n)} - \varphi) \xrightarrow{d} N(0, \sigma^2 C^{-1}_p),
\]

\(C_p = (c(i-j))_{i,j=1,\ldots,p} \).

1.29 Remark (CLT for Yule-Walker). If the order \(p \) is not known and we estimate, assuming an AR(\(m \))-process with \(m > p \), then the coefficients \(\hat{\varphi}_k^{(n)} \), \(k = p + 1, \ldots, m \), of \(\hat{\varphi}^{(n)} \) satisfy each \(\sqrt{n}\hat{\varphi}_k^{(n)} \to N(0, \sigma^2) \) and we can provide an asymptotic level-\(\alpha \) test for the hypothesis \(H_0 \) that \(\varphi_k = 0 \) (using \(\hat{\sigma}^2 \) from above and Slutsky’s Lemma):

\[
\mathbb{P}(|\hat{\varphi}_k^{(n)}| \geq \frac{c_\alpha \hat{\sigma}}{\sqrt{n}}) \to \alpha
\]

if \(c_\alpha > 0 \) is chosen such that \(P(|Z| \geq c_\alpha) = \alpha \) for \(Z \sim N(0, 1) \).

The fact that \(\sigma^2 \) is the asymptotic variance of \(\sqrt{n}\hat{\varphi}_k^{(n)} \) follows from \((C^{-1}_m)_{k,j} = \sigma^2 \) in the case \(m \geq k > p \), for this see Brockwell/Davies.

Other approaches to select the ‘right’ order of the AR-process are based on model selection criteria like AIC, BIC.

CLT for martingale differences

\(\sim \) recall standard CLT: \(\langle \xi_i \rangle_{i \geq 1} \text{ i.i.d., } \mathbb{E}[\xi_i] = 0, \xi_i \in L^2, S_n = \sum_{i=1}^{n} \xi_i \Rightarrow \frac{S_n}{\sqrt{\text{Var}(S_n)}} \xrightarrow{d} N(0, 1). \)

Questions

- What if \(\langle \xi_i \rangle \) are not identically distributed?
 \(\rightarrow \) Lindeberg CLT.

- What if \(\langle \xi_i \rangle \) are uncorrelated?
 \(\rightarrow \) no CLT: \(Y, (\varepsilon_t)_{t \geq 1} \) are independent random variables, \(\mathbb{E}[Y] = 0, \mathbb{E}[Y^2] = 1, \varepsilon_i \sim N(0, 1), \xi_i = Y \varepsilon_i \)
 \(\sim \) \(\frac{S_n}{\sqrt{\text{Var}(S_n)}} = Y \varepsilon^{(n)}, \varepsilon^{(n)} = \frac{1}{\sqrt{n}}(\varepsilon_1 + \cdots + \varepsilon_n) \sim N(0, 1). \)

For arbitrary \(Y \) this is not Gaussian \(N(0, 1) \).

But: CLT holds if \(\xi_i \) are martingale differences:

\(\xi_i = M_i - M_{i-1}, \mathbb{E}[M_i] = 0 \sim \mathbb{E}[\xi_i \xi_j] = 0. \)
1.30 Definition. \((\xi_i)_{i \geq 1}\) are called martingale differences w.r.t. \((\mathcal{F}_i)_{i \geq 1}\) if
- \((\mathcal{F}_i)_{i \geq 1}\) is a filtration, \(\mathcal{F}_0 = \emptyset, \Omega\),
- \(\xi_i\) is \(\mathcal{F}_i\)-measurable, \(i \geq 1\),
- \(\xi_i \in L^2\), \(E[\xi_i | \mathcal{F}_{i-1}] = 0\), \(i \geq 1\).

The triangular array
\[
\begin{array}{cccc}
\xi^{(1)}_1 & \xi^{(2)}_2 & \cdots & \\
\xi^{(2)}_1 & \xi^{(2)}_2 & \cdots & \\
\vdots & \vdots & \ddots & \\
\xi^{(k)}_1 & \cdots & \xi^{(k)}_k & \\
\vdots & \vdots & \ddots & \\
\end{array}
\]
where \((\xi^{(n)}_i)_{i=1,\ldots,n}\) are martingale differences w.r.t. \((\mathcal{F}^{(n)}_i)_{i=0,\ldots,n}\) for each \(n \in \mathbb{N}\) is called a martingale difference scheme \((\text{MDS})\). We set
\[
\begin{align*}
(\sigma_i^{(n)})^2 &= E[(\xi^{(n)}_i)^2 | \mathcal{F}_{i-1}], \\
V_{n,i}^2 &= \sum_{j=1}^{i} (\sigma_j^{(n)})^2, \quad 1 \leq i \leq n, \quad V_n^2 = V_{n,n}^2.
\end{align*}
\]

We say that \((\xi^{(n)}_i)_{i,n}\) satisfies the conditional Lindeberg condition if
\[
\sum_{i=1}^{n} E\left[(\xi^{(n)}_i)^2 1_{(\xi^{(n)}_i) > \delta} | \mathcal{F}_{i-1}\right] \xrightarrow{P} 0 \quad \text{for all} \quad \delta > 0.
\]

Problem 10: The conditional Lindeberg condition implies \(\max_{1 \leq i \leq n} \sigma_i^{(n)} \xrightarrow{P} 0\) (‘conditional Feller condition’).

1.31 Lemma. \(Q(x) = e^{ix-1-ix+x^2/2} \) with \(Q(0) = 0\), \(M(x) = \frac{x}{3} \wedge 2\), \(N(x) = e^{-x} - 1 + x \) satisfy for all \(x \in \mathbb{R}\):
- \(|1 - Q(x)| \leq 1, \quad |Q(x)| \leq M(|x|), \quad |N(|x|)| \leq \frac{x^2}{2}\).

Proof. By hand. \(\square\)

1.32 Lemma. Let \((\xi_n), (\eta_n)\) be random variables with \(\eta_n \neq 0\) a.s. Suppose \(\varphi\) is a characteristic function and \(\lambda_0 \in \mathbb{R}\) with \(\varphi(\lambda_0) \neq 0\). If
- \((a)\) \(\lim_{n \to \infty} E[\eta_n^{-1} e^{i\lambda_0 \xi_n} - 1] = 0\),
- \((b)\) \(\lim_{n \to \infty} E[|\eta_n^{-1} - \varphi(\lambda_0)^{-1}|] = 0\),
then \(\varphi_{\xi_n}(\lambda_0) = E[e^{i\lambda_0 \xi_n}] \to \varphi(\lambda_0)\) holds.
Proof.

\[|\varphi_{\xi_n}(\lambda_0) - \varphi(\lambda_0)| = |\varphi(\lambda_0)| \cdot \mathbb{E}[e^{i\lambda_0 \xi_n} \varphi(\lambda_0)^{-1}] \leq \varphi(\lambda_0) \cdot \left(|\mathbb{E}[e^{i\lambda_0 \xi_n} \varphi(\lambda_0)^{-1} - e^{i\lambda_0 \xi_n} \eta_n^{-1}]| + |\mathbb{E}[e^{i\lambda_0 \xi_n} \eta_n^{-1} - 1]| \right) \rightarrow 0. \]

\[|\varphi(\lambda_0)| \cdot \mathbb{E}[e^{i\lambda_0 \xi_n} \varphi(\lambda_0)^{-1} - e^{i\lambda_0 \xi_n} \eta_n^{-1}]| + |\mathbb{E}[e^{i\lambda_0 \xi_n} \eta_n^{-1} - 1]| \rightarrow 0. \]

\[\square \]

1.33 Theorem. Let \(\xi_i^{(n)} \) be a martingale difference scheme such that \(V_n \overset{p}{\to} 1 \) ('norming') and the conditional Lindeberg condition are satisfied. Then

\[S_n = \sum_{i=1}^{n} \xi_i^{(n)} \overset{d}{\to} N(0, 1). \]

Proof.

1. Truncation:
 Put \(\eta_i^{(n)} := \xi_i^{(n)} \cdot 1_{(V_{n,i} \leq c)} \) for some \(c > 1 \), \(T_n = \sum_{i=1}^{n} \eta_i^{(n)}. \)
 We shall show:

 (i) \(S_n - T_n \overset{p}{\to} 0 \),
 \[(ii) \ (\eta_i^{(n)}, \mathcal{F}_i^{(n)}) \) is an MDS satisfying 'norming', 'conditional Lindeberg' and \(\mathbb{P}(W_n^2 \leq c) = 1 \), where
 \[W_n^2 = \sum_{i=1}^{n} \mathbb{E}[(\eta_i^{(n)})^2 | \mathcal{F}_{i-1}^{(n)}]. \]
 Because of (i) it suffices to prove \(T_n \overset{d}{\to} N(0, 1) \) (Slutsky Lemma), i.e.
 \(\varphi_T(u) \to e^{-u^2/2} \) for all \(u \in \mathbb{R} \).

2. Prove (i):
 Write \(T_i^{(n)} = \sum_{j=1}^{i} \eta_j^{(n)}, \) \(W_{i,n}^2 = \sum_{j=1}^{i} \mathbb{E}[(\eta_j^{(n)})^2 | \mathcal{F}_{j-1}^{(n)}]. \)
 \[\mathbb{P}(\forall j = 1, \ldots, n : \xi_j^{(n)} = \eta_j^{(n)}) \geq \mathbb{P}(\forall j = 1, \ldots, n : V_{j,n}^2 \leq c) \geq 1 - \mathbb{P}(|V_n^2 - 1| > c - 1) \overset{\text{‘norming’}}{\to} 1 - 0 = 1. \]
 \[\Rightarrow \text{for } \epsilon > 0: \mathbb{P}(|S_n - T_n| > \epsilon) \leq \mathbb{P}(\exists j = 1, \ldots, n : \xi_j^{(n)} \neq \eta_j^{(n)}) \to 0 \]
 \[\Rightarrow S_n - T_n \overset{p}{\to} 0. \]

3. Prove (ii):
 MDS:
 \[\mathbb{E}[\eta_i^{(n)} | \mathcal{F}_{i-1}^{(n)}] \overset{\text{\(\mathcal{F}_{i-1}^{\text{mb.}} \)}}{=} \eta_{i-1}^{(n)}, \quad \mathbb{E}[(\xi_i^{(n)})^2 | \mathcal{F}_{i-1}^{(n)}] = 0. \quad (*) \]
'Conditional Lindeberg' follows directly from $|\eta_i^{(n)}| \leq |\xi_i^{(n)}|$. 'Norming':

$$|W_n^2 - V_n^2| = \left| \sum_{j=1}^{n} \mathbb{E}[(\eta_j^{(n)})^2 - (\xi_j^{(n)})^2 | \mathcal{F}_{j-1}^{(n)}] \right| \leq \frac{V_n^2}{n} \sum_{j=1}^{n} 1_{(\eta_j^{(n)} \neq \xi_j^{(n)})} \to 0. $$

$$\Rightarrow W_n^2 \to 1. $$

$$W_n^2 = \sum_{j=1}^{n} \mathbb{E}[(\xi_j^{(n)})^2 1_{(V_j^2 \leq c)} | \mathcal{F}_{j-1}^{(n)}] \overset{a.s.}{=} \sum_{j=1}^{n} (\sigma_j^{(n)})^2 1_{(V_j^2 \leq c)} \leq c \text{ (a.s.)}$$

4. CLT for T_n:
Apply the 2nd lemma above with $\varphi(\lambda) = e^{-\lambda^2/2}$, $\xi_n = T_n$, $\eta_n = e^{-\lambda^2/2}$. To conclude $T_n \xrightarrow{d} N(0, 1)$, we have to show

(a) $\mathbb{E}[e^{i\lambda T_n} + \lambda^2 W_n^2 - 1] \to 0$ for all $\lambda \in \mathbb{R}$,

(b) $\mathbb{E}[e^{i\lambda^2 W_n^2} - e^{i\lambda^2/2}] \to 0$ for all $\lambda \in \mathbb{R}$.

Part (b) follows immediately from $W_n \xrightarrow{p} 1$, the continuity of $x \mapsto e^{\lambda x^2/2}$ (continuous mapping theorem) and the fact that $0 \leq W_n^2 \leq c \text{ a.s.} \ (\text{DCT}).$

5. Prove (a):
Let WLOG $\lambda \neq 0, 1 \leq k \leq n$, set

$$\zeta_k^{(n)} = e^{i\lambda T_{k-1}^{(n)} + \frac{1}{2} \lambda^2 W_{n,k}^2} (e^{i\lambda \eta_k^{(n)}} - e^{-\frac{1}{2} \lambda^2 (\tau_k^{(n)})^2}),$$

$$T_0^{(n)} = \eta_0^{(n)} := 0, \ (\tau_k^{(n)})^2 := \mathbb{E} \left[(\eta_k^{(n)})^2 | \mathcal{F}_{k-1}^{(n)} \right].$$

Then

$$\sum_{k=1}^{n} \zeta_k^{(n)} = e^{i\lambda T_n + \frac{1}{2} \lambda^2 W_n^2} - 1 \text{ (telescoping sum).}$$

$$\Rightarrow |\mathbb{E} \left[\zeta_k^{(n)} | \mathcal{F}_{k-1}^{(n)} \right]| \overset{N,Q \text{ from lemma.}}{=} |e^{i\lambda T_{k-1}^{(n)} + \frac{1}{2} \lambda^2 W_{n,k}^2}| \cdot \left| \mathbb{E} \left[\frac{1}{2} \lambda^2 (\eta_k^{(n)})^2 Q(\lambda \eta_k^{(n)}) | \mathcal{F}_{k-1}^{(n)} \right] - N \left(\frac{1}{2} \lambda^2 (\tau_k^{(n)})^2 \right) \right| \leq e^{\frac{1}{2} \lambda^2 \epsilon} \left(\mathbb{E} \left[\frac{1}{2} \lambda^2 (\eta_k^{(n)})^2 M(|\lambda \eta_k^{(n)}|) | \mathcal{F}_{k-1}^{(n)} \right] + \frac{1}{2} \lambda^2 (\tau_k^{(n)})^2 \right)^2 \right)$$

$$\Rightarrow |\mathbb{E}[e^{i\lambda T_n + \frac{1}{2} \lambda^2 W_n^2} - 1]| \leq \sum_{k=1}^{n} |\mathbb{E}[\zeta_k^{(n)} | \mathcal{F}_{k-1}^{(n)}]|$$

$$\leq \frac{1}{2} \lambda^2 e^{\frac{1}{2} \lambda^2 \epsilon} \left(\sum_{k=1}^{n} \mathbb{E}[(\eta_k^{(n)})^2 M(|\lambda \eta_k^{(n)}|)] + \frac{1}{4} \lambda^2 \epsilon \mathbb{E}[\max_{j=1,...,n} (\tau_j^{(n)})^2] \right).$$
Problem 10 implies that \(\max_{j=1,\ldots,n} (\tau_j^{(n)})^2 \mathop{\to} P 0. \) Moreover, \(\tau_j^{(n)} \leq c \) such that 2nd term \(\to 0. \)

By conditional Lindeberg for any \(\delta > 0: \)

\[
\sum_{k=1}^{n} E[(\eta_k^{(n)})^2 M(|\lambda \eta_k^{(n)})]) \leq \sum_{k=1}^{n} \left(2 E[|\eta_k^{(n)})|^2 1_{(|\eta_k^{(n)})| > \delta}] \frac{\delta |\lambda|}{3} E[(\eta_k^{(n)})^2] \right).
\]

Since this is true for all \(\delta > 0, \) we conclude (a).

\(\square \)

Problem 11: Show that the conditional Lyapunov condition

\[
\exists \varepsilon > 0 : \sum_{j=1}^{n} E \left[|\xi_j^{(n)})|^{2+\varepsilon} \frac{\mathcal{F}_{j-1}^{(n)}}{\lambda_{j-1}^{(n)}} \right] \mathop{\to} P 0
\]

implies 'conditional Lindeberg'.

Problem 12:

(a) Let \((M_n)\) be an \(L^2\)-martingale, \((s_n)\) be deterministic such that \(\frac{(M_n)}{s_n^2} \mathop{\to} 1 \) and

\[
\sum_{i=1}^{n} E \left[\left| \frac{M_i - M_{i-1}}{s_n} \right|^2 1_{\left(\frac{M_i - M_{i-1}}{s_n} \right) > \delta} \right] \mathop{\to} P 0.
\]

Then \(\frac{M_n}{s_n} \mathop{\to} N(0, 1). \) (Show that \(s_n \to \infty. \))

Do we then also have \(\frac{M_n}{\langle M_n^2 \rangle} \mathop{\to} N(0, 1)? \)

(b) Formulate and prove by Cramér-Wold device a multivariate MDS-CLT.

(c) Give counterexamples of \(L^2\)-martingales where (a) does not hold.

Proof (CLT for Yule-Walker).

1. AR(p)-process: \(X_t = \varphi_1 X_{t-1} + \cdots + \varphi_p X_{t-p} + \varepsilon_t, (\varepsilon_t) \sim \text{IID}(0, \sigma^2). \)

Rewrite it in 'regression language' as \(Y = X \varphi + \varepsilon \) with \(Y = (X_1, \ldots, X_n)^T, \)

\[
X = \begin{pmatrix}
X_0 & X_{-1} & \ldots & X_{1-p} \\
X_1 & X_0 & \ldots & X_{2-p} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n-1} & X_{n-2} & \ldots & X_{n-p}
\end{pmatrix} \in \mathbb{R}^{n \times p},
\]

\[\]
\[\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^T. \]

Standard Least-Squares estimator:
\[\varphi_n^* = (X^T X)^{-1} X^T Y. \]

\[\frac{1}{n}(X^T X)_{i,j} = \frac{1}{n} \sum_{k=1}^{n} X_{k-i}X_{k-j} \approx \hat{c}(i-j) = (\hat{C}_p)_{i,j}, \]
\[\frac{1}{n}(X^T Y)_i = \frac{1}{n} \sum_{k=1}^{n} X_{k-i}X_k \approx \hat{c}(i), \text{ for } i = 1, \ldots, p. \]

This means: \(\varphi_n^* \approx \varphi^{(n)}, \) Yule-Walker.

We have \(\varphi_n^* \neq \varphi + (X^T X)^{-1} X^T \varepsilon. \)

2. We have \(\varphi_n^* - \varphi^{(n)} = o_P(n^{-1/2}) \) (i.e. \(n^{1/2}(\varphi_n^* - \varphi^{(n)}) \xrightarrow{P} 0 \))

\[\frac{1}{n}X^T Y - \hat{c}_p = \frac{1}{n} \left(\sum_{k=1}^{n} X_{k-i}X_k - \sum_{k=1}^{n-i} X_kX_{k+i} \right)_i = \frac{1}{n} \left(\sum_{k=1}^{i} X_{k-i}X_k \right)_i. \]

Weak stationarity implies that
\[\mathbb{E}[\| \frac{1}{n}X^T Y - \hat{c}_p \|] \leq \frac{c \cdot p}{n} \text{ for some } c > 0 \]

\[\Rightarrow \| \frac{1}{n}X^T Y - \hat{c}_p \| = O_L(\frac{1}{n}) \]
\[\Rightarrow \sqrt{n}\| \frac{1}{n}X^T Y - \hat{c}_p \| \xrightarrow{P} 0, \text{ i.e. } \| \frac{1}{n}X^T Y - \hat{c}_p \| = o_P(n^{-1/2}). \]

Similarly,
\[\frac{1}{n}X^T X - \hat{C}_p = \frac{1}{n} \left(\sum_{k=1}^{n} X_{k-i}X_{k-j} - \sum_{k=1}^{n-|i-j|} X_kX_{k+|i-j|} \right)_{i,j} \]
\[= O_L(n^{-1}) = o_P(n^{-1/2}). \]

Use continuous mapping theorem to conclude that \(\varphi_n^* - \varphi^{(n)} = o_P(n^{-1/2}). \)

We note for \(\varphi_n^* - \varphi = (X^T X)^{-1} X^T \varepsilon \) that
\[M_n^{(i)} := (X^T \varepsilon)_i = X_{1-i}\varepsilon_1 + \cdots + X_{n-i}\varepsilon_n \text{ (i = 1, \ldots, p)} \]
is a martingale in n w.r.t. \(\mathcal{F}_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n, X_0, \ldots, X_{p+1}) \):

- \(X_k \in L_2, (\varepsilon_i) \in L_2 \Rightarrow M_n^{(i)} \in L_1 \)
 \((M_n^{(i)}) \text{ is even in } L_2: \mathbb{E}[(X_{k-i} \varepsilon_k)^2] = \mathbb{E}[X_{k-i}^2] \mathbb{E}[\varepsilon_k^2] < \infty), \)
- \(\mathbb{E}[M_n^{(i)} | \mathcal{F}_{n-1}] = X_{1-i} \varepsilon_1 + \cdots + X_{n-i} \varepsilon_{n-1} + \boxed{\mathbb{E}[\varepsilon_n | \mathcal{F}_{n-1}] = M_{n-1}^{(i)} \text{ if } \mathbb{E}[\varepsilon_n] = 0} \)
with quadratic variation
\[\langle M^{(i)} \rangle_n = \sum_{k=1}^{n} \mathbb{E}[(M_k^{(i)} - M_{k-1}^{(i)})^2 | \mathcal{F}_{k-1}] = \sigma^2 \sum_{k=1}^{n} X_{k-1}^2 = \sigma^2 (X^T X)_{i,i}. \]

Now, \(M_n = (M_n^{(1)}, \ldots, M_n^{(p)})^T \) is a vector-valued martingale. Its quadratic covariation matrix \(\langle M \rangle_n \in \mathbb{R}^{p \times p} \) satisfies
\[\langle M \rangle_n = \sum_{k=1}^{n} \mathbb{E}[(M_k - M_{k-1})(M_k - M_{k-1})^T | \mathcal{F}_{k-1}] = \sigma^2 (X^T X). \]

Hence, \(\varphi_n - \varphi = \sigma^2 (M^{-1})_n M_n \).

From the chapter on autocovariances we know that \(\hat{c}(k) \xrightarrow{P} c(k) \) (empirical covariances are consistent) if \((c(k))_{k \in \mathbb{Z}} \) decays sufficiently. Here \(c(k) \) even decays with geometric rate in \(k \) such that this holds (since \(X \) is causal).

This means \(\hat{C}_p \xrightarrow{P} C_p \), and thus
\[\frac{1}{n} X^T X = \hat{C}_p + \left(\frac{1}{n} X^T X - \hat{C}_p \right) \xrightarrow{P} C_p. \]

We define the following martingale difference scheme:
\[\xi_i^{(n)} := (n \cdot \sigma^2 \cdot C_p)^{-1/2} (M_i - M_{i-1}) \in \mathbb{R}^p, \ 1 \leq i \leq n. \]

It has conditional covariance matrix
\[V_n = V_{n,n} = (n \sigma^2 C_p)^{-1} \langle M \rangle_n \xrightarrow{P} E_p = \text{diag}(1, \ldots, 1) \in \mathbb{R}^{p \times p} \]
such that the norming condition is satisfied.

Check the conditional Lindeberg condition
\[\sum_{i=1}^{n} \mathbb{E}[\|(n \sigma^2 C_p)^{-1/2} (M_i - M_{i-1})\|_2^2 1_{\{|| (n \sigma^2 C_p)^{-1/2} (M_i - M_{i-1}) \|_2 > \delta \}} | \mathcal{F}_{i-1}] \xrightarrow{P} 0. \]

We even have \(L^1 \)-convergence because of
\[\sum_{i=1}^{n} \mathbb{E}[\|(n \sigma^2 C_p)^{-1/2} (M_i - M_{i-1})\|_2^2 1_{\{|| (n \sigma^2 C_p)^{-1/2} (M_i - M_{i-1}) \|_2 > \delta \}}] \xrightarrow{\mathcal{L}_{\text{stat.}}} \mathbb{E}[\| (\sigma^2 C_p)^{-1/2} (M_i - M_0) \|_2^2 1_{\{|| (\sigma^2 C_p)^{-1/2} (M_i - M_0) \|_2 > \delta \sqrt{n} \}}] \xrightarrow{\text{DCT}} 0. \]

Hence, we can apply a vector version of the CLT for MDS. It yields
\[(n \sigma^2 C_p)^{-1/2} M_n \xrightarrow{d} N(0, E_p). \]
We write
\[\sigma^{-2}(\varphi_n^* - \varphi) = (M_n)^{-1} M_n = \underbrace{(M_n)^{-1}(n\sigma^2C_p)(n\sigma^2C_p)^{-1}M_n}_{\overset{p}{\to} E_p} \]

Then by Slutsky’s lemma
\[\Rightarrow \sigma^{-2}(n\sigma^2C_p)^{1/2}(\varphi_n^* - \varphi) \overset{d}{\to} N(0, E_p) \]
\[\Rightarrow n^{1/2}(\varphi_n^* - \varphi) \overset{d}{\to} N(0, \sigma^4(\sigma^2C_p)^{-1}) = N(0, \sigma^2C_p^{-1}) \]

3. Fine point: \(C_p \) is non-singular, i.e. \(C_p > 0 \). For \(a \in \mathbb{R}^p \):
\[\langle C_p a, a \rangle = \sum_{k,l=1}^p c(k-l) a_k a_l = \text{Var} \left(\sum_{k=1}^p a_k X_k \right) \]
\[X \text{ is AR}(p) \Rightarrow \text{Var} \left(\sum_{k=1}^{p-1} a_k X_k + a_p (\varphi_1 X_{p-1} + \cdots + \varphi_p X_0 + \varepsilon_p) \right) \]
\[\varepsilon \text{ indop. of } X_{k, k<p} \Rightarrow \text{Var} \left(\sum_{k=1}^{p-1} a_k X_k + a_p (\varphi_1 X_{p-1} + \cdots + \varphi_p X_0) \right) + a_p^2 \sigma^2. \]

Hence, \(\langle C_p a, a \rangle = 0 \Rightarrow a_p = 0 \) and continuing in the same way we obtain
\[a_p = a_{p-1} = \cdots = a_1 = 0 \Leftrightarrow a = 0 \text{ and thus } C_p > 0 \text{ and } C_p \text{ non-singular.} \]

\[\square \]

Problem 13: Consider the Yule-Walker estimator of an AR(1)-process \(X_t = \varphi_1 X_{t-1} + \varepsilon_t, (\varepsilon_t) \sim \text{IID}(0, \sigma^2) \) and show that in the ‘exploding case’ \(|\varphi_1| > 1\) the estimator converges to \(\varphi_1 \) (in probability) with geometric speed in \(n \), i.e. \(\varphi_1^{(n)} - \varphi = o_P(r^n) \) for some \(r \in (0, 1) \).

Problem 14: Consider the causal (weakly stationary) AR(1)-process with \((\varepsilon_t) \sim \text{N}(0, \sigma^2).\) Determine the Maximum-Likelihood estimator (MLE) of \(\varphi_1.\) Discuss its difference to the Yule-Walker estimator.

Question: Is there another sequence of estimators \(\tilde{\varphi}^{(n)} \) of \(\varphi \) based on \(X_1, \ldots, X_n \) which is better in the sense that \(\tilde{\varphi}^{(n)} \) converges with faster rate than \(n^{-1/2} \) to \(\varphi \) (in probability) or
\[\sqrt{n}(\tilde{\varphi}^{(n)} - \varphi) \overset{d}{\to} N(0, V) \]
with \(V < \sigma^2C_p^{-1} \) (i.e. \(\sigma^2C_p^{-1} - V \) is positive semi-definite and \(\sigma^2C_p^{-1} - V \neq 0 \))?

Tool: Fisher information.
Excursion: Suppose \(\hat{g} : \Omega \to \mathbb{R} \) is an unbiased estimator of \(g(\vartheta) \) (\(g : \Theta \to \mathbb{R} \)), i.e. \(\hat{g} \) is measurable on \((\Omega, \mathcal{F}, (\mathbb{P}_\vartheta)_{\vartheta \in \Theta})\), \(\Theta \) non-empty index set, \(\mathbb{E}_\vartheta[\hat{g}] = g(\vartheta) \) for all \(\vartheta \in \Theta \), and that \(\hat{g} \in L^2(\mathbb{P}_\vartheta), \vartheta \in \Theta \). Moreover, suppose that \((\mathbb{P}_\vartheta)_{\vartheta \in \Theta}\) is dominated by a \(\sigma \)-finite measure \(\mu \) on \((\Omega, \mathcal{F})\), i.e. \(\mathbb{P}_\vartheta \ll \mu \) for all \(\vartheta \in \Theta \), and let \(p_\vartheta = \frac{d\mathbb{P}_\vartheta}{d\mu} \) be the densities (Radon-Nikodym derivatives). We want to derive a lower bound on

\[
\mathbb{E}_\vartheta[(\hat{g} - g(\vartheta))^2] = \text{Var}_\vartheta(\hat{g}).
\]

For each \(H \in L^2(\mathbb{P}_\vartheta) \) Cauchy-Schwarz inequality yields

\[
\mathbb{E}_\vartheta[(\hat{g} - g(\vartheta))H]^2 \leq \mathbb{E}_\vartheta[(\hat{g} - g(\vartheta))^2] \mathbb{E}_\vartheta[H^2]
\]

\[
\Rightarrow \mathbb{E}_\vartheta[(\hat{g} - g(\vartheta))^2] \geq \frac{\mathbb{E}_\vartheta[(\hat{g} - g(\vartheta))H]^2}{\mathbb{E}_\vartheta[H^2]} \quad \text{for all } H \in L^2(\mathbb{P}_\vartheta).
\]

Goal: find \(H \) such that the numerator is independent of \(\hat{g} \).

Fisher’s idea: \(H_\vartheta = \frac{d}{d\vartheta} (\log p_\vartheta) \mathbb{1}_{(p_\vartheta > 0)} = \frac{d}{d\vartheta} \frac{p_\vartheta}{\vartheta} \mathbb{1}_{(p_\vartheta > 0)}, \vartheta \in \Theta \subseteq \mathbb{R}^d \).

Then formally:

\[
\mathbb{E}_{\vartheta_0}[H_{\vartheta_0}] = \int_\Omega H_{\vartheta_0} p_{\vartheta_0} d\mu = \int \frac{d}{d\vartheta} p_\vartheta \bigg|_{\vartheta = \vartheta_0} d\mu
\]

\[
= \left(\frac{d}{d\vartheta} \int_{\{p_\vartheta > 0\}} p_\vartheta d\mu \right) \bigg|_{\vartheta = \vartheta_0} = \left(\frac{d}{d\vartheta} \int_{\{p_\vartheta > 0\}} p_\vartheta d\mu \right) \bigg|_{\vartheta = \vartheta_0} = 0.
\]

For the change of the integration boundary above note:

\[
G(\vartheta) := \int_\Omega \mathbb{1}_{(p_{\vartheta_0} > 0)} p_{\vartheta_0} d\mu. \text{ If } G \in C^1, \text{ then } G'(\vartheta_0) = 0.
\]

Hence,

\[
\mathbb{E}_{\vartheta_0}[(\hat{g} - g(\vartheta_0))H_{\vartheta_0}] = \text{Cov}_{\vartheta_0}(\hat{g}, H_{\vartheta_0}) = \mathbb{E}_{\vartheta_0}[\hat{g}(H_{\vartheta_0} - \mathbb{E}_{\vartheta_0}[H_{\vartheta_0}])]
\]

\[
= \int \frac{d}{d\vartheta} p_\vartheta \bigg|_{\vartheta = \vartheta_0} \mathbb{1}_{(p_{\vartheta_0} > 0)} p_{\vartheta_0} d\mu = \frac{d}{d\vartheta} \left(\int_{\{p_{\vartheta} > 0\}} \hat{g} p_{\vartheta} d\mu \right) \bigg|_{\vartheta = \vartheta_0}.
\]

Since \(\hat{g} \) is unbiased, we have

\[
\int \hat{g} p_{\vartheta} d\mu = \mathbb{E}_{\vartheta}[\hat{g}] = g(\vartheta)
\]

\[
\Rightarrow \frac{d}{d\vartheta} \left(\int \hat{g} p_{\vartheta} d\mu \right) \bigg|_{\vartheta = \vartheta_0} = \frac{d}{d\vartheta} g(\vartheta) \bigg|_{\vartheta = \vartheta_0} = g'(\vartheta_0)
\]

\[\text{numerator } = g'(\vartheta_0)^2.\]

\underline{Cramér-Rao inequality:}

\[
\mathbb{E}_{\vartheta_0}[(\hat{g} - g(\vartheta_0))^2] \geq \frac{g'(\vartheta_0)^2}{\mathbb{E}_{\vartheta_0}[(\frac{d}{d\vartheta} (\log p_\vartheta) \bigg|_{\vartheta = \vartheta_0})^2]} =: \frac{g'(\vartheta_0)^2}{I(\vartheta_0)}
\]
where \(I(\theta_0) = \mathbb{E}_{\theta_0}[\left(\frac{d}{d\theta} \log p_{\theta} \right)_{\theta=\theta_0}^2] \) is the Fisher information at \(\theta = \theta_0 \).
(This holds for unbiased estimators \(\hat{g} \) of \(g(\theta) \) under regularity conditions on \((p_{\theta}) \) and \(\hat{g} \).

\(\rightsquigarrow \) Formal versions and proofs:

- Lehmann/Casella: Theory of Point Estimation ([5]),
- van der Vaart: Asymptotic Statistics ([8]).

1.34 Remark. If \(\hat{g} \) is biased, i.e. \(\mathbb{E}_{\theta}[\hat{g}] = g(\theta) + b(\theta) \) for some \(b \), we obtain from above in terms of \(\tilde{g}(\theta) = g(\theta) + b(\theta) \):

\[
\text{Var}_{\theta}(\hat{g}) \geq \frac{\tilde{g}'(\theta)^2}{I(\theta)}.
\]

The bias-variance decomposition thus yields

\[
\mathbb{E}_{\theta}[(\hat{g} - g(\theta))^2] \geq b(\theta)^2 + \frac{(g'(\theta) + b'(\theta))^2}{I(\theta)}.
\]

Problem 15: Formulate and prove the Cramér-Rao inequality for \(\theta \in \Theta \subseteq \mathbb{R}^d \), i.e. for \(d \geq 2 \) (with \(g : \Theta \to \mathbb{R} \)).

Asymptotic efficiency lower bound:

Hajek-Le Cam convolution theorem: If the statistical model is (asymptotically) regular (e.g. LAN), then any 'reasonable' estimator \(\hat{g}^{(n)} \) of \(g(\theta) \) satisfies

\[
\sqrt{I^{(n)}(\theta_0)}(\hat{g}^{(n)} - g(\theta_0)) \overset{d}{\to} Q_{\theta_0}
\]

for some limit distribution \(Q_{\theta_0} \) and we have

\[
Q_{\theta_0} = N(0, g'(\theta_0)^2) * R_{\theta_0}
\]

for some law \(R_{\theta_0} \) (\(* \) denotes the convolution).

Interpretation: Since convolution of measures spreads the probability distribution (e.g. increases variance if it exists), the most concentrated limit law we can obtain is \(N(0, g'(\theta_0)^2) \) (meaning \(R_{\theta_0} = \delta_0 \)). Therefore, estimators \(\hat{g}^{(n)} \) with

\[
\sqrt{I^{(n)}(\theta_0)}(\hat{g}^{(n)} - g(\theta_0)) \overset{d}{\to} N(0, g'(\theta_0)^2)
\]

are called asymptotically efficient.

Superficial similarity to Cramér-Rao bound:

\[
\hat{g}^{(n)} - g(\theta_0) \overset{d}{\approx} N \left(0, \frac{g'(\theta_0)^2}{I^{(n)}(\theta_0)} \right).
\]

Note that \(\hat{g}^{(n)} \) was not supposed to be unbiased.
Let us now look at the Yule-Walker estimator for a causal AR(1)-process

$$X_t = \vartheta X_{t-1} + \varepsilon_t, \quad \vartheta \in (-1, 1), \quad (\varepsilon_t) \overset{i.i.d.}{\sim} N(0, \sigma^2).$$

Here $$\Theta = (-1, 1)$$, $$g(\vartheta) = \vartheta$$, $$g'(\vartheta) = 1$$. Write $$\mu_\vartheta$$ for the Lebesgue density of $$X_0$$ under $$P_\vartheta$$. One can prove that this AR(1)-model is indeed 'regular'.

The random vector $$(X_0, \ldots, X_n)$$ has Lebesgue density $$(\mu = \lambda_{\mathbb{R}^{n+1}})$$:

$$p_\vartheta^{(n)}(x_0, \ldots, x_n) = \mu_\vartheta(x_0) \varphi_{0, \sigma^2}(x_1 - \vartheta x_0) \cdot \ldots \cdot \varphi_{0, \sigma^2}(x_n - \vartheta x_{n-1})$$

with $$\varphi_{\mu, \sigma^2}$$ density of $$N(\mu, \sigma^2)$$, i.e. $$\varepsilon_t$$ has density $$\varphi_{0, \sigma^2}$$.

Log-Likelihood:

$$\log p_\vartheta^{(n)}(x_0, \ldots, x_n) = \log(\mu_\vartheta(x_0)) + \sum_{k=1}^n \log(\varphi_{0, \sigma^2}(x_k - \vartheta x_{k-1})).$$

Score function:

$$\frac{d}{d \vartheta} \log p_\vartheta^{(n)}(x_0, \ldots, x_n) = \frac{d}{d \vartheta} \log(\mu_\vartheta(x_0)) + \sum_{k=1}^n \left(-\frac{1}{\sigma^2} \right) x_{k-1}(x_k - \vartheta x_{k-1}).$$

$$\mathbb{E}_{\vartheta_0}[(\frac{d}{d \vartheta} \log p_\vartheta^{(n)}(X_0, \ldots, X_n)|_{\vartheta = \vartheta_0})^2]$$

$$= \mathbb{E}_{\vartheta_0}[(\frac{d}{d \vartheta} \log(\mu_\vartheta(X_0))|_{\vartheta = \vartheta_0} + \sum_{k=1}^n \left(-\frac{1}{\sigma^2} \right) X_{k-1} \varepsilon_k)^2]$$

$$\overset{(\ast)}{=} \text{Var}_{\vartheta_0}(\frac{d}{d \vartheta} \log(\mu_\vartheta(X_0))|_{\vartheta = \vartheta_0}) + \sum_{k=1}^n \frac{1}{\sigma^4} \mathbb{E}_{\vartheta_0}[X_{k-1}^2] \sigma^2$$

$$\overset{X \overset{\text{stat.}}{=} \text{Var}_{\vartheta_0}(\frac{d}{d \vartheta} \log(\mu_\vartheta(X_0))|_{\vartheta = \vartheta_0}) + \frac{n}{\sigma^2} \mathbb{E}_{\vartheta_0}[X_0^2].}{= c_{\vartheta_0}(0)}$$

(For (*) regularity conditions are required $$\sim$$ regular model.)

$$\Rightarrow I^{(n)}(\vartheta_0) = \frac{2 \vartheta_0^2}{(1 - \vartheta_0^2)^2} + \sigma^2 n c_{\vartheta_0}(0)$$

$$\Rightarrow I^{(n)}(\vartheta_0) \frac{n}{\sigma^2} \to c_{\vartheta_0}(0).$$

This means that an estimator $$(\hat{\vartheta}^{(n)})$$ with

$$\sqrt{n}(\hat{\vartheta}^{(n)} - \vartheta) \overset{d}{\to} N \left(0, \frac{\sigma^2}{c_{\vartheta_0}(0)} \right)$$

is asymptotically efficient. This is the case for the Yule-Walker estimator.
Problem 16: Investigate whether the Yule-Walker estimator for causal AR(p)-processes, $p \geq 2$, is also asymptotically efficient (in a natural generalisation).

Final remark: In the 'explosive' case (e.g. AR(1) with $|\vartheta| > 1$) the Fisher information grows geometrically in n and the Yule-Walker estimator also converges with geometric rate in n.

2 Statistics for continuous-time processes

2.1 Diffusion processes

2.1 Definition. A (time-inhomogeneous) diffusion process in \mathbb{R}^d is a process $(X_t, t \geq 0)$ solving the stochastic differential equation (SDE)

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t, \quad t \geq 0,$$

with initial condition $X_0 = X^{(0)}$. Here $b : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^d$, $\sigma : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^{d \times m}$ and W is m-dimensional Brownian motion.

The intuition is that (after 'division by dt')

$$\dot{X}_t = \frac{dX_t}{dt} = b(X_t, t) + \sigma(X_t, t)\dot{W}_t,$$

where \dot{W}_t is Gaussian white noise ('equivalent of i.i.d. $N(0, 1)$-random variables in continuous time'). Since white noise can only be defined in a distributional sense, the Itô interpretation in terms of integrated quantities is nowadays preferred.

Rigorous definition: X is a strong solution of the SDE $(*)$, where W is defined on some (Ω, \mathcal{F}, P) and $X^{(0)}$ is independent of W on (Ω, \mathcal{F}, P), if

(a) $(X_t, t \geq 0)$ is adapted to the completion by null sets of

$$\mathcal{F}_t^0 = \sigma(W_s, 0 \leq s \leq t; X^{(0)});$$

(b) X is a continuous process;

(c) $P(X_0 = X^{(0)}) = 1$;

(d) $P(\int_0^t (\|b(X_s, s)\| + \|\sigma(X_s, s)\|^2)ds < \infty) = 1$ for all $t > 0$ (with $\|\cdot\|$ any norm);

(e) With probability one:

$$\forall t \geq 0 : X_t = X_0 + \int_0^t b(X_s, s)ds + \int_0^t \sigma(X_s, s)dW_s.$$
The stochastic integral is taken in Itô’s sense and obtained as the limit of sums
\[0 = t_0 < t_1 < \cdots < t_m = t : \sum_{i=1}^{m} \sigma(X_{t_{i-1}}, t_{i-1})(W_{t_i} - W_{t_{i-1}}) \]
where \(\Delta := \max_{i} |t_i - t_{i-1}| \to 0. \)

2.2 Theorem (Standard existence and uniqueness result for SDEs). Suppose the drift coefficient \(b \) and the diffusion coefficient \(\sigma \) satisfy the global Lipschitz and linear growth conditions

(i) \(\|b(x, t) - b(y, t)\| + \|\sigma(x, t) - \sigma(y, t)\| \leq K\|x - y\|, \)

(ii) \(\|b(x, t)\| + \|\sigma(x, t)\| \leq K(1 + \|x\|) \)

for all \(x, y \in \mathbb{R}^d, t \geq 0 \) and some constant \(K \). Then the SDE \((*)\) has a strong solution which is also unique, provided \(X(0) \in \mathcal{L}^2 \).

If \((X_t, t \in [0, T])\) is observed (continuous-time observations), then by taking refined partitions, we can calculate the quadratic (co-)variation
\[\int_0^t \sigma(X_s, s)\sigma(X_s, s)^T ds \]
for all \(t \in [0, T] \):
\[\sum_{i=1}^{m} (X_{t_i} - X_{t_{i-1}})(X_{t_i} - X_{t_{i-1}})^T \xrightarrow{\Delta \to 0} \text{a.s.} \int_0^t \sigma(X_s, s)\sigma(X_s, s)^T ds. \]

By taking the derivative in \(t \), we thus identify \((\sigma\sigma^T)(X_t, t) \in \mathbb{R}^{d\times d} \) for all \(t \in [0, T] \). Note that we cannot hope for more: if \(x \) is not visited by \((X_t, t \in [0, T])\) there is no chance to learn about \((\sigma\sigma^T)(x, t)\) for some \(t \).

Moreover, we cannot find out more about \(\sigma \in \mathbb{R}^{d\times m} \) itself, because \(X \) also solves an SDE of the form:
\[dX_t = b(X_t, t) + (\sigma\sigma^T)^{1/2}(X_t, t)d\tilde{W}_t \]
with \(\tilde{W} \) a \(d \)-dimensional Brownian motion.

Résumé: Continuous-time observations identify the diffusion part as far as possible and the main interest is the drift part.

Main tool for drift statistics: Girsanov theorem to obtain the likelihood. [Liptser/Shiryaev: Statistics of Random Processes ([6])] 2.3 Theorem (Theorem 7.19 in [6]). Let \((X_t, t \in [0, T]), (Y_t, t \in [0, T])\) be two real diffusion processes with
\[dX_t = b_X(X_t, t)dt + \sigma(X_t, t)dW_t, \]
\[dY_t = b_Y(Y_t, t)dt + \sigma(Y_t, t)dW_t \]
and $X_0 = Y_0$ a.s.

Suppose for Y there is a unique strong solution and $(b_X - b_Y)(x, t) = 0$ if $\sigma(x, t) = 0$. If

$$
\mathbb{P} \left(\int_0^T 1_{(\sigma(X_s, s) > 0)} \frac{(b_X^2 + b_Y^2)(X_s, s)}{\sigma^2(X_s, s)} ds < \infty \right)
= \mathbb{P} \left(\int_0^T 1_{(\sigma(Y_s, s) > 0)} \frac{(b_X^2 + b_Y^2)(Y_s, s)}{\sigma^2(Y_s, s)} ds < \infty \right) = 1,
$$

then the laws \mathbb{P}_T^X, \mathbb{P}_T^Y of X and Y on $C([0, T])$ (with Borel-σ-algebra) are equivalent with Radon-Nikodym derivative/density/likelihood:

$$
\frac{d\mathbb{P}_T^Y}{d\mathbb{P}_T^X}((X_t)_{t \in [0, T]}) = \exp \left\{ \int_0^T 1_{(\sigma(X_s, s) > 0)} \left(\frac{b_Y - b_X}{\sigma^2} \right)(X_s, s) dX_s - \frac{1}{2} \int_0^T 1_{(\sigma(X_s, s) > 0)} \left(\frac{b_Y^2 - b_X^2}{\sigma^2} \right)(X_s, s) ds \right\}.
$$

2.4 Examples.

1. Brownian motion with drift:

$b_X(X_t, t) = b_X(t)$, $b_Y(X_t, t) = b_Y(t)$, $\sigma(X_t, t) = \sigma > 0$, $X^{(0)} = 0$, i.e.

$$
X_t = \int_0^t b_X(s) ds + \sigma dW_t,
$$

$$
Y_t = \int_0^t b_Y(s) ds + \sigma dW_t
$$

\sim all conditions above are satisfied and

$$
\frac{d\mathbb{P}_T^Y}{d\mathbb{P}_T^X}(X) = \exp \left\{ \int_0^T \frac{(b_Y - b_X)(s)}{\sigma^2} dX_s - \frac{1}{2} \int_0^T \frac{(b_Y^2 - b_X^2)(s)}{\sigma^2} ds \right\}.
$$

\sim if b_Y, b_X are constant in t, then X_T is a sufficient statistics, i.e. for all statistical puroposes it suffices to use X_T, not the trajectory $(X_t, t \in [0, T])$,

\sim enormous data reduction without loss of information on b_X, b_Y.

Example: MLE for $dX_t = \vartheta dt + \sigma dW_t$, $\vartheta \in \mathbb{R}$ unknown, is $\vartheta_{\text{MLE}} = \frac{\dot{X}_T}{T}$.

2. Ornstein-Uhlenbeck process:

It is the solution of the SDE

$$
dX_t = aX_t dt + \sigma dW_t
$$
for some initial value $X^{(0)}$.

Variation of constants formula gives

$$X_t = e^{at}X^{(0)} + \int_0^t e^{a(t-s)}\sigma dW_s.$$

If $X^{(0)}$ is Gaussian or deterministic, then (X_t) is a Gaussian process. It is easy to see that all conditions in Girsanov’s theorem are satisfied for $b_Y(x, t) = ax$, $b_X(x, t) = 0$ (for $a = 0$) and thus

$$\frac{d\mathbb{P}^Y_T}{d\mathbb{P}^X_T} = \exp\left\{\int_0^T \frac{aX_s}{\sigma^2} dX_s - \frac{1}{2} \int_0^T \frac{a^2 X_s^2}{\sigma^2} ds\right\}.$$

Writing \mathbb{P}^a_T instead of \mathbb{P}^Y_T, we have

$$\frac{d\mathbb{P}^Y_T}{d\mathbb{P}^X_T} = \frac{d\mathbb{P}^a_T}{d\mathbb{P}^0_T} = \frac{d\mathbb{P}^a_T}{d\mathbb{P}^\sigma_{W}T} =: \mathcal{L}(a).$$

The MLE is then

$$\hat{a}_T = \frac{\int_0^T X_s dX_s}{\int_0^T X_s^2 ds} \quad \text{plug in} \quad \int_0^T X_s(aX_s ds + \sigma dW_s)$$

$$= a + \frac{\int_0^T X_s \sigma dW_s}{\int_0^T X_s^2 ds} = a + \frac{M_T}{\sigma^2\langle M \rangle_T}$$

with $M_t = \int_0^t X_s \sigma dW_s$.

Problem 17:

(a) Show that a strictly stationary solution of $dX_t = aX_t dt + \sigma dW_t$ exists if $a < 0$. It has the representation (cf. MA(\infty)-representation of AR(1))

$$X_t = \sigma \int_{-\infty}^{t} e^{a(t-s)}d\tilde{W}_s$$

where $(\tilde{W}_s, s \in \mathbb{R})$ is two-sided Brownian motion, i.e. $(\tilde{W}_t, t \geq 0)$ and $(\tilde{W}_{-t}, t \geq 0)$ are independent Brownian motions. If $a \geq 0$, then no weakly stationary solution exists.

(b) Consider the observations $(X_0, X_{\Delta}, \ldots , X_{n\Delta})$ with $\Delta > 0$ and $T = n\Delta$ (discrete observations). Estimate a by discretising the continuous-time MLE \hat{a}_T and secondly by identifying $(X_{k\Delta}, k \geq 0)$ as an AR(1)-process and using the Yule-Walker estimator.
3. Cox-Ingersoll-Ross (Bessel) process:
It solves
\[dX_t = (\vartheta_1 - \vartheta_2 X_t)dt + \sigma \sqrt{X_t} dW_t, \]
\[X(0) > 0; \vartheta_1, \vartheta_2, \sigma > 0. \]
One can show that there is a unique strong solution (although diffusion coefficient is not Lipschitz at \(X_t = 0 \)) with \(X_t \geq 0 \) for all \(t \) a.s. If \(2\vartheta_1 > \sigma^2 \), then even \(X_t > 0 \) for all \(t \) a.s.
Assuming \(2\vartheta_1 > \sigma^2 \) and \(2\vartheta_1^{(0)} > \sigma^2 \) and considering \(\mathbb{P}_T^\vartheta (\vartheta = (\vartheta_1, \vartheta_2)) \) as the law of \((X_t)\) on \(C([0, T]) \) we have
\[
\frac{d\mathbb{P}_T^\vartheta}{d\mathbb{P}_T^{\vartheta(0)}} = \exp \left\{ \int_0^T \frac{(\vartheta_1 - \vartheta_2^{(0)}) - (\vartheta_1 - \vartheta_2^{(0)})X_s dX_s}{\sigma^2 X_s} - \frac{1}{2} \int_0^T \frac{(\vartheta_1 - \vartheta_2 X_s)^2 - (\vartheta_1^{(0)} - \vartheta_2^{(0)} X_s)^2}{\sigma^2 X_s} ds \right\}
\]
by Girsanov’s theorem (\(\sigma(X_s, s) > 0 \)).
The MLE \(\hat{\vartheta} = (\hat{\vartheta}_1, \hat{\vartheta}_2) \) is obtained from \(\nabla_{\vartheta} \log \left(\frac{d\mathbb{P}_T^\vartheta}{d\mathbb{P}_T^{\vartheta(0)}} \right) = 0 \):
\[
\hat{\vartheta}_1 = \frac{\int_0^T X_s ds \int_0^T X_s ds - \int_0^T 1 ds \int_0^T 1 ds \int_0^T 1 ds \int_0^T X_s ds}{\int_0^T X_s ds \int_0^T X_s ds - (\int_0^T 1 ds)^2},
\]
\[
\hat{\vartheta}_2 = \frac{\int_0^T 1 ds \int_0^T \frac{1}{X_s} ds - \int_0^T 1 ds \int_0^T \frac{1}{X_s} ds \int_0^T \frac{1}{X_s} ds}{\int_0^T \frac{1}{X_s} ds \int_0^T X_s ds - (\int_0^T 1 ds)^2}.
\]

4. General linear parametrisation:
Consider
\[dX_t = \langle \vartheta, b(X_t, t) \rangle dt + \sigma(X_t, t) dW_t, \]
\[X_0 = X(0) \] with \(\vartheta = (\vartheta_1, \ldots, \vartheta_k)^T \in \Theta \subseteq \mathbb{R}^k \) (unknown parameter), \(b : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^k \) such that all conditions for Girsanov’s theorem are satisfied; suppose \(0 \in \Theta \) and \(\sigma(x, t) > 0 \). Then
\[
\frac{d\mathbb{P}_T^\vartheta}{d\mathbb{P}_T^{\vartheta(0)}} = \exp \left\{ \int_0^T \frac{\langle \vartheta, b(X_t, t) \rangle}{\sigma^2(X_t, t)} dX_t - \frac{1}{2} \int_0^T \frac{\langle \vartheta, b(X_t, t) \rangle^2}{\sigma^2(X_t, t)} dt \right\}.
\]
MLE is obtained from \(\nabla_{\vartheta} \log \left(\frac{d\mathbb{P}_T^\vartheta}{d\mathbb{P}_T^{\vartheta(0)}} \right) \):
\[
\hat{\vartheta}_T^{\text{MLE}} = \left(\begin{array}{c} \int_0^T \frac{b b^T}{\sigma^2} (X_t, t) dt \\
= : I_T \in \mathbb{R}^{k \times k} \end{array} \right)^{-1} \left(\begin{array}{c} \int_0^T \frac{b}{\sigma^2} (X_t, t) dX_t \in \mathbb{R}^k \\
\end{array} \right).
\]
provided the matrix is non-singular.

Under the law \mathbb{P}^{ϑ_0} we then obtain:

$$
\hat{\vartheta}^\text{MLE}_T = I_T^{-1} \left(\int_0^T \frac{b(X_t, t)b(X_t, t)^T \vartheta_0 dt + b(X_t, t)\sigma(X_t, t)dW_t}{\sigma^2(X_t, t)} \right)
$$

$$
= \vartheta_0 + I_T^{-1} \left(\int_0^T \left(\frac{b}{\sigma} \right)(X_t, t) dW_t \right) = \vartheta_0 + \langle M \rangle_T^{-1} M_T.
$$

If there is a deterministic sequence $A_T \in \mathbb{R}^{k \times k}$, A_T strictly positive definite, with $A_T^{-1} \langle M \rangle_T \xrightarrow{\mathbb{P}} E_k$ and the conditional Lindeberg condition is satisfied, then

$$
A_T^{1/2} (\hat{\vartheta}_T - \vartheta_0) \xrightarrow{\mathbb{P}^{\vartheta_0}} N(0, E_k).
$$

If (X_t) is strictly stationary and ergodic, then we can take $A_T = T \cdot I_1$ where I_1 is the Fisher information matrix for observations $(X_t, t \in [0, 1])$. In particular, then $\hat{\vartheta}_T - \vartheta_0$ is of order $O_p(T^{-1/2}).$

Problem 18: Consider the stationary Ornstein-Uhlenbeck process

$$
dX_t = aX_t dt + \sigma dW_t,
$$

$a < 0$, and the estimator

$$
\hat{a}_T = \frac{\int_0^T X_t dX_t}{\int_0^T X_t^2 dt}.
$$

Prove that $\sqrt{T}(\hat{a}_T - a)$ is asymptotically normal. By calculating the Fisher information prove that it is even efficient.

2.2 Nonparametric drift estimation

Suppose we observe a time-homogeneous diffusion process

$$
dX_t = b(X_t) dt + \sigma(X_t) dW_t,
$$

$X_0 = X^{(0)},$

on $[0, T]$, we know the diffusion coefficient σ, but we do not know b and do not want to impose a particular parametric form on b. We merely assume that $x \mapsto b(x)$ has a certain Hölder smoothness:

$$
|b(x) - b(y)| \leq R|x - y|^\alpha
$$

28
for all $x, y \in \mathbb{R}, \alpha \in (0, 1]$.

Idea: The drift $b(x)$ is the mean of the infinitesimal increment of X_t given $X_t = x$:

$$b(x) = \lim_{h \downarrow 0} \mathbb{E} \left[\frac{X_{t+h} - X_t}{h} \bigg| X_t = x \right].$$

Hence we should use dX_t for estimating b.

\Rightarrow Nadaraja-Watson-type estimator:

$$\hat{b}_{T,h}(x) = \frac{T \int_0^T 1_{[x-h,x+h]}(X_t) dX_t}{T \int_0^T 1_{[x-h,x+h]}(X_t) dt}.$$

Note:

$$\hat{b}_{T,h}(x) = \frac{T \int_0^T 1_{[x-h,x+h]}(X_t) b(X_t) dt}{T \int_0^T 1_{[x-h,x+h]}(X_t) dt} + \frac{T \int_0^T 1_{[x-h,x+h]}(X_t) \sigma(X_t) dW_t}{T \int_0^T 1_{[x-h,x+h]}(X_t) dt}$$

with $\int_0^T 1_{[x-h,x+h]}(X_t) \sigma(X_t) dW_t = 1$.

$\int_0^T \tilde{1}_{[x-h,x+h]}(X_t)b(X_t)dt$ is a convex combination of values $b(y)$ for $y \in [x-h, x+h]$, hence it lies in $[\min_{|y-x| \leq h} b(y), \max_{|y-x| \leq h} b(y)]$. Since $b \in C^\alpha$,

$$| \int_0^T \tilde{1}_{[x-h,x+h]}(X_t)b(X_t)dt - b(x)| \leq Rh^\alpha,$$

which is a deterministic bound. It tends to zero when $h \downarrow 0$.

We look at the stochastic error term

$$\frac{T \int_0^T 1_{[x-h,x+h]}(X_t) \sigma(X_t) dW_t}{T \int_0^T 1_{[x-h,x+h]}(X_t) dt}.$$
Suppose that \((X_t)\) is stationary, then the numerator satisfies

\[
\mathbb{E} \left[\left(\int_0^T 1_{[x-h, x+h]}(X_t) \sigma(X_t) dW_t \right)^2 \right]
\]

Itô isometry

\[
\mathbb{E} \left[\left(\int_0^T 1_{[x-h, x+h]}(X_t)^2 \sigma(X_t)^2 \right) dt \right]
\]

\[
X_{stat.} = T \mathbb{E} [1_{[x-h, x+h]}(X_0) \sigma(X_0)^2]
\]

\[
\mu_{inv. \text{Lebesgue}} = T \int_{x-h}^{x+h} \sigma^2(y) \mu(y) dy \leq 2Th \| \sigma^2 \mu \|_\infty \sim Th.
\]

Stationarity of \(X\), existence of the invariant Lebesgue density \(\mu\) and finiteness of \(\sigma^2\) are necessary assumptions.

For the denominator:

\[
\mathbb{E} \left[\int_0^T 1_{[x-h, x+h]}(X_t) dt \right]_{\text{Fubini}} = T \mathbb{E} [1_{[x-h, x+h]}(X_0)]
\]

\[
\mu \text{ invar.} \text{density} = 2Th \left(\frac{1}{2h} \int_{x-h}^{x+h} \mu(y) dy \right).
\]

Hope: The denominator 'concentrates' around \(2Th \mu(x)\) as \(T \to \infty, h \to 0\) such that the stochastic error is of order (in probability) \(\mathcal{O}_P \left(\sqrt{\frac{Th}{T^2}} \right) = \mathcal{O}_P \left(\frac{1}{\sqrt{Th}} \right)\).

2.5 Proposition (Durrett: Stochastic Calculus ([2])). If

\[
G := \int_{-\infty}^{\infty} \frac{1}{\sigma^2(x)} \exp \left(\int_0^x \frac{2b}{\sigma^2(z)} dz \right) dx < \infty
\]

and the SDE has a strong solution for any initial condition, then there is a stationary solution \(X\) of the SDE with invariant Lebesgue density

\[
\mu(x) = \frac{1}{G \sigma^2(x)} \exp \left(\int_0^x \frac{2b}{\sigma^2(z)} dz \right), \quad x \in \mathbb{R}.
\]

2.6 Proposition. Suppose there are \(A, \gamma > 0\) such that \(\text{sgn}(x) \frac{2b(x)}{\sigma^2(x)} \leq -\gamma\) for all \(x\) with \(|x| > A\), that \(b\) is bounded on \([-A, A]\) and \(\sigma^2 := \inf_{x \in \mathbb{R}} \sigma^2(x) > 0\), then there is a stationary solution \(X\) of the SDE and for any function \(f: \mathbb{R} \to \mathbb{R}\) with \(\mathbb{E}[f(X_0)] = 0\) and \(f \in L^1(\mathbb{R})\) we have

\[
\mathbb{E} \left[\left(\int_0^T f(X_t) dt \right)^2 \right] \leq \|f\|_1^2 (C + C'T)
\]

with constants \(C, C' > 0\) depending only on \(A, \gamma, \sigma^2, \sup_{|x| \leq A} b(x)\).
2.7 Remark. The condition $\text{sgn}(x)\frac{2b}{\sigma^2}(x) \leq -\gamma$ (*) means for $x > 0$ that the drift is negative for $x > A$ and strong enough to push the diffusion process back to the direction of the origin such that an equilibrium can be obtained. For $x < 0$ the situation is symmetric. An easy example is the Ornstein-Uhlenbeck process with $b(x) = ax$ and $a < 0$.

Proof.

1. Condition (*) implies $G < \infty$, using that $\frac{2b}{\sigma^2}$ is bounded in $[-A, A]$ and $\frac{1}{\sigma^2}$ is bounded on \mathbb{R}.

2. Find F such that $LF = f$ with the Markov generator

$$LF(x) = \frac{\sigma^2(x)}{2} F''(x) + b(x)F'(x).$$

Then by Itô’s formula

$$dF(X_t) = F'(X_t)dX_t + \frac{1}{2} F''(X_t)d\langle X \rangle_t = LF(X_t) = f(t).$$

$$\Rightarrow \int_0^T f(X_t)dt = F(X_T) - F(X_0) - \int_0^T F'(X_t)\sigma(X_t)dW_t.$$

$$\Rightarrow \mathbb{E}\left[\left(\int_0^T f(X_t)dt\right)^2\right] \leq 3\left(\mathbb{E}[F(X_T)^2] + \mathbb{E}[F(X_0)^2] + \mathbb{E}\left[\left(\int_0^T F'(X_t)\sigma(X_t)dW_t\right)^2\right]\right).$$

X stat. \text{Itô-iso.} 6\mathbb{E}[F(X_0)^2] + 3T\mathbb{E}[F'(X_0)^2\sigma(X_0)^2].

3. Check that

$$F(x) = \int_0^x \int_{-\infty}^y \frac{2}{\sigma^2(y)\mu(y)} \left(\int_{-\infty}^z f(z)\mu(z)dz \right)dy$$

satisfies $LF = f$.

$$F'(x) = \frac{2}{\sigma^2(x)\mu(x)} \int_{-\infty}^x f(z)\mu(z)dz$$

$$\Rightarrow \text{prop. 2.5} 2\int_{-\infty}^x f(z)\frac{1}{\sigma^2(z)} \exp\left(\int_{x}^{z} \frac{2b}{\sigma^2(y)}dy \right)dz$$

$$\Rightarrow \int_{-\infty}^x f(z)\frac{1}{\sigma^2(z)} \exp\left(\int_{x}^{z} \frac{2b}{\sigma^2(y)}dy \right)dz = -2\int_{x}^{\infty} f(z)\frac{1}{\sigma^2(z)} \exp\left(\int_{x}^{z} \frac{2b}{\sigma^2(y)}dy \right)dz.$$

$$F''(x) = \frac{2f(x)}{\sigma^2(x)} + 2\int_{-\infty}^x f(z)\frac{1}{\sigma^2(z)} \left(-\frac{2b}{\sigma^2(x)} \right) \exp\left(\int_{x}^{z} \frac{2b}{\sigma^2(y)}dy \right)dz.$$
Hence

\[LF(x) = \left(\frac{\sigma^2}{2} F'' + b F' \right)(x) = (f(x) - b(x) F'(x)) + b(x) F'(x) = f(x). \]

4. Bound \(F'(x), F(x) \).

For \(x > 0 \):

\[|F'(x)| \leq \frac{2}{\sigma^2} \int_{x}^{\infty} |f(z)| \exp \left(\int_{x}^{z} \frac{2b(y)}{\sigma^2} dy \right) dz \leq C_2 ||f||_{L^1}. \]

For \(x < 0 \) the same bound applies. We obtain \(|F'(x)| \leq C_3 ||f||_{L^1} \) and thus

\[E[F'(X_0)^2 \sigma^2(X_0)] \leq C_3^2 ||f||_{L^1}^2 \int_{-\infty}^{\infty} \sigma^2(x) \mu(x) dx \leq C_4 ||f||_{L^1}^2. \]

The bound for \(|F(x)| \) and then \(E[F(X_0)^2] \) follows in the same way.

Problem 19: Generalise this proposition by relaxing the conditions \(\text{sgn}(x) \frac{\partial f}{\partial x}(x) \leq -\gamma, \sigma^2 > 0 \). Follow the constants more explicitly.

Applying this proposition to the denominator, we obtain for diffusions satisfying its conditions:

\[
\begin{align*}
E \left[\int_{0}^{T} 1_{[x-h,x+h]}(X_t) - E[1_{[x-h,x+h]}(X_t)] dt \right]^2 \\
\leq (C + C'T) \| 1_{[x-h,x+h]}(X_t) - E[1_{[x-h,x+h]}(X_t)] \|_{L^1}^2 \\
\leq (C + C'T) C_1 h^2.
\end{align*}
\]

We have as \(T \to \infty, h \downarrow 0 \):

\[
\begin{align*}
E[\int_{0}^{T} 1_{[x-h,x+h]}(X_t) dt] &\geq C_2 Th, \\
\text{Var}(\int_{0}^{T} 1_{[x-h,x+h]}(X_t) dt) &\leq C_3 Th^2.
\end{align*}
\]

We thus have

\[P \left(\frac{1}{Th} \int_{0}^{T} 1_{[x-h,x+h]}(X_t) dt \geq \frac{C_2}{2} \right) \to 1. \]
Hence the stochastic error term is $O_p\left(\frac{\sqrt{T}}{Th}\right) = O_p\left(\frac{1}{\sqrt{Th}}\right)$ in the sense that

$$\sqrt{Th} \int_0^T 1_{[x-h, x+h]}(X_t) \sigma(X_t) dW_t$$

is tight (i.e. bounded in probability). This implies the following theorem.

2.8 Theorem. Suppose the SDE satisfies the conditions of the previous proposition. Then for the stationary solution (X_t) and a drift b with

$$|b(x) - b(y)| \leq R|x - y|^{\alpha}$$

we find

$$|\hat{b}_{T,h}(x_0) - b(x_0)| \leq Rh^{\alpha} + O_p\left(\frac{1}{\sqrt{Th}}\right).$$

Hence, if $h = h_T \downarrow 0$, but $Th_T \to \infty$, then $\hat{b}_{T,h}(x_0)$ is a consistent estimator of $b(x_0)$.

2.9 Corollary. If we choose $h_T \sim T^{-\frac{\alpha}{2\alpha+1}}$ (optimally in order), then we obtain

$$|\hat{b}_{T,h}(x_0) - b(x_0)| = O_p\left(T^{-\frac{\alpha}{2\alpha+1}}\right).$$

2.10 Remark. One can show that this rate $T^{-\frac{\alpha}{2\alpha+1}}$ is optimal in a minimax sense over α-Hölder continuous drifts b. For the most interesting Lipschitz case ($\alpha = 1$) the rate is $T^{-1/3}$ (compared to $T^{-1/2}$ for parametric problems).

2.3 Nonparametric volatility estimation with high frequency data

Consider the diffusion process

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t.$$

We observe $X_0, X_{\Delta}, \ldots, X_{N\Delta}$ ($\Delta << 1$).

Intuition: We look at X_0, X_{Δ} and at the increment:

$$\frac{X_{\Delta} - X_0}{\Delta} = \frac{1}{\Delta} \int_0^\Delta b(X_s) ds + \frac{1}{\Delta} \int_0^\Delta \sigma(X_s) dW_s.$$

$\sim b(X_0)$ if b cts. $E[.] = 0$
To access \(\sigma \), we look at the square:

\[
\frac{(X_\Delta - X_0)^2}{\Delta} = \frac{1}{\Delta} \left(\int_0^\Delta b(X_s)ds \right)^2 - \Delta \int_0^{\Delta} b(X_s)ds \Delta \int_0^{\Delta} \sigma(X_s)dW_s + \frac{1}{\Delta} \left(\int_0^\Delta \sigma(X_s)dW_s \right)^2
\]

\[
\sim\Delta \int_0^\Delta b(X_s)ds \int_0^{\Delta} \sigma(X_s)dW_s + \frac{1}{\Delta} \left(\int_0^\Delta \sigma(X_s)dW_s \right)^2
\]

\[
\E[\] \sim \Delta \int_0^\Delta b(X_s)ds \int_0^{\Delta} \sigma(X_s)dW_s + \frac{1}{\Delta} \left(\int_0^\Delta \sigma(X_s)dW_s \right)^2
\]

Consider the process \(dB_t = \sigma dW_t, \sigma > 0 \) and the observations \(B_0, B_\Delta, \ldots, B_{N\Delta}, N\Delta = T \).

\[
\hat{\sigma}^2 := \frac{1}{N} \sum_{n=0}^{N-1} \frac{(B_{(n+1)\Delta} - B_{n\Delta})^2}{\Delta} = \frac{1}{N} \sum_{n=0}^{N-1} \sigma^2 Y_n^2,
\]

where \((Y_n)\) are i.i.d. \(N(0, 1) \).

Then \(\E[\hat{\sigma}] = \sigma^2 \) and

\[
\E[(\hat{\sigma} - \sigma^2)^2] = \E[\left(\frac{1}{N} \sum_{n=0}^{N-1} \sigma^2 (Y_n^2 - 1) \right)^2] = \sigma^4 \E[\left(\frac{1}{N} \sum_{n=0}^{N-1} (Y_n^2 - 1) \right)^2] = \sigma^4 \frac{1}{N} \Var(Y_0^2 - 1).
\]

\[
\Rightarrow \E[(\hat{\sigma} - \sigma^2)^2]^{1/2} = \frac{\sqrt{2}\sigma^2}{\sqrt{N}}.
\]

What has made the computation easy?

1. \(\sigma \) is constant,
2. increments are independent.

L^2 error bounds for the Florens-Zmirou estimator

2.11 Definition. Set \(0 < m < M \) and define \(\Theta(m, M) = \{ \sigma \in C^1(\mathbb{R}) : m \leq \inf_{x \in \mathbb{R}} \sigma(x) \leq \sup_{x \in \mathbb{R}} \sigma(x) \leq M, \sup_{x \in \mathbb{R}} |\sigma'(x)| \leq M \} \). Note that each \(\sigma \in \Theta \) satisfies the global Lipschitz and linear growth conditions, hence the corresponding equation

\[
\begin{align*}
 dX_t &= \sigma(X_t)dW_t, \\
 X_0 &= X(0) \in L^2
\end{align*}
\]

has a unique strong solution. For \(\Delta > 0 \) we observe a path \(t \to X_t \) at equidistant times \(0, \Delta, 2\Delta, \ldots, N\Delta = 1 \). When \(x \in \mathbb{R} \) is visited by the observed path (i.e.
$X_t = x$ for some $t \in (0, 1)$ we define the Florens-Zmirou ([4]) estimator of the diffusion coefficient σ^2 by

$$\hat{\sigma}^2_{FZ}(x, h_\Delta) = \frac{\sum_{n=0}^{N-1} 1_{(|X_n - x| < h_\Delta)} \sigma(X_{(n+1)\Delta} - X_{n\Delta})^2}{\sum_{n=0}^{N-1} 1_{(|X_n - x| < h_\Delta)}}.$$

2.12 Definition. For any Borel set A define its occupation measure as $\mu(A) = \int_0^1 1_A(X_s)ds$, i.e. the amount of time the path $(X_t)_{0 \leq t \leq 1}$ stayed in A. Then the measure μ has a Lebesgue density $L ([7], [1])$ called the local time (chronological local time) of X at time one. For every positive Borel measurable function f the occupation formula $\int_0^1 f(X_s)ds = \int_{\mathbb{R}} f(x)L(x)dx$ holds.

2.13 Lemma. For every $p > 2$ we have $\sup_{(\sigma, h) \in \Theta} \mathbb{E}[|L^p(x)|] < C_p$.

Proof. By the Tanaka formula

$$L(x) = |X_1 - x| - |X_0 - x| - \int_0^1 \text{sgn}(X_s - x)dX_s \leq |X_1 - X_0| + \int_0^1 \text{sgn}(X_s - x)dX_s.$$

Using the Burkholder-Davis-Gundy inequality (see stochastic analysis notes) we obtain

- $\mathbb{E}[|X_1 - X_0|^p] = \mathbb{E}[|\int_0^1 \sigma(X_s)dW_s|^p] \leq \tilde{C}_p \mathbb{E}[|\int_0^1 \sigma^2(X_s)ds|^{\frac{p}{2}}] \leq \tilde{C}_p M^p$.

- $\mathbb{E}[|\int_0^1 \text{sgn}(X_s - x)dX_s|^p] \leq \tilde{C}_p \mathbb{E}[|\int_0^1 \text{sgn}^2(X_s - x)\sigma^2(X_s)ds|^{\frac{p}{2}}] \leq \tilde{C}_p M^p$.

2.14 Theorem. Consider an interval K, some positive $\nu > 0$ and let $\mathcal{L} = \{\inf_{x \in K} L_T(x) \geq \nu\}$, $h_\Delta \sim \Delta^\frac{1}{2}$. Then for every $x \in \text{int}(K)$ we have

$$\sup_{\sigma \in \Theta} \mathbb{E}[1_{\mathcal{L}} \cdot |\hat{\sigma}^2_{FZ}(x, h_\Delta) \wedge M^2 - \sigma^2(x)|^2] \leq C\Delta^\frac{2}{3},$$

where the constant C depends on the set K and level ν.

Notation: We will write $f_{\sigma} \lesssim g_{\sigma}$ (resp. $g_{\sigma} \gtrsim f_{\sigma}$) if we have $f_{\sigma} \leq C \cdot g_{\sigma}$ for every $\sigma \in \Theta$ with some constant $C > 0$ depending only on K and ν.

Proof. (a) (Bias and martingale part) For $n = 0, \ldots, N - 1$ define

$$\eta_n = \frac{1}{\Delta} \left(\int_{n\Delta}^{(n+1)\Delta} \sigma(X_s)dW_s \right)^2 - \frac{1}{\Delta} \int_{n\Delta}^{(n+1)\Delta} \sigma^2(X_s)ds.$$

- $\mathbb{E}[\eta_n|\mathcal{F}_n] = 0$ and in particular $\mathbb{E}[\eta_n\eta_m] = 0$ for $n \neq m$.

- $\mathbb{E}[\eta_n^2|\mathcal{F}_n] \lesssim 1$. Indeed, by the Burkholder-Davies-Gundy inequality:

$$\Delta^2 \mathbb{E}[\eta_n^2|\mathcal{F}_n] \lesssim \mathbb{E}[\left(\int_{n\Delta}^{(n+1)\Delta} \sigma(X_s)dW_s \right)^4|\mathcal{F}_n] + \mathbb{E}[\left(\int_{n\Delta}^{(n+1)\Delta} \sigma^2(X_s)ds \right)^2|\mathcal{F}_n]$$

$$\lesssim \mathbb{E}[\left(\int_{n\Delta}^{(n+1)\Delta} \sigma^2(X_s)ds \right)^2|\mathcal{F}_n] + \Delta^2 \lesssim \Delta^2.$$
We decompose the estimation error into martingale and bias parts:

\[|\hat{\sigma}^2_{FZ}(x, h_\Delta) - \sigma^2(x)| = \]

\[= \frac{\sum_{n=0}^{N-1} 1_{\{|X_{n\Delta} - x| < h_\Delta\}} (\int_{n\Delta}^{(n+1)\Delta} \sigma(X_s) \, dW_s)^2 - \sigma^2(x))}{\sum_{n=0}^{N-1} 1_{\{|X_{n\Delta} - x| < h_\Delta\}}} \sum_{n=0}^{N-1} 1_{\{|X_{n\Delta} - x| < h_\Delta\}} \sum_{n=0}^{N-1} 1_{\{|X_{n\Delta} - x| < h_\Delta\}} . \]

\(\Omega \)

(b) (The ”good” high-probability set) Denote by \(\omega(\Delta) \) the modulus of continuity of the path \((X_t)_{t \in (0, 1)}\), i.e.

\[\omega(\Delta) = \sup_{0 \leq s, t \leq 1} |X_t - X_s|, \]

set \(0 < \epsilon < 1/6 \) and let \(\alpha = 3/2 - 3\epsilon \in (1, 3/2) \). Define the event \(\mathcal{R} = \{ \omega(\Delta) < h^3_\Delta \} \). Then for every \(p > 1 \) holds

\[\mathbb{P}(\mathcal{R}^c) \lesssim h^{-p \alpha} (\Delta \log(2\Delta^{-1}))^{\frac{p}{2}} \lesssim \Delta^{ep} \log(2\Delta^{-1})^{\frac{p}{2}}. \]

(*1)

In particular \(\mathbb{P}(\mathcal{R}^c) \lesssim \Delta^{2/3} \) for \(p \) big enough.

Proof. (Proof of (*1))

Set \(p > 0 \). By Markov’s inequality we just have to show that there exists a constant \(C_p \) depending only on \(p \) and the upper bound of \(\sigma \), such that

\[\mathbb{E}[\omega(\Delta)^p] \leq C_p \left(\Delta \log \left(\frac{2T}{\Delta} \right) \right)^{\frac{p}{2}}. \]

(*2)

- (*2) holds for Brownian motion - [3].
- Let \(dX_t = \sigma(X_t) \, dW_t \). By the Dambis-Dubin-Schwarz theorem \(X_t = B_{f_0^t \sigma^2(X_s)} \) for some Brownian motion \(B \). Consequently

\[|X_t - X_s| = |B_{f_0^t \sigma^2(X_s)} - B_{f_0^s \sigma^2(X_s)}| \leq \omega^B(|t - s|M^2) \]

\(\Box \)

(c) (Bias part error) When \(|X_{n\Delta} - x| < h_\Delta \) we have

\[\frac{1}{\Delta} \int_{n\Delta}^{(n+1)\Delta} |\sigma^2(X_s) - \sigma^2(x)| \, ds \lesssim \frac{1}{\Delta} \int_{n\Delta}^{(n+1)\Delta} |X_s - x| \, ds \lesssim \frac{1}{\Delta} \int_{n\Delta}^{(n+1)\Delta} |X_{n\Delta} - x| \, ds \lesssim \omega(\Delta) + h_\Delta. \]

Consequently \(1_{X \cdot B_{x, \Delta}} \lesssim h_\Delta. \)
(d) (Martingale part error) Denote $\sum_{n=0}^{N-1} 1_{\{|X_n\Delta-x|<h_\Delta\}} = N(x, h_\Delta)$. Then, on the event R we have

$$
\left| \frac{N(x, h_\Delta)}{Nh_\Delta} - \frac{1}{h_\Delta} \int_{x-h_\Delta}^{x+h_\Delta} L(z)dz \right| \lesssim \frac{1}{h_\Delta} \int_{\{h_\Delta - h_\Delta \Delta \leq |z-x|<h_\Delta + h_\Delta^\alpha\}} L(z)dz.
$$

(3)

Indeed by the triangle inequality

$$
\left| \frac{1}{N} \sum_{n=0}^{N-1} 1_{\{|X_n\Delta-x|<h_\Delta\}} - \int_0^1 1_{\{|X_s-x|<h_\Delta\}} ds \right| \leq \sum_{n=0}^{N-1} \int_{h_\Delta}^{(n+1)\Delta} \left| 1_{\{|X_n\Delta-x|<h_\Delta\}} - 1_{\{|X_s-x|<h_\Delta\}} \right| ds
$$

$$
= \sum_{n=0}^{N-1} \int_{h_\Delta}^{(n+1)\Delta} 1_{\{h_\Delta \leq |X_s-x|<h_\Delta + \omega(\Delta)\}} ds
$$

$$
+ \sum_{n=0}^{N-1} \int_{h_\Delta}^{(n+1)\Delta} 1_{\{h_\Delta - \omega(\Delta) \leq |X_s-x|<h_\Delta\}} ds
$$

$$
= \int_0^1 1_{\{h_\Delta - h_\Delta^\alpha \leq |X_s-x|<h_\Delta + h_\Delta^\alpha\}} ds
$$

$$
= \int_{\{h_\Delta - h_\Delta^\alpha \leq |z-x|<h_\Delta + h_\Delta^\alpha\}} L(z)dz.
$$

Denote for simplicity $\{z : h_\Delta - h_\Delta^\alpha \leq |z-x|<h_\Delta + h_\Delta^\alpha\} = A$ and observe that the Lebesgue measure of A is $4h_\Delta^\alpha$. Using first Markov’s and next Hölder’s inequalities we obtain

$$
P \left(\frac{1}{h_\Delta} \int_A L(z)dz \geq c \right) \lesssim E \left[\frac{1}{h_\Delta^p} \left(\int_A L(z)dz \right)^p \right]
$$

$$
\lesssim \frac{h_\Delta^{\alpha(p-1)}}{h_\Delta^p} \int_A E[L^p(z)]dz \lesssim h_\Delta^{\alpha-1} \lesssim \Delta^{\frac{2}{3}}
$$

for p big enough. Consequently there exists a high probability event $Q \subseteq R$, $P(Q^c) \lesssim \Delta^{2/3}$, such that $\frac{N(x,h_\Delta)}{Nh_\Delta}$ is bounded from below on $Q \cap L$. Now
using martingale properties of η_n we obtain:

$$
\mathbb{E}\left[1_{Q \cap L} \cdot M_{x,\Delta}^2 \right] = \mathbb{E}\left[\left(\frac{1}{N(x, h_\Delta)} \sum_{n=0}^{N-1} 1_{|X_n - x| < h_\Delta} \eta_n\right)^2 \cdot 1_{Q \cap L}\right] \\
\lesssim \frac{1}{N^2 h_\Delta^2} \mathbb{E}\left[\left(\sum_{n=0}^{N-1} 1_{|X_n - x| < h_\Delta} \eta_n\right)^2 \cdot 1_{Q \cap L}\right] \\
\lesssim \frac{1}{N^2 h_\Delta^2} \mathbb{E}\left[\sum_{n,m=0}^{N-1} 1_{|X_n - X_m| < h_\Delta} \eta_n \eta_m\right] \\
= \frac{1}{N^2 h_\Delta^2} \mathbb{E}\left[\sum_{n=0}^{N-1} 1_{|X_n - x| < h_\Delta} \mathbb{E}[\eta_n^2 | \mathcal{F}_n]\right] \\
\lesssim \frac{1}{N^2 h_\Delta^2} \mathbb{E}\left[N(x, h_\Delta)\right].
$$

Finally

$$
\frac{1}{Nh_\Delta} \mathbb{E}\left[N(x, h_\Delta)\right] \lesssim \frac{1}{Nh_\Delta} \mathbb{E}\left[N(x, h_\Delta) \mathbb{1}_R\right] + \frac{1}{Nh_\Delta} \mathbb{E}\left[N(x, h_\Delta) \mathbb{1}_{Q^c}\right] \\
\lesssim \mathbb{E}\left[\frac{1}{h_\Delta} \int_{x-h_\Delta}^{x+h_\Delta} L(z)dz + \frac{1}{h_\Delta} \int_{A} L(z)dz\right] + h_\Delta^{-1} \mathbb{P}(R^c) \\
\lesssim \frac{1}{h_\Delta} \int_{(x-h_\Delta, x+h_\Delta) \cup A} \mathbb{E}[L(z)]dz + h_\Delta^{-1} \Delta_\Delta^2 \\
\lesssim 1.
$$

(e) (Conclusion) We have shown

$$
\mathbb{E}[1_{L \cap Q^c} \cdot \sigma^2_{FZ}(x, h_\Delta)^{-\frac{\sigma^2(x)}{2}}] \lesssim \mathbb{E}[1_{L \cap Q^c} \cdot M_{x,\Delta}^2 + \mathbb{1}_R \cdot B_{x,\Delta}^2] \lesssim \frac{1}{Nh_\Delta} + h_\Delta^2 \sim \Delta_\Delta^\frac{1}{3}.
$$

Furthermore

$$
\mathbb{E}[1_{L \cap Q^c} \cdot \sigma^2_{FZ}(x, h_\Delta) \wedge M^2 - \sigma^2(x)] \lesssim \mathbb{P}(Q^c) \lesssim \Delta_\Delta^\frac{2}{3}.
$$

2.15 Corollary. Let

$$
\Theta^* = \Theta(m, M) \times \{b \in C(\mathbb{R}) : b \text{ is Lipschitz and } \sup_{x \in \mathbb{R}} b(x) \leq M\}.
$$

For $(\sigma, b) \in \Theta^*$ consider a diffusion Y defined by the SDE $dY_t = b(Y_t)dt + \sigma(Y_t)dW_t$, $Y_0 = x_0$. Then for the event L and x defined as before, given that $h_\Delta \sim \Delta_\Delta^\frac{1}{3}$, we have

$$
\sup_{(\sigma, b) \in \Theta^*} \mathbb{E}_{\sigma, b}[1_L \cdot |\sigma^2_{FZ}(x, h_\Delta) \wedge M^2 - \sigma^2(x)|] \leq C(\mathcal{L}) \Delta_\Delta^\frac{1}{3}.
$$
Proof. Using boundedness of the coefficients b and σ one can easily verify the assumptions of the Girsanov's theorem. The laws of the diffusions X and Y on $C([0, 1])$ are equivalent and

$$
\frac{d\mathbb{P}_Y}{d\mathbb{P}_X}(X) = \exp \left(\int_0^1 \frac{b(X_s)}{\sigma^2(X_s)} dX_s - \frac{1}{2} \int_0^1 \frac{b^2(X_s)}{\sigma^2(X_s)} ds \right)
= \exp \left(\int_0^1 \frac{b(X_s)}{\sigma(X_s)} dW_s - \frac{1}{2} \int_0^1 \frac{b^2(X_s)}{\sigma^2(X_s)} ds \right).
$$

Denote $\mathbf{1}_L \cdot \left| \sigma^2 F_{Z}(x, h) \right| \wedge M^2 - \sigma^2(x) = \mathcal{E}_{x, \Delta}$. By Cauchy-Schwarz we obtain

$$
\mathbb{E}_{\sigma, b}[\mathcal{E}_{x, \Delta}] = \mathbb{E} \left[\mathcal{E}_{x, \Delta} \frac{d\mathbb{P}_Y}{d\mathbb{P}_X}(X) \right]
= \mathbb{E} \left[\mathcal{E}_{x, \Delta} \exp \left(\int_0^1 \frac{b(X_s)}{\sigma(X_s)} dW_s - \frac{1}{2} \int_0^1 \frac{b^2(X_s)}{\sigma^2(X_s)} ds \right) \right]
\leq \mathbb{E} \left[\mathcal{E}_{x, \Delta} \exp \left(\int_0^1 \frac{b(X_s)}{\sigma(X_s)} dW_s \right) \right]
\leq \mathbb{E}[\mathcal{E}_{x, \Delta}^2]^{\frac{1}{2}} \mathbb{E} \left[\exp \left(2 \int_0^1 \frac{b(X_s)}{\sigma(X_s)} dW_s \right) \right]^{\frac{1}{2}}.
$$

We just have to argue that $\mathbb{E} \left[\exp \left(\int_0^1 \frac{2b(X_s)}{\sigma(X_s)} dW_s \right) \right]$ is uniformly bounded. Since

$$
\mathbb{E} \left[\exp \left(\int_0^1 2(b\sigma^{-1})^2(X_s) ds \right) \right] < \infty
$$

by the Novikov’s condition the process $M_t = \exp \left(\int_0^t 2(b\sigma^{-1})(X_s)dW_s - \int_0^t 2(b\sigma^{-1)^2(X_s)}ds \right)$ is a martingale and consequently

$$
\mathbb{E} \left[\exp \left(\int_0^1 2(b\sigma^{-1})(X_s)dW_s \right) \right] = \mathbb{E} \left[\exp \left(\int_0^1 2(b\sigma^{-1)^2(X_s)}ds \right) \right].
$$

\blacksquare

2.16 Theorem. (Florens-Zmirou, 1993)

Let X satisfy

$$
dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0, 1],
$$

where b is a bounded function with two bounded derivatives, σ has three continuous and bounded derivatives and furthermore $m < \sigma < M$ for some positive $0 < m < M$. If Nh^3_Δ tends to zero, then

$$
\sqrt{Nh_\Delta} \left(\frac{\sigma_{FZ}(x, h\Delta)}{\sigma^2(x)} - 1 \right) \xrightarrow{D} L(x)^{-1/2} Z,
$$

where Z is a standard normal variable independent of $L(x)$.

2.4 Introduction to high-frequency statistics

Setting: Fix $T > 0$; $X = (X_t)_{0 \leq t \leq T}$.

$$X_t = x_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \quad 0 \leq t \leq T,$$

$x_0 \in \mathbb{R}$, $W = (W_t)_{0 \leq t \leq T}$ standard Brownian motion,

(A0) $b : [0, T] \to \mathbb{R}$, $\sigma : [0, T] \to \mathbb{R}$ are deterministic functions; b and σ are bounded.

Data: $n \geq 1$, $\mathcal{G}_n = (0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = T)$

(particular case: $t_{i,n} = \frac{t_i T}{n}$).

|\(\mathcal{G}_n | = \max_{1 \leq i \leq n} |t_{i,n} - t_{i-1,n}|.

We observe $X_0 = X_{t_{0,n}}, \ldots, X_{t_{n,n}} = X_T$, which is equivalent to the observations X_0, $\Delta X_{t_{i,n}} = X_{t_{i,n}} - X_{t_{i-1,n}}$; $i = 1, \ldots, n$.

$\Delta t_{i,n} = t_{i,n} - t_{i-1,n}$.

Objective: Pick $g : [0, T] \to \mathbb{R}$. Estimate $\Lambda(g) = \int_0^T (g(s))^2 ds$.

2.17 Examples.

(1) $g(t) = 1$. $\Lambda(1)$ is called integrated volatility.

(2) $g_h(t) = \frac{1}{h} 1_{[t_0-h, t_0]}(t)$, $h > 0$.

$$\Lambda(g_h) = \frac{1}{h} \int_{t_0-h}^{t_0} \sigma^2_s ds \approx \sigma^2_{t_0} \text{ for } h \downarrow 0 \text{ if } \sigma^2 \text{ is smooth.}$$

Note: $\mathcal{L}(X_t) = N(x_0 + \int_0^t b_s ds, \int_0^t \sigma_s^2 ds)$,

$\mathcal{L}(\Delta X_{t_{i,n}}) = N(\int_{\Delta t_{i,n}} \sigma_s^2 ds, \int_{\Delta t_{i,n}} \sigma_s^2 ds)$ and the $\Delta X_{t_{i,n}}$ are independent.

Problem 20: $b_s = b$, $\sigma_s = \sigma > 0$ (constant), $\vartheta = (b, \sigma^2)$.

(i) Compute the MLE in that setting and find conditions on \mathcal{G}_n in order to have consistency.

(ii) Assume that b is known. Compute the Fisher information for the parameter σ^2.

$$\Delta X_{t_{i,n}} = \int_{\Delta t_{i,n}} b_s ds + \left(\int_{\Delta t_{i,n}} \sigma_s^2 ds \right)^{1/2} \xi_{i,n} \quad \text{where } \xi_{i,n} \overset{d}{=} N(0, 1).$$

(A1) $b = 0$.

$$(\Delta X_{t_{i,n}})^2 = \int_{\Delta t_{i,n}} \sigma_s^2 ds \xi_{i,n}^2 \approx \sigma_{t_{i-1,n}}^2 \Delta t_{i,n}.$$
Error decomposition:

\[
\hat{\Lambda}_n(g) - \Lambda(g) = \sum_{i=1}^{n} g(t_{i-1,n})((\Delta X_{t_{i,n}})^2 - \int_{\Delta t_{i,n}} \sigma_s^2 ds) + \sum_{i=1}^{n} \int_{\Delta t_{i,n}} \sigma_s^2(g(t_{i-1,n}) - g(s))ds.
\]

Look at \(R_n\). Define

\[
P_{\theta_n}g(t) = \sum_{i=1}^{n} g(t_{i-1,n})1_{t \in \Delta t_{i,n}}.
\]

Then we have

\[
R_n = \sum_{i=1}^{n} \int_{\Delta t_{i,n}} \sigma_s^2(g(t_{i-1,n}) - g(s))ds = \int_{0}^{T} \sigma_s^2(P_{\theta_n}g(s) - g(s))ds.
\]

We give a very rough bound:

\[
|R_n| \leq \|\sigma^2\|_{L^\infty} \left(\|P_{\theta_n}g - g\|_{L^1} \right).
\]

For \(M_n\):

\[
\mathbb{E}[(\Delta X_{t_{i,n}})^2] = \int_{\Delta t_{i,n}} \sigma_s^2 ds,
\]

\[
\mathbb{E}[M_n^2] = \sum_{i=1}^{n} g(t_{i-1,n})^2 \mathbb{E}[\eta_{i,n}^2],
\]

\[
\mathbb{E}[\eta_{i,n}^2] = \mathbb{E}[(\Delta X_{t_{i,n}})^2 - \int_{\Delta t_{i,n}} \sigma_s^2 ds]^2 = \left(\int_{\Delta t_{i,n}} \sigma_s^2 ds \right)^2 \mathbb{E}[(\xi_{i,n}^2 - 1)^2].
\]

Hence,

\[
\mathbb{E}[M_n^2] = 2 \sum_{i=1}^{n} g(t_{i-1,n})^2 \left(\int_{\Delta t_{i,n}} \sigma_s^2 ds \right)^2 \leq 2\|\sigma^4\|_{L^\infty} \sum_{i=1}^{n} g(t_{i-1,n})^2(\Delta t_{i,n})^2.
\]

2.18 Proposition

Work under (A0) and (A1). Then

\[
\mathbb{E}[(\hat{\Lambda}_n(g) - \Lambda(g))^2] \leq C\|\sigma^4\|_{L^\infty}(M(g, \mathcal{G}_n)^2 + \tilde{M}(g, \mathcal{G}_n)^2)
\]

(with \(C\) constant).

Consider

\((A2(\alpha))\) \(|g(t) - g(s)| \leq R|t - s|^{\alpha}\) (for 0 < \(\alpha \leq 1\)) and \(|g(t)| \leq R\) for all \(t \in [0, T]\).

Then

\[
M(g, \mathcal{G}_n) = \sum_{i=1}^{n} \int_{\Delta t_{i,n}} |g(t_{i,n}) - g(s)| ds \leq R \sum_{i=1}^{n} (\Delta t_{i,n})^{\alpha+1} \leq TR|\mathcal{G}_n|^{\alpha},
\]

\[
\tilde{M}(g, \mathcal{G}_n)^2 \leq R^2 T|\mathcal{G}_n|,
\]

41
2.19 Corollary. Assume moreover $A_2(\alpha)$. Then
\[\mathbb{E}[(\hat{\Lambda}_n(g) - \Lambda(g))^2] \leq C_T |\sigma^4|_{L^\infty} |\mathcal{G}_n|^{1 \wedge \alpha}. \]

2.20 Remark. $|\mathcal{G}_n| \leq \frac{c}{n} \Rightarrow \text{rate } n^{-(1 \wedge \alpha)}.

Towards a CLT: We want
\[\sqrt{n}(\hat{\Lambda}_n(g) - \Lambda(g)) = \sqrt{n}M_n + \sqrt{n}R_n. \]

Take (A_3) $|\mathcal{G}_n|^\alpha = o\left(\frac{1}{\sqrt{n}}\right)$.
\[\sqrt{n}M_n = \sum_{i=1}^{n} g(t_{i-1,n}) \frac{1}{\Delta t_{i,n}} \int \sigma_s^2 \Delta t_{i,n}^2 \]

Recall the CLT for independent random variables with Lindeberg condition:
Let $\tilde{\eta}_{i,n}$, $\tilde{\eta}_{2,n}, \ldots, \tilde{\eta}_{n,n}$ be independent random variables such that
\begin{enumerate}[(i)]
 \item $\mathbb{E}[\tilde{\eta}_{i,n}] = 0$,
 \item $v_n = \sum_{i=1}^{n} \mathbb{E}[\tilde{\eta}_{i,n}^2]$,
 \item $\exists c > 0$ such that $\frac{1}{v_n} \sum_{i=1}^{n} \mathbb{E}[\tilde{\eta}_{i,n}^2 1_{(\tilde{\eta}_{i,n} > c\sqrt{n})}] \rightarrow 0$.
\end{enumerate}

Then
\[\frac{1}{\sqrt{v_n}} \sum_{i=1}^{n} \tilde{\eta}_{i,n} \overset{d}{\rightarrow} N(0, 1). \]

Choose $\tilde{\eta}_{i,n}$ such that $\sqrt{n}M_n = \sum_{i=1}^{n} \tilde{\eta}_{i,n}$. If v_n converge to some v^2, then
\[\sqrt{n}M_n \overset{d}{\rightarrow} N(0, v^2). \]

Identify v_n:
\[v_n = \sum_{i=1}^{n} \mathbb{E}[\tilde{\eta}_{i,n}^2] = 2n \sum_{i=1}^{n} g(t_{i-1,n})^2 \left(\int_{\Delta t_{i,n}} \sigma_s^2 \Delta t_{i,n}^2 \right) \rightarrow 2 \cdot T \int_0^T g(s)^2 \sigma_s^4 ds \]

if σ^2 is continuous and provided
\begin{enumerate}[(A4)]
 \item $\sum_{i=1}^{n} |n\Delta t_{i,n} - T| \Delta t_{i,n} \rightarrow 0$ and
 \item $\sigma_s^2 > 0$ for all s; \{ $t : g(t)^2 > 0$ \} contains an open set.
\end{enumerate}

2.21 Theorem. Work under $(A0)$-$(A5)$. Then
\[\sqrt{n}(\hat{\Lambda}_n(g) - \Lambda(g)) \overset{d}{\rightarrow} N\left(0, 2 \cdot T \int_0^T g(s)^2 \sigma_s^4 ds \right). \]

Problem 21: What can you say if $g = g_h(t) = \frac{1}{h} 1_{[t_0-h, t_0]}(t)$?
2.5 Volatility estimation from high frequency data in a nutshell

2.5.1 Direct observation model

Consider the semi-martingale (continuous semi-martingale if there are no jumps)

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + \text{Jumps.} \quad \text{(SM/CSM)}$$

Main objective in (CSM): \((X, X)_1 = \int_0^1 \sigma_s^2 ds\).

Functional stable CLT for realised volatility in (CSM) (see Jacod):

$$\sqrt{n} \left(\sum_{i=1}^{n} \left(\frac{X_{i+1}^n - X_i^n}{n} \right)^2 - \int_0^t \sigma_s^2 ds \right) \xrightarrow{st.} \sqrt{2} \sigma_s^2 dB_s$$

with \(B_s\) Brownian motion and \(B \perp W\). 'st.' denotes stable convergence in law.

$$\Rightarrow \sqrt{n} \left(\sum_{i=1}^{n} (\Delta^n_i X)^2 - \int_0^1 \sigma_s^2 ds \right) \xrightarrow{st.} N(0, 2 \int_0^1 \sigma_s^4 ds).$$

Consider the case

$$X_t = X_0 + \int_0^t \sigma dW_s. \quad \text{(M)}$$

In (M) for \(t_i = \frac{i}{n} \): \(\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\sqrt{n} \Delta^n_i X)^2\).

In (M) for general \(t_i\): \(\hat{\sigma}^2 = \sum_{i=1}^{n} \alpha_i (\sqrt{n} \Delta^n_i X)^2\).

We would like to have \(\sum_{i=1}^{n} \alpha_i = 1\) such that \(\hat{\sigma}^2\) is unbiased.

The variance is \(\sum_{i=1}^{n} \alpha_i^2 2\sigma^4 n^2 (\Delta t_i)^2\). We try to minimise it:

$$\frac{d}{d\alpha_j} \left(\sum_{i=1}^{n} \alpha_i^2 2\sigma^4 n^2 (\Delta t_i)^2 + \lambda \left(\sum_{i=1}^{n} \alpha_i - 1 \right) \right) = 0$$

$$\Rightarrow \alpha_j = \frac{-\lambda}{4\sigma^4 n^2 (\Delta t_j)^2} = \frac{1}{n^2 (\Delta t_j)^2 G}$$

with \(G = \sum_{i=1}^{n} \frac{1}{n^2 (\Delta t_i)^2}\) (calculate using (*)).

If we now set \(I_{n,i} = \frac{1}{2\sigma^4 (\Delta t_i)^2 n^2}; I_n = \sum_{i=1}^{n} I_{n,i}\), we obtain

$$\text{Var}(\hat{\sigma}^2) = \sum_{i=1}^{n} \frac{1}{n^4 (\Delta t_i)^4 G^2} 2\sigma^4 n^2 (\Delta t_i)^2 = 2\sigma^4 G^{-1} = I_n^{-1}.$$
Estimating spot volatility in (CSM)
Set K_n to be the size of the window for relevant observations around $s \in (0, 1)$. Then
\[
\hat{\sigma}_s^2 = \frac{n}{2K_n + 1} \sum_{i=sn,i-K_n}^{sn,i+K_n} (\Delta^i n X)^2.
\]
For the bias we compute
\[
E[\hat{\sigma}_s^2 - \sigma_s^2] \approx \frac{n}{2K_n + 1} \sum_{i=sn,i-K_n}^{sn,i+K_n} (\sigma_i^2 n^{-1} - \sigma_s^2 n^{-1}) \approx K_n^{-1} \sum_{i=sn,i-K_n}^{sn,i+K_n} (\sigma_i^2 - \sigma_s^2).
\]
We look at the modulus of continuity to characterise the smoothness of σ and assume
\[
\sup_{\tau \in [s,t]} |\sigma_\tau^2 - \sigma_s^2| \leq |t - s|^{\alpha}.
\]
Then
\[
E[\hat{\sigma}_s^2 - \sigma_s^2] \approx K_n^{-1} \sum_{j=1}^{K_n} \left(\frac{j}{n} \right)^{\alpha} \approx \frac{K_n^\alpha}{n^\alpha}.
\]
\[
\text{Var}(\hat{\sigma}_s^2) \approx \frac{n^2}{4K_n^2} \sum_i 2\sigma_i^4 n^{-2} \approx K_n^{-1} 2\sigma_s^4.
\]
Bias and variance are balanced if $K_n \propto n^{2\alpha/\alpha+1}$; then
\[
(\hat{\sigma}_s^2 - \sigma_s^2) = O_P \left(n^{\frac{-2\alpha}{2\alpha+1}} \right).
\]

2.5.2 Noisy observation model

The model is
\[
Y_{ti} = X_{ti} + \varepsilon_i, \quad i = 0, \ldots, n.
\]
We assume $\varepsilon \perp X$, ε_i i.i.d., $E[\varepsilon_i] = 0$, $\text{Var}(\varepsilon_i) = \eta^2$ and $E[\varepsilon_i^8] < \infty$. We observe
\[
\Delta^i Y = \Delta^i X + \varepsilon_i - \varepsilon_{i-1} \underbrace{O_P(n^{-1/2})}_{o_P(1)} + \underbrace{O_P(1)}_{o_P(1)}
\]
and get
\[
E[\sum_{i=1}^n (\Delta^i Y)^2] = 2n\eta^2 + o(n),
\]
\[
E[\Delta^n Y \Delta^n_{i-1} Y] = -\eta^2.
\]
Spectral volatility estimation
Idea: split $[0, 1]$ in bins $[kh, (k+1)h)$, $k = 0, \ldots, h^{-1} - 1$. Approximate σ_t:
\[
\sigma_t = \sigma_{kh} \mathbb{1}_{[kh, (k+1)h)}(t).
\]
Take the family of functions

\[\Phi_{jk}(t) = \sqrt{\frac{2}{h}} \sin(j \pi h^{-1} (t - (k - 1)h)) \mathbf{1}_{[kh,(k+1)h)}(t), \quad j \geq 1. \]

\(\Phi_{jk} \) are orthonormal: \(\langle \Phi_{jk}, \Phi_{mk} \rangle = \delta_{jm} \).

Define the spectral statistics

\[S_{jk} = \sum_{i=1}^{n} Y_{t_i} \Phi_{jk}(t_i), \quad j \geq 1. \]

Summation by parts decomposition yields

\[S_{jk} \approx \sum_{i=1}^{n} X_{t_i} \Phi_{jk}(t_i) - \sum_{i=1}^{n-1} \varepsilon_i \Phi'_{jk}(t_i) \Delta t_i. \]

Assume additionally \(\varepsilon_i \overset{\text{i.i.d.}}{\sim} N(0, \eta^2) \). Then

\[S_{jk} \sim N(0, \sigma^2_{kh} + \pi^2 j^2 h^{-1} \eta^2) \quad j \geq 1 \]

and \(S_{jk} \) are independent. We find optimal weights \(w_{jk} \) for the integrated volatility estimator

\[\widetilde{IV}_n = \sum_{k=0}^{h^{-1}-1} \sum_{j=1}^{\infty} w_{jk} (S_{jk}^2 - \pi^2 j^2 h^{-2} \eta^2)h \]:

\(w_{jk} = I_k^{-1} I_{jk} \) with \(I_k = \sum_{j=1}^{\infty} I_{jk}, \quad I_{jk} = \frac{1}{2}(\sigma^2_{kh} + \pi^2 j^2 h^{-2} \eta^2)^{-1} \).

Problem: \(\sigma_{kh} \) are unknown. The solution is to use two-stage methods (\(\rightarrow \) estimate weights first). The final result is

\[n^{1/4}(\widetilde{IV}_n - \int_0^1 \sigma_s^2 ds) \overset{\text{st.}}{\rightarrow} N(0, 8 \int_0^1 \sigma_s^3 ds). \]
References

