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Renormalization and algebraic structures

from quantum field theory (QFT)

e Connes, Kreimer [2, 3]:
e renormalization in QFT formulated as an algebraic
Birkhoff-decomposition of characters on a combinatorial Hopf algebra
e formulate renormalization group via S-function of local characters
e combinatorial Dyson-Schwinger equations (DSE) formulated in terms
of Hochschild one-cocycles
@ Ebrahimi-Fard, Manchon, Menous, Patras et. al.

o Rota-Baxter algebras [6, 5]
o BPHZ scheme and exponential renormalization [7, 8]
o Dynkin operator, logarithmic derivatives [4, 17]

@ Foissy: Structure of the Hopf algebra Hg of rooted trees [10, 11, 9],
classification of combinatorial Dyson-Schwinger equations and
systems [12, 13]

@ van Baalen, Kreimer, Uminsky, Yeats: study of non-perturbative
(analytic) Dyson-Schwinger equations [18, 19, 20, 16]
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Aims of the talk

@ algebraic features of kinematic subtraction

@ Hochschild-cohomology not only describes DSE, but also
renormalized characters

© comparison of different renormalization schemes

@ analytic vs. combinatorial descriptions
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A model of a single scale

Theorem (Universal property)

To any linear map L € End(A) on an algebra A exists a unique morphism
¢ : Hr — A of algebras (notation ¢ € QZR) such that

boBy =Log. (1.1)

If A is a Hopf algebra and L € HZ:(A) a one-cocycle, ¢ is Hopf.
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A model of a single scale

Theorem (Universal property)

To any linear map L € End(A) on an algebra A exists a unique morphism
¢ : Hr — A of algebras (notation ¢ € QZR) such that

boBy =Log. (1.1)

If A is a Hopf algebra and L € HZ:(A) a one-cocycle, ¢ is Hopf.

Feynman rules ¢ of QFT map sub graphs to sub integrals, hence

¢5(B+(W)):/O de s (C) oc(w) forany weHg  (12)

S

@ s is a physical parameter (mass or momentum)

o f is dictated by the graph into which By inserts

o these integrals typically diverge and are understood formally (as a pair
of differential form & domain of integration)
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A model of a single scale
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A model of a single scale

Renormalization by kinematic subtraction

Example (£(¢)

_ S [F 4 _ [ e dg
e =1 6()= o 6= | Ctsh €4C
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A model of a single scale

Renormalization by kinematic subtraction

Example (£({)

_ g [ 4 _ [ g e dg
sm=1,  a@= "0 0= 25 [ o

Such logarithmic divergences are independent of the parameter s and thus
renormalizable by a subtraction:

Definition

For a renormalization point y, let R, := ev, denote the evaluation at
s+ . The BPHZ- or MOM-renormalized character is

Og = (Ruo @) " %= ¢} x s (1.3)

R, o ¢*1 are called the counterterms.
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A model of a single scale

Finiteness

1

Example ((C) = 11 as before)

bg = (Ruo @) ' x = ¢} x s
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A model of a single scale

Finiteness

Example (f(¢) = ﬁ

b (1) =1, ¢R(-):(id—Ru)¢<-)=/0°°d<[ . L ]:_m

S
(+s (+p n
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A model of a single scale

Finiteness

Example (f(¢) = == as before)

>) = 14¢

b (1) =1, ¢R(-):(id—Ru>¢(->:/0°°d<[Cis—ﬁ] ~

Tl

Corollary (B; € HZ! is a cocycle: AB, = (id® B,)A + B, ®1)

The renormalized character ¢, arises from the universal property of Hg:

o [F(S) F(&
0rs (Be(w) = [ "d¢ [Q_ (%)

p ] Grc(w) for any w € Hg.

(1.4)

v
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A model of a single scale

Finiteness

Corollary (By € HZ! is a cocycle: AB, = (id® B,)A + B, ®1)

The renormalized character ¢, arises from the universal property of Hg:

9

Prs (Br(w)) = /Ooodg [T — T] Grc(w) for any w € Hg.

(1.4)

v

Use So By = —S* B and write L = [5° %f (%) ... to deduce

b 0 By = (Rﬂqs*—l *¢) 0By = R,¢* L x By + R,¢* B,
— Ry I x[(id— Ry odpoBy]=(id—R)oLogs [

v
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A model of a single scale

Finiteness

This is an algebraic Birkhoff decomposition along the splitting
A= A_& A, induced by the character R,
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A model of a single scale

Finiteness

This is an algebraic Birkhoff decomposition along the splitting
A= A_& A, induced by the character R,

e A_ =imR, are (infinite) constants independent of s,
e A, =im(id — R,) are functions that vanish at s = p.

Lemma (finiteness for logarithmic divergences)

If the kernel f(() is continuous on [0, 00) with asymptotic growth

F(C) - % ~ (I at (o oo,

for some e > 0 and c_; € K, then ¢ is finite.

v
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A model of a single scale

Finiteness

This is an algebraic Birkhoff decomposition along the splitting
A= A_& A, induced by the character R,

e A_ =imR, are (infinite) constants independent of s,
e A, =im(id — R,) are functions that vanish at s = p.

Lemma (finiteness for logarithmic divergences)

If the kernel f(() is continuous on [0, 00) with asymptotic growth

F(C) - % ~ (I at (o oo,

for some e > 0 and c_; € K, then ¢, is finite. Moreover it is polynomial:

Grs = V00 by G Hr — K[x] where = Ini. (1.5)

v
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A model of a single scale

An algebraic recursion
Inserting the polynomial ¢ -(w) € K[In %] into

R0 O

s (Bo(w)) = [ "a¢

actually supplies the algebraic recursion

¢p 0 By = PoF(—0x) 0 ¢g, (1.6)

where P :=id — evg annihilates the constant terms and the analytic input
of the kernel f is captured by the operator

F(—=0x) = —c_q1 Jo+>Xm>0¢n (—0x)" € End (K[x]) and (1.7)

= [ dclr©) + (] S (1.9
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A model of a single scale

An algebraic recursion: Examples

¢R(:ﬂ') =1
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A model of a single scale

An algebraic recursion: Examples

¢R (11) =1
¢r(s) =Pol—c_y fo+c—---] (1) = P(~c_1x+ ) = —c_1x
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A model of a single scale

An algebraic recursion: Examples

cifotco—--]J(1)=P

[-
[—c 1 fo+c — c18X + ... ] (—c_1x)

(—c_1x+¢y) = —c_1x

X2

(¢]
=P <?c21 — C_1CoX + clc_1> = 7&1 — XC_1C
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A model of a single scale

An algebraic recursion: Examples

cifotco—--]J(1)=P

-
o[—c_y Jo+c— c18X+...] (—
=P (X?czl — C_1CoX + clc_1> =

3
3 2.2

d)R(A) =Po [_C—l fo—i-...] (X2C31> = —%C 1+ x2c2

=@y

—c_1x+¢) = —c_1x

c_1X)

1C0 — 2XC31 Cl
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A model of a single scale

An algebraic recursion: Examples

¢ (*) =Pol—cyfotco—-. ] (1) =P(—coix+¢) = —c_yx
¢ () =Pol-cqfotq—adc+..](-c1x)
<x2 > ) X2 5
= ?c_l —C 11X+ cc 4| = ?c_l — XC_1G

3
0] =Pol—cqfyt..](x2c?,) = 23, +x2 ¢, — 2xc? ¢
R 1Jo 1 3 &1 1% 14

The Laurent series F(z) € z~K][z]] is the Mellin transform

Fa)= [TdCFO- ¢ = ¥ G (19)

n>—1

v

E. Panzer (HU Berlin) Kinematic subtraction November 7th, 2013 9 /32



The Hopf algebra of polynomials

For a field K, the polynomials K[x] form a commutative connected graded
Hopf algebra with the coproduct Ax = 1 ® x + x ® 1. Note that:
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e Prim (K[x]) =K - x
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The Hopf algebra of polynomials

For a field K, the polynomials K[x] form a commutative connected graded
Hopf algebra with the coproduct Ax = 1 ® x + x ® 1. Note that:
e Prim (K[x]) =K - x
° gﬁ‘é[xl = {ev,: a € K} are evaluations ev, := [p — p(a)] with
evy*evp =evayp  (group law) (1.10)
° gﬁi[x] = log, (QEM) =K. 0y for 9y := 8%
e exp,(ady) = ev,
e functionals a € K[x]" induce coboundaries (let P :=id — evyp)

= (Zn ann = Pl)

x=0

§(a)=Po ;)a (;) 27 € HZ!  End (K[x]) (1.11)
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The Hopf algebra of polynomials

For a field K, the polynomials K[x] form a commutative connected graded
Hopf algebra with the coproduct Ax = 1 ® x + x ® 1. Note that:
e Prim (K[x]) =K - x
° gﬁ‘é[xl = {ev,: a € K} are evaluations ev, := [p — p(a)] with
ev,xevp = evarp (group law) (1.10)
° gﬁi[x] = log, (QEM) =K. 0y for 9y := 8%
e exp,(ady) = ev,
e functionals a € K[x]" induce coboundaries (let P :=id — evyp)

= (Zn ann = Pl)

x=0

§(a)=Po ga (;) 27 € HZ!  End (K[x]) (1.11)

o HZ! (K[x]) = K- [, ® (K[x]), i.e. the only non-trivial one-cocycle is

Jo : KIx] = K[x],p = 50 Pox" = fo p(y)dy = o P52 x"
(1.12)
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The renormalization group

d)ROBJr: POF(_8X)0¢R7
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The renormalization group

¢ROB+: POF(_aX)O¢R>
———

€HZL(K[x])
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The renormalization group

Corollary (since P o F (—0,) € HZ! (K[x]) is a cocycle)
bp : Hr — K[x] is a morphism of Hopf algebras: A o ¢, = (¢ @ ¢g) 0 A.
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The renormalization group

Corollary (since P o F (—0,) € HZ! (K[x]) is a cocycle)
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The renormalization group

Corollary (since P o F (—0,) € HZ! (K[x]) is a cocycle)
bp : Hr — K[x] is a morphism of Hopf algebras: A o ¢, = (¢ @ ¢g) 0 A.

This means that
Droarh = €VatbhOPr = (eVakevp)ogy = (eva0dg)*(evpody) = P s x Py p-

¢ = exp, (—x7y) for the anomalous dimension v := —0dy o ¢, € gﬂlz’? C Hg.

In other words, log, (¢;) = —x7 is linear in x; ¢, is completely determined
by its linear coefficients ~.
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The renormalization group

Corollary (since P o F (—0,) € HZ! (K[x]) is a cocycle)
bp : Hr — K[x] is a morphism of Hopf algebras: A o ¢, = (¢ @ ¢g) 0 A.

This means that
Droarh = €VatbhOPr = (eVakevp)ogy = (eva0dg)*(evpody) = P s x Py p-

¢ = exp, (—x7y) for the anomalous dimension v := —0dy o ¢, € gﬂlz’? C Hg.

In other words, log, (¢;) = —x7 is linear in x; ¢, is completely determined
by its linear coefficients ~.

3 2

X X X3
0N = -7+ 57 - (W) =-75 [y (P47 ()7 (D—xv (A

~—
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Recursions for ~

Using the Mellin transforms, we can calculate ~ recursively by

yo By = [ZF(Z)]*'V = Z"ZO 17"
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Recursions for ~

Using the Mellin transforms, we can calculate ~ recursively by

Lemma

yo By = [ZF(Z)]*'V = Z"ZO 17"

| \

Proof.
Exploit ¢ = exp, (—x7y) and apply —0x|,_, to both sides of

g 0 By = P o F(—0y) 0 dg. m
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Recursions for ~

Using the Mellin transforms, we can calculate ~ recursively by

Lemma

yo By = [ZF(Z)]*'V = Z"ZO 17"

Exploit ¢ = exp, (—x7y) and apply —0x|,_, to both sides of

g 0 By = P o F(—0y) 0 dg. O

.

Example
7() =708 (1) =17 (1) = ¢,

v
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Recursions for ~

Using the Mellin transforms, we can calculate ~ recursively by

Lemma

yo By = [ZF(Z)]*'V = Z"ZO 17"

Exploit ¢ = exp, (—x7y) and apply —0x|,_, to both sides of

g 0 By = P o F(—0y) 0 dg. O

.

Example
() =70By (1) =17 (1) = c,
YD =70By () =17 () + o1 (*) = cL1o

v

E. Panzer (HU Berlin) Kinematic subtraction November 7th, 2013 12 / 32



Recursions for ~

Using the Mellin transforms, we can calculate ~ recursively by

Lemma

yo By = [ZF(Z)]*'V = Z"ZO 17"

Exploit ¢ = exp, (—x7y) and apply —0x|,_, to both sides of

g 0 By = P o F(—0y) 0 dg. O

.

Example
() =70By (1) =c_ 170 (1) = cy
YD =70By () =17 () + o1 (*) = cL1o
YA)=70Br () =7 () + 7@ (1@ e +2:@ e+ e ® 1)
=2¢ [y (')]2 = 2C31C1

v
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Analytic regularization

Regulate divergences by a parameter z € C, resulting in Feynman rules
,6 : Hr — A taking values in Laurent series A = K[z}, Z]]:

0By [T (4) oo (113)

S
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Analytic regularization

Regulate divergences by a parameter z € C, resulting in Feynman rules
,6 : Hr — A taking values in Laurent series A = K[z}, Z]]:

0By [T (4) oo (113)

S

For any forest w € Hg, the regularized Feynman character is

(W) =5 [T FlzIw). (1.14)

veV(w)
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Analytic regularization

Regulate divergences by a parameter z € C, resulting in Feynman rules
,6 : Hr — A taking values in Laurent series A = K[z}, Z]]:

0By [T (4) oo (113)

S

Lemma

For any forest w € Hg, the regularized Feynman character is

(W) =5 [T FlzIw). (1.14)

veV(w)

v

Example

29s(*)=s"7F(2)

v
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Analytic regularization

Regulate divergences by a parameter z € C, resulting in Feynman rules
,6 : Hr — A taking values in Laurent series A = K[z}, Z]]:

0By [T (4) oo (113)

S

Lemma

For any forest w € Hg, the regularized Feynman character is

(W) =5 [T FlzIw). (1.14)

veV(w)

v

Example

0s()=5"7F(2) Lo.())=s"*F(2)F(22)

v
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Analytic regularization

Regulate divergences by a parameter z € C, resulting in Feynman rules
,6 : Hr — A taking values in Laurent series A = K[z}, Z]]:

0By [T (4) oo (113)

S

Lemma

For any forest w € Hg, the regularized Feynman character is

(W) =5 [T FlzIw). (1.14)

veV(w)

v

Example

0s()=5TF(2) .0.()=5"F(2)F(22) ,6.(N)=5*[F(2)] F(32)

v
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Analytic regularization

Renormalizing as before, the finiteness implies the existence of

Op = Ii_rpong)R, equivalently im (,¢r) C K[[Z]]. (1.15)
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Op = Iig})z¢R, equivalently im (,¢r) C K[[Z]]. (1.15)
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Analytic regularization

Renormalizing as before, the finiteness implies the existence of

Op = Iig})z¢R, equivalently im (,¢r) C K[[Z]]. (1.15)

Example (cancellation of poles)

Use antipodes S(]) = —]+ 9+, S(s) = —eand R,0,¢* ' =R, 0,0 0S in

Ors (1) = s F(2)F(22) — u *F(2)s *F(2)
— n ¥ [F(2)F(22) - F(2)F(2)]
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Analytic regularization

Algebraic characterization of finiteness

The scale dependence ¢ = ,¢,, 0 6 is dictated by the grading

Yt)"
0y = Z # € Aut (Hg),w — ell.w where Yw = |w|-w. (1.16)
n!
n>0
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Analytic regularization

Algebraic characterization of finiteness

The scale dependence ¢ = ,¢,, 0 6 is dictated by the grading

Yt)"
0y = Z # € Aut (Hg),w — ell.w where Yw = |w|-w. (1.16)
n!
n>0

For any character ,¢ € Q;’R of Laurent series A = K[z 1, Z]] let
,0s := ,0 00_, the following conditions are equivalent:

@ Finiteness: im (,¢r) C K[[z]] (so lim,— ,¢r exists)
@ im[,¢0(S*Y)] C JK[[2]]

The anomalous dimension can be derived from the regularized character by

7= = Oilygbe = im [z .00 (Sx ¥)] =Res 60 (SxY).  (117)
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Minimal subtraction

Definition

Minimal subtraction splits A = A_ & A into poles A_ = z7*K[z!] and
holomorphic A, = K[[z]] along the projection

Rus: A—A_, Y az"— Y anz". (1.18)

n<0
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Minimal subtraction

Definition

Minimal subtraction splits A = A_ & A into poles A_ = z7*K[z!] and
holomorphic A, = K[[z]] along the projection

Rus: A—A_, Y az"— Y anz". (1.18)

n<0

Since Rys is not a character (only Rota-Baxter), the Birkhoff
decomposition of a (regularized) character ,¢ € QZR entails

o Bogoliubov map (R-operation): ¢ = ¢ + (,6_ ® ,¢) o A

@ counterterms: ,¢_ = —Ryso ¢

o renormalized character: ,¢, = (id — Rys) 0 ¢ = ,¢_ % ,¢ € gfj{j

Finiteness is trivial, let ¢ :=lim,_,0 ,¢, denote the physical limit.
. . _ _, c_
264 (4) = (1d — Rus) 16, (4) = (id — Rus) s 7F(2) = s 7F(2) = 2

o) — _ ——
(Z)—f—( ) CO C—llns zd’_(.)
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Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a 1 and replace s
by > = e’. Then ¢, (+) = cg — c_1 /.
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Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a 1 and replace s
by i =e'. Then ¢, (s) = g — c_yL.

Example

204 (1) = (id = Rus) 65/, (D) + 20— (=) 265/, (+)]
— (id - Rus) [ 2 F(2)F(22) - 2o 'F(2)]

o—22 e o7t c €_1%
F(Z)F(2Z) 2 F( )+g— 25
| ——
1 >, 3 s_(])
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E. Panzer (HU Berlin) Kinematic subtraction November 7th, 2013 17 / 32



Minimal subtraction

Dimensional regularization and locality

To obtain dimensionless regularized characters, choose a 1 and replace s
by i =e'. Then ¢, (s) = g — c_yL.

Example

204 (1) = (id = Rus) 65/, (D) + 20— (=) 265/, (+)]
— (id - Rus) [ 2 F(2)F(22) - 2o 'F(2)]

o—22 1 -z ;5
F(z)F(2z) — ; F(z )+ 222 -,
—_——
(=20 -2 et + G+ 2 (D)
(o > c16l+ ¢+ 5caa.
C C2 C C
Observation: The counterterms ,¢_ () = ——=* and ,¢_(]) = 57 — 5

are independent of ¢.
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Minimal subtraction

local characters and the S-function

Definition

A Feynman rule ,¢ € Qﬂ"’ is called local :< its MS counterterm
20— s = (9 00_2)_ is independent of £ € K.
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Minimal subtraction

local characters and the S-function

Definition

A Feynman rule ,¢ € ij is called local :< its MS counterterm
L,0_ o = (,0 060_,4)_ is independent of £ € K.

Theorem

| A

b € QZR is local < the inverse counterterms ,¢* ' : Hg — K[1] are
poles of only first order on im(S  Y'), equivalently

Bi=lim [z 6 0 (S Y)| = —Res(;¢_oY) € gfff (1.19)

z—0

exists.
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Minimal subtraction

local characters and the S-function

Definition

A Feynman rule ,¢ € ij is called local :< its MS counterterm
L,0_ o = (,0 060_,4)_ is independent of £ € K.

Theorem

| A

b € QZR is local < the inverse counterterms ,¢* ' : Hg — K[1] are
poles of only first order on im(S  Y'), equivalently

T - H,
B := lim 2,65 0 (S% )| = —Res(;¢_o ) € g (1.19)
exists. The physical limit of MS-renormalized local characters is

¢, =exp, (—€B)x (e0,). (1.20)

Hereco ¢, =evy—go ¢, € QHQR denote the constant terms.
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Minimal subtraction

The scattering formula

The vector space im (S = Y') generates Hgr as a free commutative algebra.
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Minimal subtraction

The scattering formula

The vector space im (S = Y') generates Hgr as a free commutative algebra.

Counterterms ,¢_ of local characters are completely determined by their
first order poles Z(bt_l o(SxY)= g Explicitly,

1 BoYT [BoYT)xBloYT (z7%). ()

2T z z2

From 3= —Res (,¢_o Y) and ,6_(s) = ==, Lo_(]) = % -5
know () = c_q, B(]) = c_1¢. Now we can check

ey (ZzI) PP _caq Sy
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Comparing the MOM and MS schemes

locality and finiteness

We renormalized ,¢ € ij in the MOM- and MS-schemes to construct
two renormalized characters ¢, ¢, : Hp — K[x]:
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Comparing the MOM and MS schemes

locality and finiteness

We renormalized ,¢ € ij in the MOM- and MS-schemes to construct
two renormalized characters ¢, ¢, : Hp — K[x]:

MOM MS
defined by kinematics regulator dependent
projection | character R, € G¢ | Rota-Baxter Rys € End(A)
finiteness conditional built-in
locality built-in conditional
RGE br = exp, (—x7) ¢, =exp, (—xB) * (e0¢,)
generator | Y =Res ,po(SxY) | B=Res,¢* to(SxY)

Q ¢, is finite & ,¢ is local
Q ¢, = (e0¢,)* Pg equivalently A, = (¢, ® ¢g) 0 A
©Q Bx(eody)=(c0g;)*y
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Dyson-Schwingerequations (DSEs)

Definition (simplified)
A perturbation series X(«) is the solution of a DSE

X(a) =1+ aBy (X7(a)) = 3" xpa” € H[[a]] (1.22)

n>0

with coupling constant .. The correlation function is

G(@) = ¢ (X(a)) € KIX][[]]. (1.23)
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Theorem (Foissy)
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Dyson-Schwingerequations (DSEs)

Definition (simplified)

A perturbation series X(«) is the solution of a DSE

X(a) =1+ aBy (X7(a)) = 3" xpa” € H[[a]] (1.22)

n>0

with coupling constant «.. The correlation function is
G(a) == ¢x (X()) € K[x][[a]]. (1.23)

Theorem (Foissy)

AX(a) =Y ,50 X1 @ x,a" generates a sub Hopf algebra.

v

Corollary (in the MOM scheme)
Gar (@) = (6ra ® 6r) AX(a) = Go(a) - Gy (o GI(a))
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point i is equivalent to an
adjustment of the coupling a.
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point i is equivalent to an
adjustment of the coupling . Infinitesimally, with 7 := v (X(«)):

Gr(a) - F[aG](a)]) = —0iGo(a) = F(a) - (1 + 0ady) Ge(ar).  (1.24)
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point i is equivalent to an
adjustment of the coupling . Infinitesimally, with 7 := v (X(«)):

Gi(a) - 7 [aG7 (a)]) = —0Gela) = () - (1 + 0ada) G().  (1.24)

Example (Mellin transforms)

Consider renormalized characters of the form ¢, 0 By = P o F (—0x) o ¢g:
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Example (Mellin transforms)
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions

Changing the scale s or renormalization point i is equivalent to an
adjustment of the coupling . Infinitesimally, with 7 := v (X(«)):

Gi(a) - 7 [aG7 (a)]) = —0Gela) = () - (1 + 0ada) G().  (1.24)

Example (Mellin transforms)

Consider renormalized characters of the form ¢, 0 By = P o F (—0x) o ¢g:
— 1+o _ 14+no
~01Gy(a) = —0 [1+ agy 0 By (X™H7())] = [2F(2)]_y, (6} ()
reduces with —0,G;” =7 (1 + no + 0ad,) at £ =0 to

(@) = Y cp 1 [T (1 + no + 0ada)]".
n>0
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions: physical examples

Example (fermion propagator of Yukawa theory, [1, 20])

Summation of all iterated self-insertions of the one-loop-correction
amounts to 0 = —2 and

F(z) =

n>-—1

which is solved in terms of the complementary error function.

(1_2 = > 2" thus () —7(a) (1 —200.)7(a) = @
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Dyson-Schwinger equations (DSEs)

RGE for correlation functions: physical examples

Example (fermion propagator of Yukawa theory, [1, 20])

Summation of all iterated self-insertions of the one-loop-correction
amounts to 0 = —2 and

F(z) = (1 =) = > 2" thus (a) —F(a) (1 - 2a0a)7(a) = a

n>-—1

which is solved in terms of the complementary error function.

Example (photon propagator of quantum electrodynamics, [18, 14])

The setup is analogous, but o = —1 yields different solutions in terms of
the Lambert W-function.
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Summary

@ MOM-renormalized Feynman rules have rich algebraic structure
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MOM-renormalized Feynman rules have rich algebraic structure
MS and 5 = Res ,¢(S * Y) «+— MOM and ¢, = exp, (—x7)

Mellin transforms reduce all analysis to combinatorics of series

a way to non-perturbative formulations
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