Problems for BMS Basic Course "Commutative Algebra"

Hand in till 2008, Jan 10th at room 2.304
$\mathfrak{A d v e n t} \mathfrak{P r o b l e m ~ (5 0 ~ a d d i t i o n a l ~ p o i n t s) ~}$
or: Platonic solids - Once more, with feelings (actually, with tensors products)

Please sign each sheet of paper with your name and student ID

Remember that we identified five types of finite subgroups of $\mathrm{SO}_{3}(\mathbb{R})$: Cyclic, dihedral, tetrahedral, octahedral and icosahedral.

By using the natural isomorphism $\mathrm{SO}_{3}(\mathbb{R}) \cong \mathrm{PSU}_{2}(\mathbb{C})$, we can lift these groups to subgroups of doubled order in $\mathrm{SU}_{2}(\mathbb{C})$ (called binary polyhedral groups). They are generated by the following matrices (as usual, ζ_{n} denotes a primitive n-th root of unity):

Binary cyclic group of order n :

$$
A=\left(\begin{array}{cc}
\zeta_{2 n} & 0 \\
0 & \zeta_{2 n}^{-1}
\end{array}\right)
$$

Binary dihedral group of order n :

$$
A=\left(\begin{array}{cc}
\zeta_{2 n} & 0 \\
0 & \zeta_{2 n}^{-1}
\end{array}\right), B=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Binary tetrahedral group:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
\zeta_{8} & \zeta_{8}^{3} \\
\zeta_{8} & \zeta_{8}^{7}
\end{array}\right), B=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
\zeta_{8} & \zeta_{8} \\
\zeta_{8}^{3} & \zeta_{8}^{7}
\end{array}\right)
$$

Binary octahedral group:

$$
A=\left(\begin{array}{cc}
\zeta_{8}^{3} & 0 \\
0 & \zeta_{8}^{5}
\end{array}\right), B=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\zeta_{8}^{7} & \zeta_{8}^{7} \\
\zeta_{8}^{5} & \zeta_{8}
\end{array}\right)
$$

Binary icosahedral group:

$$
A=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1-\zeta_{5}^{2} & \zeta_{5}-\zeta_{5}^{2} \\
\zeta_{5}^{3}-\zeta_{5}^{4} & 1-\zeta_{5}^{3}
\end{array}\right), \quad B=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1-\zeta_{5}^{2} & 1-\zeta_{5}^{2} \\
\zeta_{5}^{3}-\zeta_{5}^{4} & \zeta_{5}^{4}-\zeta_{5}^{3}
\end{array}\right)
$$

Note that these matrices fulfill the famous relations $A^{p}=B^{q}=(A B)^{2}=-E_{2}$ for the respective Platonic pairs $(p, q), p, q \geq 2, \frac{1}{p}+\frac{1}{q}>1$.
Now, let $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{C})$ be one of this groups. A group homomorphism $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ is called a representation of Γ. Note that such a representation corresponds to a group action of Γ on \mathbb{C}^{n}. A representation is called irreducible if there are no proper subrepresentations (i.e., a representation $\rho^{\prime}: \Gamma \rightarrow \mathrm{GL}(U)$ induced by a proper invariant subspace $U \subset \mathbb{C}^{n}$. It is easy to see that each representation can be uniquely represented as a sum of irreducible ones.

Denote the set of nontrivial (i.e., not identically 0) irreducible representations of Γ by

$$
\operatorname{Irr}^{0}(\Gamma):=\left\{\rho_{1}, \ldots, \rho_{r}\right\}
$$

and the natural representation given by the inculsion $\Gamma \subset \mathrm{GL}_{2}(\mathbb{C})$ by c.
(a) Determine $\operatorname{Irr}^{0}(\Gamma)$ for the Platonic groups. (Hint: Use the well-known decomposition of Γ into conjugacy classes.)
(b) Compute the coefficients $a_{j k}$ given by $\rho_{j} \otimes c=\sum_{j} a_{j k} \rho_{k}$.
(c) Draw the graphs arising if each representation is represented by a vertex and the j-th vertex is connected with the k-th vertex by $a_{j k}$ directed arrows.

