Problems for BMS Basic Course "Commutative Algebra"

Hand in till 2008, Jan 10th at room 2.304

Advent Problem (50 additional points)

or: Platonic solids - Once more, with feelings (actually, with tensors products)

Please sign each sheet of paper with your name and student ID

Remember that we identified five types of finite subgroups of $SO_3(\mathbb{R})$: Cyclic, dihedral, tetrahedral, octahedral and icosahedral.

By using the natural isomorphism $SO_3(\mathbb{R}) \cong PSU_2(\mathbb{C})$, we can lift these groups to subgroups of doubled order in $SU_2(\mathbb{C})$ (called *binary polyhedral groups*). They are generated by the following matrices (as usual, ζ_n denotes a primitive *n*-th root of unity):

Binary cyclic group of order n:

$$A = \begin{pmatrix} \zeta_{2n} & 0\\ 0 & \zeta_{2n}^{-1} \end{pmatrix}$$

Binary dihedral group of order n:

$$A = \begin{pmatrix} \zeta_{2n} & 0\\ 0 & \zeta_{2n}^{-1} \end{pmatrix}, \ B = \begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix}$$

Binary tetrahedral group:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta_8 & \zeta_8^3 \\ \zeta_8 & \zeta_8^7 \end{pmatrix}, \ B = \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta_8 & \zeta_8 \\ \zeta_8^3 & \zeta_8^7 \end{pmatrix}$$

Binary octahedral group:

$$A = \begin{pmatrix} \zeta_8^3 & 0\\ 0 & \zeta_8^5 \end{pmatrix}, \ B = \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta_8^7 & \zeta_8^7\\ \zeta_8^5 & \zeta_8 \end{pmatrix}$$

Binary icosahedral group:

$$A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 - \zeta_5^2 & \zeta_5 - \zeta_5^2 \\ \zeta_5^3 - \zeta_5^4 & 1 - \zeta_5^3 \end{pmatrix}, \ B = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 - \zeta_5^2 & 1 - \zeta_5^2 \\ \zeta_5^3 - \zeta_5^4 & \zeta_5^4 - \zeta_5^3 \end{pmatrix}$$

Note that these matrices fulfill the famous relations $A^p = B^q = (AB)^2 = -E_2$ for the respective Platonic pairs $(p,q), p, q \ge 2, \frac{1}{p} + \frac{1}{q} > 1$.

Now, let $\Gamma \subseteq \operatorname{SL}_2(\mathbb{C})$ be one of this groups. A group homomorphism $\rho : \Gamma \to \operatorname{GL}_n(\mathbb{C})$ is called a *representation of* Γ . Note that such a representation corresponds to a group action of Γ on \mathbb{C}^n . A representation is called *irreducible* if there are no proper subrepresentations (i.e., a representation $\rho' : \Gamma \to \operatorname{GL}(U)$ induced by a proper invariant subspace $U \subset \mathbb{C}^n$). It is easy to see that each representation can be uniquely represented as a sum of irreducible ones. Denote the set of nontrivial (i.e., not identically 0) irreducible representations of Γ by

$$\operatorname{Irr}^{0}(\Gamma) := \{\rho_{1}, \dots, \rho_{r}\}$$

and the natural representation given by the inculsion $\Gamma \subset \operatorname{GL}_2(\mathbb{C})$ by c.

- (a) Determine $\operatorname{Irr}^{0}(\Gamma)$ for the Platonic groups. (*Hint*: Use the well-known decomposition of Γ into conjugacy classes.)
- (b) Compute the coefficients a_{jk} given by $\rho_j \otimes c = \sum_j a_{jk} \rho_k$.
- (c) Draw the graphs arising if each representation is represented by a vertex and the j-th vertex is connected with the k-th vertex by a_{jk} directed arrows.