Problems for BMS Basic Course "Commutative Algebra"

Prof. Dr. J. Kramer

Hand in Feb 7th, after the 2nd lecture 4.45 p.m.

Please solve each problem on a different sheet of paper, and sign each sheet with your name and student ID

Voluntary Problem Set - Exam preparation (0 + 48 points)

Problem 1 (10 pts)

Let (A, \mathfrak{m}) be a noetherian local ring.

- (a) Show that $\bigcap_{n>0} \mathfrak{m}^n = (0)$.
- (b) Assume that $\mathfrak{m} = (x)$ with x being not a zero divisor. Show that each ideal of A apart from (0) is generated by a power of x.
- (c) Denote the residue field as $k := A/\mathfrak{m}$. Assume that there is an injective homomorphism of rings $\varphi : k \longrightarrow A$ which endows A with the structure of a finite-dimensional k-vector space. Assume further that \mathfrak{m} is generated by $x \in A$.

Show that the homomorphism $\psi : k[X] \longrightarrow A$ given by $\psi(X) = x$ is surjective and $\ker(\psi) = (X^n)$ with $n = \dim_k A$.

Problem 2 (10 pts)

Compute the kernel and the cokernel of the map given by the multiplication by $n : \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot n} \mathbb{Q}/\mathbb{Z}$ by lifting this map to the sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ and applying the Snake Lemma.

Problem 3 (minimal 0, maximal 8 pts, -1 pt for a wrong answer)

Are the following statements true or false? If false, give a counter-example.

- (a) The map $A \to A[X]/(bX-1)$, $a \mapsto \overline{a}$ is the zero map iff b is nilpotent.
- (b) If $\varphi : A \longrightarrow B$ is a homomorphism of rings, then the preimage of a maximal ideal is maximal.
- (c) In a principal ideal domain, every non-zero prime ideal is maximal.
- (d) Any commutative ring has a quotient ring without non-zero nilpotent elements.
- (e) In a factorial domain, every non-zero prime ideal is maximal.
- (f) In a principal ideal domain, every primary ideal is the power of a prime ideal.
- (g) If A is a ring and $a \in A$ not a zero divisor, then there is ring B and a homomorphism $\psi: A \longrightarrow B$ such that h(a) is a unit.

(h) If $\varphi : A \longrightarrow B$ is a homomorphism of k-algebras, then the preimage of a maximal ideal is maximal.

Problem 4 (10 pts)

Compute $\operatorname{Ext}^{k}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$ for $n,m,k\in\mathbb{N},\,n,m\geq 2$. (Hint: In terms of $\operatorname{gcd}(n,m)$!)

Problem 5 (10 pts)

Let A be an integral domain and $\emptyset \neq S \subseteq A$, $0 \notin S$, a multiplicatively closed set. Show that $S^{-1}A$ is not integral over A.