Problems for BMS Basic Course "Commutative Algebra" Prof. Dr. J. Kramer

Hand in Feb 7th, after the 2nd lecture 4.45 p.m.
Please solve each problem on a different sheet of paper, and sign each sheet with your name and student ID

Voluntary Problem Set - Exam preparation ($0+48$ points $)$
Problem 1 (10 pts)
Let (A, \mathfrak{m}) be a noetherian local ring.
(a) Show that $\bigcap_{n \geq 0} \mathfrak{m}^{n}=(0)$.
(b) Assume that $\mathfrak{m}=(x)$ with x being not a zero divisor. Show that each ideal of A apart from (0) is generated by a power of x.
(c) Denote the residue field as $k:=A / \mathfrak{m}$. Assume that there is an injective homomorphism of rings $\varphi: k \longrightarrow A$ which endows A with the structure of a finite-dimensional k-vector space. Assume further that \mathfrak{m} is generated by $x \in A$.
Show that the homomorphism $\psi: k[X] \longrightarrow A$ given by $\psi(X)=x$ is surjective and $\operatorname{ker}(\psi)=\left(X^{n}\right)$ with $n=\operatorname{dim}_{k} A$.

Problem 2 (10 pts)

Compute the kernel and the cokernel of the map given by the multiplication by n : $\mathbb{Q} / \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Q} / \mathbb{Z}$ by lifting this map to the sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ and applying the Snake Lemma.

Problem 3 (minimal 0, maximal 8 pts, -1 pt for a wrong answer)

Are the following statements true or false? If false, give a counter-example.
(a) The map $A \rightarrow A[X] /(b X-1), a \mapsto \bar{a}$ is the zero map iff b is nilpotent.
(b) If $\varphi: A \longrightarrow B$ is a homomorphism of rings, then the preimage of a maximal ideal is maximal.
(c) In a principal ideal domain, every non-zero prime ideal is maximal.
(d) Any commutative ring has a quotient ring without non-zero nilpotent elements.
(e) In a factorial domain, every non-zero prime ideal is maximal.
(f) In a principal ideal domain, every primary ideal is the power of a prime ideal.
(g) If A is a ring and $a \in A$ not a zero divisor, then there is ring B and a homomorphism $\psi: A \longrightarrow B$ such that $h(a)$ is a unit.
(h) If $\varphi: A \longrightarrow B$ is a homomorphism of k-algebras, then the preimage of a maximal ideal is maximal.

Problem 4 (10 pts)

Compute $\operatorname{Ext}^{k}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})$ for $n, m, k \in \mathbb{N}, n, m \geq 2$. (Hint: In terms of $\operatorname{gcd}(n, m)!$)
Problem 5 (10 pts)
Let A be an integral domain and $\emptyset \neq S \subseteq A, 0 \notin S$, a multiplicatively closed set. Show that $S^{-1} A$ is not integral over A.

