Problems for BMS Basic Course "Commutative Algebra"
 Prof. Dr. J. Kramer

Hand in November 15th, after the 2nd lecture 4.45 p.m.
Please solve each problem on a different sheet of paper, and sign each sheet with your name and student ID

4th Problem Set (30 points)

Problem 1 (10 pts)

Let X be a non-empty topological space. X is called irreducible if every non-empty open subset is dense in X.
(a) Show that X is irreducible iff every pair of non-empty open sets in X has a nonempty intersection.
(b) Let $Y \subseteq X$ be a topological subspace which is irreducible. Show that the closure \bar{Y} of Y in X is also irreducible.
(c) Show that every irreducible topological subspace Y of X is contained in a maximal irreducible topological subspace.
(d) Show that the maximal irreducible topological subspaces of X are closed and cover X. They are called the irreducible components of X.
(e) Let A be a commutative ring with 1 . Show that the irreducible components of $\operatorname{Spec}(A)$ are the closed sets $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal of A.

Problem 2 (10 pts)

Does the following statement hold true?
"Let \mathbf{C} and \mathbf{D} be two chain complexes such that $H_{n}(\mathbf{C}) \cong H_{n}(\mathbf{D})$ for all $n \in \mathbb{Z}$. Then there exists either a morphism of chain complexes $\mathbf{f}: \mathbf{C} \longrightarrow \mathbf{D}$ or a morphism of chain complexes $\mathbf{f}: \mathbf{D} \longrightarrow \mathbf{C}$ such that $H_{n}(\mathbf{f})$ is an isomorphism for all $n \in \mathbb{Z}$."

Give a proof or a counter example.

Problem 3 (10 pts)

Denote by $C^{0}:=C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ the ring of smooth real-valued functions on \mathbb{R}^{n}. A differential form ω on \mathbb{R}^{n} of degree r is given by

$$
\omega=\sum_{\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}} f_{i_{1}, \ldots, i_{r}}\left(x_{1}, \ldots, x_{n}\right) d x_{i_{1}} \ldots d x_{i_{r}} \quad\left(f_{i_{1}, \ldots, i_{r}} \in C^{0}\right)
$$

where the differentials $d x_{1}, \ldots, d x_{n}$ are subject to the relation

$$
d x_{j} d x_{k}=-d x_{k} d x_{j} \quad(j, k \in\{1, \ldots, n\}) .
$$

Therefore ω can be rewritten as

$$
\omega=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} g_{i_{1}, \ldots, i_{r}}\left(x_{1}, \ldots, x_{n}\right) d x_{i_{1}} \ldots d x_{i_{r}} \quad\left(g_{i_{1}, \ldots, i_{r}} \in C^{0}\right) .
$$

Consider the set

$$
C^{r}:=\{\omega \mid \omega \text { is a differential form of degree } r\}
$$

which carries a natural structure of an \mathbb{R}-vector space, being trivial for $r>n$.
Furthermore, consider the \mathbb{R}-linear map $d: C^{r} \longrightarrow C^{r+1}$ given by

$$
d \omega:=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} \sum_{j=1}^{n} \frac{\partial g_{i_{1}, \ldots, i_{r}}}{\partial x_{j}} d x_{j} d x_{i_{1}} \ldots d x_{i_{r}} .
$$

(a) Show that

$$
\mathrm{C}: 0 \longrightarrow C^{0} \xrightarrow{d} C^{1} \xrightarrow{d} C^{2} \xrightarrow{d} \ldots
$$

is a cochain complex (of \mathbb{R}-vector spaces), i.e., $d^{2}=d \circ d=0$.
(b) Compute the cohomology groups $H^{r}(\mathbf{C})$ in the case $n=2$ for $r \in \mathbb{N}$.

