Problems for BMS Basic Course "Commutative Algebra"
 Prof. Dr. J. Kramer

Hand in December 13th, after the 2nd lecture 4.45 p.m.
Please solve each problem on a different sheet of paper, and sign each sheet with your name and student ID

8th Problem Set (40 points)

Problem 1 (10 pts)

Let A be a commutative ring with 1 and $S \subseteq A$ a multiplicatively closed set.
(a) Show that $S^{-1} A$ can be made into a commutative ring with zero element $\frac{0}{1}$ and unit element $\frac{1}{1}$ by defining

$$
\frac{a}{s}+\frac{b}{t}=\frac{a t+b s}{s t} \quad \text { and } \quad \frac{a}{s} \cdot \frac{b}{t}=\frac{a b}{s t} \quad(a, b \in A ; s, t \in S) .
$$

(b) Give an example where the natural ring homomorphism $f: A \longrightarrow S^{-1} A$ given by $a \mapsto \frac{a}{1}$ is not injective.
(c) Show that the prime ideals of $S^{-1} A$ are in bijective correspondence to the prime ideals of A which are disjoint to S.

Problem 2 (10 pts)

Let A be a commutative ring with 1 and $S \subseteq A$ a multiplicatively closed set. Show that the localization with respect to S is an exact functor from the category of A-modules to the category of $S^{-1} A$-modules.

Problem 3 (10 pts)

Let A be a commutative ring with 1 , let M, N be A-modules, and $S \subseteq A$ a multiplicatively closed set. Show that there exists a uniquely determined isomorphism of $S^{-1} A$-modules

$$
S^{-1} M \otimes_{S^{-1} A} S^{-1} N \cong S^{-1}\left(M \otimes_{A} N\right)
$$

given by the assignment

$$
\frac{m}{s} \otimes \frac{n}{t} \mapsto \frac{m \otimes n}{s t} .
$$

Problem 4 (10 pts)

Let (J, \prec) be a partially ordered set such that for all $j, k \in J$ there exists an $\ell \in J$: $j \prec \ell$ and $k \prec \ell$. Let $\left\{A_{j}\right\}_{j \in J}$ be a system of rings together with ring homomorphisms $\varphi_{j k}: A_{j} \longrightarrow A_{k}$ for each $j \leq k(j, k \in J)$. Furthermore, assume that $\varphi_{j \ell}=\varphi_{k \ell} \circ \varphi_{j k}$ holds for all $j \leq k \leq \ell(j, k, \ell \in J)$.
We define the direct (or inductive) limit

$$
A_{J}=\underset{J}{\lim } A_{j}
$$

of the so-called direct system $\left\{A_{j}, \varphi_{j k}\right\}$ by

$$
\underset{J}{\lim _{\longrightarrow}} A_{j}=\coprod_{j \in J} A_{j} / \sim,
$$

where

$$
a_{j} \sim a_{k} \Longleftrightarrow \exists \ell \in J: \varphi_{j \ell}\left(a_{j}\right)=\varphi_{k \ell}\left(a_{k}\right)
$$

Show that:
(a) A_{J} is a commutative ring with 1 , and there are natural ring homomorphisms ι_{j} : $A_{j} \longrightarrow A_{J}$ for all $j \in J$ such that $\iota_{j}=\iota_{k} \circ \varphi_{j k}(j, k \in J)$.
(b) Formulate and prove a universal mapping property characterizing the direct limit up to ring isomorphism.

