Problems for BMS Basic Course "Commutative Algebra"

Hand in whenever you like at room 2.304

Halloween Problem (10 additional points)

Please sign each sheet of paper with your name and student ID

Let A, B objects of an abelian category \mathfrak{C} and $\varphi : A \longrightarrow B$ be a morphism (which is, as we know by now, just a 4-term exact sequence

 $0 \longrightarrow \ker(\varphi) \longrightarrow A \longrightarrow B \longrightarrow \operatorname{coker}(\varphi) \longrightarrow 0.)$

 $P \in Ob(\mathfrak{C})$ is called a *pumpkin* of φ if there are morphisms $j : A \longrightarrow P, \pi : P \longrightarrow B$ such that:

- (i) $\varphi = \pi \circ j$.
- (ii) j is a monomorphism, π is an epimorphism.
- (iii) There are induced exact sequences

$$0 \longrightarrow \ker(\varphi) \longrightarrow P \longrightarrow B \longrightarrow 0$$

and

$$0 \longrightarrow A \longrightarrow P \longrightarrow \operatorname{coker}(\varphi) \longrightarrow 0.$$

- a) For given A, B, φ , is there always a pumpkin?
- b) If it exists, is a pumpkin unique up to isomorphism?
- c) Find necessary and sufficient conditions for the existence and uniqueness of pumpkins.