CONTACT 3-MANIFOLDS, HOLOMORPHIC CURVES AND INTERSECTION THEORY

EXERCISE SHEET 2

August 28, 2013

(1) Recall that $H_{2}\left(\mathbb{C} P^{2}\right)$ is generated by an embedded sphere $\mathbb{C} P^{1} \subset \mathbb{C} P^{2}$ with $\left[\mathbb{C} P^{1}\right] \cdot\left[\mathbb{C} P^{1}\right]=$ 1. A holomorphic curve $u: \Sigma \rightarrow \mathbb{C} P^{2}$ is said to have degree $d \in \mathbb{N}$ if

$$
[u]=d\left[\mathbb{C} P^{1}\right] .
$$

Show that all holomorphic spheres of degree 1 are embedded, and any other simple holomorphic sphere is embedded if and only if it has degree 2 .
(2) Suppose Σ and Σ^{\prime} are compact oriented surfaces with boundary, M is a closed 4 -manifold, and $u_{s}: \Sigma \rightarrow M$ and $v_{s}: \Sigma^{\prime} \rightarrow M$ for $s \in[0,1]$ are smooth homotopies such that for all s,

$$
u_{s}(\partial \Sigma) \cap v_{s}\left(\Sigma^{\prime}\right)=u_{s}(\Sigma) \cap v_{s}\left(\partial \Sigma^{\prime}\right)=\emptyset .
$$

Show that if $u_{s} \pitchfork v_{s}$ for $s=0,1$, then

$$
\sum_{u_{0}(z)=v_{0}(\zeta)} \iota\left(u_{0}, z ; v_{0}, \zeta\right)=\sum_{u_{1}(z)=v_{1}(\zeta)} \iota\left(u_{1}, z ; v_{1}, \zeta\right),
$$

where we denote by $\iota(u, z ; v, \zeta)= \pm 1$ the sign of a transverse intersection $u(z)=v(\zeta)$.
(3) Given a compact surface Σ with boundary, a complex line bundle $L \rightarrow \Sigma$, and a trivialisation τ of $\left.L\right|_{\partial \Sigma}$, the relative first Chern number

$$
c_{1}^{\tau}(L) \in \mathbb{Z}
$$

can be defined as the signed count of zeroes of a generic section $\eta: \Sigma \rightarrow L$ such that $\left.\eta\right|_{\partial \Sigma}$ is nonzero and constant with respect to τ.
(a) Prove that $c_{1}^{\tau}(L)$ as described above does not depend on the choice of the section η.
(b) Prove that the relative first Chern number admits a unique and well-defined extension to higher rank complex vector bundles such that

$$
(E, \tau) \cong\left(E^{\prime}, \tau^{\prime}\right) \quad \Rightarrow \quad c_{1}^{\tau}(E)=c_{1}^{\tau^{\prime}}\left(E^{\prime}\right)
$$

and

$$
c_{1}^{\tau_{1} \oplus \tau_{2}}\left(E_{1} \oplus E_{2}\right)=c_{1}^{\tau_{1}}\left(E_{1}\right)+c_{1}^{\tau_{2}}\left(E_{2}\right)
$$

(4) Suppose (W, ω) is a symplectic cobordism with convex boundary $\left(M_{+}, \xi_{+}=\operatorname{ker} \alpha_{+}\right)$and concave boundary $\left(M_{-}, \xi_{-}=\operatorname{ker} \alpha_{-}\right),(\widehat{W}, \hat{\omega})$ is its completion, and J is an almost complex structure on \widehat{W} that is compatible with ω on W, and on the cylindrical ends is translationinvariant and satisfies

$$
J\left(\partial_{s}\right)=R_{\alpha_{ \pm}}, \quad J\left(\xi_{ \pm}\right)=\xi_{ \pm} \quad \text { and }\left.J\right|_{\xi_{ \pm}} \text {is compatible with }\left.d \alpha_{ \pm}\right|_{\xi_{ \pm}}
$$

where $R_{\alpha_{ \pm}}$denotes the Reeb vector field on $M_{ \pm}$determined by $\alpha_{ \pm}$. For any smooth function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\varphi^{\prime}>0$ and $\varphi(s)=s$ near $s=0$, consider the smooth 2-form

$$
\omega_{\varphi}:= \begin{cases}\omega & \text { on } W, \\ d\left(e^{\varphi(s)} \alpha_{+}\right) & \text {on }[0, \infty) \times M_{+} \\ d\left(e^{\varphi(s)} \alpha_{-}\right) & \text {on }(-\infty, 0] \times M_{-}\end{cases}
$$

Show that ω_{φ} is symplectic and J is ω_{φ}-compatible.

