Contact 3-Manifolds, Holomorphic Curves and Intersection Theory

(Durham University, August 2013)

Chris Wendl

University College London

These slides plus detailed lecture notes (in progress) available at: http://www.homepages.ucl.ac.uk/~ucahcwe/Durham

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Equivalently, ω locally takes the form

$$
\omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j} .
$$

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Equivalently, ω locally takes the form

$$
\omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j} .
$$

Some questions about symplectic manifolds:

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Equivalently, ω locally takes the form

$$
\omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j} .
$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \rightarrow \mathbb{R} \leadsto$

$$
X_{H}:=\sum_{j=1}^{n}\left(\frac{\partial H}{\partial p_{j}} \frac{\partial}{\partial q_{j}}-\frac{\partial H}{\partial q_{j}} \frac{\partial}{\partial p_{j}}\right)
$$

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Equivalently, ω locally takes the form

$$
\omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j} .
$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \rightarrow \mathbb{R} \leadsto$

$$
X_{H}:=\sum_{j=1}^{n}\left(\frac{\partial H}{\partial p_{j}} \frac{\partial}{\partial q_{j}}-\frac{\partial H}{\partial q_{j}} \frac{\partial}{\partial p_{j}}\right)
$$

2. Are there symplectic embeddings

$$
(M, \omega) \hookrightarrow\left(M^{\prime}, \omega^{\prime}\right) ?
$$

Background material for Lecture 1

($M^{2 n}, \omega$) is a symplectic manifold:

$$
\omega \in \Omega^{2}(M), \quad d \omega=0 \text { and } \omega^{n}>0 .
$$

Equivalently, ω locally takes the form

$$
\omega=\sum_{j=1}^{n} d p_{j} \wedge d q_{j} .
$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \rightarrow \mathbb{R} \leadsto$

$$
X_{H}:=\sum_{j=1}^{n}\left(\frac{\partial H}{\partial p_{j}} \frac{\partial}{\partial q_{j}}-\frac{\partial H}{\partial q_{j}} \frac{\partial}{\partial p_{j}}\right)
$$

2. Are there symplectic embeddings

$$
(M, \omega) \hookrightarrow\left(M^{\prime}, \omega^{\prime}\right) ?
$$

3. Is there a symplectomorphism

$$
(M, \omega) \xlongequal{\cong}\left(M^{\prime}, \omega^{\prime}\right) ?
$$

A somewhat general example

$F^{2} \hookrightarrow M^{4} \xrightarrow{\pi} \Sigma^{2}$ fibration; closed, oriented

A somewhat general example

$F^{2} \hookrightarrow M^{4} \xrightarrow{\pi} \Sigma^{2}$ fibration; closed, oriented

Theorem (Thurston)

If [fiber] $\neq 0 \in H_{2}(M ; \mathbb{Q})$, then M admits a symplectic form ω such that
$\left.\omega\right|_{\text {fibres }}>0$,
and the space of such symplectic forms is connected.

A somewhat general example

$F^{2} \hookrightarrow M^{4} \xrightarrow{\pi} \Sigma^{2}$ fibration; closed, oriented

Theorem (Thurston)

If [fiber] $\neq 0 \in H_{2}(M ; \mathbb{Q})$, then M admits a symplectic form ω such that
$\left.\omega\right|_{\text {fibres }}>0$,
and the space of such symplectic forms is connected.
$(M, \omega) \xrightarrow{\pi} \Sigma$ is then a symplectic fibration.
If $F \cong S^{2},(M, \omega)$ is called a symplectic ruled surface.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

A more general example

$M \xrightarrow{\pi} \Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\text {crit }} \subset M$ of the form

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

in local complex coordinates.

Theorem (Gompf)
Thurston's theorem generalises to Lefschetz fibrations.

We call $(M, \omega) \xrightarrow{\pi} \Sigma$ a symplectic Lefschetz fibration.

Blowing up

$L \rightarrow \mathbb{C} P^{1}$ tautological line bundle:

$$
L_{\left[z_{1}: z_{2}\right]}:=\mathbb{C}\binom{z_{1}}{z_{2}} \subset \mathbb{C}^{2}
$$

Observation: $\mathbb{C}^{2} \backslash\{0\}=L \backslash \mathbb{C} P^{1}$

Blowing up

$L \rightarrow \mathbb{C} P^{1}$ tautological line bundle:

$$
L_{\left[z_{1}: z_{2}\right]}:=\mathbb{C}\binom{z_{1}}{z_{2}} \subset \mathbb{C}^{2}
$$

Observation: $\mathbb{C}^{2} \backslash\{0\}=L \backslash \mathbb{C} P^{1}$
For $p \in M^{4}$ with neighbourhood $\mathcal{N}(p) \subset M$,

$$
\begin{aligned}
\widehat{M} & :=(M \backslash \mathcal{N}(p)) \cup \mathcal{N}\left(\mathbb{C} P^{1}\right) \\
& \cong M \# \overline{\mathbb{C}}^{2}
\end{aligned}
$$

This replaces p with an exceptional sphere

$$
S^{2} \cong E \subset \widehat{M}, \quad[E] \cdot[E]=-1
$$

Blowing up

$L \rightarrow \mathbb{C} P^{1}$ tautological line bundle:

$$
L_{\left[z_{1}: z_{2}\right]}:=\mathbb{C}\binom{z_{1}}{z_{2}} \subset \mathbb{C}^{2}
$$

Observation: $\mathbb{C}^{2} \backslash\{0\}=L \backslash \mathbb{C} P^{1}$
For $p \in M^{4}$ with neighbourhood $\mathcal{N}(p) \subset M$,

$$
\begin{aligned}
\widehat{M} & :=(M \backslash \mathcal{N}(p)) \cup \mathcal{N}\left(\mathbb{C} P^{1}\right) \\
& \cong M \# \overline{\mathbb{C}}^{2}
\end{aligned}
$$

This replaces p with an exceptional sphere

$$
S^{2} \cong E \subset \widehat{M}, \quad[E] \cdot[E]=-1
$$

Fact (see e.g. McDuff-Salamon):
If (M, ω) is symplectic, then the symplectic blowup ($\widehat{M}, \widehat{\omega}$) is canonical up to symplectic deformation, and the exceptional sphere $E \subset$ ($\widehat{M}, \widehat{\omega}$) is a symplectic submanifold.

Blowing up

$L \rightarrow \mathbb{C} P^{1}$ tautological line bundle:

$$
L_{\left[z_{1}: z_{2}\right]}:=\mathbb{C}\binom{z_{1}}{z_{2}} \subset \mathbb{C}^{2}
$$

Observation: $\mathbb{C}^{2} \backslash\{0\}=L \backslash \mathbb{C} P^{1}$
For $p \in M^{4}$ with neighbourhood $\mathcal{N}(p) \subset M$,

$$
\begin{aligned}
\widehat{M} & :=(M \backslash \mathcal{N}(p)) \cup \mathcal{N}\left(\mathbb{C} P^{1}\right) \\
& \cong M \# \overline{\mathbb{C}}^{2}
\end{aligned}
$$

This replaces p with an exceptional sphere

$$
S^{2} \cong E \subset \widehat{M}, \quad[E] \cdot[E]=-1
$$

Fact (see e.g. McDuff-Salamon):
If (M, ω) is symplectic, then the symplectic blowup ($\widehat{M}, \widehat{\omega}$) is canonical up to symplectic deformation, and the exceptional sphere $E \subset$ ($\widehat{M}, \widehat{\omega}$) is a symplectic submanifold.

Definition

(M, ω) is minimal if it contains no symplectic exceptional spheres
(\Leftrightarrow it is not a symplectic blowup).

(slightly off topic but nice to know)

Theorem (McDuff)
Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_{1}, \ldots, E_{N} \subset(M, \omega)$ becomes minimal after "blowing down" along E_{1}, \ldots, E_{N}.

(slightly off topic but nice to know)

Theorem (McDuff)
Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_{1}, \ldots, E_{N} \subset(M, \omega)$ becomes minimal after "blowing down" along E_{1}, \ldots, E_{N}.

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^{2}.

(slightly off topic but nice to know)

Theorem (McDuff)
Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_{1}, \ldots, E_{N} \subset(M, \omega)$ becomes minimal after "blowing down" along E_{1}, \ldots, E_{N}.

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^{2}.

The main subject for today

Theorem (McDuff)

Assume $\left(M^{4}, \omega\right)$ closed, connected, with a symplectic embedding
$S^{2} \cong S \hookrightarrow(M, \omega) \quad$ such that $\quad[S] \cdot[S]=0$.

(slightly off topic but nice to know)

Theorem (McDuff)
Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_{1}, \ldots, E_{N} \subset(M, \omega)$ becomes minimal after "blowing down" along E_{1}, \ldots, E_{N}.

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^{2}.

The main subject for today

Theorem (McDuff)

Assume $\left(M^{4}, \omega\right)$ closed, connected, with a symplectic embedding
$S^{2} \cong S \hookrightarrow(M, \omega) \quad$ such that $\quad[S] \cdot[S]=0$.
Then S is a fibre of a symplectic Lefschetz fibration $M \xrightarrow{\pi} \Sigma$, which is a smooth symplectic fibration if $(M \backslash S, \omega)$ is minimal.

(slightly off topic but nice to know)

Theorem (McDuff)
Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_{1}, \ldots, E_{N} \subset(M, \omega)$ becomes minimal after "blowing down" along E_{1}, \ldots, E_{N}.

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^{2}.

The main subject for today

Theorem (McDuff)

Assume $\left(M^{4}, \omega\right)$ closed, connected, with a symplectic embedding
$S^{2} \cong S \hookrightarrow(M, \omega) \quad$ such that $\quad[S] \cdot[S]=0$.
Then S is a fibre of a symplectic Lefschetz fibration $M \xrightarrow{\pi} \Sigma$, which is a smooth symplectic fibration if $(M \backslash S, \omega)$ is minimal.

Corollary

(M, ω) is symplectomorphic to (a blowup of) a ruled surface.

The tools we will need

An almost complex structure $J: T M \rightarrow T M$ $\left(J^{2}=-\mathbb{1}\right)$ is compatible with ω if

$$
\langle X, Y\rangle:=\omega(X, J Y)
$$

defines a Riemannian metric.

The tools we will need

An almost complex structure $J: T M \rightarrow T M$ $\left(J^{2}=-\mathbb{1}\right)$ is compatible with ω if

$$
\langle X, Y\rangle:=\omega(X, J Y)
$$

defines a Riemannian metric.

Gromov:

$\{J \mid$ compatible with $\omega\}$ is always nonempty and contractible.

The tools we will need

An almost complex structure $J: T M \rightarrow T M$ $\left(J^{2}=-\mathbb{1}\right)$ is compatible with ω if

$$
\langle X, Y\rangle:=\omega(X, J Y)
$$

defines a Riemannian metric.

Gromov:

$\{J \mid$ compatible with $\omega\}$ is always nonempty and contractible.

A map $u:\left(\Sigma^{2}, j\right) \rightarrow\left(M^{2 n}, J\right)$ is a J-holomorphic curve if

$$
T u \circ j=J \circ T u
$$

The tools we will need

An almost complex structure $J: T M \rightarrow T M$ $\left(J^{2}=-\mathbb{1}\right)$ is compatible with ω if

$$
\langle X, Y\rangle:=\omega(X, J Y)
$$

defines a Riemannian metric.

Gromov:

$\{J \mid$ compatible with $\omega\}$ is always nonempty and contractible.

A map $u:\left(\Sigma^{2}, j\right) \rightarrow\left(M^{2 n}, J\right)$ is a J-holomorphic curve if

$$
T u \circ j=J \circ T u
$$

In local coordinates $s+i t$ on (Σ, j) with $j=i$:

$$
\partial_{s} u+J(u) \partial_{t} u=0
$$

The tools we will need

An almost complex structure $J: T M \rightarrow T M$ ($J^{2}=-\mathbb{1}$) is compatible with ω if

$$
\langle X, Y\rangle:=\omega(X, J Y)
$$

defines a Riemannian metric.

Gromov:

$\{J \mid$ compatible with $\omega\}$ is always nonempty and contractible.

A map $u:\left(\Sigma^{2}, j\right) \rightarrow\left(M^{2 n}, J\right)$ is a J-holomorphic curve if

$$
T u \circ j=J \circ T u
$$

In local coordinates $s+i t$ on (Σ, j) with $j=i$:

$$
\partial_{s} u+J(u) \partial_{t} u=0
$$

For $A \in H_{2}(M)$ and $g \geq 0$, define the moduli space

$$
\mathcal{M}_{g}^{A}(M, J):=\{(\Sigma, j, u)\} / \text { parametrization }
$$

where (Σ, j) is a Riemann surface of genus g, $u:(\Sigma, j) \rightarrow(M, J)$ is J-holomorphic, and

$$
[u]:=u_{*}[\Sigma]=A
$$

Properties of J-curves in dimension $2 n$

(1) Every $u \in \mathcal{M}_{g}^{A}(M, J)$ is either simple or multiply covered

$$
u=v \circ \varphi, \quad \varphi: \Sigma \rightarrow \Sigma^{\prime}, \quad v: \Sigma^{\prime} \rightarrow M
$$

where $\operatorname{deg}(\varphi)>1$.

Properties of J-curves in dimension $2 n$

(1) Every $u \in \mathcal{M}_{g}^{A}(M, J)$ is either simple or multiply covered

$$
u=v \circ \varphi, \quad \varphi: \Sigma \rightarrow \Sigma^{\prime}, \quad v: \Sigma^{\prime} \rightarrow M
$$

where $\operatorname{deg}(\varphi)>1$. If u is simple, then it has at most finitely many double points

$$
u(z)=u(\zeta), \quad z \neq \zeta
$$

and critical points, $d u(z)=0$.

Properties of J-curves in dimension $2 n$

(1) Every $u \in \mathcal{M}_{g}^{A}(M, J)$ is either simple or multiply covered

$$
u=v \circ \varphi, \quad \varphi: \Sigma \rightarrow \Sigma^{\prime}, \quad v: \Sigma^{\prime} \rightarrow M
$$

where $\operatorname{deg}(\varphi)>1$. If u is simple, then it has at most finitely many double points

$$
u(z)=u(\zeta), \quad z \neq \zeta
$$

and critical points, $d u(z)=0$.
(2) For generic J, the open subset

$$
\left\{u \in \mathcal{M}_{g}^{A}(M, J) \mid u \text { is simple }\right\}
$$

is a manifold with dimension equal to its virtual dimension
vir- $\operatorname{dim} \mathcal{M}_{g}^{A}(M, J):=(n-3)(2-2 g)+2 c_{1}(A)$, also called the index of $u \in \mathcal{M}_{g}^{A}(M, J)$:

$$
\operatorname{ind}(u):=\operatorname{vir}-\operatorname{dim} \mathcal{M}_{g}^{A}(M, J)
$$

Properties of J-curves in dimension $2 n$

(1) Every $u \in \mathcal{M}_{g}^{A}(M, J)$ is either simple or multiply covered

$$
u=v \circ \varphi, \quad \varphi: \Sigma \rightarrow \Sigma^{\prime}, \quad v: \Sigma^{\prime} \rightarrow M
$$

where $\operatorname{deg}(\varphi)>1$. If u is simple, then it has at most finitely many double points

$$
u(z)=u(\zeta), \quad z \neq \zeta
$$

and critical points, $d u(z)=0$.
(2) For generic J, the open subset

$$
\left\{u \in \mathcal{M}_{g}^{A}(M, J) \mid u \text { is simple }\right\}
$$

is a manifold with dimension equal to its virtual dimension
vir- $\operatorname{dim} \mathcal{M}_{g}^{A}(M, J):=(n-3)(2-2 g)+2 c_{1}(A)$, also called the index of $u \in \mathcal{M}_{g}^{A}(M, J)$:

$$
\operatorname{ind}(u):=\operatorname{vir}-\operatorname{dim} \mathcal{M}_{g}^{A}(M, J)
$$

Corollary: J generic, u simple $\Rightarrow \operatorname{ind}(u) \geq 0$.
(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification
$\overline{\mathcal{M}}_{g}^{A}(M, J):=\{$ "nodal" curves of arithmetic genus g, homologous to $A\}$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

(3) $\mathcal{M}_{g}^{A}(M, J)$ is not compact, but it has a natural compactification

$$
\begin{aligned}
\overline{\mathcal{M}}_{g}^{A}(M, J):= & \{\text { "nodal" curves of arithmetic } \\
& \text { genus } g, \text { homologous to } A\}
\end{aligned}
$$

Proof of McDuff's theorem (sketch)

Inclusion $u_{S}: S \hookrightarrow\left(M^{4}, \omega\right)$ is symplectic

Proof of McDuff's theorem (sketch)

Inclusion $u_{S}: S \hookrightarrow\left(M^{4}, \omega\right)$ is symplectic \Rightarrow

$$
u_{S}:(S, j) \rightarrow(M, J)
$$

is J-holomorphic for suitable (ω-compatible!) data, thus $u_{S} \in \mathcal{M}_{0}^{[S]}(M, J)$.

Proof of McDuff's theorem (sketch)

Inclusion $u_{S}: S \hookrightarrow\left(M^{4}, \omega\right)$ is symplectic \Rightarrow

$$
u_{S}:(S, j) \rightarrow(M, J)
$$

is J-holomorphic for suitable (ω-compatible!) data, thus $u_{S} \in \mathcal{M}_{0}^{[S]}(M, J)$.

Since $[S] \cdot[S]=0, S$ has trivial normal bundle, so $u_{S}^{*} T M \cong T S^{2} \oplus N_{S}$ implies

$$
\begin{aligned}
c_{1}([S]) & =c_{1}\left(u_{S}^{*} T M\right)=c_{1}\left(T S^{2}\right)+c_{1}\left(N_{S}\right) \\
& =\chi\left(S^{2}\right)+0=2 .
\end{aligned}
$$

Proof of McDuff's theorem (sketch)

Inclusion $u_{S}: S \hookrightarrow\left(M^{4}, \omega\right)$ is symplectic \Rightarrow

$$
u_{S}:(S, j) \rightarrow(M, J)
$$

is J-holomorphic for suitable (ω-compatible!) data, thus $u_{S} \in \mathcal{M}_{0}^{[S]}(M, J)$.

Since $[S] \cdot[S]=0, S$ has trivial normal bundle, so $u_{S}^{*} T M \cong T S^{2} \oplus N_{S}$ implies

$$
\begin{aligned}
c_{1}([S]) & =c_{1}\left(u_{S}^{*} T M\right)=c_{1}\left(T S^{2}\right)+c_{1}\left(N_{S}\right) \\
& =\chi\left(S^{2}\right)+0=2 .
\end{aligned}
$$

Thus
vir- $\operatorname{dim} \mathcal{M}_{0}^{[S]}(M, J)=-2+2 c_{1}([S])=2$,
\Rightarrow the simple curves in $\mathcal{M}_{0}^{[S]}(M, J)$ form a smooth 2-parameter family.

Lemma 1 (standard $2 n$-dimensional stuff) There exists a finite set \mathscr{B} of simple curves $v \in \mathcal{M}_{0}(M, J)$ with $c_{1}([v])>0$ such that any noncompact sequence $u_{k} \in \mathcal{M}_{0}^{[S]}(M, J)$ has a subsequence convergent to a nodal curve with exactly two components $v_{+}, v_{-} \in \mathscr{B}$.

Lemma 1 (standard $2 n$-dimensional stuff) There exists a finite set \mathscr{B} of simple curves $v \in \mathcal{M}_{0}(M, J)$ with $c_{1}([v])>0$ such that any noncompact sequence $u_{k} \in \mathcal{M}_{0}^{[S]}(M, J)$ has a subsequence convergent to a nodal curve with exactly two components $v_{+}, v_{-} \in \mathscr{B}$.

Lemma 1 (standard $2 n$-dimensional stuff) There exists a finite set \mathscr{B} of simple curves $v \in \mathcal{M}_{0}(M, J)$ with $c_{1}([v])>0$ such that any noncompact sequence $u_{k} \in \mathcal{M}_{0}^{[S]}(M, J)$ has a subsequence convergent to a nodal curve with exactly two components $v_{+}, v_{-} \in \mathscr{B}$.

Lemma 1 (standard $2 n$-dimensional stuff) There exists a finite set \mathscr{B} of simple curves $v \in \mathcal{M}_{0}(M, J)$ with $c_{1}([v])>0$ such that any noncompact sequence $u_{k} \in \mathcal{M}_{0}^{[S]}(M, J)$ has a subsequence convergent to a nodal curve with exactly two components $v_{+}, v_{-} \in \mathscr{B}$.

Lemma 1 (standard $2 n$-dimensional stuff) There exists a finite set \mathscr{B} of simple curves $v \in \mathcal{M}_{0}(M, J)$ with $c_{1}([v])>0$ such that any noncompact sequence $u_{k} \in \mathcal{M}_{0}^{[S]}(M, J)$ has a subsequence convergent to a nodal curve with exactly two components $v_{+}, v_{-} \in \mathscr{B}$.

Lemma 2 (unique to dimension four!)
For the nodal curves $\left\{v_{+}, v_{-}\right\}$in Lemma 1 , v_{+}and v_{-}are each embedded, satisfy

$$
\left[v_{ \pm}\right] \cdot\left[v_{ \pm}\right]=-1
$$

and intersect each other exactly once, transversely.
Moreover, all curves in $\mathcal{M}_{0}^{[S]}(M, J)$ are embedded and disjoint from the nodal curves, and they foliate an open subset of M.

Conclusion of the proof

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in \operatorname{im}(u)\right.$ for some $\left.u \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)\right\}$, is both open and closed.

Conclusion of the proof

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in \operatorname{im}(u)\right.$ for some $\left.u \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)\right\}$, is both open and closed.
\Rightarrow every $p \in M$ is in the image of a (unique!) curve $u_{p} \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)$.

Conclusion of the proof

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in \operatorname{im}(u)\right.$ for some $\left.u \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)\right\}$, is both open and closed.
\Rightarrow every $p \in M$ is in the image of a (unique!) curve $u_{p} \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)$.
\Rightarrow Lefschetz fibration

$$
\pi: M \rightarrow \overline{\mathcal{M}}_{0}^{[S]}(M, J): p \mapsto u_{p} .
$$

Conclusion of the proof

Lemmas 1 and 2 imply that the set
$\left\{p \in M \mid p \in \operatorname{im}(u)\right.$ for some $\left.u \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)\right\}$,
is both open and closed.
\Rightarrow every $p \in M$ is in the image of a (unique!) curve $u_{p} \in \overline{\mathcal{M}}_{0}^{[S]}(M, J)$.
\Rightarrow Lefschetz fibration

$$
\pi: M \rightarrow \overline{\mathcal{M}}_{0}^{[S]}(M, J): p \mapsto u_{p} .
$$

Singular fibres $=$ nodal curves $=$ two transversely intersecting exceptional spheres disjoint from S
\Rightarrow all fibres are regular if ($M \backslash S, \omega$) is minimal.

