Contact 3-Manifolds, Holomorphic Curves and Intersection Theory

(Durham University, August 2013)

Chris Wendl

University College London

These slides plus detailed lecture notes (in progress) available at:

http://www.homepages.ucl.ac.uk/~ucahcwe/Durham

 (M^{2n}, ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

 (M^{2n}, ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

Equivalently, ω locally takes the form

$$\omega = \sum_{j=1}^{n} dp_j \wedge dq_j.$$

 (M^{2n}, ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

Equivalently, ω locally takes the form

$$\omega = \sum_{j=1}^{n} dp_j \wedge dq_j.$$

Some questions about symplectic manifolds:

 (M^{2n},ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

Equivalently, ω locally takes the form

$$\omega = \sum_{j=1}^{n} dp_j \wedge dq_j.$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \to \mathbb{R} \rightsquigarrow$

$$X_H := \sum_{j=1}^n \left(\frac{\partial H}{\partial p_j} \frac{\partial}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial}{\partial p_j} \right)$$

 (M^{2n},ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

Equivalently, ω locally takes the form

$$\omega = \sum_{j=1}^{n} dp_j \wedge dq_j.$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \to \mathbb{R} \rightsquigarrow$

$$X_H := \sum_{j=1}^n \left(\frac{\partial H}{\partial p_j} \frac{\partial}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial}{\partial p_j} \right)$$

2. Are there symplectic embeddings $(M, \omega) \hookrightarrow (M', \omega')$?

 (M^{2n},ω) is a symplectic manifold:

 $\omega \in \Omega^2(M), \qquad d\omega = 0 \text{ and } \omega^n > 0.$

Equivalently, ω locally takes the form

$$\omega = \sum_{j=1}^{n} dp_j \wedge dq_j.$$

Some questions about symplectic manifolds:

1. Hamiltonian dynamics: $H: M \to \mathbb{R} \rightsquigarrow$

$$X_H := \sum_{j=1}^n \left(\frac{\partial H}{\partial p_j} \frac{\partial}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial}{\partial p_j} \right)$$

2. Are there symplectic embeddings

$$(M,\omega) \hookrightarrow (M',\omega')?$$

3. Is there a symplectomorphism

$$(M,\omega) \xrightarrow{\cong} (M',\omega')?$$

A somewhat general example

 $F^2 \hookrightarrow M^4 \xrightarrow{\pi} \Sigma^2$ fibration; closed, oriented

A somewhat general example

 $F^2 \hookrightarrow M^4 \xrightarrow{\pi} \Sigma^2$ fibration; closed, oriented

Theorem (Thurston) If [fiber] $\neq 0 \in H_2(M; \mathbb{Q})$, then M admits a symplectic form ω such that

 $\omega|_{\text{fibres}} > 0,$

and the space of such symplectic forms is connected.

A somewhat general example

 $F^2 \hookrightarrow M^4 \xrightarrow{\pi} \Sigma^2$ fibration; closed, oriented

Theorem (Thurston) If [fiber] $\neq 0 \in H_2(M; \mathbb{Q})$, then M admits a symplectic form ω such that

 $\omega|_{\text{fibres}} > 0,$

and the space of such symplectic forms is connected.

 $(M,\omega) \xrightarrow{\pi} \Sigma$ is then a symplectic fibration.

If $F \cong S^2$, (M, ω) is called a **symplectic ruled** surface.

 $M\xrightarrow{\pi}\Sigma$ is a Lefschetz fibration if it has finitely many critical points $M^{\rm crit}\subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\rm crit} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

 $M \xrightarrow{\pi} \Sigma$ is a **Lefschetz fibration** if it has finitely many critical points $M^{\text{crit}} \subset M$ of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2$$

in local complex coordinates.

Theorem (Gompf)

Thurston's theorem generalises to Lefschetz fibrations.

We call $(M, \omega) \xrightarrow{\pi} \Sigma$ a symplectic Lefschetz fibration.

 $L \to \mathbb{C}P^1$ tautological line bundle:

$$L_{[z_1:z_2]} := \mathbb{C} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \subset \mathbb{C}^2$$

Observation: $\mathbb{C}^2 \setminus \{0\} = L \setminus \mathbb{C}P^1$

 $L \to \mathbb{C}P^1$ tautological line bundle:

$$L_{[z_1:z_2]} := \mathbb{C} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \subset \mathbb{C}^2$$

Observation: $\mathbb{C}^2 \setminus \{0\} = L \setminus \mathbb{C}P^1$

For $p \in M^4$ with neighbourhood $\mathcal{N}(p) \subset M$, $\widehat{M} := (M \setminus \mathcal{N}(p)) \cup \mathcal{N}(\mathbb{C}P^1)$ $\cong M \# \overline{\mathbb{C}P}^2$

This replaces p with an **exceptional sphere**

 $S^2 \cong E \subset \widehat{M}, \qquad [E] \cdot [E] = -1.$

 $L \to \mathbb{C}P^1$ tautological line bundle:

$$L_{[z_1:z_2]} := \mathbb{C} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \subset \mathbb{C}^2$$

Observation: $\mathbb{C}^2 \setminus \{0\} = L \setminus \mathbb{C}P^1$

For $p \in M^4$ with neighbourhood $\mathcal{N}(p) \subset M$,

$$\widehat{M} := (M \setminus \mathcal{N}(p)) \cup \mathcal{N}(\mathbb{C}P^1)$$
$$\cong M \# \overline{\mathbb{C}P}^2$$

This replaces p with an **exceptional sphere**

$$S^2 \cong E \subset \widehat{M}, \qquad [E] \cdot [E] = -1.$$

Fact (see e.g. McDuff-Salamon):

If (M, ω) is symplectic, then the **symplectic blowup** $(\widehat{M}, \widehat{\omega})$ is canonical up to symplectic deformation, and the exceptional sphere $E \subset$ $(\widehat{M}, \widehat{\omega})$ is a symplectic submanifold.

 $L \to \mathbb{C}P^1$ tautological line bundle:

$$L_{[z_1:z_2]} := \mathbb{C} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \subset \mathbb{C}^2$$

Observation: $\mathbb{C}^2 \setminus \{0\} = L \setminus \mathbb{C}P^1$

For $p \in M^4$ with neighbourhood $\mathcal{N}(p) \subset M$,

$$\widehat{M} := (M \setminus \mathcal{N}(p)) \cup \mathcal{N}(\mathbb{C}P^1)$$
$$\cong M \# \overline{\mathbb{C}P}^2$$

This replaces p with an **exceptional sphere**

$$S^2 \cong E \subset \widehat{M}, \qquad [E] \cdot [E] = -1.$$

Fact (see e.g. McDuff-Salamon):

If (M, ω) is symplectic, then the **symplectic blowup** $(\widehat{M}, \widehat{\omega})$ is canonical up to symplectic deformation, and the exceptional sphere $E \subset$ $(\widehat{M}, \widehat{\omega})$ is a symplectic submanifold.

Definition

 (M, ω) is **minimal** if it contains no symplectic exceptional spheres (\Leftrightarrow it is not a symplectic blowup).

Theorem (McDuff)

Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_1, \ldots, E_N \subset (M, \omega)$ becomes minimal after "blowing down" along E_1, \ldots, E_N .

Theorem (McDuff)

Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_1, \ldots, E_N \subset (M, \omega)$ becomes minimal after "blowing down" along E_1, \ldots, E_N .

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^2 .

Theorem (McDuff)

Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_1, \ldots, E_N \subset (M, \omega)$ becomes minimal after "blowing down" along E_1, \ldots, E_N .

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^2 .

The main subject for today

Theorem (McDuff) Assume (M^4, ω) closed, connected, with a symplectic embedding

 $S^2 \cong S \hookrightarrow (M, \omega)$ such that $[S] \cdot [S] = 0.$

Theorem (McDuff)

Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_1, \ldots, E_N \subset (M, \omega)$ becomes minimal after "blowing down" along E_1, \ldots, E_N .

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^2 .

The main subject for today

Theorem (McDuff)

Assume (M^4, ω) closed, connected, with a symplectic embedding

 $S^2 \cong S \hookrightarrow (M, \omega)$ such that $[S] \cdot [S] = 0$. Then S is a fibre of a symplectic Lefschetz fibration $M \xrightarrow{\pi} \Sigma$, which is a smooth symplectic fibration if $(M \setminus S, \omega)$ is minimal.

Theorem (McDuff)

Any closed symplectic 4-manifold (M, ω) with a maximal collection of pairwise disjoint exceptional spheres $E_1, \ldots, E_N \subset (M, \omega)$ becomes minimal after "blowing down" along E_1, \ldots, E_N .

Theorem (Donaldson)

Any closed symplectic manifold, after blowing up finitely many times, admits a symplectic Lefschetz fibration over S^2 .

The main subject for today

Theorem (McDuff) Assume (M^4, ω) closed, connected, with a symplectic embedding

 $S^2 \cong S \hookrightarrow (M, \omega)$ such that $[S] \cdot [S] = 0$. Then S is a fibre of a symplectic Lefschetz fibration $M \xrightarrow{\pi} \Sigma$, which is a smooth symplectic fibration if $(M \setminus S, \omega)$ is minimal.

Corollary

 (M, ω) is symplectomorphic to (a blowup of) a ruled surface.

An almost complex structure $J : TM \to TM$ $(J^2 = -1)$ is **compatible with** ω if

 $\langle X, Y \rangle := \omega(X, JY)$

defines a Riemannian metric.

An almost complex structure $J: TM \to TM$ $(J^2 = -1)$ is **compatible with** ω if

 $\langle X, Y \rangle := \omega(X, JY)$

defines a Riemannian metric.

Gromov:

 $\{J \mid \text{ compatible with } \omega\}$ is always nonempty and contractible.

An almost complex structure $J : TM \to TM$ $(J^2 = -1)$ is **compatible with** ω if

 $\langle X, Y \rangle := \omega(X, JY)$

defines a Riemannian metric.

Gromov:

 $\{J \mid \text{ compatible with } \omega\}$ is always nonempty and contractible.

A map $u : (\Sigma^2, j) \rightarrow (M^{2n}, J)$ is a *J*-holomorphic curve if

$$Tu \circ j = J \circ Tu$$

An almost complex structure $J : TM \to TM$ $(J^2 = -1)$ is **compatible with** ω if

 $\langle X, Y \rangle := \omega(X, JY)$

defines a Riemannian metric.

Gromov:

 $\{J \mid \text{ compatible with } \omega\}$ is always nonempty and contractible.

A map $u : (\Sigma^2, j) \rightarrow (M^{2n}, J)$ is a *J*-holomorphic curve if

$$Tu \circ j = J \circ Tu$$

In local coordinates s+it on (Σ, j) with j = i:

$$\partial_s u + J(u) \,\partial_t u = 0$$

An almost complex structure $J : TM \to TM$ $(J^2 = -1)$ is **compatible with** ω if

 $\langle X, Y \rangle := \omega(X, JY)$

defines a Riemannian metric.

Gromov:

 $\{J \mid \text{ compatible with } \omega\}$ is always nonempty and contractible.

A map $u : (\Sigma^2, j) \rightarrow (M^{2n}, J)$ is a *J*-holomorphic curve if

$$Tu \circ j = J \circ Tu$$

In local coordinates s+it on (Σ, j) with j = i:

$$\partial_s u + J(u) \,\partial_t u = 0$$

For $A \in H_2(M)$ and $g \ge 0$, define the **moduli** space

 $\mathcal{M}_{g}^{A}(M,J) := \{(\Sigma, j, u)\} / \text{parametrization},$ where (Σ, j) is a Riemann surface of genus g, $u : (\Sigma, j) \to (M, J)$ is J-holomorphic, and

$$[u] := u_*[\Sigma] = A.$$

(1) Every $u \in \mathcal{M}_g^A(M, J)$ is either simple or multiply covered

 $u = v \circ \varphi, \quad \varphi : \Sigma \to \Sigma', \quad v : \Sigma' \to M$ where deg $(\varphi) > 1$.

(1) Every $u \in \mathcal{M}_g^A(M, J)$ is either simple or multiply covered

 $u = v \circ \varphi, \quad \varphi : \Sigma \to \Sigma', \quad v : \Sigma' \to M$

where $deg(\varphi) > 1$. If u is simple, then it has at most finitely many **double points**

$$u(z) = u(\zeta), \qquad z \neq \zeta,$$

and critical points, du(z) = 0.

(1) Every $u \in \mathcal{M}_g^A(M, J)$ is either simple or multiply covered

 $u = v \circ \varphi, \quad \varphi : \Sigma \to \Sigma', \quad v : \Sigma' \to M$

where $deg(\varphi) > 1$. If u is simple, then it has at most finitely many **double points**

$$u(z) = u(\zeta), \qquad z \neq \zeta,$$

and critical points, du(z) = 0.

(2) For generic J, the open subset

 $\left\{ u \in \mathcal{M}_g^A(M,J) \mid u \text{ is simple} \right\}$

is a manifold with dimension equal to its virtual dimension

vir-dim $\mathcal{M}_g^A(M, J) := (n-3)(2-2g)+2c_1(A)$, also called the **index** of $u \in \mathcal{M}_g^A(M, J)$:

$$\operatorname{ind}(u) := \operatorname{vir-dim} \mathcal{M}_g^A(M, J)$$

(1) Every $u \in \mathcal{M}_g^A(M, J)$ is either simple or multiply covered

 $u = v \circ \varphi, \quad \varphi : \Sigma \to \Sigma', \quad v : \Sigma' \to M$

where $deg(\varphi) > 1$. If u is simple, then it has at most finitely many **double points**

$$u(z) = u(\zeta), \qquad z \neq \zeta,$$

and critical points, du(z) = 0.

(2) For generic J, the open subset

 $\left\{ u \in \mathcal{M}_g^A(M,J) \mid u \text{ is simple} \right\}$

is a manifold with dimension equal to its virtual dimension

vir-dim $\mathcal{M}_g^A(M, J) := (n-3)(2-2g) + 2c_1(A)$, also called the **index** of $u \in \mathcal{M}_q^A(M, J)$:

$$\operatorname{ind}(u) := \operatorname{vir-dim} \mathcal{M}_g^A(M, J)$$

Corollary: J generic, $u \text{ simple} \Rightarrow \text{ind}(u) \ge 0$.

Inclusion $u_S: S \hookrightarrow (M^4, \omega)$ is symplectic

Inclusion $u_S: S \hookrightarrow (M^4, \omega)$ is symplectic \Rightarrow

$$u_S: (S,j) \to (M,J)$$

is J-holomorphic for suitable (ω -compatible!) data, thus $u_S \in \mathcal{M}_0^{[S]}(M, J)$.

Inclusion $u_S: S \hookrightarrow (M^4, \omega)$ is symplectic \Rightarrow

$$u_S: (S,j) \to (M,J)$$

is *J*-holomorphic for suitable (ω -compatible!) data, thus $u_S \in \mathcal{M}_0^{[S]}(M, J)$.

Since $[S] \cdot [S] = 0$, S has trivial normal bundle, so $u_S^*TM \cong TS^2 \oplus N_S$ implies

$$c_1([S]) = c_1(u_S^*TM) = c_1(TS^2) + c_1(N_S)$$

= $\chi(S^2) + 0 = 2.$

Inclusion $u_S: S \hookrightarrow (M^4, \omega)$ is symplectic \Rightarrow

$$u_S: (S,j) \to (M,J)$$

is J-holomorphic for suitable (ω -compatible!) data, thus $u_S \in \mathcal{M}_0^{[S]}(M, J)$.

Since $[S] \cdot [S] = 0$, S has trivial normal bundle, so $u_S^*TM \cong TS^2 \oplus N_S$ implies

$$c_1([S]) = c_1(u_S^*TM) = c_1(TS^2) + c_1(N_S)$$

= $\chi(S^2) + 0 = 2.$

Thus

vir-dim
$$\mathcal{M}_0^{[S]}(M, J) = -2 + 2c_1([S]) = 2,$$

 \Rightarrow the simple curves in $\mathcal{M}_0^{[S]}(M,J)$ form a smooth 2-parameter family.

Lemma 2 (unique to dimension four!) For the nodal curves $\{v_+, v_-\}$ in Lemma 1, v_+ and v_- are each embedded, satisfy

$$[v_{\pm}] \cdot [v_{\pm}] = -1,$$

and intersect each other exactly once, transversely.

Moreover, all curves in $\mathcal{M}_0^{[S]}(M, J)$ are embedded and disjoint from the nodal curves, and they **foliate an open subset of** M.

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in im(u) \text{ for some } u \in \overline{\mathcal{M}}_0^{[S]}(M, J)\right\},$ is both open and closed.

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in im(u) \text{ for some } u \in \overline{\mathcal{M}}_0^{[S]}(M, J)\right\},$ is both open and closed.

⇒ every $p \in M$ is in the image of a (unique!) curve $u_p \in \overline{\mathcal{M}}_0^{[S]}(M, J)$.

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in im(u) \text{ for some } u \in \overline{\mathcal{M}}_0^{[S]}(M, J)\right\},$ is both open and closed.

⇒ every $p \in M$ is in the image of a (unique!) curve $u_p \in \overline{\mathcal{M}}_0^{[S]}(M, J)$.

 $\Rightarrow \text{ Lefschetz fibration}$ $\pi: M \to \overline{\mathcal{M}}_0^{[S]}(M, J) : p \mapsto u_p.$

Lemmas 1 and 2 imply that the set $\left\{p \in M \mid p \in im(u) \text{ for some } u \in \overline{\mathcal{M}}_0^{[S]}(M,J)\right\},$ is both open and closed.

⇒ every $p \in M$ is in the image of a (unique!) curve $u_p \in \overline{\mathcal{M}}_0^{[S]}(M, J)$.

 \Rightarrow Lefschetz fibration

$$\pi: M \to \overline{\mathcal{M}}_0^{[S]}(M, J) : p \mapsto u_p.$$

Singular fibres = nodal curves = two transversely intersecting exceptional spheres disjoint from S

 \Rightarrow all fibres are regular if $(M \setminus S, \omega)$ is minimal.