Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies

Lyw=w



Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies
Lyw=w
& the 1-form A = (yyw satisfies
d\ = w

We call A a Liouville form.



Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies
Lyw=w
& the 1-form A = (yyw satisfies
d\ = w
We call A a Liouville form.
Definition
A component M C 9(W,w) is convex/concave

if near M there is a Liouville vector field V
pointing transversely outward/inward.



Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies
Lyw=w
& the 1-form A = (yyw satisfies
d\ = w
We call A a Liouville form.
Definition
A component M C 9(W,w) is convex/concave

if near M there is a Liouville vector field V
pointing transversely outward/inward.

Equivalently, A := (jyw satisfies

AA (@) >0

on +M.



Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies
Lyw=w
& the 1-form A = (yyw satisfies
d\ = w
We call A a Liouville form.
Definition
A component M C 9(W,w) is convex/concave

if near M there is a Liouville vector field V
pointing transversely outward/inward.

Equivalently, A := (jyw satisfies

AA (@) >0

on =M. This means A|p) is a (positive/negative)
contact form, with contact structure

E=kerACTM



Background material 2
Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W?2", w) satisfies
Lyw=w
& the 1-form A = (yyw satisfies
d\ = w
We call A a Liouville form.
Definition
A component M C 9(W,w) is convex/concave

if near M there is a Liouville vector field V
pointing transversely outward/inward.

Equivalently, A := (jyw satisfies

AA (@) >0

on =M. This means A|p) is a (positive/negative)
contact form, with contact structure

E=kerACTM

Fact: w determines £ uniquely up to isotopy.
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Definition
A symplectic cobordism from
(M_,{ =kera_) to (M4,&{4 = keray):

"OW,w) = (—M_, &) U (M4, &4)"

e Convex at M : w = dX with >\|TMJr = oy

e Concave at M_: w =dA with Ay = a—

((—€,0] x My, d(e%a))
(W,w)

A T T [0,¢) x M_,d(e’a_))

Case M_ = :
(W,w) is a symplectic filling of (M4,&4)

Case My = 0:
(W,w) is a symplectic cap for (M_,&_)
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Some results on contact 3-manifolds (MM, §)

1. Every M admits a contact structure &.
(Martinet '71)

2. Any £ on any M is homotopic to a non-
fillable (“overtwisted") &'.
(Gromov '85 -+ Eliashberg '90)

3. Some M admit no fillable & (Lisca '98), and
some admit only overtwisted &.
(Etnyre-Honda '01)

4. Every (M, &) admits many symplectic caps.
(Etnyre-Honda '02)

5. Every overtwisted (M, £) admits a sym-
plectic cobordism to every other (M’,¢).
(Etnyre-Honda '02)

6. All symplectic fillings of (S3, éstq) are (B*, wetq),
up to symplectic deformation equivalence
and blowup.
(Gromov '85)



Remark
Topologically, “0X = S3r iIMposes No restric-

tions on X. Symplectic topology is much
more rigid.
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In Lecture 5, we will prove:

Theorem

Symplectic fillings of (S3,éstq), (ST xS2, €ctq)
and (L(k,k —1),&stq) are unique up to sym-
plectic deformation and blowup.

(Gromov '85, Eliashberg '90, Lisca '08, W. '10)
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Asymptotically cylindrical holomorphic curves

(W, w) ~» completion (W,&)

‘ \ ‘ \[O,oo) X My, d(eay))

((—€,0] x My, d(e%a))
(W, w)

[0,¢) x M_,d(e’a_))

e ﬁ (—00,0] x M_,d(eSa_))

Trivial case: symplectisation of (M, £ = ker «):
(R x M,d(e’a))
Let J(«) := R-invariant a.c.s.'s J with:

e J(0s) = Ra, the Reeb vector field on M:
da(Ra,) =0, a(Ry) =1

° J|§ is compatible with doz|§
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Near a simple curve u : > — W asymptotic
to nondegenerate Reeb orbits {v;},.r+, the
moduli space (for generic J) has dimension

ind(u) = (n — 3)x(%) + 27 (w*TW)

+ N Wi () = Y wE2(v),
zelM+ zel—

where

o c{(u*TW) is the relative first Chern num-
ber of (uW*TW,J) — >

o ur-(7v) is the Conley-Zehnder index of ~

The sum is independent of .
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