Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

 \Leftrightarrow the 1-form $\lambda := \iota_V \omega$ satisfies

 $d\lambda = \omega$

We call λ a Liouville form.

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

 \Leftrightarrow the 1-form $\lambda := \iota_V \omega$ satisfies

 $d\lambda = \omega$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field Vpointing transversely outward/inward.

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

 \Leftrightarrow the 1-form $\lambda := \iota_V \omega$ satisfies

 $d\lambda = \omega$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field Vpointing transversely outward/inward.

Equivalently, $\lambda:=\iota_V\omega$ satisfies

$$\lambda \wedge (d\lambda)^{n-1} > 0$$

on $\pm M$.

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

 \Leftrightarrow the 1-form $\lambda := \iota_V \omega$ satisfies

 $d\lambda = \omega$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field Vpointing transversely outward/inward.

Equivalently, $\lambda := \iota_V \omega$ satisfies

$$\lambda \wedge (d\lambda)^{n-1} > 0$$

on $\pm M$. This means $\lambda|_{TM}$ is a (positive/negative) contact form, with contact structure

$$\xi = \ker \lambda \subset TM$$

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W^{2n}, ω) satisfies

 $\mathcal{L}_V \omega = \omega$

 \Leftrightarrow the 1-form $\lambda := \iota_V \omega$ satisfies

 $d\lambda = \omega$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field Vpointing transversely outward/inward.

Equivalently, $\lambda := \iota_V \omega$ satisfies

$$\lambda \wedge (d\lambda)^{n-1} > 0$$

on $\pm M$. This means $\lambda|_{TM}$ is a (positive/negative) contact form, with contact structure

$$\xi = \ker \lambda \subset TM$$

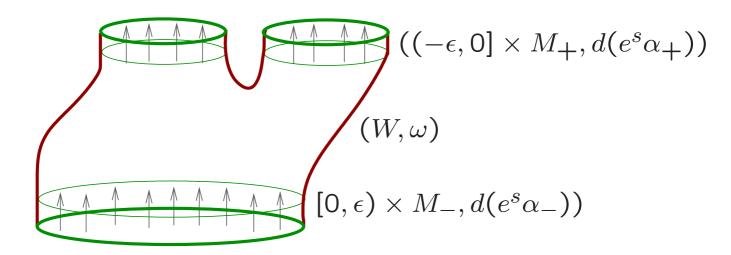
Fact: ω determines ξ uniquely up to isotopy.

Definition

A symplectic cobordism from

$$(M_-, \xi_- = \ker \alpha_-)$$
 to $(M_+, \xi_+ = \ker \alpha_+)$:
 $"\partial(W, \omega) = (-M_-, \xi_-) \sqcup (M_+, \xi_+)"$

- Convex at M_+ : $\omega = d\lambda$ with $\lambda|_{TM_+} = \alpha_+$
- Concave at M_{-} : $\omega = d\lambda$ with $\lambda|_{TM_{-}} = \alpha_{-}$

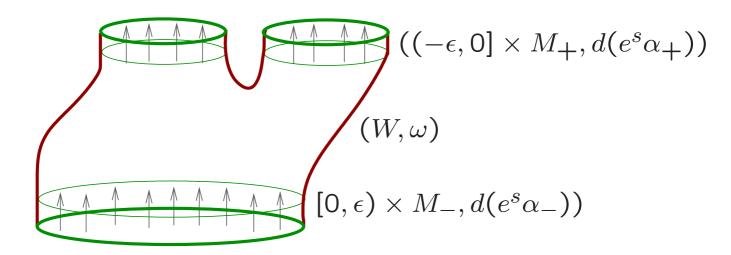


Definition

A symplectic cobordism from

$$(M_-, \xi_- = \ker \alpha_-)$$
 to $(M_+, \xi_+ = \ker \alpha_+)$:
 $"\partial(W, \omega) = (-M_-, \xi_-) \sqcup (M_+, \xi_+)"$

- Convex at M_+ : $\omega = d\lambda$ with $\lambda|_{TM_+} = \alpha_+$
- Concave at M_{-} : $\omega = d\lambda$ with $\lambda|_{TM_{-}} = \alpha_{-}$



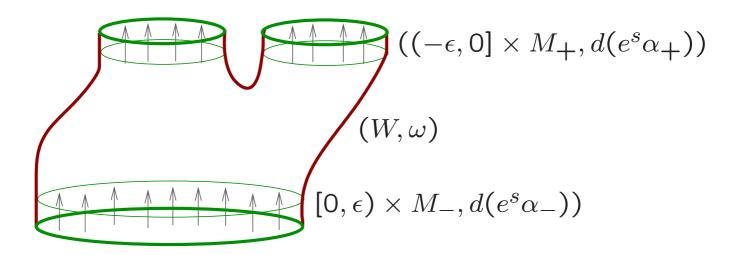
Case $M_{-} = \emptyset$: (W, ω) is a symplectic filling of (M_{+}, ξ_{+})

Definition

A symplectic cobordism from

$$(M_-, \xi_- = \ker \alpha_-)$$
 to $(M_+, \xi_+ = \ker \alpha_+)$:
 $"\partial(W, \omega) = (-M_-, \xi_-) \sqcup (M_+, \xi_+)"$

- Convex at M_+ : $\omega = d\lambda$ with $\lambda|_{TM_+} = \alpha_+$
- Concave at M_{-} : $\omega = d\lambda$ with $\lambda|_{TM_{-}} = \alpha_{-}$



Case $M_{-} = \emptyset$: (W, ω) is a symplectic filling of (M_{+}, ξ_{+})

Case $M_+ = \emptyset$: (W, ω) is a symplectic cap for (M_-, ξ_-)

1. Every M admits a contact structure ξ . (Martinet '71)

- 1. Every M admits a contact structure ξ . (Martinet '71)
- 2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ' .

(Gromov '85 + Eliashberg '90)

- 1. Every M admits a contact structure ξ . (Martinet '71)
- 2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ' . (Gromov '85 + Eliashberg '90)
- 3. Some *M* admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ . (*Etnyre-Honda* '01)

- 1. Every M admits a contact structure ξ . (Martinet '71)
- 2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ' . (Gromov '85 + Eliashberg '90)
- 3. Some *M* admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ . (*Etnyre-Honda* '01)
- 4. Every (M, ξ) admits many symplectic caps. (*Etnyre-Honda '02*)

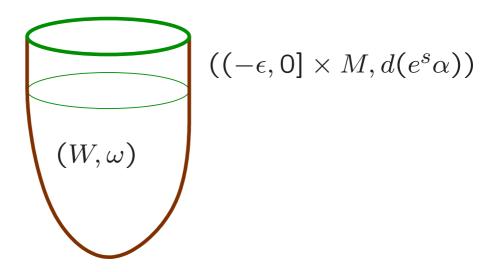
- 1. Every M admits a contact structure ξ . (Martinet '71)
- 2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ' . (Gromov '85 + Eliashberg '90)
- 3. Some *M* admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ . (*Etnyre-Honda* '01)
- 4. Every (M, ξ) admits many symplectic caps. (*Etnyre-Honda '02*)
- 5. Every overtwisted (M, ξ) admits a symplectic cobordism to every other (M', ξ') . (*Etnyre-Honda '02*)

- 1. Every M admits a contact structure ξ . (Martinet '71)
- 2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ' . (Gromov '85 + Eliashberg '90)
- 3. Some *M* admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ . (*Etnyre-Honda* '01)
- 4. Every (M, ξ) admits many symplectic caps. (*Etnyre-Honda '02*)
- 5. Every overtwisted (M,ξ) admits a symplectic cobordism to every other (M',ξ') . (*Etnyre-Honda '02*)
- 6. All symplectic fillings of (S^3, ξ_{std}) are (B^4, ω_{std}) , up to symplectic deformation equivalence and blowup.

(Gromov '85)

Remark

Topologically, " $\partial X \cong S^3$ " imposes no restrictions on X. Symplectic topology is much more rigid.



Remark

Topologically, " $\partial X \cong S^3$ " imposes no restrictions on X. Symplectic topology is much more rigid.



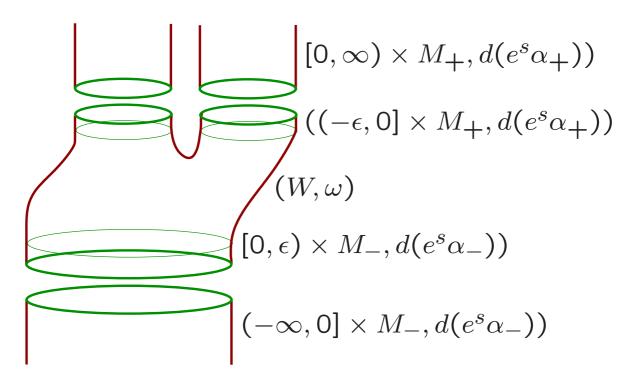
In Lecture 5, we will prove:

Theorem

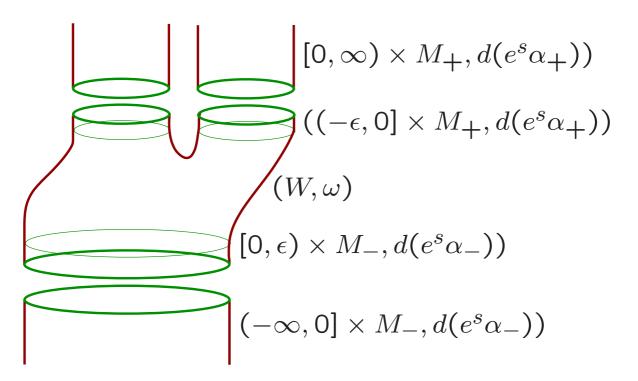
Symplectic fillings of (S^3, ξ_{std}) , $(S^1 \times S^2, \xi_{std})$ and $(L(k, k - 1), \xi_{std})$ are unique up to symplectic deformation and blowup.

(Gromov '85, Eliashberg '90, Lisca '08, W. '10)

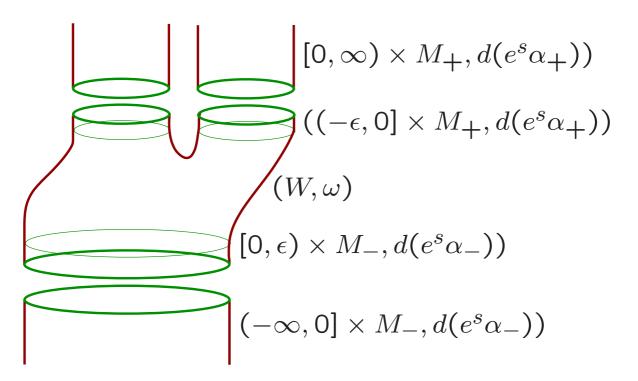
Asymptotically cylindrical holomorphic curves $(W, \omega) \rightsquigarrow$ completion $(\widehat{W}, \widehat{\omega})$



Asymptotically cylindrical holomorphic curves $(W, \omega) \rightsquigarrow$ completion $(\widehat{W}, \widehat{\omega})$



Trivial case: symplectisation of $(M, \xi = \ker \alpha)$: $(\mathbb{R} \times M, d(e^s \alpha))$ Asymptotically cylindrical holomorphic curves $(W, \omega) \rightsquigarrow$ completion $(\widehat{W}, \widehat{\omega})$



Trivial case: symplectisation of $(M, \xi = \ker \alpha)$: $(\mathbb{R} \times M, d(e^s \alpha))$ Let $\mathcal{J}(\alpha) := \mathbb{R}$ -invariant a.c.s.'s J with:

- $J(\partial_s) = R_{\alpha}$, the Reeb vector field on M: $d\alpha(R_{\alpha}, \cdot) \equiv 0, \quad \alpha(R_{\alpha}) \equiv 1$
- $J|_{\xi}$ is compatible with $d\alpha|_{\xi}$

Given Reeb orbit $\gamma : S^1 \to M$ of period T > 0, $\mathbb{R} \times S^1 \to \mathbb{R} \times M : (s,t) \mapsto (Ts,\gamma(t))$ is a *J*-holomorphic "orbit cylinder". Given Reeb orbit $\gamma: S^1 \to M$ of period T > 0,

$$\mathbb{R} \times S^{\perp} \to \mathbb{R} \times M : (s,t) \mapsto (Ts,\gamma(t))$$

is a J-holomorphic "orbit cylinder".

Choose J on \widehat{W} such that ω -compatible and $J \in \mathcal{J}(\alpha_{\pm})$ on ends. We consider punctured, *asymptotically cylindrical* J-holomorphic curves

$$u: \dot{\Sigma} = \Sigma \setminus \Gamma \to \widehat{W}$$

approaching Reeb orbits in $\{\pm\infty\} \times M_{\pm}$ at the punctures.

Given Reeb orbit $\gamma: S^1 \to M$ of period T > 0,

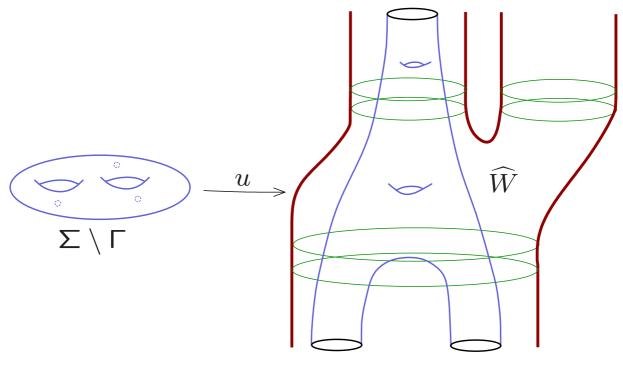
$$\mathbb{R} \times S^1 \to \mathbb{R} \times M : (s,t) \mapsto (Ts,\gamma(t))$$

is a J-holomorphic "orbit cylinder".

Choose J on \widehat{W} such that ω -compatible and $J \in \mathcal{J}(\alpha_{\pm})$ on ends. We consider punctured, *asymptotically cylindrical* J-holomorphic curves

$$u: \dot{\Sigma} = \Sigma \setminus \Gamma \to \widehat{W}$$

approaching Reeb orbits in $\{\pm\infty\} \times M_{\pm}$ at the punctures.



Virtual dimension

Fix a choice of trivialisation τ of $\gamma^* \xi_{\pm} \to S^1$ for every Reeb orbit γ .

Virtual dimension

Fix a choice of trivialisation τ of $\gamma^* \xi_{\pm} \to S^1$ for every Reeb orbit γ .

Near a simple curve $u : \dot{\Sigma} \to \widehat{W}$ asymptotic to nondegenerate Reeb orbits $\{\gamma_z\}_{z \in \Gamma^{\pm}}$, the moduli space (for generic J) has dimension

$$\operatorname{ind}(u) := (n-3)\chi(\dot{\Sigma}) + 2c_1^{\tau}(u^*T\widehat{W}) + \sum_{z\in\Gamma^+} \mu_{\mathsf{CZ}}^{\tau}(\gamma_z) - \sum_{z\in\Gamma^-} \mu_{\mathsf{CZ}}^{\tau}(\gamma_z),$$

where

- $c_1^{\tau}(u^*T\widehat{W})$ is the relative first Chern number of $(u^*T\widehat{W}, J) \rightarrow \dot{\Sigma}$
- $\mu_{\rm CZ}^{\tau}(\gamma)$ is the Conley-Zehnder index of γ

Virtual dimension

Fix a choice of trivialisation τ of $\gamma^* \xi_{\pm} \to S^1$ for every Reeb orbit γ .

Near a simple curve $u : \dot{\Sigma} \to \widehat{W}$ asymptotic to nondegenerate Reeb orbits $\{\gamma_z\}_{z \in \Gamma^{\pm}}$, the moduli space (for generic J) has dimension

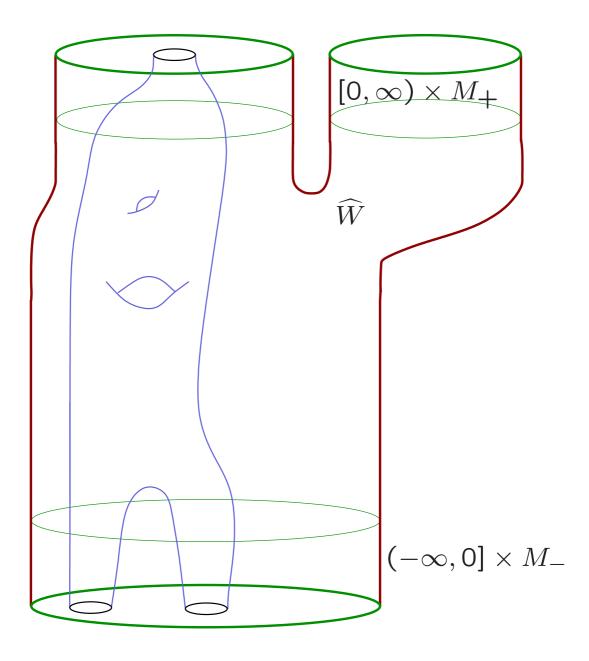
$$\operatorname{ind}(u) := (n-3)\chi(\dot{\Sigma}) + 2c_1^{\tau}(u^*T\widehat{W}) + \sum_{z\in\Gamma^+} \mu_{\mathsf{CZ}}^{\tau}(\gamma_z) - \sum_{z\in\Gamma^-} \mu_{\mathsf{CZ}}^{\tau}(\gamma_z),$$

where

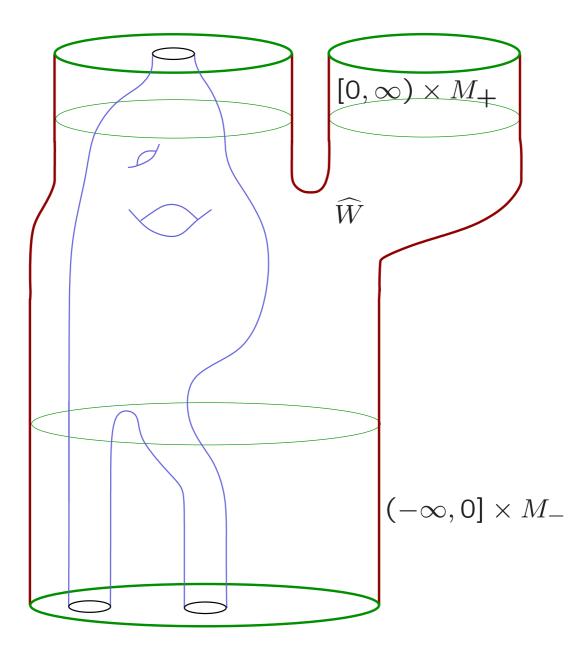
- $c_1^{\tau}(u^*T\widehat{W})$ is the relative first Chern number of $(u^*T\widehat{W}, J) \rightarrow \dot{\Sigma}$
- $\mu_{\rm CZ}^{\tau}(\gamma)$ is the Conley-Zehnder index of γ

The sum is independent of τ .

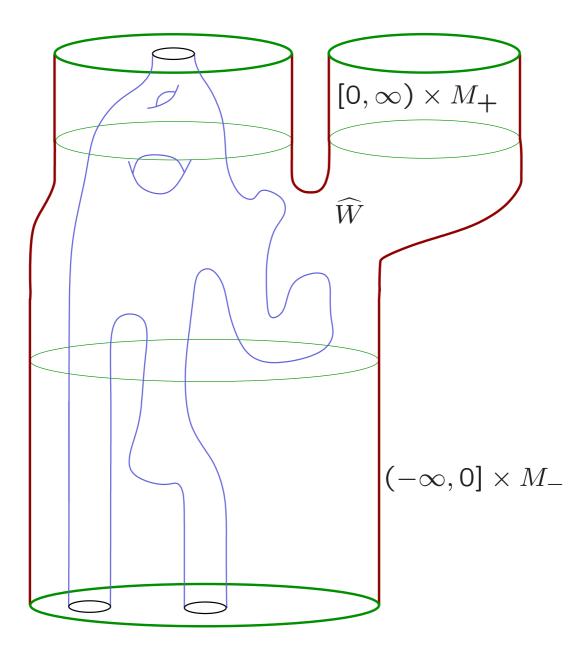
Sequences can converge to (nodal) *J*-holomorphic buildings:



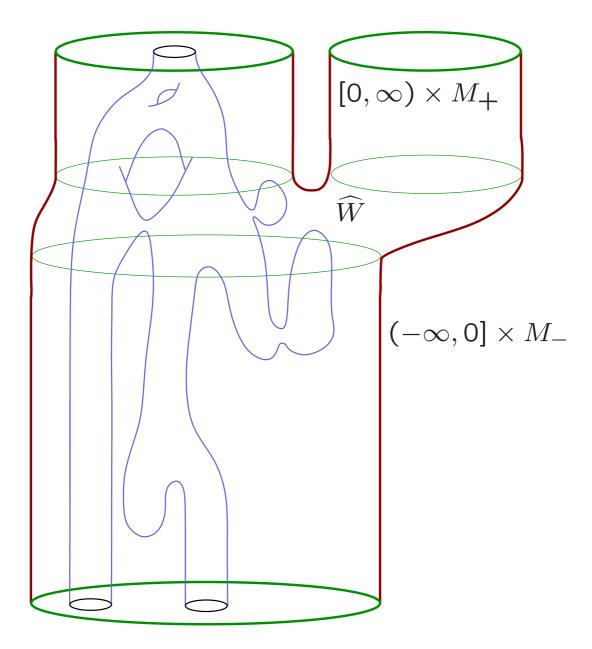
Sequences can converge to (nodal) *J*-holomorphic buildings:



Sequences can converge to (nodal) *J*-holomorphic buildings:



Sequences can converge to (nodal) *J*-holomorphic buildings:



Sequences can converge to (nodal) *J*-holomorphic buildings:

