
Background material 2

Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W2n, ω) satisfies

LV ω = ω, the 1-form � := �V ! satis�esd� = !We 
all � a Liouville form.De�nitionA 
omponentM � �(W;!) is 
onvex/
on
aveif near M there is a Liouville ve
tor �eld Vpointing transversely outward/inward.Equivalently, � := �V ! satis�es� ^ (d�)n�1 > 0on �M . This means �jTM is a (positive/negative)
onta
t form, with 
onta
t stru
ture� = ker � � TMFa
t: ! determines � uniquely up to isotopy.
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Contact manifolds, fillings, cobordisms

A Liouville vector field V on (W2n, ω) satisfies

LV ω = ω

⇔ the 1-form λ := ιV ω satisfies

dλ = ω

We call λ a Liouville form.

Definition

A component M ⊂ ∂(W,ω) is convex/concave

if near M there is a Liouville vector field V

pointing transversely outward/inward.

Equivalently, λ := ιV ω satisfies

λ ∧ (dλ)n−1 > 0

on ±M . This means λ|TM is a (positive/negative)

contact form, with contact structure

ξ = ker λ ⊂ TM

Fact: ω determines ξ uniquely up to isotopy.
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Definition

A symplectic cobordism from

(M−, ξ− = kerα−) to (M+, ξ+ = kerα+):

“∂(W,ω) = (−M−, ξ−) ⊔ (M+, ξ+)”

• Convex at M+: ω = dλ with λ|TM+
= α+

• Concave at M−: ω = dλ with λ|TM−
= α−

((−ǫ,0]×M+, d(esα+))

[0, ǫ)×M−, d(e
sα−))

(W,ω)

Case M� = ;:(W;!) is a symple
ti
 �lling of (M+; �+)Case M+ = ;:(W;!) is a symple
ti
 
ap for (M�; ��)
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Definition

A symplectic cobordism from
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(W,ω)

Case M− = ∅:

(W,ω) is a symplectic filling of (M+, ξ+)

Case M+ = ∅:

(W,ω) is a symplectic cap for (M−, ξ−)
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Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ.

(Martinet ’71)2. Any � on any M is homotopi
 to a non-�llable (\overtwisted") �0.(Gromov '85 + Eliashberg '90)3. Some M admit no �llable � (Lis
a '98), andsome admit only overtwisted �.(Etnyre-Honda '01)4. Every (M; �) admits many symple
ti
 
aps.(Etnyre-Honda '02)5. Every overtwisted (M; �) admits a sym-ple
ti
 
obordism to every other (M 0; �0).(Etnyre-Honda '02)6. All symple
ti
 �llings of (S3; �std) are (B4; !std),up to symple
ti
 deformation equivalen
eand blowup.(Gromov '85)
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6. All symplectic fillings of (S3, ξstd) are (B4, ωstd),

up to symplectic deformation equivalence
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Remark

Topologically, “∂X ∼= S3” imposes no restric-

tions on X. Symplectic topology is much

more rigid.

replacements

(W,ω)

((−ǫ,0]×M,d(esα))

In Le
ture 5, we will prove:TheoremSymple
ti
 �llings of (S3; �std), (S1�S2; �std)and (L(k; k � 1); �std) are unique up to sym-ple
ti
 deformation and blowup.(Gromov '85, Eliashberg '90, Lis
a '08, W. '10)
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(W,ω)
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In Lecture 5, we will prove:

Theorem

Symplectic fillings of (S3, ξstd), (S
1×S2, ξstd)

and (L(k, k − 1), ξstd) are unique up to sym-

plectic deformation and blowup.

(Gromov ’85, Eliashberg ’90, Lisca ’08, W. ’10)
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Asymptotically cylindrical holomorphic curves

(W,ω) ; completion (Ŵ , ω̂)

((−ǫ,0]×M+, d(esα+))

[0, ǫ)×M−, d(e
sα−))

(W,ω)

[0,∞)×M+, d(esα+))

(−∞,0]×M−, d(e
sα−))

Trivial 
ase: symple
tisation of (M; � = ker�):(R�M;d(es�))Let J (�) := R-invariant a.
.s.'s J with:
� J(�s) = R�, the Reeb ve
tor �eld on M :d�(R�; �) � 0; �(R�) � 1� J j� is 
ompatible with d�j�
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(W,ω) ; completion (Ŵ , ω̂)

((−ǫ,0]×M+, d(esα+))

[0, ǫ)×M−, d(e
sα−))

(W,ω)

[0,∞)×M+, d(esα+))

(−∞,0]×M−, d(e
sα−))

Trivial case: symplectisation of (M, ξ = kerα):

(R×M,d(esα))

Let J (α) := R-invariant a.c.s.’s J with:

• J(∂s) = Rα, the Reeb vector field on M :

dα(Rα, ·) ≡ 0, α(Rα) ≡ 1

• J |ξ is compatible with dα|ξ
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Given Reeb orbit γ : S1 → M of period T > 0,

R× S1 → R×M : (s, t) 7→ (Ts, γ(t))

is a J-holomorphic “orbit cylinder”.Choose J on 
W su
h that !-
ompatible andJ 2 J (��) on ends. We 
onsider pun
tured,asymptoti
ally 
ylindri
al J-holomorphi
 
urvesu : _� = � n �! 
Wapproa
hing Reeb orbits in f�1g�M� at thepun
tures.
PSfrag repla
ements((��;0℄�M+; d(es�+))[0; �)�M�; d(es��))(W;!)(W;!)((��;0℄�M;d(es�))[0;1)�M+; d(es�+))(�1;0℄�M�; d(es��))u� n �
W[0;1)�M+(�1;0℄�M��M+�M�
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Virtual dimension

Fix a choice of trivialisation τ of γ∗ξ± → S1

for every Reeb orbit γ.Near a simple 
urve u : _� ! 
W asymptoti
to nondegenerate Reeb orbits f
zgz2��, themoduli spa
e (for generi
 J) has dimensionind(u) := (n� 3)�( _�) + 2
�1(u�T 
W)+ Xz2�+ ��CZ(
z)� Xz2�� ��CZ(
z);where
� 
�1(u�T 
W) is the relative �rst Chern num-ber of (u�T 
W;J)! _�� ��CZ(
) is the Conley-Zehnder index of 


The sum is independent of � .
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Compactification

Sequences can converge to (nodal)

J-holomorphic buildings:

Ŵ

[0,∞)×M+

(−∞,0]×M−
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