Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

\Leftrightarrow the 1-form $\lambda:=\iota_{V} \omega$ satisfies

$$
d \lambda=\omega
$$

We call λ a Liouville form.

Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

\Leftrightarrow the 1-form $\lambda:=\iota_{V} \omega$ satisfies

$$
d \lambda=\omega
$$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field V pointing transversely outward/inward.

Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

\Leftrightarrow the 1-form $\lambda:=\iota_{V} \omega$ satisfies

$$
d \lambda=\omega
$$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field V pointing transversely outward/inward.

Equivalently, $\lambda:=\iota_{V} \omega$ satisfies

$$
\lambda \wedge(d \lambda)^{n-1}>0
$$

on $\pm M$.

Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

\Leftrightarrow the 1-form $\lambda:=\iota_{V} \omega$ satisfies

$$
d \lambda=\omega
$$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field V pointing transversely outward/inward.

Equivalently, $\lambda:=\iota_{V} \omega$ satisfies

$$
\lambda \wedge(d \lambda)^{n-1}>0
$$

on $\pm M$. This means $\left.\lambda\right|_{T M}$ is a (positive/negative) contact form, with contact structure

$$
\xi=\operatorname{ker} \lambda \subset T M
$$

Background material 2

Contact manifolds, fillings, cobordisms
A Liouville vector field V on $\left(W^{2 n}, \omega\right)$ satisfies

$$
\mathcal{L}_{V} \omega=\omega
$$

\Leftrightarrow the 1-form $\lambda:=\iota_{V} \omega$ satisfies

$$
d \lambda=\omega
$$

We call λ a Liouville form.

Definition

A component $M \subset \partial(W, \omega)$ is convex/concave if near M there is a Liouville vector field V pointing transversely outward/inward.

Equivalently, $\lambda:=\iota_{V} \omega$ satisfies

$$
\lambda \wedge(d \lambda)^{n-1}>0
$$

on $\pm M$. This means $\lambda_{T M}$ is a (positive/negative) contact form, with contact structure

$$
\xi=\operatorname{ker} \lambda \subset T M
$$

Fact: ω determines ξ uniquely up to isotopy.

Definition

A symplectic cobordism from
$\left(M_{-}, \xi_{-}=\operatorname{ker} \alpha_{-}\right)$to $\left(M_{+}, \xi_{+}=\operatorname{ker} \alpha_{+}\right)$:

$$
\text { " } \partial(W, \omega)=\left(-M_{-}, \xi_{-}\right) \sqcup\left(M_{+}, \xi_{+}\right) "
$$

- Convex at $M_{+}: \omega=d \lambda$ with $\left.\lambda\right|_{T M_{+}}=\alpha_{+}$
- Concave at $M_{-}: \omega=d \lambda$ with $\left.\lambda\right|_{T M_{-}}=\alpha_{-}$

Definition

A symplectic cobordism from
($M_{-}, \xi_{-}=\operatorname{ker} \alpha_{-}$) to $\left(M_{+}, \xi_{+}=\operatorname{ker} \alpha_{+}\right)$:

$$
\text { " } \partial(W, \omega)=\left(-M_{-}, \xi_{-}\right) \sqcup\left(M_{+}, \xi_{+}\right) "
$$

- Convex at $M_{+}: \omega=d \lambda$ with $\lambda_{T M_{+}}=\alpha_{+}$
- Concave at $M_{-}: \omega=d \lambda$ with $\left.\lambda\right|_{T M_{-}}=\alpha_{-}$

Case $M_{-}=\emptyset$:
(W, ω) is a symplectic filling of $\left(M_{+}, \xi_{+}\right)$

Definition

A symplectic cobordism from
($M_{-}, \xi_{-}=\operatorname{ker} \alpha_{-}$) to $\left(M_{+}, \xi_{+}=\operatorname{ker} \alpha_{+}\right)$:

$$
\text { " } \partial(W, \omega)=\left(-M_{-}, \xi_{-}\right) \sqcup\left(M_{+}, \xi_{+}\right) "
$$

- Convex at $M_{+}: \omega=d \lambda$ with $\left.\lambda\right|_{T M_{+}}=\alpha_{+}$
- Concave at $M_{-}: \omega=d \lambda$ with $\left.\lambda\right|_{T M_{-}}=\alpha_{-}$

Case $M_{-}=\emptyset$:
(W, ω) is a symplectic filling of $\left(M_{+}, \xi_{+}\right)$
Case $M_{+}=\emptyset$:
(W, ω) is a symplectic cap for $\left(M_{-}, \xi_{-}\right)$

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)
2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ^{\prime}.
(Gromov '85 + Eliashberg '90)

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)
2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ^{\prime}.
(Gromov '85 + Eliashberg '90)
3. Some M admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ.
(Etnyre-Honda '01)

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)
2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ^{\prime}.
(Gromov '85 + Eliashberg '90)
3. Some M admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ. (Etnyre-Honda '01)
4. Every (M, ξ) admits many symplectic caps. (Etnyre-Honda '02)

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)
2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ^{\prime}.
(Gromov'85 + Eliashberg '90)
3. Some M admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ. (Etnyre-Honda '01)
4. Every (M, ξ) admits many symplectic caps. (Etnyre-Honda '02)
5. Every overtwisted (M, ξ) admits a symplectic cobordism to every other $\left(M^{\prime}, \xi^{\prime}\right)$. (Etnyre-Honda '02)

Some results on contact 3-manifolds (M, ξ)

1. Every M admits a contact structure ξ. (Martinet '71)
2. Any ξ on any M is homotopic to a nonfillable ("overtwisted") ξ^{\prime}.
(Gromov'85 + Eliashberg '90)
3. Some M admit no fillable ξ (Lisca '98), and some admit only overtwisted ξ. (Etnyre-Honda '01)
4. Every (M, ξ) admits many symplectic caps. (Etnyre-Honda '02)
5. Every overtwisted (M, ξ) admits a symplectic cobordism to every other $\left(M^{\prime}, \xi^{\prime}\right)$. (Etnyre-Honda '02)
6. All symplectic fillings of $\left(S^{3}, \xi_{\text {std }}\right)$ are $\left(B^{4}, \omega_{\text {std }}\right)$, up to symplectic deformation equivalence and blowup.
(Gromov '85)

Remark

Topologically, " $\partial X \cong S^{3}$ " imposes no restrictions on X. Symplectic topology is much more rigid.

Remark

Topologically, " $\partial X \cong S^{3}$ " imposes no restrictions on X. Symplectic topology is much more rigid.

In Lecture 5, we will prove:

Theorem

Symplectic fillings of $\left(S^{3}, \xi_{\text {std }}\right),\left(S^{1} \times S^{2}, \xi_{\text {std }}\right)$ and $\left(L(k, k-1), \xi_{\text {std }}\right)$ are unique up to symplectic deformation and blowup. (Gromov '85, Eliashberg '90, Lisca '08, W. '10)

Asymptotically cylindrical holomorphic curves

 $(W, \omega) \leadsto$ completion $(\widehat{W}, \widehat{\omega})$

Asymptotically cylindrical holomorphic curves

 $(W, \omega) \leadsto$ completion $(\widehat{W}, \widehat{\omega})$

Trivial case: symplectisation of $(M, \xi=\operatorname{ker} \alpha)$:
$\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$

Asymptotically cylindrical holomorphic curves

 $(W, \omega) \leadsto$ completion $(\widehat{W}, \widehat{\omega})$

Trivial case: symplectisation of $(M, \xi=\operatorname{ker} \alpha)$:
$\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$
Let $\mathcal{J}(\alpha):=\mathbb{R}$-invariant a.c.s.'s J with:

- $J\left(\partial_{s}\right)=R_{\alpha}$, the Reeb vector field on M :

$$
d \alpha\left(R_{\alpha}, \cdot\right) \equiv 0, \quad \alpha\left(R_{\alpha}\right) \equiv 1
$$

- $\left.J\right|_{\xi}$ is compatible with $\left.d \alpha\right|_{\xi}$

Given Reeb orbit $\gamma: S^{1} \rightarrow M$ of period $T>0$,

$$
\mathbb{R} \times S^{1} \rightarrow \mathbb{R} \times M:(s, t) \mapsto(T s, \gamma(t))
$$

is a J-holomorphic "orbit cylinder".

Given Reeb orbit $\gamma: S^{1} \rightarrow M$ of period $T>0$,

$$
\mathbb{R} \times S^{1} \rightarrow \mathbb{R} \times M:(s, t) \mapsto(T s, \gamma(t))
$$

is a J-holomorphic "orbit cylinder".

Choose J on \widehat{W} such that ω-compatible and $J \in \mathcal{J}\left(\alpha_{ \pm}\right)$on ends. We consider punctured, asymptotically cylindrical J-holomorphic curves

$$
u: \dot{\Sigma}=\Sigma \backslash \Gamma \rightarrow \widehat{W}
$$

approaching Reeb orbits in $\{ \pm \infty\} \times M_{ \pm}$at the punctures.

Given Reeb orbit $\gamma: S^{1} \rightarrow M$ of period $T>0$,

$$
\mathbb{R} \times S^{1} \rightarrow \mathbb{R} \times M:(s, t) \mapsto(T s, \gamma(t))
$$

is a J-holomorphic "orbit cylinder".

Choose J on \widehat{W} such that ω-compatible and $J \in \mathcal{J}\left(\alpha_{ \pm}\right)$on ends. We consider punctured, asymptotically cylindrical J-holomorphic curves

$$
u: \dot{\Sigma}=\Sigma \backslash \Gamma \rightarrow \widehat{W}
$$

approaching Reeb orbits in $\{ \pm \infty\} \times M_{ \pm}$at the punctures.

Virtual dimension

Fix a choice of trivialisation τ of $\gamma^{*} \xi_{ \pm} \rightarrow S^{1}$ for every Reeb orbit γ.

Virtual dimension

Fix a choice of trivialisation τ of $\gamma^{*} \xi_{ \pm} \rightarrow S^{1}$ for every Reeb orbit γ.

Near a simple curve $u: \dot{\Sigma} \rightarrow \widehat{W}$ asymptotic to nondegenerate Reeb orbits $\left\{\gamma_{z}\right\}_{z \in \Gamma^{ \pm}}$, the moduli space (for generic J) has dimension

$$
\begin{aligned}
\operatorname{ind}(u):= & (n-3) \chi(\dot{\Sigma})+2 c_{1}^{\tau}\left(u^{*} T \widehat{W}\right) \\
& +\sum_{z \in \Gamma^{+}} \mu_{C Z}^{\tau}\left(\gamma_{z}\right)-\sum_{z \in \Gamma^{-}} \mu_{C Z}^{\tau}\left(\gamma_{z}\right),
\end{aligned}
$$

where

- $c_{1}^{\tau}\left(u^{*} T \widehat{W}\right)$ is the relative first Chern number of $\left(u^{*} T \widehat{W}, J\right) \rightarrow \dot{\Sigma}$
- $\mu_{C Z}^{\tau}(\gamma)$ is the Conley-Zehnder index of γ

Virtual dimension

Fix a choice of trivialisation τ of $\gamma^{*} \xi_{ \pm} \rightarrow S^{1}$ for every Reeb orbit γ.

Near a simple curve $u: \dot{\Sigma} \rightarrow \widehat{W}$ asymptotic to nondegenerate Reeb orbits $\left\{\gamma_{z}\right\}_{z \in \Gamma^{ \pm}}$, the moduli space (for generic J) has dimension

$$
\begin{aligned}
\operatorname{ind}(u):= & (n-3) \chi(\dot{\Sigma})+2 c_{1}^{\tau}\left(u^{*} T \widehat{W}\right) \\
& +\sum_{z \in \Gamma^{+}} \mu_{C Z}^{\tau}\left(\gamma_{z}\right)-\sum_{z \in \Gamma^{-}} \mu_{C Z}^{\tau}\left(\gamma_{z}\right),
\end{aligned}
$$

where

- $c_{1}^{\tau}\left(u^{*} T \widehat{W}\right)$ is the relative first Chern number of $\left(u^{*} T \widehat{W}, J\right) \rightarrow \dot{\Sigma}$
- $\mu_{C Z}^{\tau}(\gamma)$ is the Conley-Zehnder index of γ

The sum is independent of τ.

Compactification

Sequences can converge to (nodal) J-holomorphic buildings:

Compactification

Sequences can converge to (nodal) J-holomorphic buildings:

Compactification

Sequences can converge to (nodal) J-holomorphic buildings:

Compactification

Sequences can converge to (nodal) J-holomorphic buildings:

Compactification

Sequences can converge to (nodal) J-holomorphic buildings:

