
Background material 3

The basic goal

We want an intersection theory for asymp-

totically cylindrical holomorphic curves:

u : Σ̇ → Ŵ , v : Σ̇′ → Ŵ

u Ŵ

Σ̇

1



Desired properties:

1. Homotopy-invariant suÆ
ient 
onditionsfor u and v to be disjoint or transverse2. Homotopy-invariant suÆ
ient 
onditionsfor simple 
urves to be embedded

u Ŵ

Σ̇
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It looks promising at first...

Whenever u(Σ̇) 6= v(Σ̇′), we have

u · v ≥
∣∣∣{(z, ζ) | u(z) = v(ζ)}

∣∣∣

with equality iff u ⋔ v. Hen
e:u � v = 0 , u( _�) \ v( _�0) = ;:Similarly, if u is simple,Æ(u) � �12����f(z; �) j u(z) = u(�); z 6= �g���with equality i� u is immersed with all doublepoints transverse. Therefore:Æ(u) = 0 , u is embedded:
The basi
 problem:Neither u � v nor Æ(u) is homotopy invariant!
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Disaster scenario:

Suppose u : Σ̇ → Ŵ has two ends approach-
ing the same Reeb orbit...

Ŵ

[0,∞)×M+

(−∞,0]×M−

δ(u) > 0

Interse
tions 
an es
ape to in�nity!Solution:Understand asymptoti
 behaviour well.
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Suppose u : Σ̇ → Ŵ has two ends approach-
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Ŵ

[0,∞)×M+

(−∞,0]×M−

δ(u) = 0

Intersections can escape to infinity!

Solution:
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Analogy with Morse theory

In Morse homology, one studies gradient-flow

lines

x : R → M, ẋ = ∇f(x)

of a function f : M → R on a Riemannian

manifold (M, g), where we assume each p ∈

Crit(f) is nondegenerate, i.e. the Hessian

Ap := ∇(∇f)(p) : TpM → TpM

has trivial kernel.

ind = 2

ind = 0

ind = 1

Ap is symmetri
, so its eigenvalues are real.
5



Analogy with Morse theory

In Morse homology, one studies gradient-flow

lines

x : R → M, ẋ = ∇f(x)
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of a function f : M → R on a Riemannian

manifold (M, g), where we assume each p ∈

Crit(f) is nondegenerate, i.e. the Hessian

Ap := ∇(∇f)(p) : TpM → TpM

has trivial kernel.

ind = 2

ind = 0

ind = 1

Ap is symmetri
, so its eigenvalues are real.
5



Analogy with Morse theory

In Morse homology, one studies gradient-flow

lines

x : R → M, ẋ = ∇f(x)
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Asymptotic formula for gradient-flow

Theorem

Assume p ∈ Crit(f), h(s) ∈ TpM is defined for

s close to ±∞ and

x(s) = expp h(s) ∈ M

is a gradient-flow line approaching p as s →

±∞. Then h(s) satis�es the de
ay formulah(s) = e�s (v+ r(s))for some eigenve
tor v 2 TpM of Ap withApv = �v; �� < 0;and a fun
tion r(s) 2 TpM withr(s)! 0 as s! �1.\Flow lines approa
h 
riti
al points alongasymptoti
 eigenve
tors."
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Asymptotic formula for gradient-flow

Theorem

Assume p ∈ Crit(f), h(s) ∈ TpM is defined for

s close to ±∞ and

x(s) = expp h(s) ∈ M

is a gradient-flow line approaching p as s →

±∞. Then h(s) satisfies the decay formula

h(s) = eλs (v + r(s))

for some eigenvector v ∈ TpM of Ap with

Apv = λv, ±λ < 0,

and a function r(s) ∈ TpM with

r(s) → 0 as s → ±∞.

“Flow lines approach critical points along

asymptotic eigenvectors.”
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“Holomorphic curves are gradient-flow lines”

Choose J ∈ J (α) on a symplectisation

(R×M,d(esα)). Then a half-
ylinderu= (f; v) : [0;1)� S1 ! R�Mis J-holomorphi
 if and only if�sf � �(�tv) = 0;�tf + �(�sv) = 0;���sv+ J ���tv = 0;where �� : TM ! � is the proje
tion along R�.Claim: the third equation 
an be interpretedas the L2-gradient 
ow of the 
onta
t a
-tion fun
tional�� : C1(S1;M)! R : 
 7! ZS1 
��;whose 
riti
al points are Reeb orbits. Its Hes-sian at a T -periodi
 Reeb orbit 
 : S1 !M isthe L2-symmetri
 operatorr(r��)(
) : �(
��)! �(
��)� 7! �J (rt� � Tr�R�) ;where r is any symmetri
 
onne
tion on M .
7
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tion functional

Φα : C∞(S1,M) → R : γ 7→
∫

S1
γ∗α,

whose critical points are Reeb orbits. Its Hes-

sian at a T -periodic Reeb orbit γ : S1 → M is

the L2-symmetric operator

∇(∇Φα)(γ) : Γ(γ∗ξ) → Γ(γ∗ξ)

η 7→ −J (∇tη − T∇ηRα) ,
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