Background material 3

The basic goal

We want an intersection theory for asymptotically cylindrical holomorphic curves:

$$
u: \dot{\Sigma} \rightarrow \widehat{W}, \quad v: \dot{\Sigma}^{\prime} \rightarrow \widehat{W}
$$

Desired properties:

Desired properties:

1. Homotopy-invariant sufficient conditions for u and v to be disjoint or transverse

Desired properties:

1. Homotopy-invariant sufficient conditions for u and v to be disjoint or transverse
2. Homotopy-invariant sufficient conditions for simple curves to be embedded

It looks promising at first...

Whenever $u(\dot{\Sigma}) \neq v\left(\dot{\Sigma}^{\prime}\right)$, we have

$$
u \cdot v \geq|\{(z, \zeta) \mid u(z)=v(\zeta)\}|
$$

with equality iff $u \pitchfork v$.

It looks promising at first...

Whenever $u(\dot{\Sigma}) \neq v\left(\dot{\Sigma}^{\prime}\right)$, we have

$$
u \cdot v \geq|\{(z, \zeta) \mid u(z)=v(\zeta)\}|
$$

with equality iff $u \pitchfork v$. Hence:

$$
u \cdot v=0 \quad \Leftrightarrow \quad u(\dot{\Sigma}) \cap v\left(\dot{\Sigma}^{\prime}\right)=\emptyset
$$

It looks promising at first...

Whenever $u(\dot{\Sigma}) \neq v\left(\dot{\Sigma}^{\prime}\right)$, we have

$$
u \cdot v \geq|\{(z, \zeta) \mid u(z)=v(\zeta)\}|
$$

with equality iff $u \pitchfork v$. Hence:

$$
u \cdot v=0 \quad \Leftrightarrow \quad u(\dot{\Sigma}) \cap v\left(\dot{\Sigma}^{\prime}\right)=\emptyset .
$$

Similarly, if u is simple,

$$
\delta(u) \geq \frac{1}{2}|\{(z, \zeta) \mid u(z)=u(\zeta), z \neq \zeta\}|
$$

with equality iff u is immersed with all double points transverse.

It looks promising at first...

Whenever $u(\dot{\Sigma}) \neq v\left(\dot{\Sigma}^{\prime}\right)$, we have

$$
u \cdot v \geq|\{(z, \zeta) \mid u(z)=v(\zeta)\}|
$$

with equality iff $u \pitchfork v$. Hence:

$$
u \cdot v=0 \quad \Leftrightarrow \quad u(\dot{\Sigma}) \cap v\left(\dot{\Sigma}^{\prime}\right)=\emptyset .
$$

Similarly, if u is simple,

$$
\delta(u) \geq \frac{1}{2}|\{(z, \zeta) \mid u(z)=u(\zeta), z \neq \zeta\}|
$$

with equality iff u is immersed with all double points transverse. Therefore:

$$
\delta(u)=0 \Leftrightarrow u \text { is embedded. }
$$

It looks promising at first...

Whenever $u(\dot{\Sigma}) \neq v\left(\dot{\Sigma}^{\prime}\right)$, we have

$$
u \cdot v \geq|\{(z, \zeta) \mid u(z)=v(\zeta)\}|
$$

with equality iff $u \pitchfork v$. Hence:

$$
u \cdot v=0 \quad \Leftrightarrow \quad u(\dot{\Sigma}) \cap v\left(\dot{\Sigma}^{\prime}\right)=\emptyset .
$$

Similarly, if u is simple,

$$
\delta(u) \geq \frac{1}{2}|\{(z, \zeta) \mid u(z)=u(\zeta), z \neq \zeta\}|
$$

with equality iff u is immersed with all double points transverse. Therefore:

$$
\delta(u)=0 \quad \Leftrightarrow \quad u \text { is embedded. }
$$

The basic problem:

Neither $u \cdot v$ nor $\delta(u)$ is homotopy invariant!

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Intersections can escape to infinity!

Disaster scenario:

Suppose $u: \dot{\Sigma} \rightarrow \widehat{W}$ has two ends approaching the same Reeb orbit...

Intersections can escape to infinity!

Solution:

Understand asymptotic behaviour well.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ $\operatorname{Crit}(f)$ is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ Crit (f) is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

Analogy with Morse theory

In Morse homology, one studies gradient-flow lines

$$
x: \mathbb{R} \rightarrow M, \quad \dot{x}=\nabla f(x)
$$

of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g), where we assume each $p \in$ Crit (f) is nondegenerate, i.e. the Hessian

$$
\mathbf{A}_{p}:=\nabla(\nabla f)(p): T_{p} M \rightarrow T_{p} M
$$

has trivial kernel.

\mathbf{A}_{p} is symmetric, so its eigenvalues are real.

Asymptotic formula for gradient-flow

Theorem

Assume $p \in \operatorname{Crit}(f), h(s) \in T_{p} M$ is defined for s close to $\pm \infty$ and

$$
x(s)=\exp _{p} h(s) \in M
$$

is a gradient-flow line approaching p as $s \rightarrow$ $\pm \infty$.

Asymptotic formula for gradient-flow

Theorem

Assume $p \in \operatorname{Crit}(f), h(s) \in T_{p} M$ is defined for s close to $\pm \infty$ and

$$
x(s)=\exp _{p} h(s) \in M
$$

is a gradient-flow line approaching p as $s \rightarrow$ $\pm \infty$. Then $h(s)$ satisfies the decay formula

$$
h(s)=e^{\lambda s}(v+r(s))
$$

for some eigenvector $v \in T_{p} M$ of \mathbf{A}_{p} with

$$
\mathbf{A}_{p} v=\lambda v, \quad \pm \lambda<0,
$$

and a function $r(s) \in T_{p} M$ with

$$
r(s) \rightarrow 0 \quad \text { as } s \rightarrow \pm \infty .
$$

Asymptotic formula for gradient-flow

Theorem

Assume $p \in \operatorname{Crit}(f), h(s) \in T_{p} M$ is defined for s close to $\pm \infty$ and

$$
x(s)=\exp _{p} h(s) \in M
$$

is a gradient-flow line approaching p as $s \rightarrow$ $\pm \infty$. Then $h(s)$ satisfies the decay formula

$$
h(s)=e^{\lambda s}(v+r(s))
$$

for some eigenvector $v \in T_{p} M$ of \mathbf{A}_{p} with

$$
\mathbf{A}_{p} v=\lambda v, \quad \pm \lambda<0,
$$

and a function $r(s) \in T_{p} M$ with

$$
r(s) \rightarrow 0 \quad \text { as } s \rightarrow \pm \infty .
$$

"Flow lines approach critical points along asymptotic eigenvectors."
"Holomorphic curves are gradient-flow lines"

Choose $J \in \mathcal{J}(\alpha)$ on a symplectisation $\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$.
"Holomorphic curves are gradient-flow lines"

Choose $J \in \mathcal{J}(\alpha)$ on a symplectisation $\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$. Then a half-cylinder

$$
u=(f, v):[0, \infty) \times S^{1} \rightarrow \mathbb{R} \times M
$$

is J-holomorphic if and only if

$$
\begin{aligned}
\partial_{s} f-\alpha\left(\partial_{t} v\right) & =0, \\
\partial_{t} f+\alpha\left(\partial_{s} v\right) & =0, \\
\pi_{\alpha} \partial_{s} v+J \pi_{\alpha} \partial_{t} v & =0,
\end{aligned}
$$

where $\pi_{\alpha}: T M \rightarrow \xi$ is the projection along R_{α}.
"Holomorphic curves are gradient-flow lines"

Choose $J \in \mathcal{J}(\alpha)$ on a symplectisation $\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$. Then a half-cylinder

$$
u=(f, v):[0, \infty) \times S^{1} \rightarrow \mathbb{R} \times M
$$

is J-holomorphic if and only if

$$
\begin{aligned}
\partial_{s} f-\alpha\left(\partial_{t} v\right) & =0, \\
\partial_{t} f+\alpha\left(\partial_{s} v\right) & =0, \\
\pi_{\alpha} \partial_{s} v+J \pi_{\alpha} \partial_{t} v & =0,
\end{aligned}
$$

where $\pi_{\alpha}: T M \rightarrow \xi$ is the projection along R_{α}.
Claim: the third equation can be interpreted as the L^{2}-gradient flow of the contact action functional

$$
\Phi_{\alpha}: C^{\infty}\left(S^{1}, M\right) \rightarrow \mathbb{R}: \gamma \mapsto \int_{S^{1}} \gamma^{*} \alpha
$$

whose critical points are Reeb orbits.
"Holomorphic curves are gradient-flow lines"

Choose $J \in \mathcal{J}(\alpha)$ on a symplectisation $\left(\mathbb{R} \times M, d\left(e^{s} \alpha\right)\right)$. Then a half-cylinder

$$
u=(f, v):[0, \infty) \times S^{1} \rightarrow \mathbb{R} \times M
$$

is J-holomorphic if and only if

$$
\begin{aligned}
\partial_{s} f-\alpha\left(\partial_{t} v\right) & =0, \\
\partial_{t} f+\alpha\left(\partial_{s} v\right) & =0, \\
\pi_{\alpha} \partial_{s} v+J \pi_{\alpha} \partial_{t} v & =0,
\end{aligned}
$$

where $\pi_{\alpha}: T M \rightarrow \xi$ is the projection along R_{α}.

Claim: the third equation can be interpreted as the L^{2}-gradient flow of the contact action functional

$$
\Phi_{\alpha}: C^{\infty}\left(S^{1}, M\right) \rightarrow \mathbb{R}: \gamma \mapsto \int_{S^{1}} \gamma^{*} \alpha
$$

whose critical points are Reeb orbits. Its Hessian at a T-periodic Reeb orbit $\gamma: S^{1} \rightarrow M$ is the L^{2}-symmetric operator

$$
\begin{aligned}
\nabla\left(\nabla \Phi_{\alpha}\right)(\gamma): \Gamma\left(\gamma^{*} \xi\right) & \rightarrow \Gamma\left(\gamma^{*} \xi\right) \\
\eta & \mapsto-J\left(\nabla_{t} \eta-T \nabla_{\eta} R_{\alpha}\right)
\end{aligned}
$$

where ∇ is any symmetric connection on M.

