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The basic goal

We want an intersection theory for asymp-
totically cylindrical holomorphic curves:
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It looks promising at first...

Whenever u(3X) # v(X'), we have

u-v > [{(2,0) | u(z) =v(O}
with equality iff v M wv.



It looks promising at first...

Whenever u(3X) # v(X'), we have
u-v > [{(2,0) | u(z) = v}
with equality iff v mv. Hence:

u-v=0 <« ulX)nv(E)=0.



It looks promising at first...

Whenever u(3X) # v(X'), we have

u-v > [{(2,0) | u(z) = v(OY
with equality iff v mv. Hence:
w-v=0 <& u(X)nv()=0.

Similarly, if v is simple,

5(u) > 2{( Q) | u(z) = u(Q), = # ¢}

with equality iff v is immersed with all double
points transverse.



It looks promising at first...

Whenever u(3X) # v(X'), we have
u-v > [{(2,0) | u(z) = v}
with equality iff v mv. Hence:
u-v=0 <« ulX)nv(E)=0.

Similarly, if v is simple,

5(u) > 2{( Q) | u(z) = u(Q), = # ¢}

with equality iff v is immersed with all double
points transverse. Therefore:

o(u) =0 <« uis embedded.



It looks promising at first...

Whenever u(3X) # v(X'), we have
u-v > [{(2,0) | u(z) = v}
with equality iff v mv. Hence:
u-v=0 <« ulX)nv(E)=0.

Similarly, if v is simple,

5(u) > 2{( Q) | u(z) = u(Q), = # ¢}

with equality iff v is immersed with all double
points transverse. Therefore:

o(u) =0 <« uis embedded.

The basic problem:
Neither u - v nor §(u) is homotopy invariant!



Disaster scenario:

Suppose u : 3> — W has two ends approach-
ing the same Reeb orbit...
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Disaster scenario:

Suppose u : 3> — W has two ends approach-
ing the same Reeb orbit...

= >y >

(—00,0] x M_

Intersections can escape to infinity!

Solution:
Understand asymptotic behaviour well.



Analogy with Morse theory

In Morse homology, one studies gradient-flow
lines

xR — M, z = Vf(x)

of a function f : M — R on a Riemannian
manifold (M, g), where we assume each p €
Crit(f) is nondegenerate, i.e. the Hessian

Ay =V (V) TyM — TyM

has trivial kernel.
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Analogy with Morse theory

In Morse homology, one studies gradient-flow
lines

xR — M, z = Vf(x)

of a function f : M — R on a Riemannian
manifold (M, g), where we assume each p €
Crit(f) is nondegenerate, i.e. the Hessian

Ay =V (V) TyM — TyM

has trivial kernel.

ind =2

Ap is symmetric, so its eigenvalues are real.
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Asymptotic formula for gradient-flow

T heorem
Assume p € Crit(f), h(s) € T,M is defined for
s close to +oc0 and

r(s) = expph(s) € M

is a gradient-flow line approaching p as s —
+o0o0. Then h(s) satisfies the decay formula

h(s) = e (v +7(s))
for some eigenvector v € T,M of Ay, with
Apv = v, +A <0,
and a function r(s) € T, M with
r(s) -0 as s — *too.

“Flow lines approach critical points along
asymptotic eigenvectors.”
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Choose J € J(a) on a symplectisation
(R x M,d(e’x)). Then a half-cylinder

u=(f,v):[0,00) x ST 3 Rx M
is J-holomorphic if and only if
Osf — a(dw) = 0,
o f + a(asv) = 0,
Ta0sv + J ma0rv = 0,
where o . T'M — £ is the projection along R,.

Claim: the third equation can be interpreted
as the L2-gradient flow of the contact ac-
tion functional

¢a:COO(Sl,M)—>R:’y|—>/Slfy*oz,

whose critical points are Reeb orbits. Its Hes-
sian at a T-periodic Reeb orbit ~: Sl s Mis
the L2—symmetric operator

V(VP)(7) : T(vE) — T(v*E)
where V is any symmetric connection on M.
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