
Background material for Lecture 5

Open book decompositions of 3-manifoldsConsider � :M nB ! S1 suh that:
� B �M is an oriented link (\binding")� MnB ��! S1 is a �bration (�bres = \pages"),

nbhd(B) �=a(S1 �D2) ��! S1(�; (r; �)) 7! �Hene:M �= (mapping torus) [ (solid tori)PSfrag replaementsS1�
S1 � S2S3 = 3 [ f1g S3 = R3 [ f1g2
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The Giroux correspondence

A contact structure ξ is supported by an open

book π : M \ B → S1 if ξ = kerα for some

contact form α such that

α|TB > 0 and dα|pages > 0.Equivalently:B =a(Reeb orbits) and R�pages:
PSfrag replaementsS1�S1 � S2S3 = 3 [ f1gS3 = R3 [ f1g2Thurston-Winkelnkemper:fOBDsg �! ftt strsg.isotopyGiroux:ftt strsg.isotopy 1:1 ! fOBDsg.stabilisation
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Bordered Lefschetz fibrations

Lefschetz fibration W4 π
→ D

2 with interior

critical points and fibres with boundary:

D
2

W has boundary and orners: smooth faes�W = �vW [ �hW;where�vW := ��1(�D2) �bration�! �D2 = S1;and�hW := [z2D2 � ���1(z)� �=a(S1 �D2)=) �W inherits an open book.
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Theorem

Any bordered Lefschetz fibration W
π
→ D

2 ad-

mits (canonically up to deformation) a sym-

plectic form ω such that fibres are symplectic

and (W,ω) has convex boundary (M, ξ) sup-

ported by the induced open book.If no irreduible omponents of singular �bresare losed (i.e. W �! D2 is \allowable"), thenone an make (W;!) a Stein �lling of (M; �).

D
2

PropositionThe monodromy of the open book on �W isa omposition of positive Dehn twists, onefor eah ritial point of W �! D2.
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