Open book decompositions of 3-manifolds

Open book decompositions of 3-manifolds

Consider $\pi: M \setminus B \to S^1$ such that:

- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \xrightarrow{\pi} S^1$ is a fibration (fibres = "pages"),

nbhd(B)
$$\cong \coprod (S^1 \times \mathbb{D}^2) \xrightarrow{\pi} S^1$$

 $(\theta, (r, \phi)) \mapsto \phi$

Open book decompositions of 3-manifolds

Consider $\pi: M \setminus B \to S^1$ such that:

- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \xrightarrow{\pi} S^1$ is a fibration (fibres = "pages"),

nbhd(B)
$$\cong \coprod (S^1 \times \mathbb{D}^2) \xrightarrow{\pi} S^1$$

 $(\theta, (r, \phi)) \mapsto \phi$

Hence:

 $M \cong (mapping torus) \cup (solid tori)$

Open book decompositions of 3-manifolds

Consider $\pi: M \setminus B \to S^1$ such that:

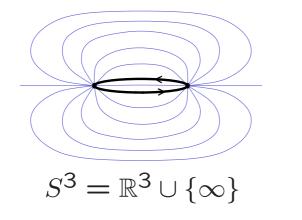
- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \xrightarrow{\pi} S^1$ is a fibration (fibres = "pages"),

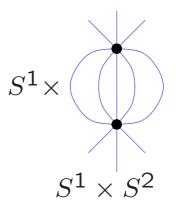
nbhd(B)
$$\cong \coprod (S^1 \times \mathbb{D}^2) \xrightarrow{\pi} S^1$$

 $(\theta, (r, \phi)) \mapsto \phi$

Hence:

 $M \cong (mapping torus) \cup (solid tori)$





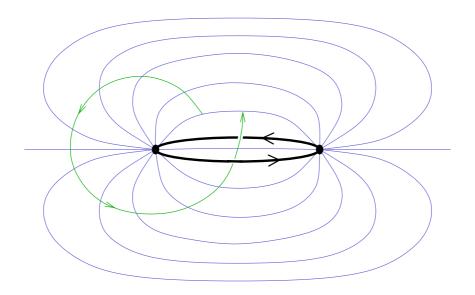
A contact structure ξ is supported by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

 $\alpha|_{TB} > 0$ and $d\alpha|_{pages} > 0$.

A contact structure ξ is supported by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

 $lpha|_{TB} > 0$ and $dlpha|_{pages} > 0.$ Equivalently:

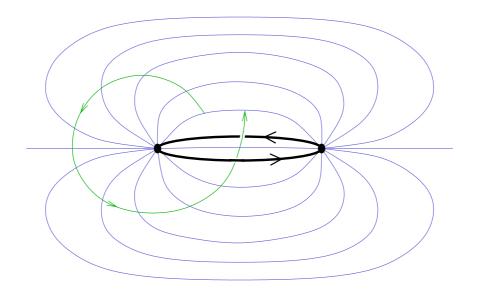
 $B = \prod$ (Reeb orbits) and $R_{\alpha} \pitchfork$ pages.



A contact structure ξ is supported by an open book π : $M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

 $lpha|_{TB} > 0$ and $dlpha|_{pages} > 0.$ Equivalently:

 $B = \prod$ (Reeb orbits) and $R_{\alpha} \pitchfork$ pages.



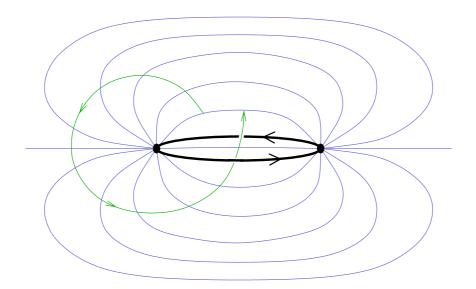
Thurston-Winkelnkemper:

 ${OBDs} \longrightarrow {ctct strs}/{isotopy}$

A contact structure ξ is supported by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

 $lpha|_{TB} > 0$ and $dlpha|_{pages} > 0.$ Equivalently:

 $B = \prod$ (Reeb orbits) and $R_{\alpha} \pitchfork$ pages.

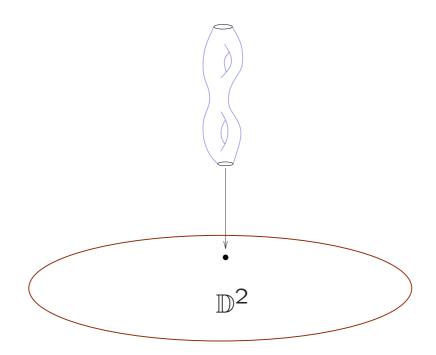


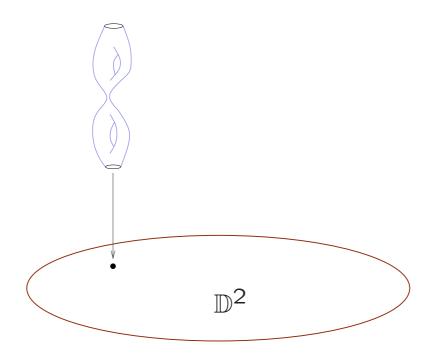
Thurston-Winkelnkemper:

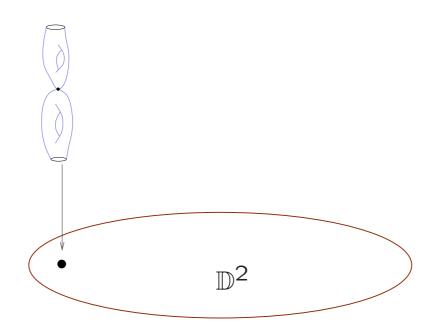
 ${OBDs} \longrightarrow {ctct strs}/{isotopy}$

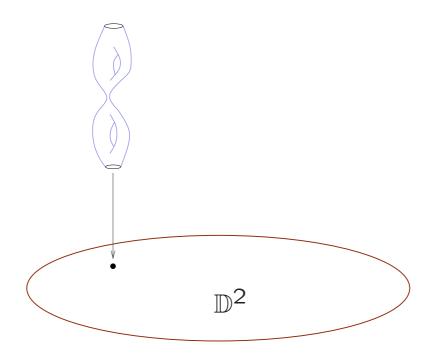
Giroux:

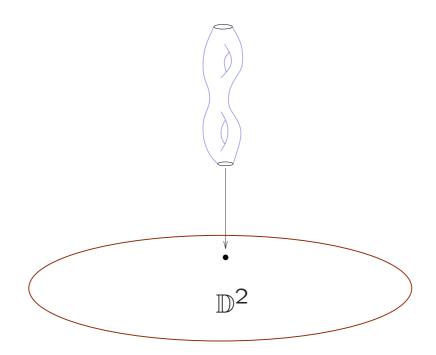
 $\{\texttt{ctct strs}\} \big/ \texttt{isotopy} \xleftarrow{1:1} \{\texttt{OBDs}\} \big/ \texttt{stabilisation}$

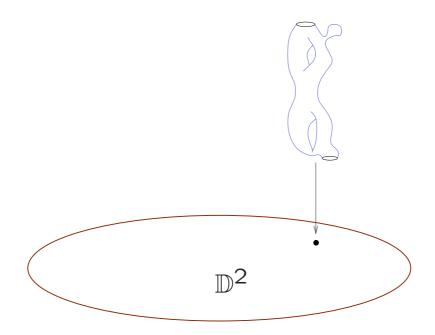


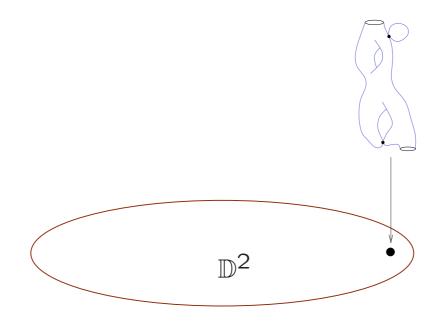


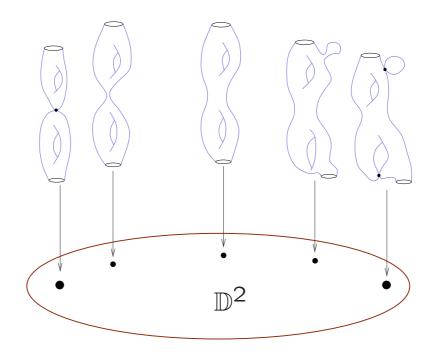




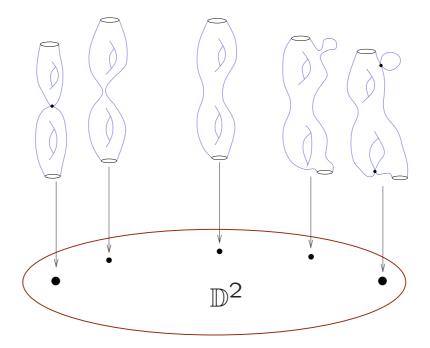








Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:



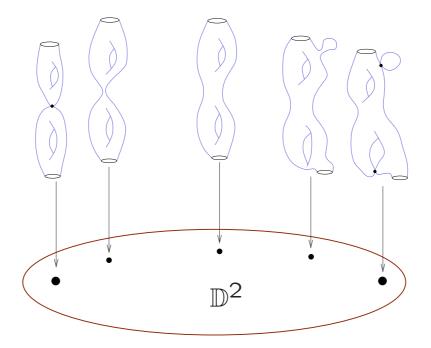
W has boundary and corners: smooth faces $\partial W = \partial_v W \cup \partial_h W,$ where

$$\partial_v W := \pi^{-1} (\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$$

and

$$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial \left(\pi^{-1}(z) \right) \cong \coprod (S^1 \times \mathbb{D}^2)$$

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:



W has boundary and corners: smooth faces $\partial W = \partial_v W \cup \partial_h W,$ where

$$\partial_v W := \pi^{-1} (\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$$

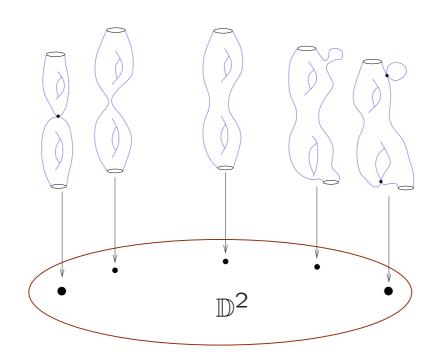
and

$$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial \left(\pi^{-1}(z) \right) \cong \coprod (S^1 \times \mathbb{D}^2)$$

 $\implies \partial W$ inherits an open book.

Theorem

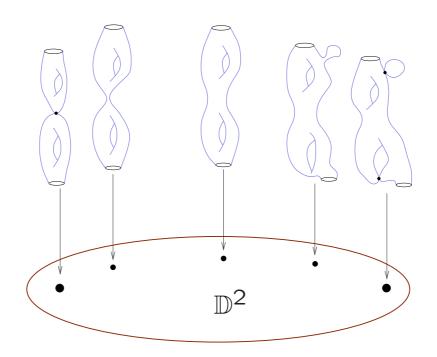
Any bordered Lefschetz fibration $W \xrightarrow{\pi} \mathbb{D}^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.



Theorem

Any bordered Lefschetz fibration $W \xrightarrow{\pi} \mathbb{D}^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.

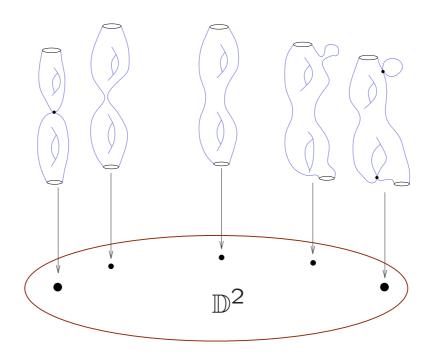
If no irreducible components of singular fibres are closed (i.e. $W \xrightarrow{\pi} \mathbb{D}^2$ is "allowable"), then one can make (W, ω) a Stein filling of (M, ξ) .



Theorem

Any bordered Lefschetz fibration $W \xrightarrow{\pi} \mathbb{D}^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.

If no irreducible components of singular fibres are closed (i.e. $W \xrightarrow{\pi} \mathbb{D}^2$ is "allowable"), then one can make (W, ω) a Stein filling of (M, ξ) .



Proposition

The monodromy of the open book on ∂W is a composition of positive Dehn twists, one for each critical point of $W \xrightarrow{\pi} \mathbb{D}^2$.