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B = [](Reeb orbits) and  Rq h pages.

T hurston-Winkelnkemper:

{OBDs} — {ctct strs}/isotopy
Giroux:

{ctct strs}/isotopy PN {OBDS}/stabiIisation
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Lefschetz fibration W4 5 D2 with interior
critical points and fibres with boundary:

W has boundary and corners: smooth faces

oW = O,W U 0, W,
where
ByW = n—L(ap?2) MPraton sp2 — g1
and
oW = ) 0 (w_l(z)) = H(Sl x D?)
z€D?
— OW inherits an open book.
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Proposition

The monodromy of the open book on oW is
a composition of positive Dehn twists, one
for each critical point of W = D2,



