Equivariant transversality, super-rigidty and all that

Chris Wendl

Humboldt-Universität zu Berlin

April 10, 2020

(slides available at www.math.hu-berlin.de/~wendl/WesternHemisphere.pdf)

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!

Example (Gromov-McDuff, 1980's):

$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$
(M, ω) minimal

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$ (M, ω) minimal
\Rightarrow Theorem : $(M, \omega) \cong\left(\mathbb{C} P^{2}, c \omega_{\mathrm{FS}}\right)$.

Motivation

J-holomorphic curves are great!
Example (Gromov-McDuff, 1980's):
$u:\left(S^{2}, i\right) \rightarrow\left(M^{4}, J\right)$ with $[u] \cdot[u]=1$ (M, ω) minimal
\Rightarrow Theorem : $(M, \omega) \cong\left(\mathbb{C} P^{2}, c \omega_{\mathrm{FS}}\right)$.

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam }
$$ is a compact smooth manifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$.

(De)motivation

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam } .
$$

$$
\text { is a compact smooth manifold of dimension }(n-3)(2-2 g)+2 c_{1}(A) \text {. }
$$

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam } .
$$

is a eompact compactifiable smooth manifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$.

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam } .
$$

is a eompact compactifiable smooth manifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$.

Bad news

(1) All J-holomorphic curves have multiple covers. They have symmetry. . $\bar{\partial}_{J}$ is equivariant.
(2)

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam }
$$

is a eompact compactifiable smooth manifold orbifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$.

Bad news

(1) All J-holomorphic curves have multiple covers. They have symmetry. . $\bar{\partial}_{J}$ is equivariant.
(2)

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam }
$$

is a eompact compactifiable smooth manifold orbifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$ if $\bar{\partial}_{J} \pitchfork 0$.

Bad news

(1) All J-holomorphic curves have multiple covers. They have symmetry. . $\bar{\partial}_{J}$ is equivariant.
(2)

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam }
$$

is a eompact compactifiable smooth manifold orbifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$ if $\bar{\partial}_{J} \pitchfork 0$.

Bad news

(1) All J-holomorphic curves have multiple covers. They have symmetry. . $\bar{\partial}_{J}$ is equivariant.
(2) Perturbing J generically perturbs $\bar{\partial}_{J}$ equivariantly. Equivariant transversality is NOT POSSIBLE.

(De)motivation

$$
\mathcal{M}_{g}(A, J):=\left\{u:\left(\Sigma_{g}, j\right) \rightarrow\left(M^{2 n}, J\right) \mid \bar{\partial}_{J}(u)=0,[u]=A\right\} / \text { reparam }
$$

is a eompact compactifiable smooth manifold orbifold of dimension $(n-3)(2-2 g)+2 c_{1}(A)$ if $\bar{\partial}_{J} \pitchfork 0$.

Bad news

(1) All J-holomorphic curves have multiple covers. They have symmetry. . $\bar{\partial}_{J}$ is equivariant.
(2) Perturbing J generically perturbs $\bar{\partial}_{J}$ equivariantly. Equivariant transversality is NOT POSSIBLE.
J-holomorphic curves are great terrible!
I hate them. Let's do combinatorics. (Just kidding.)

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible?

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead?

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)
- If I want to apply these ideas to my favorite nonlinear elliptic PDE with symmetry, what do I need to prove?

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)
- If I want to apply these ideas to my favorite nonlinear elliptic PDE with symmetry, what do I need to prove?
We will consider three classes of problems as examples:
(1) The zero-set of a section of a finite-dimensional orbibundle*
(2)
©
*no claim of originality

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)
- If I want to apply these ideas to my favorite nonlinear elliptic PDE with symmetry, what do I need to prove?
We will consider three classes of problems as examples:
(1) The zero-set of a section of a finite-dimensional orbibundle*
(2) The space of closed orbits of an oriented line field*
©
*no claim of originality

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)
- If I want to apply these ideas to my favorite nonlinear elliptic PDE with symmetry, what do I need to prove?
We will consider three classes of problems as examples:
(1) The zero-set of a section of a finite-dimensional orbibundle*
(2) The space of closed orbits of an oriented line field*
(3) The moduli space of J-holomorphic curves
*no claim of originality

Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

- How do we recognize when equivariant transversality is possible? Claim: In many settings, if it is possible, then it holds generically.
- When it is not possible, why not, and what is true instead? (key words: clean intersections, obstruction bundles)
- If I want to apply these ideas to my favorite nonlinear elliptic PDE with symmetry, what do I need to prove?
We will consider three classes of problems as examples:
(1) The zero-set of a section of a finite-dimensional orbibundle*
(2) The space of closed orbits of an oriented line field*
(3) The moduli space of J-holomorphic curves
*no claim of originality

Acknowledgements:

Several ideas were inspired by C. Taubes ("Counting. .." JDG 1996), and also some recent work by A. Doan and T. Walpuski.

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Question

For generic $\sigma \in \Gamma(E)$, is $\sigma^{-1}(0) \subset M$ a suborbifold of dimension $n-m$? Does $\sigma \pitchfork 0$ hold generically?

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Question

For generic $\sigma \in \Gamma(E)$, is $\sigma^{-1}(0) \subset M$ a suborbifold of dimension $n-m$? Does $\sigma \pitchfork 0$ hold generically? Answer: Typically not.

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Question

For generic $\sigma \in \Gamma(E)$, is $\sigma^{-1}(0) \subset M$ a suborbifold of dimension $n-m$? Does $\sigma \pitchfork 0$ hold generically? Answer: Typically not.

Local example
Call $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mathbb{Z}_{2}$-equivariant if $\sigma(x,-y)=-\sigma(x, y)$.
Then $\sigma^{-1}(0)$ is never 0 -dimensional, e.g. it contains $\mathbb{R} \times\{0\}$.

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Question

For generic $\sigma \in \Gamma(E)$, is $\sigma^{-1}(0) \subset M$ a suborbifold of dimension $n-m$? Does $\sigma \pitchfork 0$ hold generically? Answer: Typically not.

Local example
Call $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mathbb{Z}_{2}$-equivariant if $\sigma(x,-y)=-\sigma(x, y)$.
Then $\sigma^{-1}(0)$ is never 0 -dimensional, e.g. it contains $\mathbb{R} \times\{0\}$.
Next best thing ("Morse-Bott" condition):
Say $\sigma \in \Gamma(E)$ intersects zero cleanly if all components $\mathcal{M}_{i} \subset \sigma^{-1}(0)$ are suborbifolds (of dimensions $\geq n-m$) with $T_{x} \mathcal{M}_{i}=\operatorname{ker} D \sigma(x)$.

Problem 1: Finite dimensions

M a compact n-dimensional orbifold, $E \rightarrow M$ an orbibundle of rank m.

Question

For generic $\sigma \in \Gamma(E)$, is $\sigma^{-1}(0) \subset M$ a suborbifold of dimension $n-m$? Does $\sigma \pitchfork 0$ hold generically? Answer: Typically not.

Local example
Call $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mathbb{Z}_{2}$-equivariant if $\sigma(x,-y)=-\sigma(x, y)$.
Then $\sigma^{-1}(0)$ is never 0 -dimensional, e.g. it contains $\mathbb{R} \times\{0\}$.
Next best thing ("Morse-Bott" condition):
Say $\sigma \in \Gamma(E)$ intersects zero cleanly if all components $\mathcal{M}_{i} \subset \sigma^{-1}(0)$ are suborbifolds (of dimensions $\geq n-m$) with $T_{x} \mathcal{M}_{i}=\operatorname{ker} D \sigma(x)$.

We can then compute the Euler number of E via obstruction bundles:

$$
\langle e(E),[M]\rangle=\sum_{i}\left\langle e\left(\mathcal{O} b_{i}\right), \mathcal{M}_{i}\right\rangle, \quad \mathcal{O} b_{x}:=\operatorname{coker} D \sigma(x)
$$

Problem 1: Finite dimensions

Sample theorem 1.A

If $\operatorname{dim} M=\operatorname{rank} E$ and isotropy groups satisfy $\left|G_{x}\right| \leq 3$ for all x, then generic sections of E intersect zero cleanly.
\square

Key observation behind the proof (to be discussed)
Self-adjoint Fredholm operators (e.g. Hessians) always have index 0 .

Problem 1: Finite dimensions

Sample theorem 1.A
 If $\operatorname{dim} M=\operatorname{rank} E$ and isotropy groups satisfy $\left|G_{x}\right| \leq 3$ for all x, then generic sections of E intersect zero cleanly.

Key observation behind the proof (to be discussed): \mathbb{Z}_{2} and \mathbb{Z}_{3} each have only two real irreducible representations.

Problem 1: Finite dimensions

```
Sample theorem 1.A
If }\operatorname{dim}M=\operatorname{rank}E\mathrm{ and isotropy groups satisfy }|\mp@subsup{G}{x}{}|\leq3\mathrm{ for all }x\mathrm{ , then generic sections of \(E\) intersect zero cleanly.
```

Key observation behind the proof (to be discussed): \mathbb{Z}_{2} and \mathbb{Z}_{3} each have only two real irreducible representations.

Sample theorem 1.B (cf. Wasserman '69, Hepworth '09)
Generic smooth functions on an orbifold are Morse.
Key observation behind the proof (to be discussed)
Self-adjoint Fredholm operators (e.g. Hessians) always have index 0 .

Problem 1: Finite dimensions

```
Sample theorem 1.A
If }\operatorname{dim}M=\operatorname{rank}E\mathrm{ and isotropy groups satisfy }|\mp@subsup{G}{x}{}|\leq3\mathrm{ for all }x\mathrm{ , then
generic sections of E intersect zero cleanly.
```

Key observation behind the proof (to be discussed): \mathbb{Z}_{2} and \mathbb{Z}_{3} each have only two real irreducible representations.

Sample theorem 1.B (cf. Wasserman '69, Hepworth '09)

Generic smooth functions on an orbifold are Morse.
Key observation behind the proof (to be discussed):
Self-adjoint Fredholm operators (e.g. Hessians) always have index 0.

Problem 2: Closed orbits

For an oriented line field $\ell \subset T M$ generated by $R \in \mathfrak{X}(M)$, we consider the moduli space of closed orbits

$$
\mathcal{M}(\ell):=\left\{\gamma: S^{1} \leftrightarrow M \mid \dot{\gamma} \in \ell\right\} / \operatorname{Diff}\left(S^{1}\right)
$$

Problem 2: Closed orbits

For an oriented line field $\ell \subset T M$ generated by $R \in \mathfrak{X}(M)$, we consider the moduli space of closed orbits

$$
\mathcal{M}(\ell):=\left\{\gamma: S^{1} \leftrightarrow M \mid \dot{\gamma} \in \ell\right\} / \operatorname{Diff}\left(S^{1}\right) \cong \sigma_{R}^{-1}(0) / S^{1}
$$

where

$$
\begin{aligned}
(0, \infty) \times H^{1}\left(S^{1}, M\right) & \xrightarrow{\sigma_{R}} \mathcal{E} \\
(\tau, \gamma) & \longmapsto \dot{\gamma}-\tau R(\gamma)
\end{aligned}
$$

is an S^{1}-equivariant smooth section of a Hilbert space bundle $\mathcal{E} \rightarrow(0, \infty) \times H^{1}\left(S^{1}, M\right)$ with fibers $\mathcal{E}_{(\tau, \gamma)}=L^{2}\left(\gamma^{*} T M\right)$.

Problem 2: Closed orbits

For an oriented line field $\ell \subset T M$ generated by $R \in \mathfrak{X}(M)$, we consider the moduli space of closed orbits

$$
\mathcal{M}(\ell):=\left\{\gamma: S^{1} \leftrightarrow M \mid \dot{\gamma} \in \ell\right\} / \operatorname{Diff}\left(S^{1}\right) \cong \sigma_{R}^{-1}(0) / S^{1}
$$

where

$$
\begin{aligned}
(0, \infty) \times H^{1}\left(S^{1}, M\right) & \xrightarrow{\sigma_{R}} \mathcal{E} \\
(\tau, \gamma) & \longmapsto \dot{\gamma}-\tau R(\gamma)
\end{aligned}
$$

is an S^{1}-equivariant smooth section of a Hilbert space bundle $\mathcal{E} \rightarrow(0, \infty) \times H^{1}\left(S^{1}, M\right)$ with fibers $\mathcal{E}_{(\tau, \gamma)}=L^{2}\left(\gamma^{*} T M\right)$.

Each d-fold covered orbit $\gamma \in \mathcal{M}(\ell)$ has isotropy group \mathbb{Z}_{d}.

Problem 2: Closed orbits

For an oriented line field $\ell \subset T M$ generated by $R \in \mathfrak{X}(M)$, we consider the moduli space of closed orbits

$$
\mathcal{M}(\ell):=\left\{\gamma: S^{1} \leftrightarrow M \mid \dot{\gamma} \in \ell\right\} / \operatorname{Diff}\left(S^{1}\right) \cong \sigma_{R}^{-1}(0) / S^{1}
$$

where

$$
\begin{aligned}
(0, \infty) \times H^{1}\left(S^{1}, M\right) & \xrightarrow{\sigma_{R}} \mathcal{E} \\
(\tau, \gamma) & \longmapsto \dot{\gamma}-\tau R(\gamma)
\end{aligned}
$$

is an S^{1}-equivariant smooth section of a Hilbert space bundle $\mathcal{E} \rightarrow(0, \infty) \times H^{1}\left(S^{1}, M\right)$ with fibers $\mathcal{E}_{(\tau, \gamma)}=L^{2}\left(\gamma^{*} T M\right)$.

Each d-fold covered orbit $\gamma \in \mathcal{M}(\ell)$ has isotropy group \mathbb{Z}_{d}. We call γ nondegenerate if $\boldsymbol{\sigma} \pitchfork 0$ at γ.

Problem 2: Closed orbits

For an oriented line field $\ell \subset T M$ generated by $R \in \mathfrak{X}(M)$, we consider the moduli space of closed orbits

$$
\mathcal{M}(\ell):=\left\{\gamma: S^{1} \leftrightarrow M \mid \dot{\gamma} \in \ell\right\} / \operatorname{Diff}\left(S^{1}\right) \cong \sigma_{R}^{-1}(0) / S^{1}
$$

where

$$
\begin{aligned}
(0, \infty) \times H^{1}\left(S^{1}, M\right) & \xrightarrow{\sigma_{R}} \mathcal{E} \\
(\tau, \gamma) & \longmapsto \dot{\gamma}-\tau R(\gamma)
\end{aligned}
$$

is an S^{1}-equivariant smooth section of a Hilbert space bundle $\mathcal{E} \rightarrow(0, \infty) \times H^{1}\left(S^{1}, M\right)$ with fibers $\mathcal{E}_{(\tau, \gamma)}=L^{2}\left(\gamma^{*} T M\right)$.

Each d-fold covered orbit $\gamma \in \mathcal{M}(\ell)$ has isotropy group \mathbb{Z}_{d}. We call γ nondegenerate if $\boldsymbol{\sigma} \pitchfork 0$ at γ.

Sample theorem 2.A

For generic line fields ℓ, all orbits in $\mathcal{M}(\ell)$ are nondegenerate, thus $\mathcal{M}(\ell)$ is a 0 -manifold.

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$?

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Sample theorem 2.B

For generic deformations, birth-death and period-doubling are the only bifurcations.

Problem 2: Closed orbits

Question: What can happen to orbits under deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$? (1) Birth-death bifurcations:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling bifurcations:

Sample theorem 2.B

For generic deformations, birth-death and period-doubling are the only bifurcations. (i.e. "walls" of codimension 1 come in two types)

Problem 2: Closed orbits

Sample theorem 2.B

There is only birth-death and period-doubling for generic $\left\{\ell_{s}\right\}_{s \in[0,1]}$.
Remark 1: If the ℓ_{s} are also geodesible, then components of $\mathcal{M}\left(\left\{\ell_{s}\right\}\right)$ are compact up to period-doubling, i.e. no blue sky catastrophes.

Problem 2: Closed orbits

Sample theorem 2.B

There is only birth-death and period-doubling for generic $\left\{\ell_{s}\right\}_{s \in[0,1]}$.
Remark 1: If the ℓ_{s} are also geodesible, then components of $\mathcal{M}\left(\left\{\ell_{s}\right\}\right)$ are compact up to period-doubling, i.e. no blue sky catastrophes. In the Hamiltonian case ($\ell_{s}=\operatorname{ker} \omega_{s}$ for $\omega_{s} \in \Omega^{2}(M)$ of maximal rank), geodesible \Leftrightarrow stabilizable.

Problem 2: Closed orbits

Sample theorem 2.B

There is only birth-death and period-doubling for generic $\left\{\ell_{s}\right\}_{s \in[0,1]}$.
Remark 1: If the ℓ_{s} are also geodesible, then components of $\mathcal{M}\left(\left\{\ell_{s}\right\}\right)$ are compact up to period-doubling, i.e. no blue sky catastrophes. In the Hamiltonian case ($\ell_{s}=\operatorname{ker} \omega_{s}$ for $\omega_{s} \in \Omega^{2}(M)$ of maximal rank), geodesible \Leftrightarrow stabilizable.

Remark 2: But $\left\{\ell_{s}=\operatorname{ker} \omega_{s}\right\}$ also has higher-degree bifurcations. (see e.g. Abraham-Marsden, Chapter 8)

Problem 3: Holomorphic curves

Fix a $2 n$-dimensional symplectic manifold (M, ω) and consider compatible almost complex structures J.

Problem 3: Holomorphic curves

Fix a $2 n$-dimensional symplectic manifold (M, ω) and consider compatible almost complex structures J.

Theorem 3.A (W. '16-'19)
If (M, ω) is a symplectic Calabi-Yau 3 -fold $\left(\operatorname{dim} M=6, c_{1}(M, \omega)=0\right)$ and J is generic, then $\bar{\partial}_{J}$ intersects the zero-section cleanly, i.e. all simple curves are super-rigid.

Precedent (Taubes '96)

Doubly covered tori in the definition of the Gromov invariant

Problem 3: Holomorphic curves

Fix a $2 n$-dimensional symplectic manifold (M, ω) and consider compatible almost complex structures J.

Theorem 3.A (W. '16-'19)
If (M, ω) is a symplectic Calabi-Yau 3 -fold $\left(\operatorname{dim} M=6, c_{1}(M, \omega)=0\right)$ and J is generic, then $\bar{\partial}_{J}$ intersects the zero-section cleanly, i.e. all simple curves are super-rigid.

Corollary: Gromov-Witten invariants of (M, ω) are finite sums of Euler numbers of well-defined obstruction bundles.

Precedent

Problem 3: Holomorphic curves

Fix a $2 n$-dimensional symplectic manifold (M, ω) and consider compatible almost complex structures J.

Theorem 3.A (W. '16-'19)
If (M, ω) is a symplectic Calabi-Yau 3 -fold $\left(\operatorname{dim} M=6, c_{1}(M, \omega)=0\right)$ and J is generic, then $\bar{\partial}_{J}$ intersects the zero-section cleanly, i.e. all simple curves are super-rigid.

Corollary: Gromov-Witten invariants of (M, ω) are finite sums of Euler numbers of well-defined obstruction bundles.

Theorem 3.B (W. '16-'19)

If $\operatorname{dim} M \geq 4$ and J is generic, all unbranched covers of simple J-holomorphic curves are cut out transversely.

Problem 3: Holomorphic curves

Fix a $2 n$-dimensional symplectic manifold (M, ω) and consider compatible almost complex structures J.

Theorem 3.A (W. '16-'19)
If (M, ω) is a symplectic Calabi-Yau 3 -fold $\left(\operatorname{dim} M=6, c_{1}(M, \omega)=0\right)$ and J is generic, then $\bar{\partial}_{J}$ intersects the zero-section cleanly, i.e. all simple curves are super-rigid.

Corollary: Gromov-Witten invariants of (M, ω) are finite sums of Euler numbers of well-defined obstruction bundles.

Theorem 3.B (W. '16-'19)

If $\operatorname{dim} M \geq 4$ and J is generic, all unbranched covers of simple J-holomorphic curves are cut out transversely.

Precedent (Taubes '96):
Doubly covered tori in the definition of the Gromov invariant.

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

- A finite symmetry group G_{x}, which is trivial on a subset $\mathcal{M}^{*}(\sigma) \subset \mathcal{M}(\sigma)$ for which transversality holds generically.

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

- A finite symmetry group G_{x}, which is trivial on a subset $\mathcal{M}^{*}(\sigma) \subset \mathcal{M}(\sigma)$ for which transversality holds generically.
- A Fredholm operator \mathbf{D}_{x}, which is surjective if and only if transversality holds at x.
(2) Walls (the technical part) Stratify each $\mathcal{M}^{G}(\sigma)$ further into submanifolds on which ker D_{x} and coker \mathbf{D}_{x} vary smoothly (i.e. constant dimensions)
- Splitting (mainly representation theory) $\mathbf{D}_{x} \cong \bigoplus_{\theta} \mathbf{D}$

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

- A finite symmetry group G_{x}, which is trivial on a subset $\mathcal{M}^{*}(\sigma) \subset \mathcal{M}(\sigma)$ for which transversality holds generically.
- A Fredholm operator \mathbf{D}_{x}, which is surjective if and only if transversality holds at x.

Here is the general strategy
(1) Isosymmetric strata (easy):

Decompose $\mathcal{M}(\sigma)$ into subsets $\mathcal{M}^{G}(\sigma) \subset \mathcal{M}(\sigma)$ on which G_{x} is constant. For generic σ, these are submanifolds.

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

- A finite symmetry group G_{x}, which is trivial on a subset $\mathcal{M}^{*}(\sigma) \subset \mathcal{M}(\sigma)$ for which transversality holds generically.
- A Fredholm operator \mathbf{D}_{x}, which is surjective if and only if transversality holds at x.

Here is the general strategy
(1) Isosymmetric strata (easy):

Decompose $\mathcal{M}(\sigma)$ into subsets $\mathcal{M}^{G}(\sigma) \subset \mathcal{M}(\sigma)$ on which G_{x} is constant. For generic σ, these are submanifolds.
(2) Walls (the technical part):

Stratify each $\mathcal{M}^{G}(\sigma)$ further into submanifolds on which $\operatorname{ker} \mathbf{D}_{x}$ and coker \mathbf{D}_{x} vary smoothly (i.e. constant dimensions).

Paradigm

Each of our problems involves a moduli space $\mathcal{M}(\sigma)$ defined via geometric data σ, such that to every $x \in \mathcal{M}(\sigma)$ corresponds:

- A finite symmetry group G_{x}, which is trivial on a subset $\mathcal{M}^{*}(\sigma) \subset \mathcal{M}(\sigma)$ for which transversality holds generically.
- A Fredholm operator \mathbf{D}_{x}, which is surjective if and only if transversality holds at x.

Here is the general strategy

(1) Isosymmetric strata (easy):

Decompose $\mathcal{M}(\sigma)$ into subsets $\mathcal{M}^{G}(\sigma) \subset \mathcal{M}(\sigma)$ on which G_{x} is constant. For generic σ, these are submanifolds.
(2) Walls (the technical part):

Stratify each $\mathcal{M}^{G}(\sigma)$ further into submanifolds on which $\operatorname{ker} \mathbf{D}_{x}$ and coker \mathbf{D}_{x} vary smoothly (i.e. constant dimensions).
(3) Splitting (mainly representation theory):
$\mathbf{D}_{x} \cong \bigoplus_{\boldsymbol{\theta}} \mathbf{D}_{x}^{\theta}$ for the real irreducible representations $\boldsymbol{\theta}$ of G_{x}.
Compute indices. . . the rest is dimension counting!

Problem 1 (finite dimensions): Isosymmetric strata

Given $\sigma \in \Gamma(E)$, write $\mathcal{M}(\sigma):=\sigma^{-1}(0) \subset M$.
For each finite group G, define

$$
M^{G}:=\left\{x \in M \mid G_{x} \cong G\right\},
$$

and

$$
\mathcal{M}^{G}(\sigma):=\mathcal{M}(\sigma) \cap M^{G} .
$$

Problem 1 (finite dimensions): Isosymmetric strata

Given $\sigma \in \Gamma(E)$, write $\mathcal{M}(\sigma):=\sigma^{-1}(0) \subset M$.
For each finite group G, define

$$
M^{G}:=\left\{x \in M \mid G_{x} \cong G\right\},
$$

and

$$
\mathcal{M}^{G}(\sigma):=\mathcal{M}(\sigma) \cap M^{G} .
$$

Key observations:
(1) $M^{G} \subset M$ is a smooth submanifold.

Problem 1 (finite dimensions): Isosymmetric strata

Given $\sigma \in \Gamma(E)$, write $\mathcal{M}(\sigma):=\sigma^{-1}(0) \subset M$.
For each finite group G, define

$$
M^{G}:=\left\{x \in M \mid G_{x} \cong G\right\},
$$

and

$$
\mathcal{M}^{G}(\sigma):=\mathcal{M}(\sigma) \cap M^{G} .
$$

Key observations:
(1) $M^{G} \subset M$ is a smooth submanifold.
(2) $\sigma^{G}:=\left.\sigma\right|_{M^{G}}: M^{G} \rightarrow E$ takes values in a distinguished subbundle

$$
E^{G}:=\left\{v \in E_{x} \mid x \in M^{G} \text { and } g \cdot v=v \text { for all } g \in G_{x}\right\} .
$$

Problem 1 (finite dimensions): Isosymmetric strata

Given $\sigma \in \Gamma(E)$, write $\mathcal{M}(\sigma):=\sigma^{-1}(0) \subset M$.
For each finite group G, define

$$
M^{G}:=\left\{x \in M \mid G_{x} \cong G\right\},
$$

and

$$
\mathcal{M}^{G}(\sigma):=\mathcal{M}(\sigma) \cap M^{G} .
$$

Key observations:
(1) $M^{G} \subset M$ is a smooth submanifold.
(2) $\sigma^{G}:=\left.\sigma\right|_{M^{G}}: M^{G} \rightarrow E$ takes values in a distinguished subbundle

$$
E^{G}:=\left\{v \in E_{x} \mid x \in M^{G} \text { and } g \cdot v=v \text { for all } g \in G_{x}\right\} .
$$

Exercise (via the Sard-Smale theorem)

For every G and generic $\sigma \in \Gamma(E), \sigma^{G}$ is transverse to the zero-section of E^{G}. In particular, $\mathcal{M}^{G}(\sigma)$ is a smooth manifold.

Problem 1 (finite dimensions): Walls

At each $x \in \mathcal{M}^{G}(\sigma)$, there is a linearization

$$
\mathbf{D}_{x}:=D \sigma(x) \in \operatorname{Hom}_{G}\left(T_{x} M, E_{x}\right)
$$

Problem 1 (finite dimensions): Walls

At each $x \in \mathcal{M}^{G}(\sigma)$, there is a linearization

$$
\mathbf{D}_{x}:=D \sigma(x) \in \operatorname{Hom}_{G}\left(T_{x} M, E_{x}\right)
$$

For integers $k, c \geq 0$, define
$\mathcal{M}^{G}(\sigma ; k, c):=\left\{x \in \mathcal{M}^{G}(\sigma) \mid \operatorname{dim} \operatorname{ker} \mathbf{D}_{x}=k\right.$ and dim coker $\left.\mathbf{D}_{x}=c\right\}$.

Problem 1 (finite dimensions): Walls

At each $x \in \mathcal{M}^{G}(\sigma)$, there is a linearization

$$
\mathbf{D}_{x}:=D \sigma(x) \in \operatorname{Hom}_{G}\left(T_{x} M, E_{x}\right)
$$

For integers $k, c \geq 0$, define
$\mathcal{M}^{G}(\sigma ; k, c):=\left\{x \in \mathcal{M}^{G}(\sigma) \mid \operatorname{dim} \operatorname{ker} \mathbf{D}_{x}=k\right.$ and dim coker $\left.\mathbf{D}_{x}=c\right\}$.
Key observations:
(1) Every Fredholm operator $\mathbf{T}_{\mathbf{0}}: X \rightarrow Y$ admits a neighborhood $\mathcal{O} \subset \mathscr{L}(X, Y)$ and smooth map $\Phi: \mathcal{O} \rightarrow \operatorname{Hom}\left(\operatorname{ker} \mathbf{T}_{\mathbf{0}}\right.$, coker $\left.\mathbf{T}_{\mathbf{0}}\right)$ s.t. $\Phi(\mathbf{T})=0 \Leftrightarrow \operatorname{dim} \operatorname{ker} \mathbf{T}=\operatorname{dim} \operatorname{ker} \mathbf{T}_{0}, \operatorname{dim} \operatorname{coker} \mathbf{T}=\operatorname{dim} \operatorname{coker} \mathbf{T}_{0}$.
(2)

Problem 1 (finite dimensions): Walls

At each $x \in \mathcal{M}^{G}(\sigma)$, there is a linearization

$$
\mathbf{D}_{x}:=D \sigma(x) \in \operatorname{Hom}_{G}\left(T_{x} M, E_{x}\right)
$$

For integers $k, c \geq 0$, define
$\mathcal{M}^{G}(\sigma ; k, c):=\left\{x \in \mathcal{M}^{G}(\sigma) \mid \operatorname{dim} \operatorname{ker} \mathbf{D}_{x}=k\right.$ and dim coker $\left.\mathbf{D}_{x}=c\right\}$.
Key observations:
(1) Every Fredholm operator $\mathbf{T}_{\mathbf{0}}: X \rightarrow Y$ admits a neighborhood $\mathcal{O} \subset \mathscr{L}(X, Y)$ and smooth map $\Phi: \mathcal{O} \rightarrow \operatorname{Hom}\left(\operatorname{ker} \mathbf{T}_{\mathbf{0}}\right.$, coker $\left.\mathbf{T}_{\mathbf{0}}\right)$ s.t. $\Phi(\mathbf{T})=0 \Leftrightarrow \operatorname{dim} \operatorname{ker} \mathbf{T}=\operatorname{dim} \operatorname{ker} \mathbf{T}_{0}, \operatorname{dim}$ coker $\mathbf{T}=\operatorname{dim} \operatorname{coker} \mathbf{T}_{0}$.
(2) In the present setting, all operators are G-equivariant.

Problem 1 (finite dimensions): Walls

At each $x \in \mathcal{M}^{G}(\sigma)$, there is a linearization

$$
\mathbf{D}_{x}:=D \sigma(x) \in \operatorname{Hom}_{G}\left(T_{x} M, E_{x}\right)
$$

For integers $k, c \geq 0$, define
$\mathcal{M}^{G}(\sigma ; k, c):=\left\{x \in \mathcal{M}^{G}(\sigma) \mid \operatorname{dim} \operatorname{ker} \mathbf{D}_{x}=k\right.$ and dim coker $\left.\mathbf{D}_{x}=c\right\}$.
Key observations:
(1) Every Fredholm operator $\mathbf{T}_{\mathbf{0}}: X \rightarrow Y$ admits a neighborhood $\mathcal{O} \subset \mathscr{L}(X, Y)$ and smooth map $\Phi: \mathcal{O} \rightarrow \operatorname{Hom}\left(\operatorname{ker} \mathbf{T}_{\mathbf{0}}\right.$, coker $\left.\mathbf{T}_{\mathbf{0}}\right)$ s.t. $\Phi(\mathbf{T})=0 \Leftrightarrow \operatorname{dim} \operatorname{ker} \mathbf{T}=\operatorname{dim} \operatorname{ker} \mathbf{T}_{0}, \operatorname{dim}$ coker $\mathbf{T}=\operatorname{dim} \operatorname{coker} \mathbf{T}_{0}$.
(2) In the present setting, all operators are G-equivariant.

Stratification theorem (via IFT and Sard-Smale)

For all G, k, c and generic $\sigma \in \Gamma(E), \mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$ is a smooth submanifold whose codimension near $x \in \mathcal{M}^{G}(\sigma ; k, c)$ is $\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)$.

Problem 1 (finite dimensions): Splitting

Let $\left\{\boldsymbol{\theta}_{i}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}\left(W_{i}\right)\right\}_{i=1}^{N}$ denote the real irreducible representations of G, with $\boldsymbol{\theta}_{1}$ as the trivial representation.

Since $\mathbf{D}_{x}: T_{x} M \rightarrow E_{x}$ is G_{x}-equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_{x} M=\bigoplus_{i=1}^{N} T_{x} M^{i}$ and $E_{x}=\bigoplus_{i=1}^{N} E_{x}^{i}$, giving

$$
\mathbf{D}_{x}=\mathbf{D}_{x}^{1} \oplus \ldots \oplus \mathbf{D}_{x}^{N}, \quad \text { where } \quad \mathbf{D}_{x}^{i}: T_{x} M^{i} \rightarrow E_{x}^{i}
$$

Problem 1 (finite dimensions): Splitting

Let $\left\{\boldsymbol{\theta}_{i}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}\left(W_{i}\right)\right\}_{i=1}^{N}$ denote the real irreducible representations of G, with $\boldsymbol{\theta}_{1}$ as the trivial representation.

Since $\mathbf{D}_{x}: T_{x} M \rightarrow E_{x}$ is G_{x}-equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_{x} M=\bigoplus_{i=1}^{N} T_{x} M^{i}$ and $E_{x}=\bigoplus_{i=1}^{N} E_{x}^{i}$, giving

$$
\mathbf{D}_{x}=\mathbf{D}_{x}^{1} \oplus \ldots \oplus \mathbf{D}_{x}^{N}, \quad \text { where } \quad \mathbf{D}_{x}^{i}: T_{x} M^{i} \rightarrow E_{x}^{i}
$$

Key observations:
(1) $\mathbf{D}_{x}^{1}=D \sigma^{G}(x)$, so it is surjective and $\operatorname{ker} \mathbf{D}_{x}^{1}=T_{x} \mathcal{M}^{G}(\sigma)$.

Problem 1 (finite dimensions): Splitting

Let $\left\{\boldsymbol{\theta}_{i}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}\left(W_{i}\right)\right\}_{i=1}^{N}$ denote the real irreducible representations of G, with $\boldsymbol{\theta}_{1}$ as the trivial representation.

Since $\mathbf{D}_{x}: T_{x} M \rightarrow E_{x}$ is G_{x}-equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_{x} M=\bigoplus_{i=1}^{N} T_{x} M^{i}$ and $E_{x}=\bigoplus_{i=1}^{N} E_{x}^{i}$, giving

$$
\mathbf{D}_{x}=\mathbf{D}_{x}^{1} \oplus \ldots \oplus \mathbf{D}_{x}^{N}, \quad \text { where } \quad \mathbf{D}_{x}^{i}: T_{x} M^{i} \rightarrow E_{x}^{i}
$$

Key observations:
(1) $\mathbf{D}_{x}^{1}=D \sigma^{G}(x)$, so it is surjective and $\operatorname{ker} \mathbf{D}_{x}^{1}=T_{x} \mathcal{M}^{G}(\sigma)$.
(2) $\sigma \pitchfork 0$ at $x \Leftrightarrow \mathbf{D}_{x}^{i}$ surjective for all $i=1, \ldots, N$.

Problem 1 (finite dimensions): Splitting

Let $\left\{\boldsymbol{\theta}_{i}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}\left(W_{i}\right)\right\}_{i=1}^{N}$ denote the real irreducible representations of G, with $\boldsymbol{\theta}_{1}$ as the trivial representation.

Since $\mathbf{D}_{x}: T_{x} M \rightarrow E_{x}$ is G_{x}-equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_{x} M=\bigoplus_{i=1}^{N} T_{x} M^{i}$ and $E_{x}=\bigoplus_{i=1}^{N} E_{x}^{i}$, giving

$$
\mathbf{D}_{x}=\mathbf{D}_{x}^{1} \oplus \ldots \oplus \mathbf{D}_{x}^{N}, \quad \text { where } \quad \mathbf{D}_{x}^{i}: T_{x} M^{i} \rightarrow E_{x}^{i}
$$

Key observations:
(1) $\mathbf{D}_{x}^{1}=D \sigma^{G}(x)$, so it is surjective and $\operatorname{ker} \mathbf{D}_{x}^{1}=T_{x} \mathcal{M}^{G}(\sigma)$.
(2) $\sigma \pitchfork 0$ at $x \Leftrightarrow \mathbf{D}_{x}^{i}$ surjective for all $i=1, \ldots, N$.

Impossible unless ind $\mathbf{D}_{x}^{i} \geq 0 \forall i$; could fail even if ind $\mathbf{D}_{x} \geq 0$.

Problem 1 (finite dimensions): Splitting

Let $\left\{\boldsymbol{\theta}_{i}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}\left(W_{i}\right)\right\}_{i=1}^{N}$ denote the real irreducible representations of G, with $\boldsymbol{\theta}_{1}$ as the trivial representation.

Since $\mathbf{D}_{x}: T_{x} M \rightarrow E_{x}$ is G_{x}-equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_{x} M=\bigoplus_{i=1}^{N} T_{x} M^{i}$ and $E_{x}=\bigoplus_{i=1}^{N} E_{x}^{i}$, giving

$$
\mathbf{D}_{x}=\mathbf{D}_{x}^{1} \oplus \ldots \oplus \mathbf{D}_{x}^{N}, \quad \text { where } \quad \mathbf{D}_{x}^{i}: T_{x} M^{i} \rightarrow E_{x}^{i}
$$

Key observations:
(1) $\mathbf{D}_{x}^{1}=D \sigma^{G}(x)$, so it is surjective and $\operatorname{ker} \mathbf{D}_{x}^{1}=T_{x} \mathcal{M}^{G}(\sigma)$.
(2) $\sigma \pitchfork 0$ at $x \Leftrightarrow \mathbf{D}_{x}^{i}$ surjective for all $i=1, \ldots, N$.

Impossible unless ind $\mathbf{D}_{x}^{i} \geq 0 \forall i$; could fail even if ind $\mathbf{D}_{x} \geq 0$.
(3) If \mathbf{D}_{x}^{i} injective for all $i \geq 2$, then σ intersects 0 cleanly at x.

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy $\operatorname{ind} \mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}.

[^0]
Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$.
> previous codimension formula changes to

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$. Two new feaures:
(1) For $x \in d f^{-1}(0), \mathbf{D}_{x}:=D(d f)(x)$ is always symmetric, so the previous codimension formula changes to

$$
\operatorname{codim} \mathcal{M}^{G}(d f ; k, c)=\operatorname{dim} \operatorname{End}_{G}^{\operatorname{sym}}\left(\operatorname{ker} \mathbf{D}_{x}\right)
$$

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$. Two new feaures:
(1) For $x \in d f^{-1}(0), \mathbf{D}_{x}:=D(d f)(x)$ is always symmetric, so the previous codimension formula changes to

$$
\operatorname{codim} \mathcal{M}^{G}(d f ; k, c)=\operatorname{dim} \operatorname{End}_{G}^{\operatorname{sym}}\left(\operatorname{ker} \mathbf{D}_{x}\right)
$$

which is generally smaller, but still positive.

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$. Two new feaures:
(1) For $x \in d f^{-1}(0), \mathbf{D}_{x}:=D(d f)(x)$ is always symmetric, so the previous codimension formula changes to

$$
\operatorname{codim} \mathcal{M}^{G}(d f ; k, c)=\operatorname{dim} \operatorname{End}_{G}^{\operatorname{sym}}\left(\operatorname{ker} \mathbf{D}_{x}\right)
$$

which is generally smaller, but still positive.
(2) Every \mathbf{D}_{x}^{i} is self-adjoint, thus ind $\mathbf{D}_{x}^{i}=0$.

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$. Two new feaures:
(1) For $x \in d f^{-1}(0), \mathbf{D}_{x}:=D(d f)(x)$ is always symmetric, so the previous codimension formula changes to

$$
\operatorname{codim} \mathcal{M}^{G}(d f ; k, c)=\operatorname{dim} \operatorname{End}_{G}^{\operatorname{sym}}\left(\operatorname{ker} \mathbf{D}_{x}\right)
$$

which is generally smaller, but still positive.
(2) Every \mathbf{D}_{x}^{i} is self-adjoint, thus ind $\mathbf{D}_{x}^{i}=0$.

Then all strata $\mathcal{M}^{G}(d f)$ are 0 -dimensional.

Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if $\mathcal{M}_{i} \subset \mathcal{M}^{G}(\sigma)$ is a component whose points $x \in \mathcal{M}_{i}$ satisfy ind $\mathbf{D}_{x}^{i} \geq 0$ for all i, then $\sigma \pitchfork 0$ on an open dense subset of \mathcal{M}_{i}. Similarly for clean intersections if ind $\mathbf{D}^{i} \leq 0$ for $i \geq 2$.

Proof of Theorem 1.B (Morse functions):
We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$. Two new feaures:
(1) For $x \in d f^{-1}(0), \mathbf{D}_{x}:=D(d f)(x)$ is always symmetric, so the previous codimension formula changes to

$$
\operatorname{codim} \mathcal{M}^{G}(d f ; k, c)=\operatorname{dim} \operatorname{End}_{G}^{\operatorname{sym}}\left(\operatorname{ker} \mathbf{D}_{x}\right)
$$

which is generally smaller, but still positive.
(2) Every \mathbf{D}_{x}^{i} is self-adjoint, thus ind $\mathbf{D}_{x}^{i}=0$.

Then all strata $\mathcal{M}^{G}(d f)$ are 0 -dimensional. Non-Morse critical points live in walls $\mathcal{M}^{G}(d f ; k, c)$, which have negative dimension \Rightarrow empty.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Proof of Theorem 1.A (clean intersections), case $\left|G_{x}\right| \leq 2$: For $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$, there are two irreps $\theta_{ \pm}: \mathbb{Z}_{2} \rightarrow \operatorname{GL}(1, \mathbb{R})$, both with $\operatorname{End}_{\mathbb{Z}_{2}}(\mathbb{R})=\mathbb{R}$.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Proof of Theorem 1.A (clean intersections), case $\left|G_{x}\right| \leq 2$: For $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$, there are two irreps $\theta_{ \pm}: \mathbb{Z}_{2} \rightarrow \operatorname{GL}(1, \mathbb{R})$, both with $\operatorname{End}_{\mathbb{Z}_{2}}(\mathbb{R})=\mathbb{R}$. Write $\mathbf{D}_{x}=\mathbf{D}_{x}^{+} \oplus \mathbf{D}_{x}^{-}$, where \mathbf{D}_{x}^{+}is surjective and $\operatorname{ker} \mathbf{D}_{x}^{+}=T_{x} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Proof of Theorem 1.A (clean intersections), case $\left|G_{x}\right| \leq 2$: For $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$, there are two irreps $\theta_{ \pm}: \mathbb{Z}_{2} \rightarrow \mathrm{GL}(1, \mathbb{R})$, both with $\operatorname{End}_{\mathbb{Z}_{2}}(\mathbb{R})=\mathbb{R}$. Write $\mathbf{D}_{x}=\mathbf{D}_{x}^{+} \oplus \mathbf{D}_{x}^{-}$, where \mathbf{D}_{x}^{+}is surjective and $\operatorname{ker} \mathbf{D}_{x}^{+}=T_{x} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$. We have ind $\mathbf{D}_{x}=\operatorname{dim} M-\operatorname{rank} E=0$, thus

$$
\operatorname{ind} \mathbf{D}_{x}^{-}=-\operatorname{ind} \mathbf{D}_{x}^{+} \leq 0
$$

and need to show that \mathbf{D}_{x}^{-}is injective.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Proof of Theorem 1.A (clean intersections), case $\left|G_{x}\right| \leq 2$: For $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$, there are two irreps $\theta_{ \pm}: \mathbb{Z}_{2} \rightarrow \operatorname{GL}(1, \mathbb{R})$, both with $\operatorname{End}_{\mathbb{Z}_{2}}(\mathbb{R})=\mathbb{R}$. Write $\mathbf{D}_{x}=\mathbf{D}_{x}^{+} \oplus \mathbf{D}_{x}^{-}$, where \mathbf{D}_{x}^{+}is surjective and $\operatorname{ker} \mathbf{D}_{x}^{+}=T_{x} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$. We have ind $\mathbf{D}_{x}=\operatorname{dim} M-\operatorname{rank} E=0$, thus

$$
\operatorname{ind} \mathbf{D}_{x}^{-}=-\operatorname{ind} \mathbf{D}_{x}^{+} \leq 0
$$

and need to show that \mathbf{D}_{x}^{-}is injective. If not, then $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma ; k, c)$ for $k:=\operatorname{dim} \operatorname{ker} \mathbf{D}_{x}^{-}>0$ and $c:=k-\operatorname{ind} \mathbf{D}_{x}^{-}=k+\operatorname{ind} \mathbf{D}_{x}^{+}$.

Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls $\mathcal{M}^{G}(\sigma ; k, c) \subset \mathcal{M}^{G}(\sigma)$. These come via Schur's lemma:

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{x}, \operatorname{coker} \mathbf{D}_{x}\right)=\sum_{i=1}^{N}\left(\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i}\right) \cdot k_{i} c_{i}
$$

where $\mathbb{K}_{i}:=\operatorname{End}_{G}\left(W_{i}\right) \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ has dimension $\in\{1,2,4\}$, $k_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{ker} \mathbf{D}_{x}^{i}$ and $c_{i}:=\operatorname{dim}_{\mathbb{K}_{i}} \operatorname{coker} \mathbf{D}_{x}^{i}$.

Proof of Theorem 1.A (clean intersections), case $\left|G_{x}\right| \leq 2$: For $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$, there are two irreps $\theta_{ \pm}: \mathbb{Z}_{2} \rightarrow \mathrm{GL}(1, \mathbb{R})$, both with $\operatorname{End}_{\mathbb{Z}_{2}}(\mathbb{R})=\mathbb{R}$. Write $\mathbf{D}_{x}=\mathbf{D}_{x}^{+} \oplus \mathbf{D}_{x}^{-}$, where \mathbf{D}_{x}^{+}is surjective and $\operatorname{ker} \mathbf{D}_{x}^{+}=T_{x} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)$. We have ind $\mathbf{D}_{x}=\operatorname{dim} M-\operatorname{rank} E=0$, thus

$$
\operatorname{ind} \mathbf{D}_{x}^{-}=-\operatorname{ind} \mathbf{D}_{x}^{+} \leq 0
$$

and need to show that \mathbf{D}_{x}^{-}is injective. If not, then $x \in \mathcal{M}^{\mathbb{Z}_{2}}(\sigma ; k, c)$ for $k:=\operatorname{dim} \operatorname{ker} \mathbf{D}_{x}^{-}>0$ and $c:=k-\operatorname{ind} \mathbf{D}_{x}^{-}=k+\operatorname{ind} \mathbf{D}_{x}^{+}$. Then $\operatorname{dim} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma ; k, c)=\operatorname{dim} \mathcal{M}^{\mathbb{Z}_{2}}(\sigma)-k c=\operatorname{ind} \mathbf{D}_{x}^{+}-k\left(k+\operatorname{ind} \mathbf{D}_{x}^{+}\right)<0$.

Problem 3 (holomorphic curves): Preparation

Linearizations
Each $u:(\Sigma, j) \rightarrow(M, J)$ has a linearized Cauchy-Riemann operator

$$
\mathbf{D}_{u}:=D \bar{\partial}_{J}(u): \Gamma\left(u^{*} T M\right) \rightarrow \Omega^{0,1}\left(\Sigma, u^{*} T M\right)
$$

[^1]
Problem 3 (holomorphic curves): Preparation

Linearizations

Each $u:(\Sigma, j) \rightarrow(M, J)$ has a linearized Cauchy-Riemann operator

$$
\mathbf{D}_{u}:=D \bar{\partial}_{J}(u): \Gamma\left(u^{*} T M\right) \rightarrow \Omega^{0,1}\left(\Sigma, u^{*} T M\right)
$$

and a normal Cauchy-Riemann operator

$$
\mathbf{D}_{u}^{N}:=\left.\pi_{N} \circ \mathbf{D}_{u}\right|_{N_{u}}: \Gamma\left(N_{u}\right) \rightarrow \Omega^{0,1}\left(\Sigma, N_{u}\right),
$$

for the projection $u^{*} T M=T_{u} \oplus N_{u} \xrightarrow{\pi_{N}} N_{u}$ along the subbundle $T_{u} \subset u^{*} T M$ with $\left(T_{u}\right)_{z}=\operatorname{im} d u(z)$ at all noncritical points z.

Lemma: (i) u is cut out transversely iff \mathbf{D}_{u}^{N} is surjective.

Problem 3 (holomorphic curves): Preparation

Linearizations

Each $u:(\Sigma, j) \rightarrow(M, J)$ has a linearized Cauchy-Riemann operator

$$
\mathbf{D}_{u}:=D \bar{\partial}_{J}(u): \Gamma\left(u^{*} T M\right) \rightarrow \Omega^{0,1}\left(\Sigma, u^{*} T M\right)
$$

and a normal Cauchy-Riemann operator

$$
\mathbf{D}_{u}^{N}:=\left.\pi_{N} \circ \mathbf{D}_{u}\right|_{N_{u}}: \Gamma\left(N_{u}\right) \rightarrow \Omega^{0,1}\left(\Sigma, N_{u}\right),
$$

for the projection $u^{*} T M=T_{u} \oplus N_{u} \xrightarrow{\pi_{N}} N_{u}$ along the subbundle $T_{u} \subset u^{*} T M$ with $\left(T_{u}\right)_{z}=\operatorname{im} d u(z)$ at all noncritical points z.

Lemma: (i) u is cut out transversely iff \mathbf{D}_{u}^{N} is surjective.

Problem 3 (holomorphic curves): Preparation

Linearizations

Each $u:(\Sigma, j) \rightarrow(M, J)$ has a linearized Cauchy-Riemann operator

$$
\mathbf{D}_{u}:=D \bar{\partial}_{J}(u): \Gamma\left(u^{*} T M\right) \rightarrow \Omega^{0,1}\left(\Sigma, u^{*} T M\right)
$$

and a normal Cauchy-Riemann operator

$$
\mathbf{D}_{u}^{N}:=\left.\pi_{N} \circ \mathbf{D}_{u}\right|_{N_{u}}: \Gamma\left(N_{u}\right) \rightarrow \Omega^{0,1}\left(\Sigma, N_{u}\right),
$$

for the projection $u^{*} T M=T_{u} \oplus N_{u} \xrightarrow{\pi_{N}} N_{u}$ along the subbundle $T_{u} \subset u^{*} T M$ with $\left(T_{u}\right)_{z}=\operatorname{im} d u(z)$ at all noncritical points z.

Lemma: (i) u is cut out transversely iff \mathbf{D}_{u}^{N} is surjective. (ii) For an immersed simple curve with index $0, u$ is super-rigid iff $\mathbf{D}_{u \circ \varphi}^{N}$ is injective for all branched covers $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$.

Problem 3 (holomorphic curves): Preparation

Linearizations

Each $u:(\Sigma, j) \rightarrow(M, J)$ has a linearized Cauchy-Riemann operator

$$
\mathbf{D}_{u}:=D \bar{\partial}_{J}(u): \Gamma\left(u^{*} T M\right) \rightarrow \Omega^{0,1}\left(\Sigma, u^{*} T M\right)
$$

and a normal Cauchy-Riemann operator

$$
\mathbf{D}_{u}^{N}:=\left.\pi_{N} \circ \mathbf{D}_{u}\right|_{N_{u}}: \Gamma\left(N_{u}\right) \rightarrow \Omega^{0,1}\left(\Sigma, N_{u}\right),
$$

for the projection $u^{*} T M=T_{u} \oplus N_{u} \xrightarrow{\pi_{N}} N_{u}$ along the subbundle $T_{u} \subset u^{*} T M$ with $\left(T_{u}\right)_{z}=\operatorname{im} d u(z)$ at all noncritical points z.

Lemma: (i) u is cut out transversely iff \mathbf{D}_{u}^{N} is surjective. (ii) For an immersed simple curve with index $0, u$ is super-rigid iff $\mathbf{D}_{u \circ \varphi}^{N}$ is injective for all branched covers $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$.
This makes \mathbf{D}_{u}^{N} the more convenient operator to work with. But we need it to vary continuously on isosymmetric strata...

Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

$$
\mathcal{M}^{d}(J)=\{u=v \circ \varphi\} \subset \mathcal{M}_{g}(A, J)
$$

such that:

- v varies among simple curves $v:(\Sigma, j) \rightarrow(M, J)$ with a prescribed number of critical points, each of prescribed order;
of preimages that each has prescribed branching order.

Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

$$
\mathcal{M}^{d}(J)=\{u=v \circ \varphi\} \subset \mathcal{M}_{g}(A, J)
$$

such that:

- v varies among simple curves $v:(\Sigma, j) \rightarrow(M, J)$ with a prescribed number of critical points, each of prescribed order;
- φ varies among d-fold branched covers $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$ with a prescribed number of critical values, each with a prescribed number of preimages that each has prescribed branching order.

Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

$$
\mathcal{M}^{d}(J)=\{u=v \circ \varphi\} \subset \mathcal{M}_{g}(A, J)
$$

such that:

- v varies among simple curves $v:(\Sigma, j) \rightarrow(M, J)$ with a prescribed number of critical points, each of prescribed order;
- φ varies among d-fold branched covers $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$ with a prescribed number of critical values, each with a prescribed number of preimages that each has prescribed branching order.

Lemma (via standard transversality for simple curves): For generic $J, \mathcal{M}^{d}(J)$ is a smooth manifold, and the operators \mathbf{D}_{u}^{N} vary smoothly as u varies in $\mathcal{M}^{d}(J)$.

Problem 3 (holomorphic curves): Splitting

Consider $\mathbf{D}:=\mathbf{D}_{v}^{N}: \Gamma(E) \rightarrow \Omega^{0,1}(\Sigma, E)$ on $E:=N_{v}$, and

$$
\varphi^{*} \mathbf{D}:=\mathbf{D}_{u}^{N}: \Gamma\left(\varphi^{*} E\right) \rightarrow \Omega^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)
$$

for a d-fold branched cover $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$.
Simplest interesting case: Assume $d=2$.
Then $G:=\operatorname{Aut}(\varphi)=\mathbb{Z}_{2}$ and there is a unique nontrivial deck
transformation $\psi: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$. We define

Difficult to generalize.

Problem 3 (holomorphic curves): Splitting

Consider $\mathbf{D}:=\mathbf{D}_{v}^{N}: \Gamma(E) \rightarrow \Omega^{0,1}(\Sigma, E)$ on $E:=N_{v}$, and

$$
\varphi^{*} \mathbf{D}:=\mathbf{D}_{u}^{N}: \Gamma\left(\varphi^{*} E\right) \rightarrow \Omega^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)
$$

for a d-fold branched cover $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$.
Simplest interesting case: Assume $d=2$.
Then $G:=\operatorname{Aut}(\varphi)=\mathbb{Z}_{2}$ and there is a unique nontrivial deck transformation $\psi: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$. We define

$$
\Gamma_{ \pm}\left(\varphi^{*} E\right):=\left\{\eta \in \Gamma\left(\varphi^{*} E\right) \mid \eta \circ \psi= \pm \eta\right\}
$$

and $\Omega_{ \pm}^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)$ similarly, so $\varphi^{*} \mathbf{D}=\mathbf{D}^{+} \oplus \mathbf{D}^{-}$for operators
$\mathbf{D}^{ \pm}: \Gamma_{ \pm}\left(\varphi^{*} E\right) \rightarrow \Omega_{ \pm}^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)$.

Problem 3 (holomorphic curves): Splitting

Consider $\mathbf{D}:=\mathbf{D}_{v}^{N}: \Gamma(E) \rightarrow \Omega^{0,1}(\Sigma, E)$ on $E:=N_{v}$, and

$$
\varphi^{*} \mathbf{D}:=\mathbf{D}_{u}^{N}: \Gamma\left(\varphi^{*} E\right) \rightarrow \Omega^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)
$$

for a d-fold branched cover $\varphi:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(\Sigma, j)$.
Simplest interesting case: Assume $d=2$.
Then $G:=\operatorname{Aut}(\varphi)=\mathbb{Z}_{2}$ and there is a unique nontrivial deck transformation $\psi: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$. We define

$$
\Gamma_{ \pm}\left(\varphi^{*} E\right):=\left\{\eta \in \Gamma\left(\varphi^{*} E\right) \mid \eta \circ \psi= \pm \eta\right\}
$$

and $\Omega_{ \pm}^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)$ similarly, so $\varphi^{*} \mathbf{D}=\mathbf{D}^{+} \oplus \mathbf{D}^{-}$for operators $\mathbf{D}^{ \pm}: \Gamma_{ \pm}\left(\varphi^{*} E\right) \rightarrow \Omega_{ \pm}^{0,1}\left(\Sigma^{\prime}, \varphi^{*} E\right)$.

Difficult to generalize. . for $d>2$, $\operatorname{Aut}(\varphi)$ may be empty!

Problem 3 (holomorphic curves): Splitting

Idea

Replace $\Gamma\left(\varphi^{*} E\right)$ with $\Gamma\left(E \otimes_{\mathbb{R}} W\right)$ for some flat bundle W.

```
Lemma (via asymptotic regularity):
For a finite set }\Theta\subset\Sigma\mathrm{ , restricting D to the punctured domain }\Sigma:=\Sigma\
produces an operator on weighted Sobolev spaces (with small exponential
growth at punctures) that has the same index and kernel as D
```


Problem 3 (holomorphic curves): Splitting

```
Idea
Replace \(\Gamma\left(\varphi^{*} E\right)\) with \(\Gamma\left(E \otimes_{\mathbb{R}} W\right)\) for some flat bundle \(W\).
```

Lemma (via asymptotic regularity):
For a finite set $\Theta \subset \Sigma$, restricting \mathbf{D} to the punctured domain $\dot{\Sigma}:=\Sigma \backslash \Theta$ produces an operator on weighted Sobolev spaces (with small exponential growth at punctures) that has the same index and kernel as \mathbf{D}.

Problem 3 (holomorphic curves): Splitting

```
Idea
Replace }\Gamma(\mp@subsup{\varphi}{}{*}E)\mathrm{ with }\Gamma(E\mp@subsup{\otimes}{\mathbb{R}}{}W)\mathrm{ for some flat bundle }W\mathrm{ .
```

Lemma (via asymptotic regularity):
For a finite set $\Theta \subset \Sigma$, restricting \mathbf{D} to the punctured domain $\dot{\Sigma}:=\Sigma \backslash \Theta$ produces an operator on weighted Sobolev spaces (with small exponential growth at punctures) that has the same index and kernel as \mathbf{D}.
Now remove branch points and consider $\varphi: \dot{\Sigma}^{\prime} \rightarrow \dot{\Sigma}$ as a covering map of punctured Riemann surfaces.

Problem 3 (holomorphic curves): Splitting

```
Idea
Replace \(\Gamma\left(\varphi^{*} E\right)\) with \(\Gamma\left(E \otimes_{\mathbb{R}} W\right)\) for some flat bundle \(W\).
```

Lemma (via asymptotic regularity):
For a finite set $\Theta \subset \Sigma$, restricting \mathbf{D} to the punctured domain $\dot{\Sigma}:=\Sigma \backslash \Theta$ produces an operator on weighted Sobolev spaces (with small exponential growth at punctures) that has the same index and kernel as \mathbf{D}.
Now remove branch points and consider $\varphi: \dot{\Sigma}^{\prime} \rightarrow \dot{\Sigma}$ as a covering map of punctured Riemann surfaces.

Lemma (covering space theory):
There exists a regular cover $\pi: \dot{\Sigma}^{\prime \prime} \rightarrow \dot{\Sigma}$ with finite automorphism group G and an injective homomorphism $\rho: G \rightarrow S_{d}$ to the symmetric group such that φ is equivalent to the cover

$$
\left(\dot{\Sigma}^{\prime \prime} \times\{1, \ldots, d\}\right) / G \xrightarrow{\varphi} \dot{\Sigma}, \quad \varphi([(z, i)])=\pi(z) .
$$

Problem 3 (holomorphic curves): Splitting

Given a representation $\boldsymbol{\theta}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(W)$, define the flat vector bundle

$$
W^{\boldsymbol{\theta}}:=\left(\dot{\Sigma}^{\prime \prime} \times W\right) / G \rightarrow \dot{\Sigma}
$$

Problem 3 (holomorphic curves): Splitting

Given a representation $\boldsymbol{\theta}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(W)$, define the flat vector bundle

$$
W^{\theta}:=\left(\dot{\Sigma}^{\prime \prime} \times W\right) / G \rightarrow \dot{\Sigma}
$$

This gives a twisted bundle $E^{\boldsymbol{\theta}}:=E \otimes_{\mathbb{R}} W^{\boldsymbol{\theta}} \rightarrow \dot{\Sigma}$ with Cauchy-Riemann operator $\mathbf{D}^{\boldsymbol{\theta}}$ defined by $\mathbf{D}^{\boldsymbol{\theta}}(\eta \otimes v):=(\mathbf{D} \eta) \otimes v$ for flat sections v.

Lemma

Remark: If ind $\mathbf{D}=0$, a computation via the punctured Riemann-Roch formula shows ind $\mathbf{T}^{\theta}<0$ almays. This is 45% of the reason why Theorem 3.A (super-rigidity) is true.

Problem 3 (holomorphic curves): Splitting

Given a representation $\boldsymbol{\theta}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(W)$, define the flat vector bundle

$$
W^{\theta}:=\left(\dot{\Sigma}^{\prime \prime} \times W\right) / G \rightarrow \dot{\Sigma}
$$

This gives a twisted bundle $E^{\boldsymbol{\theta}}:=E \otimes_{\mathbb{R}} W^{\boldsymbol{\theta}} \rightarrow \dot{\Sigma}$ with Cauchy-Riemann operator $\mathbf{D}^{\boldsymbol{\theta}}$ defined by $\mathbf{D}^{\boldsymbol{\theta}}(\eta \otimes v):=(\mathbf{D} \eta) \otimes v$ for flat sections v.

Lemma: For the permutation representation $\boldsymbol{\rho}: G \rightarrow \mathrm{GL}(d, \mathbb{R})$ arising from $\rho: G \rightarrow S_{d}$, there is a natural isomorphism $\Gamma\left(\varphi^{*} E\right) \cong \Gamma\left(E^{\rho}\right)$ such that the operator $\varphi^{*} \mathbf{D}$ is identified with \mathbf{D}^{ρ}.

Problem 3 (holomorphic curves): Splitting

Given a representation $\boldsymbol{\theta}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(W)$, define the flat vector bundle

$$
W^{\theta}:=\left(\dot{\Sigma}^{\prime \prime} \times W\right) / G \rightarrow \dot{\Sigma}
$$

This gives a twisted bundle $E^{\boldsymbol{\theta}}:=E \otimes_{\mathbb{R}} W^{\boldsymbol{\theta}} \rightarrow \dot{\Sigma}$ with Cauchy-Riemann operator $\mathbf{D}^{\boldsymbol{\theta}}$ defined by $\mathbf{D}^{\boldsymbol{\theta}}(\eta \otimes v):=(\mathbf{D} \eta) \otimes v$ for flat sections v.

Lemma: For the permutation representation $\boldsymbol{\rho}: G \rightarrow \mathrm{GL}(d, \mathbb{R})$ arising from $\rho: G \rightarrow S_{d}$, there is a natural isomorphism $\Gamma\left(\varphi^{*} E\right) \cong \Gamma\left(E^{\rho}\right)$ such that the operator $\varphi^{*} \mathbf{D}$ is identified with \mathbf{D}^{ρ}.

Corollary (the general splitting of \mathbf{D}_{u}^{N})
If $\boldsymbol{\rho} \cong \bigoplus_{i=1}^{N} \boldsymbol{\theta}_{i}^{\oplus m_{i}}$, then $\varphi^{*} \mathbf{D} \cong \mathbf{D}^{\boldsymbol{\rho}} \cong \bigoplus_{i=1}^{N}\left(\mathbf{D}^{\boldsymbol{\theta}_{i}}\right)^{\oplus m_{i}}$.

Problem 3 (holomorphic curves): Splitting

Given a representation $\boldsymbol{\theta}: G \rightarrow \operatorname{Aut}_{\mathbb{R}}(W)$, define the flat vector bundle

$$
W^{\boldsymbol{\theta}}:=\left(\dot{\Sigma}^{\prime \prime} \times W\right) / G \rightarrow \dot{\Sigma}
$$

This gives a twisted bundle $E^{\boldsymbol{\theta}}:=E \otimes_{\mathbb{R}} W^{\boldsymbol{\theta}} \rightarrow \dot{\Sigma}$ with Cauchy-Riemann operator $\mathbf{D}^{\boldsymbol{\theta}}$ defined by $\mathbf{D}^{\boldsymbol{\theta}}(\eta \otimes v):=(\mathbf{D} \eta) \otimes v$ for flat sections v.

Lemma: For the permutation representation $\boldsymbol{\rho}: G \rightarrow \mathrm{GL}(d, \mathbb{R})$ arising from $\rho: G \rightarrow S_{d}$, there is a natural isomorphism $\Gamma\left(\varphi^{*} E\right) \cong \Gamma\left(E^{\rho}\right)$ such that the operator $\varphi^{*} \mathbf{D}$ is identified with \mathbf{D}^{ρ}.

Corollary (the general splitting of \mathbf{D}_{u}^{N})
If $\boldsymbol{\rho} \cong \bigoplus_{i=1}^{N} \boldsymbol{\theta}_{i}^{\oplus m_{i}}$, then $\varphi^{*} \mathbf{D} \cong \mathbf{D}^{\boldsymbol{\rho}} \cong \bigoplus_{i=1}^{N}\left(\mathbf{D}^{\boldsymbol{\theta}_{i}}\right)^{\oplus m_{i}}$.
Remark: If ind $\mathbf{D}=0$, a computation via the punctured Riemann-Roch formula shows ind $\mathbf{D}^{\theta} \leq 0$ always. This is 45% of the reason why Theorem 3.A (super-rigidity) is true.

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands.

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands. Locally near u, this is the zero-set of a map to $\operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{u}^{N}, \operatorname{coker} \mathbf{D}_{u}^{N}\right)$ whose derivative with respect to a variation \mathbf{T} in \mathbf{D}_{u}^{N} is

$$
\operatorname{ker} \mathbf{D}_{u}^{N} \xrightarrow{\mathbf{T}} \Omega^{0,1}\left(\Sigma, N_{u}\right) \xrightarrow{\text { proj }} \operatorname{coker} \mathbf{D}_{u}^{N} .
$$

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands. Locally near u, this is the zero-set of a map to $\operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{u}^{N}, \operatorname{coker} \mathbf{D}_{u}^{N}\right)$ whose derivative with respect to a variation \mathbf{T} in \mathbf{D}_{u}^{N} is

$$
\operatorname{ker} \mathbf{D}_{u}^{N} \xrightarrow{\mathbf{T}} \Omega^{0,1}\left(\Sigma, N_{u}\right) \xrightarrow{\text { proj }} \operatorname{coker} \mathbf{D}_{u}^{N} .
$$

Why is this derivative surjective?
Perturbing J causes zeroth-order perturbations in \mathbf{D}_{u}^{N}, so \mathbf{T} should be realized by a bundle map $A: N_{u} \rightarrow \Lambda^{0,1} T^{*} \Sigma \otimes N_{u}$.

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands. Locally near u, this is the zero-set of a map to $\operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{u}^{N}, \operatorname{coker} \mathbf{D}_{u}^{N}\right)$ whose derivative with respect to a variation \mathbf{T} in \mathbf{D}_{u}^{N} is

$$
\operatorname{ker} \mathbf{D}_{u}^{N} \xrightarrow{\mathbf{T}} \Omega^{0,1}\left(\Sigma, N_{u}\right) \xrightarrow{\text { proj }} \operatorname{coker} \mathbf{D}_{u}^{N} .
$$

Why is this derivative surjective?
Perturbing J causes zeroth-order perturbations in \mathbf{D}_{u}^{N}, so \mathbf{T} should be realized by a bundle map $A: N_{u} \rightarrow \Lambda^{0,1} T^{*} \Sigma \otimes N_{u}$. If not every map $\operatorname{ker} \mathbf{D}_{u}^{N} \rightarrow \operatorname{coker} \mathbf{D}_{u}^{N}$ arises this way, then given bases $\left(\eta_{i}\right) \in \operatorname{ker} \mathbf{D}_{u}^{N}$ and $\left(\xi_{j}\right) \in \operatorname{ker}\left(\mathbf{D}_{u}^{N}\right)^{*} \cong \operatorname{coker} \mathbf{D}_{u}^{N}$, there exist nontrivial coefficients $c_{i j} \in \mathbb{R}$ such that for all zeroth-order perturbations A,

$$
\sum_{i, j} c_{i j}\left\langle A \eta_{i}, \xi_{j}\right\rangle_{L^{2}}=0
$$

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands. Locally near u, this is the zero-set of a map to $\operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{u}^{N}, \operatorname{coker} \mathbf{D}_{u}^{N}\right)$ whose derivative with respect to a variation \mathbf{T} in \mathbf{D}_{u}^{N} is

$$
\operatorname{ker} \mathbf{D}_{u}^{N} \xrightarrow{\mathbf{T}} \Omega^{0,1}\left(\Sigma, N_{u}\right) \xrightarrow{\text { proj }} \operatorname{coker} \mathbf{D}_{u}^{N} .
$$

Why is this derivative surjective?
Perturbing J causes zeroth-order perturbations in \mathbf{D}_{u}^{N}, so \mathbf{T} should be realized by a bundle map $A: N_{u} \rightarrow \Lambda^{0,1} T^{*} \Sigma \otimes N_{u}$. If not every map $\operatorname{ker} \mathbf{D}_{u}^{N} \rightarrow \operatorname{coker} \mathbf{D}_{u}^{N}$ arises this way, then given bases $\left(\eta_{i}\right) \in \operatorname{ker} \mathbf{D}_{u}^{N}$ and $\left(\xi_{j}\right) \in \operatorname{ker}\left(\mathbf{D}_{u}^{N}\right)^{*} \cong \operatorname{coker} \mathbf{D}_{u}^{N}$, there exist nontrivial coefficients $c_{i j} \in \mathbb{R}$ such that for all zeroth-order perturbations A,

$$
\sum_{i, j} c_{i j}\left\langle A \eta_{i}, \xi_{j}\right\rangle_{L^{2}}=\int_{\Sigma}\langle,\rangle \circ(A \otimes \mathbb{1})\left(\sum_{i, j} c_{i j} \eta_{i} \otimes \xi_{j}\right) d \mathrm{vol}=0
$$

Problem 3 (holomorphic curves): Walls

Walls in $\mathcal{M}^{d}(J)$ are defined by fixing the dimensions of the kernel and cokernel of \mathbf{D}_{u}^{N} and its summands. Locally near u, this is the zero-set of a map to $\operatorname{Hom}_{G}\left(\operatorname{ker} \mathbf{D}_{u}^{N}, \operatorname{coker} \mathbf{D}_{u}^{N}\right)$ whose derivative with respect to a variation \mathbf{T} in \mathbf{D}_{u}^{N} is

$$
\operatorname{ker} \mathbf{D}_{u}^{N} \xrightarrow{\mathbf{T}} \Omega^{0,1}\left(\Sigma, N_{u}\right) \xrightarrow{\text { proj }} \operatorname{coker} \mathbf{D}_{u}^{N} .
$$

Why is this derivative surjective?
Perturbing J causes zeroth-order perturbations in \mathbf{D}_{u}^{N}, so \mathbf{T} should be realized by a bundle map $A: N_{u} \rightarrow \Lambda^{0,1} T^{*} \Sigma \otimes N_{u}$. If not every map $\operatorname{ker} \mathbf{D}_{u}^{N} \rightarrow \operatorname{coker} \mathbf{D}_{u}^{N}$ arises this way, then given bases $\left(\eta_{i}\right) \in \operatorname{ker} \mathbf{D}_{u}^{N}$ and $\left(\xi_{j}\right) \in \operatorname{ker}\left(\mathbf{D}_{u}^{N}\right)^{*} \cong \operatorname{coker} \mathbf{D}_{u}^{N}$, there exist nontrivial coefficients $c_{i j} \in \mathbb{R}$ such that for all zeroth-order perturbations A,

$$
\sum_{i, j} c_{i j}\left\langle A \eta_{i}, \xi_{j}\right\rangle_{L^{2}}=\int_{\Sigma}\langle,\rangle \circ(A \otimes \mathbb{1})\left(\sum_{i, j} c_{i j} \eta_{i} \otimes \xi_{j}\right) d \mathrm{vol}=0
$$

In other words, $\sum_{i, j} c_{i j} \eta_{i} \otimes \xi_{j} \equiv 0 \in \Gamma\left(N_{u} \otimes \Lambda^{0,1} T^{*} \Sigma \otimes N_{u}\right)$.

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)
A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma(E \otimes F \mid \mathcal{U})
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)

A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma\left(\left.E \otimes F\right|_{\mathcal{U}}\right)
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.
Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)

A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma\left(\left.E \otimes F\right|_{\mathcal{U}}\right)
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.
Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional domains.

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)

A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma\left(\left.E \otimes F\right|_{\mathcal{U}}\right)
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.
Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional domains. (This makes Problem 2 tractable.)

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)

A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma\left(\left.E \otimes F\right|_{\mathcal{U}}\right)
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.
Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional domains. (This makes Problem 2 tractable.)
Non-example 2: $\mathbf{D}=\bar{\partial}$ and $\mathbf{D}^{*}=-\partial$, FAIL:
$\Pi\left(1 \otimes_{\mathbb{R}} i \bar{z}-i \otimes_{\mathbb{R}} \bar{z}-z \otimes_{\mathbb{R}} i+i z \otimes_{\mathbb{R}} 1\right) \equiv 0$.

Problem 3 (holomorphic curves): Walls

Definition (a "quadratic unique continuation" property)

A real-linear partial differential operator $\mathbf{D}: \Gamma(E) \rightarrow \Gamma(F)$ on Euclidean vector bundles $E, F \rightarrow \Sigma$ satisfies Petri's condition if the canonical map

$$
\operatorname{ker} \mathbf{D} \otimes \operatorname{ker} \mathbf{D}^{*} \xrightarrow{\Pi} \Gamma\left(\left.E \otimes F\right|_{\mathcal{U}}\right)
$$

is injective for every open subset $\mathcal{U} \subset \Sigma$.
Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional domains. (This makes Problem 2 tractable.)
Non-example 2: $\mathbf{D}=\bar{\partial}$ and $\mathbf{D}^{*}=-\partial$, FAIL:
$\Pi\left(1 \otimes_{\mathbb{R}} i \bar{z}-i \otimes_{\mathbb{R}} \bar{z}-z \otimes_{\mathbb{R}} i+i z \otimes_{\mathbb{R}} 1\right) \equiv 0$. (This makes us panic slightly.)

Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each $\ell \in \mathbb{N}$, there exists an integer $k \geq \ell$ and a Baire set of compatible almost complex structures J such that for every simple curve $u:(\Sigma, j) \rightarrow(M, J)$ and point $z \in \Sigma$, if η_{i}, ξ_{j} are local solutions to $\mathbf{D}_{u}^{N} \eta_{i}=0$ and $\left(\mathbf{D}_{u}^{N}\right)^{*} \xi_{j}=0$ near z such that the tensor product

$$
t:=\sum_{i, j} c_{i j} \eta_{i} \otimes_{\mathbb{R}} \xi_{j}
$$

vanishes to order ℓ at z, then $\Pi(t)$ does not vanish to order k at z.
Corollary (via unique continuation): Generically all \mathbf{D}_{u}^{N} satisfy Petri.

Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each $\ell \in \mathbb{N}$, there exists an integer $k \geq \ell$ and a Baire set of compatible almost complex structures J such that for every simple curve $u:(\Sigma, j) \rightarrow(M, J)$ and point $z \in \Sigma$, if η_{i}, ξ_{j} are local solutions to $\mathbf{D}_{u}^{N} \eta_{i}=0$ and $\left(\mathbf{D}_{u}^{N}\right)^{*} \xi_{j}=0$ near z such that the tensor product

$$
t:=\sum_{i, j} c_{i j} \eta_{i} \otimes_{\mathbb{R}} \xi_{j}
$$

vanishes to order ℓ at z, then $\Pi(t)$ does not vanish to order k at z.
Corollary (via unique continuation): Generically all \mathbf{D}_{u}^{N} satisfy Petri.
"Proof": Sard-Smale theorem + dimension counting in jet spaces at $z \ldots$

Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each $\ell \in \mathbb{N}$, there exists an integer $k \geq \ell$ and a Baire set of compatible almost complex structures J such that for every simple curve $u:(\Sigma, j) \rightarrow(M, J)$ and point $z \in \Sigma$, if η_{i}, ξ_{j} are local solutions to $\mathbf{D}_{u}^{N} \eta_{i}=0$ and $\left(\mathbf{D}_{u}^{N}\right)^{*} \xi_{j}=0$ near z such that the tensor product

$$
t:=\sum_{i, j} c_{i j} \eta_{i} \otimes_{\mathbb{R}} \xi_{j}
$$

vanishes to order ℓ at z, then $\Pi(t)$ does not vanish to order k at z.
Corollary (via unique continuation): Generically all \mathbf{D}_{u}^{N} satisfy Petri.
"Proof": Sard-Smale theorem + dimension counting in jet spaces at $z \ldots$
Remark: The proof requires u to be simple for the usual (Sard-Smale) reasons, but the result is local, so it carries over to all multiple covers.

Back to Problem 2 (closed orbits)

(1) Birth-death:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Back to Problem 2 (closed orbits)

(1) Birth-death:

$$
\mathcal{M}\left(\left\{\ell_{s}\right\}\right)=\left\{(s, \gamma) \mid s \in[0,1] \text { and } \gamma \in \mathcal{M}\left(\ell_{s}\right)\right\}
$$

(2) Period-doubling:

Sample theorem 2.B

For generic deformations $\left\{\ell_{s}\right\}_{s \in[0,1]}$ of an oriented line field, if lengths of orbits are bounded, nothing else goes wrong.

Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For $d=1,2,3, \ldots$,

$$
\mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \in \mathcal{M}\left(\left\{\ell_{s}\right\}\right) \mid \operatorname{cov}(\gamma)=d\right\}
$$

is a smooth 1-manifold for generic $\left\{\ell_{s}\right\}$.θ_{N} the irreps of \mathbb{Z}_{d}
Al summands have index

Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For $d=1,2,3, \ldots$,

$$
\mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \in \mathcal{M}\left(\left\{\ell_{s}\right\}\right) \mid \operatorname{cov}(\gamma)=d\right\}
$$

is a smooth 1-manifold for generic $\left\{\ell_{s}\right\}$.
Splitting: For $(s, \gamma) \in \mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right)$,

$$
\mathbf{D}_{\gamma}=\bigoplus_{i=1}^{N} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{i}}
$$

with $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ the irreps of \mathbb{Z}_{d}. All summands have index 0 .

Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For $d=1,2,3, \ldots$,

$$
\mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \in \mathcal{M}\left(\left\{\ell_{s}\right\}\right) \mid \operatorname{cov}(\gamma)=d\right\}
$$

is a smooth 1-manifold for generic $\left\{\ell_{s}\right\}$.
Splitting: For $(s, \gamma) \in \mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right)$,

$$
\mathbf{D}_{\gamma}=\bigoplus_{i=1}^{N} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{i}}
$$

with $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ the irreps of \mathbb{Z}_{d}. All summands have index 0 . Bifurcations $=$ crossing walls of codimension 1 :

Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For $d=1,2,3, \ldots$,

$$
\mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right):=\left\{(s, \gamma) \in \mathcal{M}\left(\left\{\ell_{s}\right\}\right) \mid \operatorname{cov}(\gamma)=d\right\}
$$

is a smooth 1-manifold for generic $\left\{\ell_{s}\right\}$.
Splitting: For $(s, \gamma) \in \mathcal{M}^{d}\left(\left\{\ell_{s}\right\}\right)$,

$$
\mathbf{D}_{\gamma}=\bigoplus_{i=1}^{N} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{i}}
$$

with $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ the irreps of \mathbb{Z}_{d}. All summands have index 0 . Bifurcations $=$ crossing walls of codimension 1 :

$$
\operatorname{codim} \mathcal{M}^{d}\left(\left\{\ell_{s}\right\} ; k, c\right)=\sum_{i=1}^{N} t_{i} k_{i} c_{i}
$$

with $t_{i}=$ dimension of the equivariant endomorphism algebra of $\boldsymbol{\theta}_{i}$.

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\left.\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m} \text { (if } d \text { even }\right) .
$$

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\left.\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m} \text { (if } d \text { even }\right) .
$$

- Complex type: $\boldsymbol{\theta}_{j}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$ with

$$
\boldsymbol{\theta}_{j}(m)=\left(e^{2 \pi i j / d}\right)^{m}(\text { for } j \neq m / 2) .
$$

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\left.\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m} \text { (if } d \text { even }\right) .
$$

- Complex type: $\boldsymbol{\theta}_{j}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$ with

$$
\boldsymbol{\theta}_{j}(m)=\left(e^{2 \pi i j / d}\right)^{m}(\text { for } j \neq m / 2) .
$$

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{+}}=\operatorname{dim} \text { coker } \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{+}}=1 \quad \Rightarrow \quad \text { birth-death. } \\
& \operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{-}}=\operatorname{dim} \text { coker } \mathbf{D}_{\gamma}^{\theta_{-}}=1 \quad \Rightarrow \text { period-doubling. }
\end{aligned}
$$

All other walls have codimension
Final remark:

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\left.\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m} \text { (if } d \text { even }\right) .
$$

- Complex type: $\boldsymbol{\theta}_{j}: \mathbb{Z}_{d} \rightarrow$ Aut $_{\mathbb{R}}(\mathbb{C})$ with

$$
\boldsymbol{\theta}_{j}(m)=\left(e^{2 \pi i j / d}\right)^{m}(\text { for } j \neq m / 2) .
$$

$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{+}}=\operatorname{dim} \operatorname{coker} \mathbf{D}_{\gamma}^{\boldsymbol{\theta}_{+}}=1 \quad \Rightarrow \quad$ birth-death.
$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{-}}=\operatorname{dim}$ coker $\mathbf{D}_{\gamma}^{\theta_{-}}=1 \quad \Rightarrow \quad$ period-doubling.
All other walls have codimension ≥ 2.

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m}(\text { if } d \text { even })
$$

- Complex type: $\boldsymbol{\theta}_{j}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$ with

$$
\boldsymbol{\theta}_{j}(m)=\left(e^{2 \pi i j / d}\right)^{m}(\text { for } j \neq m / 2) .
$$

$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{+}}=\operatorname{dim} \operatorname{coker} \mathbf{D}_{\gamma}^{\theta_{+}}=1 \quad \Rightarrow \quad$ birth-death.
$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{-}}=\operatorname{dim}$ coker $\mathbf{D}_{\gamma}^{\theta_{-}}=1 \quad \Rightarrow \quad$ period-doubling.
All other walls have codimension ≥ 2.

Final remark:

In the Hamiltonian case, orbits are critical points of an action functional \Rightarrow linearizations are self-adjoint.

Back to Problem 2 (closed orbits)

Real irreps of \mathbb{Z}_{d} come in two types:

- Real type: $\boldsymbol{\theta}_{ \pm}: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}_{\mathbb{R}}(\mathbb{R})$ with

$$
\left.\boldsymbol{\theta}_{+}(m)=1, \quad \boldsymbol{\theta}_{-}(m)=(-1)^{m} \text { (if } d \text { even }\right) .
$$

- Complex type: $\boldsymbol{\theta}_{j}: \mathbb{Z}_{d} \rightarrow$ Aut $_{\mathbb{R}}(\mathbb{C})$ with

$$
\boldsymbol{\theta}_{j}(m)=\left(e^{2 \pi i j / d}\right)^{m}(\text { for } j \neq m / 2) .
$$

$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{+}}=\operatorname{dim} \operatorname{coker} \mathbf{D}_{\gamma}^{\theta_{+}}=1 \quad \Rightarrow \quad$ birth-death.
$\operatorname{dim} \operatorname{ker} \mathbf{D}_{\gamma}^{\theta_{-}}=\operatorname{dim}$ coker $\mathbf{D}_{\gamma}^{\theta_{-}}=1 \quad \Rightarrow \quad$ period-doubling.
All other walls have codimension ≥ 2.

Final remark:

In the Hamiltonian case, orbits are critical points of an action functional \Rightarrow linearizations are self-adjoint. This changes codim $\mathcal{M}^{d}\left(\left\{\ell_{s}\right\} ; k, c\right)$ so that complex-type representations also play a role.

[^0]: Proof of Theorem 1.B (Morse functions)
 We consider $E:=T^{*} M$ and $d f \in \Gamma(E)$ and need to show $d f \pitchfork 0$ for generic $f: M \rightarrow \mathbb{R}$

[^1]: Lemma: (i) u is cut out transversely iff \mathbf{D}_{u}^{N} is surjective.

