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Motivation

J-holomorphic curves are great!

Example (Gromov-McDuff, 1980’s):

u : (S2, i)→ (M4, J) with [u] · [u] = 1
(M,ω) minimal

⇒ Theorem : (M,ω) ∼= (CP 2, c ωFS).

Mg(A, J) :=
{
u : (Σg, j)→ (M2n, J)

∣∣ ∂̄J(u) = 0, [u] = A
}/

reparam.

is a compact smooth manifold of dimension (n− 3)(2− 2g) + 2c1(A).
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(De)motivation

Mg(A, J) :=
{
u : (Σg, j)→ (M2n, J)

∣∣ ∂̄J(u) = 0, [u] = A
}/

reparam.

is a compact smooth manifold of dimension (n− 3)(2− 2g) + 2c1(A).

Bad news
1 All J-holomorphic curves have multiple covers. They have

symmetry. . . ∂̄J is equivariant.
2 Perturbing J generically perturbs ∂̄J equivariantly.

Equivariant transversality is NOT POSSIBLE.

J-holomorphic curves are great terrible!
I hate them. Let’s do combinatorics. (Just kidding.)
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Equivariant transversality is not possible. . . unless it is.

My aim in this talk is to address the following general questions:

How do we recognize when equivariant transversality is possible?
Claim: In many settings, if it is possible, then it holds generically.
When it is not possible, why not, and what is true instead?
(key words: clean intersections, obstruction bundles)
If I want to apply these ideas to my favorite nonlinear elliptic PDE
with symmetry, what do I need to prove?

We will consider three classes of problems as examples:

1 The zero-set of a section of a finite-dimensional orbibundle∗

2 The space of closed orbits of an oriented line field∗

3 The moduli space of J-holomorphic curves
∗no claim of originality

Acknowledgements:
Several ideas were inspired by C. Taubes (“Counting. . . ” JDG 1996), and
also some recent work by A. Doan and T. Walpuski.
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Problem 1: Finite dimensions

M a compact n-dimensional orbifold, E →M an orbibundle of rank m.

Question

For generic σ ∈ Γ(E), is σ−1(0) ⊂M a suborbifold of dimension n−m?
Does σ t 0 hold generically? Answer: Typically not.

Local example

Call σ : R2 → R2 Z2-equivariant if σ(x,−y) = −σ(x, y).
Then σ−1(0) is never 0-dimensional, e.g. it contains R× {0}.

Next best thing (“Morse-Bott” condition):
Say σ ∈ Γ(E) intersects zero cleanly if all components Mi ⊂ σ−1(0) are
suborbifolds (of dimensions ≥ n−m) with TxMi = kerDσ(x).

We can then compute the Euler number of E via obstruction bundles:

〈e(E), [M ]〉 =
∑
i

〈e(Obi),Mi〉, Obx := cokerDσ(x).
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Problem 1: Finite dimensions

Sample theorem 1.A

If dimM = rankE and isotropy groups satisfy |Gx| ≤ 3 for all x, then
generic sections of E intersect zero cleanly.

Key observation behind the proof (to be discussed):
Z2 and Z3 each have only two real irreducible representations.

Sample theorem 1.B (cf. Wasserman ’69, Hepworth ’09)

Generic smooth functions on an orbifold are Morse.

Key observation behind the proof (to be discussed):
Self-adjoint Fredholm operators (e.g. Hessians) always have index 0.
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Problem 2: Closed orbits

For an oriented line field ` ⊂ TM generated by R ∈ X(M), we consider
the moduli space of closed orbits

M(`) :=
{
γ : S1 #M

∣∣ γ̇ ∈ `}/Diff(S1) ∼= σ−1
R (0)

/
S1,

where

(0,∞)×H1(S1,M)
σR−→ E

(τ, γ) 7−→ γ̇ − τR(γ)

is an S1-equivariant smooth section of a Hilbert space bundle
E → (0,∞)×H1(S1,M) with fibers E(τ,γ) = L2(γ∗TM).

Each d-fold covered orbit γ ∈M(`) has isotropy group Zd.
We call γ nondegenerate if σ t 0 at γ.

Sample theorem 2.A

For generic line fields `, all orbits in M(`) are nondegenerate, thus M(`)
is a 0-manifold.
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Problem 2: Closed orbits

Question: What can happen to orbits under deformations {`s}s∈[0,1]?

(1) Birth-death bifurcations:

M({`s}) := {(s, γ) | s ∈ [0, 1] and γ ∈M(`s)}

(2) Period-doubling bifurcations:

Sample theorem 2.B

For generic deformations, birth-death and period-doubling are the only
bifurcations.

(i.e. “walls” of codimension 1 come in two types)
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Problem 2: Closed orbits

Sample theorem 2.B

There is only birth-death and period-doubling for generic {`s}s∈[0,1].

Remark 1: If the `s are also geodesible, then components of M({`s})
are compact up to period-doubling, i.e. no blue sky catastrophes.

In the Hamiltonian case (`s = kerωs for ωs ∈ Ω2(M) of maximal rank),
geodesible ⇔ stabilizable.

Remark 2: But {`s = kerωs} also has higher-degree bifurcations.
(see e.g. Abraham-Marsden, Chapter 8)
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Problem 3: Holomorphic curves

Fix a 2n-dimensional symplectic manifold (M,ω) and consider compatible
almost complex structures J .

Theorem 3.A (W. ’16–’19)

If (M,ω) is a symplectic Calabi-Yau 3-fold (dimM = 6, c1(M,ω) = 0)
and J is generic, then ∂̄J intersects the zero-section cleanly, i.e. all simple
curves are super-rigid.

Corollary: Gromov-Witten invariants of (M,ω) are finite sums of Euler
numbers of well-defined obstruction bundles.

Theorem 3.B (W. ’16–’19)

If dimM ≥ 4 and J is generic, all unbranched covers of simple
J-holomorphic curves are cut out transversely.

Precedent (Taubes ’96):
Doubly covered tori in the definition of the Gromov invariant.
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almost complex structures J .

Theorem 3.A (W. ’16–’19)
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Paradigm

Each of our problems involves a moduli space M(σ) defined via
geometric data σ, such that to every x ∈M(σ) corresponds:

A finite symmetry group Gx, which is trivial on a subset
M∗(σ) ⊂M(σ) for which transversality holds generically.
A Fredholm operator Dx, which is surjective if and only if
transversality holds at x.

Here is the general strategy

1 Isosymmetric strata (easy):
Decompose M(σ) into subsets MG(σ) ⊂M(σ) on which Gx is
constant. For generic σ, these are submanifolds.

2 Walls (the technical part):
Stratify each MG(σ) further into submanifolds on which kerDx and
cokerDx vary smoothly (i.e. constant dimensions).

3 Splitting (mainly representation theory):
Dx
∼=
⊕

θ D
θ
x for the real irreducible representations θ of Gx.

Compute indices. . . the rest is dimension counting!
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Problem 1 (finite dimensions): Isosymmetric strata

Given σ ∈ Γ(E), write M(σ) := σ−1(0) ⊂M .
For each finite group G, define

MG :=
{
x ∈M

∣∣ Gx ∼= G
}
,

and
MG(σ) :=M(σ) ∩MG.

Key observations:
1 MG ⊂M is a smooth submanifold.
2 σG := σ|MG : MG → E takes values in a distinguished subbundle

EG :=
{
v ∈ Ex

∣∣ x ∈MG and g · v = v for all g ∈ Gx
}
.

Exercise (via the Sard-Smale theorem)

For every G and generic σ ∈ Γ(E), σG is transverse to the zero-section
of EG. In particular, MG(σ) is a smooth manifold.
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Problem 1 (finite dimensions): Walls

At each x ∈MG(σ), there is a linearization

Dx := Dσ(x) ∈ HomG(TxM,Ex).

For integers k, c ≥ 0, define

MG(σ ; k, c) :=
{
x ∈MG(σ)

∣∣ dim kerDx = k and dim cokerDx = c
}
.

Key observations:
1 Every Fredholm operator T0 : X → Y admits a neighborhood
O ⊂ L (X,Y ) and smooth map Φ : O → Hom(kerT0, cokerT0) s.t.
Φ(T) = 0⇔ dim kerT = dim kerT0, dim cokerT = dim cokerT0.

2 In the present setting, all operators are G-equivariant.

Stratification theorem (via IFT and Sard-Smale)

For all G, k, c and generic σ ∈ Γ(E), MG(σ ; k, c) ⊂MG(σ) is a smooth
submanifold whose codimension near x ∈MG(σ ; k, c) is
dim HomG(kerDx, cokerDx).
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Problem 1 (finite dimensions): Splitting

Let {θi : G→ AutR(Wi)}Ni=1 denote the real irreducible
representations of G, with θ1 as the trivial representation.

Since Dx : TxM → Ex is Gx-equivariant, Schur’s lemma implies that it
splits with respect to the isotypic decompositions TxM =

⊕N
i=1 TxM

i

and Ex =
⊕N

i=1E
i
x, giving

Dx = D1
x ⊕ . . .⊕DN

x , where Di
x : TxM

i → Eix.

Key observations:

1 D1
x = DσG(x), so it is surjective and kerD1

x = TxMG(σ).

2 σ t 0 at x ⇔ Di
x surjective for all i = 1, . . . , N .

Impossible unless indDi
x ≥ 0 ∀i; could fail even if indDx ≥ 0.

3 If Di
x injective for all i ≥ 2, then σ intersects 0 cleanly at x.
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Problem 1 (finite dimensions): Proofs

Corollary (of stratification)

For generic σ, if Mi ⊂MG(σ) is a component whose points x ∈Mi

satisfy indDi
x ≥ 0 for all i, then σ t 0 on an open dense subset of Mi.

Similarly for clean intersections if indDi ≤ 0 for i ≥ 2.

Proof of Theorem 1.B (Morse functions):
We consider E := T ∗M and df ∈ Γ(E) and need to show df t 0 for
generic f : M → R. Two new feaures:

1 For x ∈ df−1(0), Dx := D(df)(x) is always symmetric, so the
previous codimension formula changes to

codimMG(df ; k, c) = dim Endsym
G (kerDx)

which is generally smaller, but still positive.
2 Every Di

x is self-adjoint, thus indDi
x = 0.

Then all strata MG(df) are 0-dimensional. Non-Morse critical points live
in walls MG(df ; k, c), which have negative dimension ⇒ empty.
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Problem 1 (finite dimensions): Proofs

To do more, one must compute the codimensions of the walls
MG(σ ; k, c) ⊂MG(σ). These come via Schur’s lemma:

dim HomG(kerDx, cokerDx) =

N∑
i=1

(dimRKi) · kici,

where Ki := EndG(Wi) ∈ {R,C,H} has dimension ∈ {1, 2, 4},
ki := dimKi kerDi

x and ci := dimKi cokerDi
x.

Proof of Theorem 1.A (clean intersections), case |Gx| ≤ 2:
For x ∈MZ2(σ), there are two irreps θ± : Z2 → GL(1,R), both with
EndZ2(R) = R. Write Dx = D+

x ⊕D−x , where D+
x is surjective and

kerD+
x = TxMZ2(σ). We have indDx = dimM − rankE = 0, thus

indD−x = − indD+
x ≤ 0,

and need to show that D−x is injective. If not, then x ∈MZ2(σ ; k, c) for
k := dim kerD−x > 0 and c := k − indD−x = k + indD+

x . Then
dimMZ2(σ ; k, c) = dimMZ2(σ)−kc = indD+

x −k(k+indD+
x ) < 0.
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Problem 3 (holomorphic curves): Preparation

Linearizations

Each u : (Σ, j)→ (M,J) has a linearized Cauchy-Riemann operator

Du := D∂̄J(u) : Γ(u∗TM)→ Ω0,1(Σ, u∗TM)

and a normal Cauchy-Riemann operator

DN
u := πN ◦Du

∣∣
Nu

: Γ(Nu)→ Ω0,1(Σ, Nu),

for the projection u∗TM = Tu ⊕Nu
πN−→ Nu along the subbundle

Tu ⊂ u∗TM with (Tu)z = im du(z) at all noncritical points z.

Lemma: (i) u is cut out transversely iff DN
u is surjective.

(ii) For an immersed simple curve with index 0, u is super-rigid iff DN
u◦ϕ

is injective for all branched covers ϕ : (Σ′, j′)→ (Σ, j).

This makes DN
u the more convenient operator to work with. But we need

it to vary continuously on isosymmetric strata. . .
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Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

Md(J) = {u = v ◦ ϕ} ⊂ Mg(A, J)

such that:

v varies among simple curves v : (Σ, j)→ (M,J) with a prescribed
number of critical points, each of prescribed order;

ϕ varies among d-fold branched covers ϕ : (Σ′, j′)→ (Σ, j) with a
prescribed number of critical values, each with a prescribed number
of preimages that each has prescribed branching order.

Lemma (via standard transversality for simple curves):
For generic J , Md(J) is a smooth manifold, and the operators DN

u vary
smoothly as u varies in Md(J).

Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 17 / 26



Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

Md(J) = {u = v ◦ ϕ} ⊂ Mg(A, J)

such that:

v varies among simple curves v : (Σ, j)→ (M,J) with a prescribed
number of critical points, each of prescribed order;

ϕ varies among d-fold branched covers ϕ : (Σ′, j′)→ (Σ, j) with a
prescribed number of critical values, each with a prescribed number
of preimages that each has prescribed branching order.

Lemma (via standard transversality for simple curves):
For generic J , Md(J) is a smooth manifold, and the operators DN

u vary
smoothly as u varies in Md(J).

Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 17 / 26



Problem 3 (holomorphic curves): Isosymmetric strata

Define strata of the form

Md(J) = {u = v ◦ ϕ} ⊂ Mg(A, J)

such that:

v varies among simple curves v : (Σ, j)→ (M,J) with a prescribed
number of critical points, each of prescribed order;

ϕ varies among d-fold branched covers ϕ : (Σ′, j′)→ (Σ, j) with a
prescribed number of critical values, each with a prescribed number
of preimages that each has prescribed branching order.

Lemma (via standard transversality for simple curves):
For generic J , Md(J) is a smooth manifold, and the operators DN

u vary
smoothly as u varies in Md(J).

Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 17 / 26



Problem 3 (holomorphic curves): Splitting

Consider D := DN
v : Γ(E)→ Ω0,1(Σ, E) on E := Nv, and

ϕ∗D := DN
u : Γ(ϕ∗E)→ Ω0,1(Σ′, ϕ∗E)

for a d-fold branched cover ϕ : (Σ′, j′)→ (Σ, j).

Simplest interesting case: Assume d = 2.
Then G := Aut(ϕ) = Z2 and there is a unique nontrivial deck
transformation ψ : Σ′ → Σ′. We define

Γ±(ϕ∗E) :=
{
η ∈ Γ(ϕ∗E)

∣∣ η ◦ ψ = ±η
}
,

and Ω0,1
± (Σ′, ϕ∗E) similarly, so ϕ∗D = D+ ⊕D− for operators

D± : Γ±(ϕ∗E)→ Ω0,1
± (Σ′, ϕ∗E).

Difficult to generalize. . . for d > 2, Aut(ϕ) may be empty!
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Problem 3 (holomorphic curves): Splitting

Idea

Replace Γ(ϕ∗E) with Γ(E ⊗R W ) for some flat bundle W .

Lemma (via asymptotic regularity):
For a finite set Θ ⊂ Σ, restricting D to the punctured domain Σ̇ := Σ \Θ
produces an operator on weighted Sobolev spaces (with small exponential
growth at punctures) that has the same index and kernel as D.

Now remove branch points and consider ϕ : Σ̇′ → Σ̇ as a covering map
of punctured Riemann surfaces.

Lemma (covering space theory):
There exists a regular cover π : Σ̇′′ → Σ̇ with finite automorphism
group G and an injective homomorphism ρ : G→ Sd to the symmetric
group such that ϕ is equivalent to the cover(

Σ̇′′ × {1, . . . , d}
)/

G
ϕ−→ Σ̇, ϕ([(z, i)]) = π(z).
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Problem 3 (holomorphic curves): Splitting

Given a representation θ : G→ AutR(W ), define the flat vector bundle

W θ := (Σ̇′′ ×W )
/
G→ Σ̇.

This gives a twisted bundle Eθ := E ⊗R W
θ → Σ̇ with Cauchy-Riemann

operator Dθ defined by Dθ(η ⊗ v) := (Dη)⊗ v for flat sections v.

Lemma: For the permutation representation ρ : G→ GL(d,R) arising
from ρ : G→ Sd, there is a natural isomorphism Γ(ϕ∗E) ∼= Γ(Eρ) such
that the operator ϕ∗D is identified with Dρ.

Corollary (the general splitting of DN
u )

If ρ ∼=
⊕N

i=1 θ
⊕mi
i , then ϕ∗D ∼= Dρ ∼=

⊕N
i=1(Dθi)⊕mi .

Remark: If indD = 0, a computation via the punctured Riemann-Roch
formula shows indDθ ≤ 0 always. This is 45% of the reason why
Theorem 3.A (super-rigidity) is true.
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u )

If ρ ∼=
⊕N

i=1 θ
⊕mi
i , then ϕ∗D ∼= Dρ ∼=

⊕N
i=1(Dθi)⊕mi .

Remark: If indD = 0, a computation via the punctured Riemann-Roch
formula shows indDθ ≤ 0 always. This is 45% of the reason why
Theorem 3.A (super-rigidity) is true.
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Problem 3 (holomorphic curves): Walls

Walls in Md(J) are defined by fixing the dimensions of the kernel and
cokernel of DN

u and its summands. Locally near u, this is the zero-set of
a map to HomG(kerDN

u , cokerDN
u ) whose derivative with respect to a

variation T in DN
u is

kerDN
u

T−→ Ω0,1(Σ, Nu)
proj−→ cokerDN

u .

Why is this derivative surjective?

Perturbing J causes zeroth-order perturbations in DN
u , so T should be

realized by a bundle map A : Nu → Λ0,1T ∗Σ⊗Nu. If not every map
kerDN

u → cokerDN
u arises this way, then given bases (ηi) ∈ kerDN

u and
(ξj) ∈ ker(DN

u )∗ ∼= cokerDN
u , there exist nontrivial coefficients cij ∈ R

such that for all zeroth-order perturbations A,∑
i,j

cij〈Aηi, ξj〉L2 = 0 =

∫
Σ
〈 , 〉 ◦ (A⊗ 1)

(∑
i,j

cijηi ⊗ ξj
)
d vol .

In other words,
∑

i,j cijηi ⊗ ξj ≡ 0 ∈ Γ(Nu ⊗ Λ0,1T ∗Σ⊗Nu).
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Problem 3 (holomorphic curves): Walls

Definition (a “quadratic unique continuation” property)

A real-linear partial differential operator D : Γ(E)→ Γ(F ) on Euclidean
vector bundles E,F → Σ satisfies Petri’s condition if the canonical map

kerD⊗ kerD∗
Π−→ Γ(E ⊗ F |U )

is injective for every open subset U ⊂ Σ.

Meta-theorem (cf. work of A. Doan and T. Walpuski):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.

Example 1, via uniqueness for ODEs: Elliptic operators on 1-dimensional
domains. (This makes Problem 2 tractable.)

Non-example 2: D = ∂̄ and D∗ = −∂, FAIL:
Π(1⊗R iz̄− i⊗R z̄− z⊗R i+ iz⊗R 1) ≡ 0. (This makes us panic slightly.)
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Problem 3 (holomorphic curves): Walls

Crucial technical lemma

For each ` ∈ N, there exists an integer k ≥ ` and a Baire set of
compatible almost complex structures J such that for every simple curve
u : (Σ, j)→ (M,J) and point z ∈ Σ, if ηi, ξj are local solutions to
DN
u ηi = 0 and (DN

u )∗ξj = 0 near z such that the tensor product

t :=
∑
i,j

cijηi ⊗R ξj

vanishes to order ` at z, then Π(t) does not vanish to order k at z.

Corollary (via unique continuation): Generically all DN
u satisfy Petri.

“Proof”: Sard-Smale theorem + dimension counting in jet spaces at z. . .

Remark: The proof requires u to be simple for the usual (Sard-Smale)
reasons, but the result is local, so it carries over to all multiple covers.
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Back to Problem 2 (closed orbits)

(1) Birth-death:

M({`s}) = {(s, γ) | s ∈ [0, 1] and γ ∈M(`s)}

(2) Period-doubling:

Sample theorem 2.B

For generic deformations {`s}s∈[0,1] of an oriented line field, if lengths of
orbits are bounded, nothing else goes wrong.
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Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For d = 1, 2, 3, . . .,

Md({`s}) :=
{

(s, γ) ∈M({`s})
∣∣ cov(γ) = d

}
is a smooth 1-manifold for generic {`s}.

Splitting: For (s, γ) ∈Md({`s}),

Dγ =

N⊕
i=1

Dθi
γ

with θ1, . . . ,θN the irreps of Zd. All summands have index 0.

Bifurcations = crossing walls of codimension 1:

codimMd({`s}; k, c) =

N∑
i=1

tikici

with ti = dimension of the equivariant endomorphism algebra of θi.
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γ

with θ1, . . . ,θN the irreps of Zd. All summands have index 0.

Bifurcations = crossing walls of codimension 1:

codimMd({`s}; k, c) =
N∑
i=1

tikici

with ti = dimension of the equivariant endomorphism algebra of θi.
Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 25 / 26



Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For d = 1, 2, 3, . . .,

Md({`s}) :=
{

(s, γ) ∈M({`s})
∣∣ cov(γ) = d

}
is a smooth 1-manifold for generic {`s}.

Splitting: For (s, γ) ∈Md({`s}),

Dγ =

N⊕
i=1

Dθi
γ

with θ1, . . . ,θN the irreps of Zd. All summands have index 0.

Bifurcations = crossing walls of codimension 1:

codimMd({`s}; k, c) =

N∑
i=1

tikici

with ti = dimension of the equivariant endomorphism algebra of θi.
Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 25 / 26



Back to Problem 2 (closed orbits)

Why not?

Isosymmetric strata: For d = 1, 2, 3, . . .,

Md({`s}) :=
{

(s, γ) ∈M({`s})
∣∣ cov(γ) = d

}
is a smooth 1-manifold for generic {`s}.

Splitting: For (s, γ) ∈Md({`s}),

Dγ =

N⊕
i=1

Dθi
γ

with θ1, . . . ,θN the irreps of Zd. All summands have index 0.

Bifurcations = crossing walls of codimension 1:

codimMd({`s}; k, c) =

N∑
i=1

tikici

with ti = dimension of the equivariant endomorphism algebra of θi.
Chris Wendl (HU Berlin) Equivariant transversality April 10, 2020 25 / 26



Back to Problem 2 (closed orbits)

Real irreps of Zd come in two types:

Real type: θ± : Zd → AutR(R) with

θ+(m) = 1, θ−(m) = (−1)m (if d even).

Complex type: θj : Zd → AutR(C) with

θj(m) = (e2πij/d)m (for j 6= m/2).

dim kerD
θ+
γ = dim cokerD

θ+
γ = 1 ⇒ birth-death.

dim kerD
θ−
γ = dim cokerD

θ−
γ = 1 ⇒ period-doubling.

All other walls have codimension ≥ 2.

Final remark:
In the Hamiltonian case, orbits are critical points of an action functional
⇒ linearizations are self-adjoint. This changes codimMd({`s}; k, c) so
that complex-type representations also play a role.
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