
Topology II Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2017–18

PROBLEM SET 2

To be discussed: 1.11.2017

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung afterwards.

Advice: If you have time for nothing else this week, be sure to have a look at Problems 3 and 4.

1. Suppose A is a category whose objects form a set X , such that for each pair x, y P X , the set of
morphisms Morpx, yq contains either exactly one element or none. We can turn this into a binary
relation by writing x ’ y for every pair such that Morpx, yq ‰ H.

(a) What properties does the relation ’ need to have in order for it to define a category in the way
indicated above?

(b) If B is another category whose objects form a set Y with morphisms determined by a binary
relation ’ as indicated above, what properties does a map f : X Ñ Y need to have in order for
it to define a functor from A to B?

2. In any category C , each objectX has an automorphism group (also called isotropy group) AutpXq,
consisting of all the isomorphisms in MorpX,Xq. A groupoid is a category in which all morphisms
are also isomorphisms.

(a) Show that if G is a groupoid and Grp denotes the usual category of groups with homomorphisms,
there exists a contravariant functor from G to Grp that assigns to each object X of G its automor-
phism group AutpXq. How does this functor act on morphisms X Ñ Y ? Could you alternatively
define it as a covariant functor? Conclude either way that whenever X and Y are isomorphic
objects in G (meaning there exists an isomorphism in MorpX,Y q), the groups AutpXq and AutpY q
are isomorphic.

(b) Given a topological space X and two points x, y, let Morpx, yq denote the set of homotopy classes
(with fixed end points) of paths r0, 1s Ñ X from x to y, and define a composition function
Morpx, yq ˆ Morpy, zq Ñ Morpx, zq : pα, βq ÞÑ α ¨ β by the usual notion of concatenation of paths.
Show that this notion of morphisms defines a groupoid whose objects are the points in X .1 In
this case, what are the automorphism groups Autpxq and the isomorphisms Autpyq Ñ Autpxq
given by the functor in part (a)?

3. Consider the categories Short and Long, defined as follows. Objects in Short are short exact sequences

of chain complexes 0 Ñ A˚
f

Ñ B˚
g

Ñ C˚ Ñ 0, with a morphism from this object to another object

0 Ñ A1
˚

f 1

Ñ B1
˚

g1

Ñ C 1
˚ Ñ 0 defined as a triple of chain maps A˚

α
Ñ A1

˚, B˚
β

Ñ B1
˚ and C˚

γ
Ñ C 1

˚ such
that the following diagram commutes:

0 A˚ B˚ C˚ 0

0 A1
˚ B1

˚ C˚ 0

f

α

g

β γ

f 1 g1

The objects in Long are long exact sequences of Z-graded abelian groups . . . Ñ Cn`1

δ
Ñ An

F
Ñ Bn

G
Ñ

Cn
δ

Ñ An´1 Ñ . . ., with morphisms from this to another object . . . Ñ C 1
n`1

δ1

Ñ A1
n

F 1

Ñ B1
n

G1

Ñ C 1
n

δ1

Ñ

1It is called the fundamental groupoid of X.
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A1
n´1

Ñ . . . defined as triples of homomorphisms A˚
α
Ñ A1

˚, B˚
β

Ñ B1
˚ and C˚

γ
Ñ C 1

˚ that preserve the
Z-gradings and make the following diagram commute:

. . . Cn`1 An Bn Cn An´1 . . .

. . . C 1
n`1 A1

n B1
n C 1

n A1
n´1 . . .

δ

γ

F

α

G

β

δ

γ α

δ1 F 1 G1 δ1

Recall also the category Toprel, whose objects are pairs pX,Aq of topological spaces X with subsets A,
with a morphism pX,Aq Ñ pY,Bq being a continuous map of pairs.

(a) Show that there is a covariant functor Top
rel

Ñ Short assigning to each pair pX,Aq its short exact
sequence of singular chain complexes.

(b) Show that there is also a covariant functor Short Ñ Long assigning to each short exact sequence
of chain complexes the corresponding long exact sequence of their homology groups. (Note that
this can be composed with the functor in part (a) to define a functor Toprel Ñ Long.)

(c) Let Tophrel and Shorth denote categories with the same objects as in Toprel and Short respectively,
but with morphisms of Tophrel consisting of homotopy classes of maps of pairs, and morphisms of
Shorth consisting of triples of chain homotopy classes of chain maps. Show that the functors in
parts (a) and (b) also define functors Tophrel Ñ Shorth and Shorth Ñ Long, which then compose
to define a functor Toph

rel
Ñ Long.

4. The goal of this problem is to develop some intuition as to what singular homology cycles represent
geometrically. The general idea is that for any closed k-dimensional manifold M , a continuous map
f : M Ñ X defines a homology class rf s P HkpX ;Z2q that vanishes whenever f can be extended to
F : W Ñ X for some compact manifold W with BW “ M ; moreover, all of this can also be done
with integer coefficients if the manifolds in question are oriented. Understanding this requires a short
digression on simplicial complexes and triangulations.

We denote the standard n-simplex by ∆n “
 

pt0, . . . , tnq P r0, 1sn`1
ˇ

ˇ t0 ` . . .` tn “ 1
(

, and call any
subset of the form tti1 “ . . . “ tiℓ “ 0u Ă ∆n a face of ∆n. Note that such a face can naturally be iden-
tified with ∆m form :“ n´ℓ by throwing out the coordinates ti1 , . . . , tiℓ and keeping the others. In par-
ticular for each k “ 0, . . . , n, the kth boundary face of ∆n is Bpkq∆

n “
 

pt0, . . . , tnq P ∆n
ˇ

ˇ tk “ 0
(

,
and is naturally identified with ∆n´1.

Define the term geometric n-simplex to mean a topological space X together with an equivalence
class of “parametrizations” ϕ : ∆n Ñ X , meaning homeomorphisms, where two parametrizations
ϕ, ψ : ∆n Ñ X are considered equivalent whenever ψ´1 ˝ ϕ : ∆n Ñ ∆n is the restriction to ∆n of a
linear isomorphism on R

n`1. Notice that since ψ´1˝ϕ must map vertices to vertices, the corresponding
linear map on R

n`1 simply permutes the standard basis vectors, and it is orientation preserving if and
only if this permutation is even. Given a geometric n-simplex X with parametrization ϕ : ∆n Ñ X ,
the faces of X are defined to be the images of the faces of ∆n under ϕ, and each of these inherits the
structure of a geometric m-simplex for some m “ 0, . . . , n ´ 1 in a natural way. An orientation of a
geometric n-simplex X is then an equivalence class of orderings of its vertices, where two orderings are
equivalent if they are related by an even permutation. Each boundary face BpkqX Ă X now inherits
a boundary orientation, defined by choosing an ordering of the vertices of X that is compatible
with the orientation and places the one vertex not in BpkqX first, then eliminating this first vertex and
keeping the order of the others. (I recommend taking a moment to think about the case n “ 2 in order
to understand what this orientation convention means.)

Finally, a finite simplicial complex is a topological space M together with a finite collection K

of subsets Mi Ă M , each endowed with the structure of a geometric simplex, such that the subsets
Mi P K coverM , and for any two distinct Mi,Mj P K, Mi XMj is either empty or is a common face of
both simplices and also belongs to K. This extra data attached to M is called a triangulation of M .
A closed subset A Ă M is called a subcomplex if every simplex in the triangulation of M is either
disjoint from or contained in A, hence there is an induced triangulation of A. If M is a topological
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manifold with boundary, we shall always require triangulations to have the additional property that
the boundary BM is a subcomplex. Call the triangulation oriented if each of its n-simplices Mi is
additionally endowed with an orientation such that whenever Mi X Mj is an pn ´ 1q-simplex, the two
induced boundary orientations of Mi XMj as a boundary face of Mi or Mj differ.

(a) Draw pictures of oriented triangulations for the 2-sphere S2, the 2-torus T2 :“ R
2{Z2, the 2-disk

D
2, the closed oriented surface Σ2 of genus 2, and the torus Σ1,2 with two holes cut out.

(b) Draw pictures of triangulations for the Möbius band, RP2, and the Klein bottle. (Can you make
them oriented?)

(c) Suppose X is a topological space, M is a closed2 (but not necessarily connected) topological k-
manifold with an oriented triangulation, and f : M Ñ X is a continuous map. Show that there
exists a singular k-cycle in X of the form

ř

i εixf ˝ϕiy, where the sum ranges over the geometric k-
simplices Mi in the triangulation of M , with suitably chosen parametrizations ϕi : ∆

k Ñ Mi and
signs εi “ ˘1. We shall denote the homology class represented by this k-cycle by rf s P HkpXq.
As a special case, taking f to be the identity map M Ñ M defines the fundamental class

rM s :“ rIds P HkpMq,

so that for any f :M Ñ X we can write rf s “ f˚rM s P HkpXq.
Hint: The fact that this singular k-chain can be made to satisfy B p

ř

i εixf ˝ ϕiyq “ 0 depends on
the assumption that M is a manifold. If Mi is a pk ´ 1q-simplex in the triangulation, how many
k-simplices can it be a boundary face of?
Second hint: For bookkeeping purposes, you may find it helpful to fix an ordering of all the
vertices in the triangulation.

The notation for rM s P HkpMq and rf s P HkpXq is meant to suggest the important fact that these
homology classes do not depend on the choice of triangulation forM , except for its orientation. We will
not be able to prove this until later in the semester, but the following remarks may help make it sound
plausible. As we discussed in our proof of the excision theorem (see pp. 119–124 of Hatcher or §IV.17
of Bredon), the singular chain complex C˚pXq admits a chain map S : C˚pXq Ñ C˚pXq whose action
on each singular k-simplex σ : ∆k Ñ X is given by a finite sum of the form Sxσy “

ř

i εixσiy, where
ǫi “ ˘1 and the σi : ∆

k Ñ X are restrictions of σ to the simplices in the barycentric subdivision

of ∆k, decomposing it into smaller k-simplices as shown (for the k “ 2 case) in the picture below.

S

In the same manner, one can always subdivide a triangulation of the manifold M to produce a finer

triangulation, and this changes the singular k-cycle we defined above by operating on it with the chain
map S. But S is also chain homotopic to the identity, thus it acts on H˚pXq as the identity map,
implying that barycentric subdivision does not change the definition of rf s P HkpXq.

(d) Show that if the triangulation of M in part (c) is not oriented, one can still use the same idea
to define a k-cycle in the singular chain complex of X with Z2-coefficients, and thus homology
classes rf s P HkpX ;Z2q and rM s P HkpM ;Z2q.

(e) Modify parts (c) and (d) for the case whereM is a compact manifold with boundary and fpBMq Ă
A Ă X so that f defines a relative homology class rf s in HkpX,Aq or HkpX,A;Z2q, and the
fundamental class rM s becomes a relative class in HkpM, BMq or HkpM, BM ;Z2q.

2Recall: a closed manifold is one that is compact with empty boundary.
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(f) Show that if M “ S1 with an oriented triangulation, with t0 P S1 as one of its vertices and
fpt0q “ p, then the class rf s P H1pXq is the image under the Hurewicz3 homomorphism h :
π1pX, pq Ñ H1pXq of the element in π1pX, pq represented by the loop f : pS1, t0q Ñ pX, pq.

(g) Show that if W is a compact pk`1q-manifold with boundaryM “ BW and an oriented triangula-
tion, and f “ F |M :M Ñ X for some continuous map F : W Ñ X , then rf s “ 0 P HkpXq. Show
that the same is true with Z2-coefficients if the orientation condition is dropped. Finally, if M
is instead defined to be a compact subset of BW that is both a subcomplex and a k-dimensional
submanifold with boundary such that F pBW zMq Ă A Ă X , show that rf s “ 0 P HkpX,Aq.

(h) Given two closed k-manifolds with oriented triangulations and continuous maps f0 : M0 Ñ X ,
f1 : M1 Ñ X , let f : M0 > M1 Ñ X denote the map that restricts to Mi as fi for i “ 0, 1. Show
that rf s “ rf0s ` rf1s P HkpXq.

(i) Show that if the triangulation of M is oriented, then reversing the orientations of all its simplices
(i.e. reordering their vertices by odd permutations) changes rf s P HkpXq by a sign.
Hint: Extend f : M Ñ X to a map r0, 1s ˆ M Ñ X and use part (g) with a suitable choice of
triangulation for r0, 1s ˆM .

(j) Two maps f0 : M0 Ñ X and f1 : M1 Ñ X of closed triangulated k-manifolds are said to be
homologous if rf0s “ rf1s P HkpXq. Show that if M0 “ M1 “ M with a fixed choice of oriented
triangulation, then any two homotopic maps M Ñ X are homologous.

(k) Let Σ1,2 denote the 2-torus with two holes cut out, and suppose α, β : S1
ãÑ BΣ1,2 are loops

parametrizing its two boundary components, with α following the boundary orientation of BΣ1,2

and β following the opposite orientation. Show that α and β are homologous but not homotopic.

αβ

Hint: At this point, showing that they are homologous should be easy, but showing that they are
not homotopic is a bit trickier. I can think of two approaches: one uses the fact that π1pΣ1,2q is a
free group (why?) and the homotopy classes of maps S1 Ñ X correspond in general to conjugacy
classes of elements in π1pXq (see Exercise 6 on page 38 of Hatcher, or Problem Set 5 #3 from
last semester’s Topologie I course). Alternatively, if you know how to define the degree of a map
between two closed manifolds of the same dimension, you can prove that a homotopy between
α and β would imply the existence of a map S2 Ñ T

2 with degree 1, and then use the lifting
theorem to show that no such map exists.

Historical remarks: In the early decades of homology theory, it seems to have been generally as-
sumed that the right way to prove statements like “rf s P HkpXq is independent of the triangula-
tion” would be via subdivision. In particular, our remarks following part (c) imply that this result
would follow immediately from the so-called Hauptvermutung, a conjecture formulated in 1908 stat-
ing that any two triangulations of the same space have a common subdivision. Unfortunately, the
Hauptvermutung was shown in the 1960’s to be false. Even worse, while it has been known since
the 1940’s that all smooth manifolds admit triangulations, counterexamples are known among topo-
logical manifolds of dimensions greater than three (for dimensions 5 and upward, this result is only
a few years old). For a brief synopsis of this rather long and complicated story, the survey paper
http://www.math.ucla.edu/~cm/tm.pdf makes interesting reading. The moral of the story is that
while triangulations are sometimes helpful for intuition, they are not really the right way to go about
proving general theorems in algebraic topology. We will see later in the course that a fundamental
class rM s can be defined for every closed oriented topological k-manifold M , without any need for
triangulations (though defining the term “oriented” without them requires some cleverness), and it is
a generator of HkpMq – Z. The class rf s P HkpXq determined by a map f : M Ñ X is then simply
f˚rM s.

3See Problem Set 1 #3.
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