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https://www.mathematik.hu-berlin.de/~wendl/Sommer2018/Topologie1/
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Semester, Topologie II ; see

https://www.mathematik.hu-berlin.de/~wendl/Winter2018/Topologie2/

They have since been revised a bit further following comments from students in the class, including
the incorporation of some assigned homework problems into the notes as exercises within the
relevant lectures.

There is a nearly exact one-to-one correspondence between the chapters in these notes and the
actual 90-minute lectures given in the course, though for some chapters that are a bit fatter, some
portions had to be skipped or mentioned only briefly in class. Notable examples include:

‚ The exercises at the end of Lecture 29 concerning the relationship between singular ho-
mology and bordisms of triangulated manifolds;

‚ The proof in Lecture 32 that the relative Mayer-Vietoris sequence is exact;
‚ The discussion of the ordered simplicial complex in Lecture 44;
‚ The discussion of Alexander-Spanier cohomology in Lecture 46;
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include the German translations (geschrieben in dieser Schriftart) of important terms wherever
they were introduced. The reader may notice that this effort is more obvious in the first semester
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and, especially, Laurenz Upmeier zu Belzen. (Apologies if I forgot anyone!)
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First semester (Topologie I)

1. Introduction and motivation

To start with, let us discuss what kinds of problems are studied in topology. This lecture is
only intended as a sketch of ideas, so nothing in it is intended to be precise—we’ll introduce precise
definitions in the next lecture.

(1) Classification of spaces. Let’s assume for the moment that we understand what the word
“space” means. We’ll be more precise about it next week, but in this course, a “space” X is a set
with some extra structure on it such that we have well-defined notions of things like open subsets
(offene Teilmengen) U Ă X and continuous maps/mappings (stetige Abbildungen) f : X Ñ Y

(where Y is another space). It is then natural to consider two spaces X and Y equivalent if there
is a homeomorphism (Homöomorphismus) between them: this means a continuous bijection
f : X Ñ Y whose inverse f´1 : Y Ñ X is also continuous. We say in this case that X and Y are
homeomorphic (homöomorph).

So for instance, one can try to classify all surfaces (Flächen) up to homeomorphism:

The space in this picture is known as a “closed orientable surface of genus (Geschlecht) five”.
The genus is a nonnegative integer that, roughly speaking, counts the number of “handles” you
would need to attach to a sphere in order to construct the surface. The notation Σg is often used
for a surface of genus g ě 0.

There are also closed surfaces that cannot be embedded in R3, though they are harder to
visualize. Here are two examples.

Example 1.1. Here is a picture of the Klein bottle (Kleinsche Flasche), a surface that can
be “immersed” (with self-intersections) in R3, but not embedded:

We’ll give a more precise definition of the Klein bottle as a topological space later.
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8 FIRST SEMESTER (TOPOLOGIE I)

Example 1.2. The real projective plane (reelle projektive Ebene) RP
2 is a space that can

be described in various equivalent ways:
(1) RP2 :“ S2{„, i.e. the set of equivalence classes of elements in the unit sphere S2 :“ tx P

R3 | |x| “ 1u, with the equivalence relation defined by x „ ´x for each x P S2. In other
words, every element of RP2 is a set of two elements tx,´xu, with both belonging to the
unit sphere. (See Remark 1.3 below on notation for defining equivalence relations.)

(2) RP
2 :“ D2{„, where D2 :“ tx P R2 | |x| ď 1u and the equivalence relation is defined by

z „ ´z for every point z on the boundary of the disk. One obtains this from the first
description of RP2 by restricting attention to only one hemisphere of S2; no information
is lost since the other hemisphere is identified with it, but along the equator between
them, there is still an identification of antipodal points.

(3) RP
2 is the space of all lines through 0 in R3. This is equivalent to the first description

since every line through the origin in R3 hits S2 at exactly two points, which are antipodal
to each other.

(4) RP
2 is the space constructed by gluing a disk D2 to a Möbius strip (Möbiusband)

M :“
 

pθ, t cospπθq, t sinpπθqq P R{Z ˆ R2
ˇ̌
θ P R, t P r´1, 1s

(
.

To see this, draw a picture of the unit sphere S2 and think of RP
2 as S2{„. After

identifying antipodal points of the sphere in this way, a neighborhood of the equator
looks like a Möbius strip, and everything else is a disk (it looks like two disks in the
picture, but the two are identified with each other).

More generally, for each integer n ě 0 one can define the n-sphere

Sn “
 
x P Rn`1

ˇ̌
|x| “ 1

(

and the real projective n-space

RP
n “ Sn

L
tx „ ´xu “

 
lines through 0 in Rn`1

(
.

Remark 1.3. In topology, we often specify an equivalence relation „ on a set X with words
such as “the equivalence relation defined by x „ fpxq for all x P A” where A Ă X is a subset and
f : A Ñ X a map. This should always be interpreted to mean that „ is the smallest equivalence
relation for which the stated property is true, i.e. since every equivalence relation must also be
reflexive and symmetric, it is implied that x „ x for all x P X and fpxq „ x for all x P A, even if we
do not say so explicitly. Transitivity may then imply further equivalences that are not explicitly
specified: for an extreme example, “the equivalence relation on Z such that n „ n`1 for all n P Z”
makes every integer equivalent to every other integer, i.e. there is only one equivalence class.

Here is a result we will be able to prove later in the course:

Theorem 1.4. A closed orientable surface Σg of genus g is homeomorphic to a closed orientable
surface Σh of genus h if and only if g “ h.

The hard part is showing that if g ‰ h, then there cannot exist any continuous bijective
map f : Σg Ñ Σh with a continuous inverse. This requires techniques from the subject known
as algebraic topology. The main idea will be that we can associate to each topological space X
an algebraic object (e.g. a group) HpXq such that any continuous map f : X Ñ Y induces a
homomorphism f˚ : HpXq Ñ HpY q, and such that compositions of continuous maps satisfy

pf ˝ gq “ f˚ ˝ g˚

and the identity map Id : X Ñ X gives rise to the identity map HpXq Ñ HpXq. These prop-
erties imply that whenever f : X Ñ Y is a homeomorphism, f˚ : HpXq Ñ HpY q must be an
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isomorphism. Thus it suffices to compute the algebraic objects HpΣgq and HpΣhq and show that
they are not isomorphic. (Recognizing non-isomorphic groups is often easier than recognizing
non-homeomorphic spaces.)

The full classification of closed orientable surfaces up to homeomorphism is completed by the
following result:

Theorem 1.5. Every closed connected and orientable surface is homeomorphic to Σg for some
g ě 0.

The previous theorem implies of course that for any given surface, the value of g in this result
is unique. For the moment, you can understand the word “orientable” to mean “embeddable in R3”.
There is a similar result for the non-orientable surfaces: notice that by the fourth definition we gave
above for RP2, one can understand RP2 as the result of taking S2, cutting out a hole (e.g. removing
the southern hemisphere, thus leaving the northern hemisphere, which is also a disk D2) and then
gluing in a Möbius strip. That is the first example of the following more general construction:

Theorem 1.6. Every closed connected and non-orientable surface is homeomorphic to a surface
obtained from S2 by cutting out finitely many holes and gluing in Möbius strips.

Surfaces are the simplest interesting examples of more general topological spaces called man-
ifolds (Mannigfaltigkeiten): a surface is a 2-dimensional manifold, while a smooth curve such as
the circle S1 is a 1-dimensional manifold. In general, one can consider n-dimensional manifolds
(abbreviated as “n-manifolds”) for any integer n ě 0; obvious examples include Rn, Sn and RPn.
The classification problem becomes much harder when n ě 3, e.g. the following difficult problem
was open for almost exactly 100 years:

Poincaré conjecture (solved by G. Perelman, c. 2004). Suppose X is a closed and con-
nected 3-manifold that is “simply connected” (i.e. every continuous map f : S1 Ñ X can be extended
continuously to D2 Ñ X). Then X is homeomorphic to S3.

One of the more surprising developments in topology in the 20th century was that the analogue
of this problem in dimensions greater than three turns out to be easier. We’ll introduce the notion
of “homotopy equvalence” (Homotopieäquivalenz) in a few weeks; it turns out that for closed 3-
manifolds, the condition of being simply connected is equivalent to being homotopy equivalent
to S3. Thus the following two results are higher-dimensional versions of the Poincaré conjecture,
but they were proved much earlier:

Theorem 1.7 (S. Smale, c. 1960). For every n ě 5, every closed connected n-manifold homo-
topy equivalent to Sn is also homeomorphic to Sn.

Theorem 1.8 (M. Freedman, c. 1980). Every closed connected 4-manifold homotopy equivalent
to S4 is also homeomorphic to S4.

(2) Differential topology. Though we will not have much time to talk about it in this semes-
ter, the neighboring field of “differential” topology modifies the classification problem by studying
the following stronger notion of equivalence between spaces: X and Y are diffeomorphic (dif-
feomorph) if there exists a homeomorphism f : X Ñ Y such that both f and f´1 are infinitely
differentiable, i.e. C8, and f is in this case called a diffeomorphism (Diffeomorphismus). From
your analysis courses, you at least know what this means if X and Y are open subsets of Euclidean
spaces—defining “differentiability” on spaces more general than that requires some notions from
the subject of differential geometry. In a nutshell, it requires X and Y to be spaces on which any
map X Ñ Y can at least locally (i.e. in a sufficiently small neighborhood of any point) be identified
with a map between open subsets of Euclidean spaces, for which we know how to define derivatives.
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Identifying a small neighborhood in X with an open subset of Rn is another way of saying that
we can choose a set of n independent “coordinates” to describe the points in that neighborhood,
and this is the fundamental property that defines X as an n-dimensional manifold. So talking
about smooth maps and diffeomorphisms doesn’t make sense for arbitrary topological spaces, but
it does make sense for at least some class of manifolds, and these are the main objects of study in
differential topology.

It turns out that up to dimension three, classification up to diffeomorphism is equivalent to
classification up to homeomorphism:

Theorem 1.9. For n ď 3, two n-manifolds X and Y are diffeomorphic if and only if they are
homeomorphic.

For n “ 1 and n “ 2, this theorem can be explained by the fact that both versions of
the classification problem for n-manifolds are not that hard to solve explicitly (this was already
understood in the 19th century), and the answer for both versions turns out to be the same. The
story of n “ 3 is much more complicated, as a complete classification of 3-manifolds is not known,
but this theorem was proved in the first half of the 20th century by using the more combinatorial
notion of “piecewise linear” manifolds as an intermediary notion between “smooth” and “topological”
manifolds.

From dimension four upwards, all hell breaks loose. For example, there are “exotic” R4’s:

Theorem 1.10. There exist 4-manifolds that are homeomorphic but not diffeomorphic to R4.

And from dimension seven upwards, there also tend to exist “exotic spheres”:

Theorem 1.11 (Kervaire and Milnor, 1963). There exist exactly 28 distinct manifolds that are
homeomorphic to S7 but not diffeomorphic to each other.

As you might guess, there is an algebraic phenomenon behind the appearance of the number 28
in this theorem: it is the order of a group. In every dimension n, one can define a group structure
on the set of all smooth manifolds up to diffeomorphism that are homeomorphic to Sn. Milnor and
Kervaire proved that when n “ 7, this group has order 28. In the mean time, this group is quite
well understood in most cases: it is sometimes trivial (e.g. for n “ 1, 2, 3, 5, 6) and often nontrivial,
but always finite. The only case for which almost nothing is known is n “ 4; dimension four turns
out to be the hardest case in differential topology, because it is on the borderline between “low
dimensional” and “high dimensional” methods, where often neither set of methods applies. If you
can solve the following open problem, you deserve an instant Ph.D. (and also a permanent job as
a research mathematician, and possibly a Fields medal):

Conjecture 1.12 (“smooth Poincaré conjecture”). Every manifold homeomorphic to S4 is
also diffeomorphic to S4.

It is difficult to say whether this conjecture is generally believed to be true or false.
(3) Fixed point problems. Here is a simpler class of problems on which we’ll actually be able

to prove something in this semester. Suppose f : X Ñ X is a continuous map. We say x P X

is a fixed point (Fixpunkt) of f if fpxq “ x. The question is: under what assumptions on X

is f guaranteed to have a fixed point? Note that this is fundamentally different from the fixed
point results you’ve probably seen in analysis, e.g. the Banach fixed point theorem (also known as
the contraction mapping principle) is a result about a special class of maps satisfying analytical
conditions, it does not just apply to every continuous map on a certain space.

The simplest fixed point theorem in topology is a statement about maps on the n-dimensional
disk Dn :“ tx P Rn | |x| ď 1u.
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Theorem 1.13 (Brouwer’s fixed point theorem). For every integer n ě 1, every continuous
map f : Dn Ñ Dn has a fixed point.

The case n “ 1 is an easy consequence of the intermediate value theorem, but for n ě 2, we
need some techniques from algebraic topology. Here is a sketch of the argument; we will fill in the
gaps over the course of the semester.

We argue by contradiction, so suppose there exists a continuous map f : Dn Ñ Dn such that
fpxq ‰ x for every x P Dn. Then there is a unique line in Rn connecting fpxq to x for each x P Dn.
Let gpxq P Sn´1 denote the point on the boundary of Dn obtained by following the unique line
from fpxq through x until that line reaches the boundary of the disk. Note that if x is already on
the boundary, then by this definition gpxq “ x. It is not hard to convince yourself that what we’ve
just defined is a continuous map

g : Dn Ñ Sn´1,

and if i : Sn´1 ãÑ Dn denotes the natural inclusion map for the subset Sn´1 Ă Dn, then g satisfies

(1.1) g ˝ i “ IdSn´1 .

We claim that, actually, no such map can exist. The proof of this requires an algebraic invariant,
whose complete construction will require some time and effort, but for now I’ll just tell you the
result: one can associate to each spaceX an abelian groupHn´1pXq called the singular homology
(singuläre Homologie) of X in dimension n´ 1, which satisfies the usual desirable properties that
continuous maps f : X Ñ Y induce group homomorphisms f˚ : Hn´1pXq Ñ Hn´1pY q satisfying
pf ˝ gq˚ “ f˚ ˝ g˚ and Id˚ “ 1. Crucially, one can also compute this invariant for both Dn and
Sn´1, and the answers are

Hn´1pDnq “ t0u, Hn´1pSn´1q – Z.

Now the relation (1.1) implies that g˚ ˝ i˚ is the identity map on Hn´1pSn´1q – Z, so in particular
it is an isomorphism. But g˚ ˝ i˚ also factors through the trivial group Hn´1pDnq – t0u, and
therefore can only be the trivial homomorphism. This is a contradiction, thus proving Brouwer’s
theorem.

We will discuss the construction of singular homology and carry out the required computations
for the above argument in the last few weeks of this semester; homology and the closely related
subject of cohomology (Kohomologie) will then be the main topic of Topology 2 next semester.
But before all that, we will also spend considerable time on other invariants in algebraic topology,
notably the fundamental group, which underlies the notion of “simply connected” spaces appearing
in the Poincaré conjecture.

2. Metric spaces

We now begin in earnest with point-set topology, which will be the main topic for the next
three or four weeks. This subject is important but a little dry, so we will cover only the portions
of it that seem absolutely necessary as groundwork for studying the more geometrically motivated
questions discussed in the previous lecture.

The subject begins with metric spaces, because these are the most familiar examples of topo-
logical spaces. For most students, this material will be a review of things you’ve seen before in
analysis courses. Almost everything in this lecture will be generalized to a wider and slightly more
abstract context when we introduce topologies and topological spaces next week.

Definition 2.1. A metric space (metrischer Raum) is a set X endowed with a function
d : X ˆX Ñ R that satisfies the following conditions for all x, y, z P X :

(i) dpx, yq ě 0;
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(ii) dpx, xq “ 0;
(iii) dpx, yq “ dpy, xq, i.e. “symmetry”;
(iv) dpx, zq ď dpx, yq ` dpy, zq, i.e. the “triangle inequality” (Dreiecksungleichung);
(v) dpx, yq ą 0 whenever x ‰ y.

The function d is then called a metric (Metrik). If d satisfies the first four conditions but not
necessarily the fifth, then it is called a pseudometric (Pseudometrik).

Much of the theory of metric spaces makes sense for pseudometrics just as well as metrics, but
we will see that some desirable and intuitively “obvious” facts become false when the positivity
condition is dropped.

In any metric space pX, dq, one can define the open ball (offene Kugel) of radius r ą 0 about
a given point x P X as

Brpxq :“
 
y P X

ˇ̌
dpx, yq ă r

(
.

An arbitrary subset U Ă X is then called open (offen) if for every x P U , the ball Bǫpxq is contained
in U for all ǫ ą 0 sufficiently small. (Of course it only needs to be true for one particular ǫ ą 0,
since then it is true for all smaller ǫ as well.) Given a subset A Ă X , another subset U Ă X is
called a neighborhood (Umgebung) of A in X if U contains some open subset of X that also
contains A. Some books require the neighborhood itself to be open, but we will not require this;
it makes very little difference in practice, but this bit of extra freedom in our definition will allow
us to make certain other definitions and proofs a few words shorter now and then.

A subset A Ă X is closed (abgeschlossen) if its complement XzA is open. Achtung: this is
not the same thing as saying that A is not open. It is a common trap for beginners to think that
every subset must be either open or closed, but in reality, most are neither—and some (e.g. X
itself) are both.1

Whenever you encounter a set of axioms, you should ask yourself why we are studying these
axioms in particular—why not a slightly different set of axioms? In the case of metrics, it’s fairly
obvious why we would want any notion of “distance” to satisfy conditions (i)–(iii) and (v), but
perhaps the triangle inequality seems slightly less obvious. So, let us point out two obviously
desirable properties that follow mainly from the triangle inequality:

‚ The “open ball” Brpxq Ă X is also an open subset in the sense of the definition given
above. Indeed, for any y P Brpxq, we have Bǫpyq Ă Brpxq for every ǫ ă r ´ dpx, yq since
every z P Bǫpyq then satisfies

dpx, zq ď dpx, yq ` dpy, zq ă dpx, yq ` ǫ ă dpx, yq ` r ´ dpx, yq “ r.

‚ The function d : XˆX Ñ r0,8q is continuous (see below for a review of the definition of
continuity), since one can use the triangle inequality to show that for every x, y, x1, y1 P X ,

|dpx, yq ´ dpx1, y1q| ď dpx, x1q ` dpy, y1q.
Also, while I’m sure you already accept without question that the distance between two distinct
points should always be positive rather than zero, let us point out one “obvious” fact that would
cease to be true if condition (v) were removed:

‚ For every x P X , the subset txu Ă X is closed. Indeed, Xztxu is an open subset of X
because for every y P Xztxu, the ball Bǫpyq is contained in Xztxu for all ǫ ă dpx, yq.
(This of course presupposes that dpx, yq ą 0.)

You’re probably not used to thinking about pseudometric spaces much, so here is an example.

1Yes, the empty set H Ă X is always open. Reread the definition carefully until you are convinced that this is
true.
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Example 2.2. Let X “ pR ˆ t0, 1uq
L

„ for an equivalence relation defined by px, 0q „ px, 1q
for every x ‰ 0. We can think of this intuitively as a “real line with two zeroes” because it mostly
looks just the same as R (each number x ‰ 0 corresponding to the equivalence class of px, 0q and
px, 1q), but x “ 0 is an exception, where there really are two distinct points rp0, 0qs and rp0, 1qs
in X . We can then define d : X ˆX Ñ R by

dprpx, iqs, rpy, jqsq :“ |x´ y| for i, j P t0, 1u, x, y P R.

This satisfies conditions (i)–(iv) for all the same reasons that the usual metric on R does, but
condition (v) fails because

dprp0, 0qs, rp0, 1qsq “ 0

even though rp0, 0qs ‰ rp0, 1qs.
Exercise 2.3. Show that for the pseudometric space X in Example 2.2, trp0, 0qsu Ă X is not

a closed subset.

Definition 2.4. In a metric space pX, dq, a sequence (Folge) xn P X indexed by n P N

converges to (konvergiert gegen) a point x P X if for every ǫ ą 0, we have xn P Bǫpxq for all n
sufficiently large. Equivalently, this means that for every neighborhood U Ă X of x, xn P U for all
n sufficiently large. We use the notation

xn Ñ x or limxn “ x

to indicate that xn converges to x.

Note that in the second formulation of this definition, involving arbitrary neighborhoods in-
stead of the open ball Bǫpxq, one can understand the definition without knowing what the metric
is—one only has to know what a “neighborhood” is, which means knowing which subsets are open
and which are not. This will be the formulation that we need when we generalize sequences and
convergence to arbitrary topological spaces.

Here is a similarly standard definition from analysis, for which we give three equivalent formu-
lations.

Definition 2.5. For two metric spaces pX, dXq and pY, dY q, a map (Abbildung) f : X Ñ Y

is called continuous (stetig) if it satisfies any of the following equivalent conditions:
(a) For every x0 P X and ǫ ą 0, there exists a number δ ą 0 such that dY pfpxq, fpx0qq ă ǫ

whenever dXpx, x0q ă δ, i.e. fpBδpx0qq Ă Bǫpfpx0qq.
(b) For every open subset U Ă Y , the preimage

f´1pUq :“ tx P X | fpxq P Uu
is an open subset of X .

(c) For every convergent sequence xn P X , xn Ñ x implies fpxnq Ñ fpxq.
The equivalence of (a) and (b) is pretty easy to see: if (a) holds and U Ă Y is open, then for

every x0 P f´1pUq, the openness of U guarantees an ǫ ą 0 such that fpx0q P Bǫpfpx0qq Ă U . But
then condition (a) gives a δ ą 0 such that fpBδpx0qq Ă Bǫpfpx0qq Ă U , implying Bδpx0q Ă f´1pUq,
hence U is open and (b) therefore holds. Conversely, if (b) holds, then (a) holds because Bǫpfpx0qq
is open and thus so is f´1pBǫpfpx0qqq, which contains x0 and therefore also (by openness) contains
Bδpx0q for some δ ą 0.

Notice that conditions (b) and (c) do not require specific knowledge of the metric, but again
only require knowing what an open subset is. Condition (b) is the one we will later use to de-
fine continuity in general topological spaces. It may be instructive to review why (b) and (c)
are equivalent—especially because this is something that will turn out to be false in general for
topological spaces, at least without some extra assumption.
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Proof that (b) ô (c). To show that (b) ñ (c), suppose xn Ñ x and U Ă Y is a neigh-
borhood of fpxq. Then U contains an open set V containing fpxq, hence f´1pUq contains f´1pVq
which contains x, and by condition (b), f´1pVq is also open, implying f´1pUq is a neighborhood
of x. Convergence then implies that xn P f´1pUq and thus fpxnq P U for all n sufficiently large,
which proves fpxnq Ñ fpxq since the neighborhood U was arbitrary.

For the other direction, we shall prove the contrapositive, i.e. we show that if (b) is false then
so is (c). So assume there is an open subset U Ă Y such that f´1pUq Ă X is not open. Being
not open means that for some x P f´1pUq, no open ball about x is contained in f´1pUq. As a
consequence, for every n P N, we can find a point

xn P B1{npxq such that xn R f´1pUq,
meaning fpxnq R U . The sequence xn then converges to x, since every neighborhood of x contains
B1{npxq for n sufficiently large, implying that xn belongs to the given neighborhood for all large n.
But fpxnq cannot converge to fpxq since it never belongs to U , which is a neighborhood of fpxq. �

I want to point out two things about the above proof. First, the proof that (b) ñ (c) never
mentioned the metric, it only talked about neighborhoods and open sets—as a consequence, that
implication will remain true when we reconsider all these notions in general topological spaces. But
the proof that (c) ñ (b) did refer to the metric, because it used the precise definition of openness in
terms of open balls. We will see that this implication does not actually hold in arbitrary topological
spaces, though a mild modification of it does.

Definition 2.6. A map f : X Ñ Y is a homeomorphism (Homöomorphismus) if it is
continuous and bijective and its inverse f´1 : Y Ñ X is also continuous.

Example 2.7. Consider Rn with the standard Euclidean metric

dEpx,yq :“ |x ´ y| “

gffe
nÿ

j“1

pxj ´ yjq2

for vectors x “ px1, . . . , xnq and y “ py1, . . . , ynq in Rn. We claim that for any x P Rn and
r ą 0, pBrpxq, dEq is homeomorphic to pRn, dEq. (Note that as a consequence, all open balls in
Rn are homeomorphic to each other—homeomorphism is an equivalence relation!) To construct
a homeomorphism, choose any continuous, increasing, bijective function f : r0, rq Ñ r0,8q and
define F : Brpxq Ñ Rn by

F pxq “ x and F px ` yq “ x ` fp|y|q y

|y| for all y P Brp0qzt0u Ă Rn.

It is easy to check that both F and F´1 are then continuous.

One conclusion to draw from the above example is that the notion of “boundedness,” which is
very important in analysis, is not going to make much sense in topology. Indeed, we would like to
consider two spaces as “equivalent” whenever they are homeomorphic, so topologically it would be
meaningless to call a space bounded if another space homeomorphic to it is not. What plays this
role instead is the somewhat stricter notion of compactness. To write down the correct definition,
we need to have the notion of an open covering (offene Überdeckung): assume I is any set (the
so-called “index set”) and tUαuαPI is a collection of open subsets Uα Ă X labeled by elements α P I.
We call tUαuαPI an open covering/cover of a subset A Ă X if

A Ă
ď

αPI

Uα.



2. METRIC SPACES 15

Definition 2.8. A subset K in a metric space pX, dq is compact (kompakt) if either of the
following equivalent conditions is satisfied:

(a) Every open cover tUαuαPI of K has a finite subcover (eine endliche Teilüberdeckung),
i.e. there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď

i“1

Uαi
.

(b) Every sequence xn P K has a convergent subsequence with limit in K.

We call pX, dq itself a compact space if X is a compact subset of itself.

Compactness is probably the least intuitive definition in this course so far, and at this stage we
can only justify it by saying that it has stood the test of time: many beautiful and useful theorems
have turned out to be true for compact spaces and only compact spaces. The first of these is the
following, which explains why, unlike boundedness, compactness really is a topologically invariant
notion, i.e. if X is compact, then so is every space that is homeomorphic to it.

Theorem 2.9. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y .

Proof. If tUαuαPI is an open cover of fpKq, then the sets f´1pUαq are all open in X and thus
form an open cover of K, which is compact, so there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď

i“1

f´1pUαi
q,

implying fpKq Ă ŤN
i“1 Uαi

, hence we have found a finite subcover of our given open cover of fpKq.
�

One more remark about compactness: the equivalence of conditions (a) and (b) in Definition 2.8
is not so obvious, but is a fairly deep theorem called the Bolzano-Weierstrass theorem which you’ve
probably seen proved in your analysis classes. We will prove a generalization of that theorem later,
but it does not say that these two definitions are equivalent for every topological space—as with
continuity, characterizing compactness via sequences becomes a slightly subtler issue in topological
spaces, though the equivalence does hold for most of the spaces we actually care about.

Let’s see some more examples now.

Example 2.10. For any metric space pX, dq and an arbitrary subset A Ă X , pA, dq is also a
metric space. So for instance, we can use the Euclidean metric dE on Rn`1 to define a metric on
the subset

Sn “
 
x P Rn`1

ˇ̌
|x| “ 1

(
,

the n-dimensional sphere.

Example 2.11. Any set X can be assigned the discrete metric (diskrete Metrik), defined
by

dDpx, yq “
#
0 if x “ y,

1 otherwise.

This metric keeps every point at a measured distance away from every other point. So for instance,
we can assign the discrete metric to Rn and compare it with the Euclidean metric dE . We claim
that the identity map on Rn defines a continuous map from pRn, dDq to pRn, dEq, but it is not a
homeomorphism, i.e. its inverse is not continuous. This follows immediately from the next exercise.
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Exercise 2.12. Show that on any set X with the discrete metric dD, every subset is open. In
particular this includes the set txu Ă X for every x P X . Conclude that a sequence xn converges
to x if and only if xn “ x for all n sufficiently large, i.e. the sequence is “eventually constant”. Then
use this to prove the following statements:

(a) All maps from pX, dDq to any other metric space are continuous.
(b) All continuous maps from pRn, dEq to pX, dDq are constant.

Example 2.13. Given two metric spaces pX, dXq and pY, dY q, one can define a product
metric on X ˆ Y by

dXˆY ppx, yq, px1, y1qq :“
a
dXpx, x1q2 ` dY py, y1q2.

This is the obvious generalization of the Euclidean metric, e.g. if X and Y are both R with its
standard Euclidean metric, then dXˆY becomes dE on R2. But this is not the only reasonable
choice of metric on X ˆ Y : for instance, one can also define a metric by

d1
XˆY ppx, yq, px1, y1qq :“ max

 
dXpx, x1q, dY py, y1q

(
.

This metric is indeed different: for instance, if we again take X and Y to be the Euclidean R, then
an open ball with respect to d1

XˆY in R2 does not look circular, it looks rather like a square. On
the other hand, this does not have a huge impact on the notion of open sets: it is not hard to show
that the identity map from pX ˆ Y, dXˆY q to pX ˆ Y, d1

XˆY q is always a homeomorphism.

Definition 2.14. Two metrics d and d1 on the same setX are called (topologically) equivalent
if the identity map from pX, dq to pX, d1q is a homeomorphism.

In light of the various ways we now have for defining what “continuous” means, equivalence of
metrics can also be understood as follows:

‚ d and d1 are equivalent if they both define the same notion of open subsets in X ;
‚ d and d1 are equivalent if they both define the same notion of convergence of sequences

in X .
The characterization in terms of sequences is the subject of the next exercise.

Exercise 2.15. Suppose d1 and d2 are two metrics on the same set X . Show that the identity
map defines a homeomorphism pX, d1q Ñ pX, d2q if and only if the following condition is satisfied:
for every sequence xn P X and x P X ,

xn Ñ x in pX, d1q ðñ xn Ñ x in pX, d2q.
Example 2.16. In functional analysis, one often studies metric spaces whose elements are

functions, and the exact choice of metric on such a space needs to be handled rather carefully.
Consider for instance the set

X “ C0r´1, 1s :“ tcontinuous functions f : r´1, 1s Ñ Ru .
If we think of this as an infinite-dimensional vector space whose elements f P X are described by
the (infinitely many) “coordinates” fptq P R for t P r´1, 1s, then the natural generalization of the
Euclidean metric to such a space is

d2pf, gq :“
dż 1

´1

|fptq ´ gptq|2 dt.

This is the metric corresponding to the so-called “L2-norm” on the space of functions r´1, 1s Ñ R.
On the other hand, our alternative product metric discussed in Example 2.13 above generalizes to
this space in the form

d8pf, gq :“ max
tPr´1,1s

|fptq ´ gptq|,
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which is well defined since continuous functions on compact intervals always attain maxima. It
is not hard to see that the identity map from pX, d8q to pX, d2q is continuous, but is not a
homeomorphism. Indeed, if fn Ñ f in pX, d8q, then

d2pfn, fq2 “
ż 1

´1

|fnptq ´ fptq|2 dt ď
ż 1

´1

max
t

|fnptq ´ fptq|2 dt ď 2d8pfn, fq2 Ñ 0,

proving that fn Ñ f also in pX, d2q. On the other hand, there exist sequences fn P X such that
fn Ñ 0 with respect to d2 but d8pfn, 0q “ 1 for all n: just take a sequence of “bump” functions fn :

r´1, 1s Ñ r0, 1s that all satisfy fnp0q “ 1 but vanish outside of progressively smaller neighborhoods
of 0. These will satisfy d2pfn, 0q2 “

ş1
´1

|fnptq|2 dt Ñ 0, but d8pfn, 0q “ maxt |fnptq| “ 1 for all n,
preventing convergence to 0 with respect to d8.

Exercise 2.17. Suppose pX, dXq is a metric space and „ is an equivalence relation on X , with
the resulting set of equivalence classes denoted by X{ „. For equivalence classes rxs, rys P X{ „,
define

(2.1) dprxs, rysq :“ inf
 
dXpx, yq

ˇ̌
x P rxs, y P rys

(
.

(a) Show that d is a metric on X{ „ if the following assumption is added: for every triple
rxs, rys, rzs P X{ „, there exist representatives x P rxs, y P rys and z P rzs such that

dXpx, yq “ dprxs, rysq and dXpy, zq “ dprys, rzsq.
Comment: The hard part is proving the triangle inequality.

(b) Consider the real projective n-space

RP
n :“ Sn{ „,

where Sn :“ tx P Rn`1 | |x| “ 1u and the equivalence relation identifies antipodal
points, i.e. x „ ´x. If dX is the metric on Sn induced by the standard Euclidean metric
on Rn`1, show that the extra assumption in part (a) is satisfied, so that (2.1) defines a
metric on RPn.

(c) For the metric defined on RP
n in part (b), show that the natural quotient projection

π : Sn Ñ RP
n sending each x P Sn to its equivalence class rxs P RP

n is continuous,
and a subset U Ă RPn is open if and only if π´1pUq Ă Sn is open (with respect to the
metric dX).

(d) Here is a very different example of a quotient space. Define

X “ p´1, 1q2ztp0, 0qu Ă R2

with the metric dX induced by the Euclidean metric on R2. Now fix the function f : X Ñ
R : px, yq ÞÑ xy and define the relation p0 „ p1 for p0, p1 P X to mean that there exists a
continuous curve γ : r0, 1s Ñ X with γp0q “ p0 and γp1q “ p1 such that f ˝ γ is constant.
Show that for this equivalence relation, the extra assumption of part (a) is not satisfied,
and the distance function defined in (2.1) does not satisfy the triangle inequality.

(e) Despite our failure to define X{ „ as a metric space in part (d), it is natural to consider
the following notion: define a subset U Ă X{ „ to be open if and only if π´1pUq is an
open subset of pX, dXq, where π : X Ñ X{ „ denotes the natural quotient projection.
We can then define a sequence rxns P X{ „ to be convergent to an element rxs P X{ „ if
for every open subset U Ă X{ „ containing rxs, rxns P U for all n sufficiently large. Find
a sequence rxns P X{ „ and two elements rxs, rys P X{ „ such that

rxns Ñ rxs and rxns Ñ rys, but rxs ‰ rys.
This could not happen if we’d defined convergence on X{ „ in terms of a metric. (Why
not?)
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Exercise 2.18.

(a) Show that for any metric space pX, dq,
d1px, yq :“ mint1, dpx, yqu

defines another metric on X which is equivalent to d. In particular, this means that every
metric is equivalent to one that is bounded.

(b) Suppose pX, dXq and pY, dY q are metric spaces satisfying

dXpx, x1q ď 1 for all x, x1 P X, dY py, y1q ď 1 for all y, y1 P Y .
Now let Z “ X Y Y , and for z, z1 P Z define

dZpz, z1q “

$
’&
’%

dXpz, z1q if z, z1 P X,
dY pz, z1q if z, z1 P Y ,
2 if pz, z1q is in X ˆ Y or Y ˆX.

Show that dZ is a metric on Z with the following property: a subset U Ă Z is open in
pZ, dZq if and only if it is the union of two (possibly empty) open subsets of pX, dXq and
pY, dY q. In particular, X and Y are each both open and closed subsets of Z. (Recall that
subsets of metric spaces are closed if and only if their complements are open.)

(c) Suppose pZ, dq is a metric space containing two disjoint subsets X,Y Ă Z that are each
both open and closed. Show that there exists no continuous map γ : r0, 1s Ñ Z with
γp0q P X and γp1q P Y .

(d) Show that if pX, dq is a metric space with the discrete metric, then for every point x P X ,
the subset txu Ă X is both open and closed.

3. Topological spaces

We saw in the last lecture that most of the notions we want to consider in topology (continuous
maps, homeomorphisms, convergence of sequences. . . ) can be defined on metric spaces without
specific reference to the metric, but using only our knowledge of which subsets are open. Moreover,
one can define distinct but “equivalent” metrics on the same space for which the open sets match
and therefore all these notions are the same. This suggests that we should view the notion of open
sets as something more fundamental than a metric. The starting point of topology is to endow a
set with the extra structure of a distinguished collection of subsets that we will call “open”. The
first question to answer is: what properties should we require this collection of subsets to have?

To motivate the axioms, let’s revisit metric spaces for a moment and recall two important
definitions. Both will also make sense in the context of topological spaces once we have fixed a
definition for the latter.

Definition 3.1. Suppose X is a metric (or topological) space.
(a) The interior (offener Kern or Inneres) of a subset A Ă X is the set

Å “
 
x P A

ˇ̌
some neighborhood of x in X is contained in A

(
.

Points in this set are called interior points (innere Punkte) of A.
(b) The closure (abgeschlossene Hülle or Abschluss) of a subset A Ă X is the set

sA “
 
x P X

ˇ̌
every neighborhood of x in X intersects A

(
.

Points in this set are called cluster points (Berührpunkte) of A.

The following exercise is easy, but it’s worth thinking through why it is true.
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Exercise 3.2. Show that for any subset A Ă X , the interior Å is the largest open subset of
X that is contained in A, and the closure sA is the smallest closed subset of X that contains A, i.e.

Å “
ď

UĂX open, UĂA

U and sA “
č

UĂX closed, AĂU

U .

I worded this exercise in a slightly sneaky way by calling the union of all the open sets inside A
the “largest open subset of X that is contained in A”: how do we actually know that this union of
subsets is also open? This is the point: we know it because in a metric space, arbitrary unions of
open subsets are also open. This follows almost immediately from the definitions in the previous
lecture. It also implies (by taking complements) that arbitrary intersections of closed subsets are
also closed, hence writing sA as an intersection as in the exercise reveals that sA is also a closed
subset. These are properties you’d expect any reasonable notion of “open” or “closed” sets to have,
so we will want to keep them.

What about intersections of open sets? Well, in metric spaces, arbitrary intersections of open
sets need not be open, e.g. the intervals p´1{n, 1{nq Ă R are open for all n P N, but

č

nPN

ˆ
´ 1

n
,
1

n

˙
“ t0u

is not an open subset of R. Something slightly weaker is true, however: the intersection of any
two open sets is open, and by an easy inductive argument, it follows that any finite intersection of
open sets is open. Indeed, if U ,V Ă X are both open and x P U X V , we know that U and V each
contain balls about x for sufficiently small radii, so it suffices to take any radius small enough to fit
inside both of them. (Why doesn’t this necessarily work for an infinite intersection of open sets?
Look at the example of the intervals p´1{n, 1{nq above if you’re not sure.) Taking complements,
we also deduce from this discussion that arbitrary unions of closed subsets are not always closed,
but finite unions are.

One last remark before we proceed: in any metric space X , the empty set H and X itself are
both open (and therefore also closed) subsets. With these observations as motivation, here is the
definition on which everything else in this course will be based.

Definition 3.3. A topology (Topologie) on a set X is a collection2 T of subsets of X
satisfying the following axioms:

(i) H P T and X P T ;
(ii) For every subcollection I Ă T ,

ď

UPI

U P T ;

(iii) For every pair U1,U2 P T , U1 X U2 P T .
The pair pX, T q is then called a topological space (topologischer Raum), and we call the sets
U P T the open subsets (offene Teilmengen) in pX, T q.

We can now repeat several definitions from the previous lecture in our newly generalized
context.

Definitions 3.4. Assume pX, TXq and pY, TY q are topological spaces.
(1) A subset A Ă X is closed (abgeschlossen) if XzA P TX .

2I am calling T a “collection” instead of a “set” in an attempt to minimize the inevitable confusion caused by
T being a set whose elements are also sets. Strictly speaking, there is nothing wrong with saying “T is a subset of
2X satisfying the following axioms. . . ,” where 2X is the set-theoretician’s fancy notation for the set consisting of all
subsets of X. But if you found that sentence confusing, my recommendation is to call T a “collection” instead of a
“set”.
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(2) A map f : X Ñ Y is continuous (stetig) if for all U P TY , f´1pUq P TX . Note that if
we prefer to describe the topology in terms of closed rather than open subsets, then it is
equivalent to say that for all U Ă Y closed, f´1pUq Ă X is also closed.

(3) A neighborhood (Umgebung) of a subset A Ă X is any subset U Ă X such that
A Ă V Ă U for some V P TX .

(4) A sequence (Folge) xn P X converges to (konvergiert gegen) x P X (written “xn Ñ x”)
if for every neighborhood U Ă X of x, xn P U holds for all n P N sufficiently large.

Remark 3.5. One can equivalently define a topology T on a set X by specifying the closed
sets T 1 :“ tXzU | U P T u. Then condition (ii) in Definition 3.3 is equivalent to

č

API

A P T 1 for all subcollections I Ă T 1,

and condition (iii) is equivalent to

A1 YA2 P T 1 for all A1, A2 P T 1.

For many topologies that one encounters in practice, it is not so easy to say what all the open
sets look like, but much easier to describe a smaller subcollection that “generates” them.

Definition 3.6. Suppose pX, T q is a topological space and B Ă T is a subcollection of the
open sets.

‚ We call B a base or basis (Basis) for T if every set U P T is a union of sets in B, i.e.

U “
ď

VPI

V for some subcollection I Ă B.

‚ We call B a subbase or subbasis (Subbasis) for T if every set U P T is a union of finite
intersections of sets in B, i.e.

U “
ď

αPI

Uα

for some collection of subsets Uα Ă X indexed by a set I, such that for each α P I,
Uα “ U1

α X . . . X UNα
α

for a finite collection U1
α, . . . ,U

Nα
α P B.

Every base is obviously also a subbase, though we’ll see in a moment that the converse is not
true. You should take a moment to convince yourself that given any collection B of subsets of X
that cover all of X (meaning X “ Ť

UPB U), B is a subbase of a unique topology on X , namely the
smallest topology that contains B. It consists of all unions of finite intersections of sets from B.

Example 3.7. The standard topology on R has the collection of all open intervals tpa, bq Ă
R | ´ 8 ď a ă b ď 8u as a base. The smaller subcollection of half-infinite open intervals
tp´8, aq | a P Ru Y tpa,8q | a P Ru is also a subbase, though not a base. (Why not?)

Example 3.8. If pX, dq is any metric (or pseudometric) space, the natural topology on X

induced by the metric is defined via the base

B “
 
Brpxq Ă X

ˇ̌
x P X, r ą 0

(
.

Note that if d and d1 are equivalent metrics as in Definition 2.14, then they induce the same
topology on X : indeed, if the identity map pX, dq Ñ pX, d1q is a homeomorphism then it maps
open sets to open sets. A topology that arises in this way from a metric is called metrizable
(metrisierbar).
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Example 3.9. On any set X , the discrete topology is the collection T consisting of all
subsets of X . Take a moment to convince yourself that this is a topology, and moreover, it is
metrizable—it can be defined via the discrete metric, see Definition 2.11. (Can you think of another
metric onX that defines the same topology?) As a base for T , we can take B “

 
txu Ă X

ˇ̌
x P X

(
.

Note that since all subsets are open, all subsets are also closed! Moreover:
‚ Every map f : X Ñ R is continuous.
‚ A map f : R Ñ X is continuous if and only if it is constant. Here is a quick proof: for

every x P X , txu Ă X is both open and closed, so continuity requires f´1pxq Ă R also to
be both open and closed, but the only subsets of R with this property are R itself and
the empty set.

‚ A sequence xn P X converges to x P X if and only if xn “ x for all n P N sufficiently
large.

Example 3.10. Also on any set X , one can define the trivial (also sometimes called the
“indiscrete”) topology T “ tH, Xu. This topology has the distinguishing feature that every point
x P X has only one neighborhood, namely the whole set. We then have:

‚ A map f : X Ñ R is continuous if and only if it is constant. Proof: Suppose f is
continuous, x0 P X and fpx0q “ t P R. Then for every ǫ ą 0, f´1pt´ ǫ, t` ǫq is an open
subset of X containing x0, so it is not H and is therefore X . This proves

fpXq Ă
č

ǫą0

pt ´ ǫ, t` ǫq “ ttu.

‚ All maps f : R Ñ X are continuous.
‚ xn Ñ x holds always, i.e. all sequences in X converge to all points! This proves that

pX, T q is not metrizable, as the limit of a convergent sequence in a metric space is always
unique. (Prove it!)

Example 3.11. The cofinite topology on a set X is defined such that a proper subset A Ă X

is closed if and only if it is finite. Take a moment to convince yourself that this really defines a
topology—see Remark 3.5. (Note that X itself is automatically closed but does not need to be
finite, since it is not a proper subset of itself.) The neighborhoods of a point x P X are then all of
the form Xztx1, . . . , xN u for arbitrary finite subsets x1, . . . , xN P X that do not include x.

If T1 and T2 are two topologies on the same set X such that

T1 Ă T2,

meaning every open set in pX, T1q is also an open set in pX, T2q. In this case we say that T2 is
stronger/finer/larger than (stärker/feiner als) T1, and T1 is weaker/coarser/smaller than
(schwächer/gröber als) T2. For example, since the open sets Rztx1, . . . , xNu for the cofinite topol-
ogy on R are also open with respect to its standard topology, we can say that the standard topology
of R is stronger than the cofinite topology. On any set, the discrete topology is the strongest, and
the trivial topology is the weakest. In general, having a stronger topology means that fewer se-
quences converge, fewer maps into X from other spaces are continuous, but more functions defined
on X are continuous. In various situations, it is common and natural to specify a topology on a set
as being the “strongest” or “weakest” possible topology subject to the condition that some given
collection of maps are all continuous. We will see some examples of this below.

There are several natural ways in which a given topology on one or more spaces can induce a
topology on some related space.

Definition 3.12. pX, T q determines on any subset A Ă X the so-called subspace topology
(Unterraumtopologie)

TA :“
 
U XA

ˇ̌
U P T

(
.



22 FIRST SEMESTER (TOPOLOGIE I)

This is the weakest topology on A such that the natural inclusion A ãÑ X is a continuous map.
(Prove it!)

Example 3.13. The standard topology on Rn`1 is the one defined via the Euclidean metric.
We then assign the subspace topology to the set of unit vectors Sn Ă Rn`1, meaning a subset
V Ă Sn will be considered open in Sn if and only if V “ Sn X U for some open subset U Ă Rn`1.
As you might expect, this is the same as the topology induced by the metric on Sn defined by
restricting the Euclidean metric, but for a given open set V Ă Sn, it is not always so easy to see
the open set U Ă Rn`1 such that V “ U X Sn. One can construct it as follows: for each x P V ,
choose ǫx ą 0 such that every y P Sn satisfying |y ´ x| ă ǫx is also in V . Then the set

U :“
ď

xPV

 
y P Rn`1

ˇ̌
|y ´ x| ă ǫx

(

is a union of open balls and is thus open in Rn`1, and satisfies U X Sn “ V .

Exercise 3.14. Convince yourself that for any metric space pX, dq and subset A Ă X , the nat-
ural metrizable topology on pA, dq is precisely the subspace topology with respect to the topology
on X induced by d.

Definition 3.15. Given a collection of topological spaces tpXα, TαquαPI indexed by a set I
such that Xα X Xβ “ H for all α ‰ β, the disjoint union (disjunkte Vereinigung) is the set
X :“ Ť

αPI Xα with the topology

T :“
#ď

αPI

Uα

ˇ̌
ˇ̌ Uα P Tα for all α P I

+
.

We typically denote the topological space pX, T q defined in this way by
ž

αPI

Xα,

or for finite collections I “ t1, . . . , Nu, X1 > . . . > XN . The topology on this space is called the
disjoint union topology.

Exercise 3.16. Show that the disjoint union topology T on X “
š
αXα is the strongest

topology on this set such that for every α P I, the inclusion Xα ãÑ X is continuous.

Remark 3.17. A key feature of the disjoint union topology is that for every individual α P I,
the subset Xα Ă X is both open and closed. It follows that there is no continuous path γ : r0, 1s Ñ
X with γp0q P Xα and γp1q P Xβ for α ‰ β, cf. Exercise 2.18(c).

Remark 3.18. It is also often useful to be able to discuss disjoint unions
š
αXα in which the

sets Xα and Xβ need not be disjoint for α ‰ β, e.g. a common situation is where all Xα are taken
to be the same fixed set Y . In this case we still want to treat Xα and Xβ as disjoint “copies” of the
same subset when α ‰ β, so that no element in the union can belong to more than one of them.
One way to do this is by redefining the set X “ š

αXα as

X :“
 

pα, xq
ˇ̌
α P I, x P Xα

(
,

so that the disjoint union topology now literally becomes the collection of all subsets in X of the
form ď

αPI

tαu ˆ Uα

with Uα Ă Xα open for every α. We will usually not bother with this cumbersome notation when
examples arise: just remember that whenever X1 and X2 are two sets, disjoint or otherwise, the
set X1 > X2 is defined so that its subsets X1 Ă X1 >X2 and X2 Ă X1 >X2 are disjoint.
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Exercise 3.19. Let I “ R and define Xα for each α P R to be the same space consisting
of only one element; for concreteness, say Xα :“ t0u Ă R. According to the definition described
above, this sets up an obvious bijection

ž

αPR

t0u :“ tpα, 0q P R ˆ t0uu Ñ R,

pα, 0q ÞÑ α.

Show that this bijection is a homeomorphism if we assign the discrete topology to R on the right
hand side.

4. Products, sequential continuity and nets

From now on, we’ll adopt the following convention of terminology: if I say that X is a “space”,
then I mean X is a topological space unless I specifically say otherwise or the context clearly
indicates that I mean something different (e.g. that X is a vector space). Similarly, if X and Y

are spaces in the above sense and I refer to f : X Ñ Y as a “map”, then I typically mean that f
is a continuous map unless the context indicates otherwise. We will sometimes have occasion to
speak of maps f : I Ñ X where X is a space but I is only a set, on which no topology has been
specified: in this case no continuity is assumed since that notion is not well defined, but I will often
try to be extra clear about it by calling f a “(not necessarily continuous) function” or something
to that effect. I do not promise to be completely consistent about this, but hopefully my intended
meaning will never be in doubt.

The previous lecture introduced two ways of inducing new topologies from old ones, namely on
subspaces and on disjoint unions. It remains to discuss the natural topologies defined on products
and quotients. We’ll deal with the former in this lecture, and then use it to construct a surprising
example illustrating the distinction between continuity and sequential continuity.

Definition 4.1. Given two spaces pX1, T1q and pX2, T2q, the product topology T onX1ˆX2

is generated by the base

B :“
 
U1 ˆ U2 Ă X1 ˆX2

ˇ̌
U1 P T1, U2 P T2

(
.

Notice that if X1 ˆX2 is endowed with the product topology, then both of the projection maps

π1 : X1 ˆX2 Ñ X1 : px1, x2q ÞÑ x1

π2 : X1 ˆX2 Ñ X2 : px1, x2q ÞÑ x2

are continuous. Indeed, for any open set U1 Ă X1, π´1
1 pU1q “ U1 ˆ X2 is the product of two open

sets and is therefore open in X1 ˆ X2; similarly, π´1
2 pU2q “ X1 ˆ U2 is open if U2 Ă X2 is open.

Notice moreover that the intersection of these two sets is U1 ˆU2, so one can form all open sets in
the product topology as unions of sets that are finite intersections of the form π´1

1 pU1q X π´1
2 pU2q.

In other words, the subcollection
 
π´1
1 pUq

ˇ̌
U P T1

(
Y
 
π´1
2 pUq

ˇ̌
U P T2

(

forms a subbase for the product topology T . This makes T the weakest (i.e. smallest) topology
for which the projection maps π1 and π2 are both continuous.

That last observation leads us to the natural generalization of this discussion to infinite prod-
ucts, but the outcome turns out to be slightly different from what you probably would have
expected.
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Suppose tpXα, TαquαPI is a collection of spaces, indexed by an arbitrary (possibly infinite)
set I. Their product can be defined as the set

ź

αPI

Xα :“
#

functions f : I Ñ
ď

αPI

Uα : α ÞÑ xα such that xα P Xα for all α P I
+
.

Note that since I in this discussion is only a set with no topology, there is no assumption of
continuity for the functions α ÞÑ xα. Whether the set I is infinite or finite, we can denote elements
of the product space by

txαuαPI P
ź

αPI

Xα,

so we think of each of the individual elements xα P Xα as “coordinates” on the product.

Definition 4.2. The product topology (Produkttopologie) on
ś
αPI Xα is the weakest

topology such that all of the projection maps

πα :
ź

βPI

Xβ Ñ Xα : txβu
βPI ÞÑ xα

for α P I are continuous.

In particular, the product topology must contain π´1
α pUαq for every α P I and Uα P Tα, and it

is the smallest topology that contains them, which means the sets π´1
α pUαq form a subbase. It is

important to spell out precisely what this means. We have

π´1
α pUαq “

#
txβuβPI P

ź

βPI

Xβ

ˇ̌
ˇ̌ xα P Uα

+
“ Uα ˆ

ź

β‰α

Xβ,

so in each of these sets, only a single coordinate is constrained. It follows that in a finite inters-
esection of sets of this form, only finitely many of the coordinates will be constrained, while the
rest remain completely free. This implies:

Proposition 4.3. A base for the product topology on
ś
αPI Xα is formed by the collection of

all subsets of the form
ś
αPI Uα where Uα Ă Xα is open for every α P I and Uα ‰ Xα is satisfied

for at most finitely many α P I. �

The last part of the above statement makes no difference when the product is finite, but for
infinite products, it means that arbitrary subsets of the form

ś
αPI Uα Ă ś

αPI Xα are not open
just because Uα Ă Xα is open for every α. Dropping the “at most finitely many” condition would
produce a much stronger topology with very different properties (see Exercise 4.6 below).

Exercise 4.4. Show that a sequence txnαuαPI P ś
αPI Xα for n P N converges to txαuαPI Pś

αPI Xα with the product topology if and only if for all α P I, the individual sequences xnα converge
in Xα to xα.

Exercise 4.5. Show that for any other space Y , a map f : Y Ñ ś
αPI Xα is continuous if and

only if πα ˝ f : Y Ñ Xα is continuous for every α P I.
There is a special notation for the product set in the case where all the Xα are taken to be

the same fixed space X : the product
ś
αPI X has an obvious identification with the set of all (not

necessarily continuous) functions I Ñ X , and we write

XI :“
ź

αPI

X “ t(not necessarily continuous) functions f : I Ñ Xu .

For example we could now write Rn “ Rt1,...,nu if we preferred. The notation is motivated in
part by the combinatorial observation that if X and I are both finite sets with a and b elements
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respectively, then XI has ab elements. The case X “ t0, 1u is popular in abstract set theory since
t0, 1uI “ tf : I Ñ t0, 1uu has a straightforward interpretation as the set of all subsets of I, which
is often abbreviated as 2I :“ t0, 1uI . But this example is not very interesting for topology since
t0, 1u is not a very interesting topological space (no matter which topology you put on it—there are
exactly four choices). When X is a more interesting space, the most important thing to understand
about XI comes from Exercise 4.4: a sequence of functions fn P XI converges to f P XI if and
only if it converges pointwise, i.e.

fnpαq Ñ fpαq for every α P I.
The product topology on XI is therefore also sometimes called the topology of pointwise con-
vergence (punktweise Konvergenz).

Exercise 4.6. Assume I is an infinite set and tpXα, TαquαPI is a collection of topological
spaces. In addition to the usual product topology on

ś
αXα, one can define the so-called box

topology, which has a base of the form
#ź

αPI

Uα

ˇ̌
ˇ̌ Uα P Tα for all α P I

+
.

(a) Compared with the usual product topology, is the box topology stronger, weaker, or
neither?

(b) What does it mean for a sequence in
ś
αXα to converge in the box topology? In par-

ticular, consider the case where all the Xα are a fixed space X and
ś
αX is identified

with the space of all functions XI “ tf : I Ñ Xu; what does it mean for a sequence of
functions fn : I Ñ X to converge in the box topology to a function f : I Ñ X?

With examples like these at our disposal, we can now address the following important question
in full generality:

Question 4.7. To what extent are the following conditions for maps f : X Ñ Y between
topological spaces equivalent?

‚ f´1pUq Ă X is open for every open set U Ă Y ;
‚ For every convergent sequence xn Ñ x in X, fpxnq Ñ fpxq in Y .

The first condition is ordinary continuity, while the second is called sequential continuity
(Folgenstetigkeit). We proved in Lecture 2 that these two conditions are equivalent for maps
between metric spaces, and if you look again at the proof that (b)ñ(c) in the discussion following
Definition 2.5, you’ll see that it still makes sense in arbitrary topological spaces, proving:

Theorem 4.8. For arbitrary topological spaces X and Y , all continuous maps X Ñ Y are
sequentially continuous. �

The converse is trickier. Look again at the proof in Lecture 2 that (c)ñ(b) for Definition 2.5.
That proof specifically referred to open balls about a point, so it is not so clear how to make sense
of it in topological spaces where there is no metric. We can see however that the argument still
works if we can remove all mention of open balls and replace it with the following lemma:

“Lemma” 4.9. In any topological space X, a subset A Ă X is not open if and only if there
exists a point x P A and a sequence xn P XzA such that xn Ñ x.

I’ve put the word “lemma” in quotation marks here for a very good reason: as written, the
statement is false, and so is the converse of Theorem 4.8! Sequential continuity does not always
imply continuity. Here is a counterexample.
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Example 4.10 (cf. [Jän05, §6.3]). Let X “ C0pr0, 1s, r´1, 1sq Ă r´1, 1sr0,1s, i.e. X is the set of
all continuous functions f : r0, 1s Ñ r´1, 1s, and we assign to it the subspace topology as a subset
of the space r´1, 1sr0,1s of all functions f : r0, 1s Ñ r´1, 1s. In other words, X carries the topology
of pointwise convergence. Next, define Y to be the same set, but with the topology induced by
the L2-metric

d2pf, gq “
dż 1

0

|fptq ´ gptq|2 dt.

Now consider the identity map from X to Y :

Φ : X Ñ Y : f ÞÑ f.

If fn Ñ f is a convergent sequence in X , then the functions converge pointwise, so |fn ´ f |2
converges pointwise to 0, and we claim that this implies

ş1
0

|fnptq ´ fptq|2 dt Ñ 0. This re-
quires a fundamental result from measure theory, Lebesgue’s dominated convergence theorem (see
e.g. [LL01, §1.8] or [Rud87, Theorem 1.34]): it states that if gn is a sequence of measurable func-
tions that converge almost everywhere to g and all satisfy |gn| ď G for some Lebesgue integrable
function G, then

ş
gn converges to

ş
g. In the present case, the hypotheses are satisfied since the

functions fn take values in the bounded domain r´1, 1s, which bounds |fn´f | uniformly below the
constant (and thus integrable) function 2. We conclude that d2pfn, fq Ñ 0, hence Φ is sequentially
continuous.

To show however that Φ is continuous, we would need to find for every ǫ ą 0 a neighborhood
U Ă X of 0 such that ΦpUq Ă Bǫp0q Ă Y . The trouble here is that neighborhoods in X (with
the product topology) are somewhat peculiar objects: if U is one, then it contains some open
set containing 0, which means it contains at least one of the sets

ś
αPr0,1s Uα in our base for the

product topology, where the Uα are all open neighborhoods of 0 in r´1, 1s but there is at most a
finite subset I Ă r0, 1s consisting of α P r0, 1s for which Uα ‰ r´1, 1s. Now choose a continuous
function f : r0, 1s Ñ r0, 1s that vanishes on the finite subset I but equals 1 on a “large” subset of
r0, 1szI. Depending how many points are in I, you may have to make this function oscillate very
rapidly back and forth between 0 and 1, but since I is only finite, you can still do this such that the
measure of the domain on which f “ 1 is as close to 1 as you like, which makes d2pf, 0q also only
slightly less than 1. In particular, f belongs to the neighborhood U in X but not to Bǫp0q Ă Y if
ǫ is sufficiently small.

We deduce from the above example that “Lemma” 4.9 is not always true since it would imply
that continuity and sequential continuity are equivalent. We are led to ask: what extra hypotheses
could be added so that the lemma holds?

Definition 4.11. Given a point x in a space X , a neighborhood base (Umgebungsbasis)
for x is a collection B of neighborhoods of x such that every neighborhood of x contains some
U P B.

Recall that a set I is countable (abzählbar) if it admits an injection into the natural num-
bers N. This definition allows I to be either finite or infinite; if it is “countably infinite” then we
can equivalently say that I admits a bijection with N. This is also equivalent to saying that there
exists a sequence txn P IunPN that includes every point of I. For example, it is easy to show that
the set Q of rational numbers is countable, but Cantor’s famous “diagonal” argument shows that
R is not.

Definition 4.12 (the countability axioms). A space X is called first countable (“X erfüllt
das erste Abzählbarkeitsaxiom”) if every point in x has a countable neighborhood base. We call X
second countable (“X erfüllt das zweite Abzählbarkeitsaxiom”) if its topology has a countable
base.
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It is easy to see that every second countable space is also first countable: if X has a countable
base B, then for each x P X , the collection of sets in B that contain x is a countable neighborhood
base for x. The next example shows that the converse is false.

Example 4.13. If X has the discrete topology, then it is first countable because for each
x P X , one can form a neighborhood base out of the single open set txu Ă X . But X is second
countable if and only if X itself is a countable set (prove it!), so e.g. R with the discrete topology
is first but not second countable.

Example 4.14. All metric spaces are first countable. Indeed, for every x P X , the collection of
open balls B1{npxq Ă X for n P N forms a countable neighborhood base. (Note that Example 4.13
is a special case of this, so not all metric spaces are second countable.)

We can now prove a corrected version of “Lemma” 4.9. Let us first make a useful general
observation that follows directly from the axioms of a topology.

Lemma 4.15. In any space X, a subset A Ă X is open if and only if every point x P A has a
neighborhood V Ă X that is contained in A.

Proof. If the latter condition holds, then A is the union of open sets contained in such
neighborhoods and is therefore open. Conversely, if A is open, then A itself can be taken as the
desired neighborhood of every x P A. �

Lemma 4.16. In any first countable topological space X, a subset A Ă X is not open if and
only if there exists a point x P A and a sequence xn P XzA such that xn Ñ x.

Proof. If A Ă X is open, then for every x P A and sequence xn P X converging to x, we
cannot have xn P XzA for all n since A is a neighborhood of x. This is true so far for all topological
spaces, with or without the first countability axiom, but the latter will be needed in order to prove
the converse. So, suppose now that A Ă X is not open, which by Lemma 4.15, means there
exists a point x P A such that no neighborhood V Ă X of x is contained in A. Fix a countable
neighborhood basis U1,U2,U3, . . . for x.

It will make our lives slightly easier if the neighborhood basis is a nested sequence, meaning

X Ą U1 Ą U2 Ą U3 Ą . . . Q x,
and we claim that this can be assumed without loss of generality. Indeed, set U 1

1 :“ U1, and if
U2 is not contained in U 1

1, consider instead the set U2 X U 1
1, which is also a neighborhood of x

and therefore (by the definition of a neighborhood base) contains Un for some n P N. Since Un is
contained in U 1

1, we then set U 1
2 :“ Un. Now continue this process by setting U 1

3 :“ Um such that
Um Ă U 1

2 X U3 and so forth. This algorithm produces a nested sequence U 1
1 Ą U 1

2 Ą U 1
3 Ą . . . such

that U 1
n Ă Un for every n, hence the new neighborhoods also form a neighborhood base for x. Let

us replace our original sequence with the nested sequence and continue to call it tUnunPN.
With this new assumption in place, observe that since none of the neighborhoods Un can be

contained in A, there exists a sequence of points

xn P Un such that xn R A.
This sequence converges to x since every neighborhood V Ă X of x contains one of the UN , implying
that for all n ě N ,

xn P Un Ă UN Ă V .

�

Combining this lemma with our proof in Lecture 2 that sequential continuity implies continuity
in metric spaces yields:
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Corollary 4.17. For any spaces X and Y such that X is first countable, every sequentially
continuous map X Ñ Y is also continuous. �

It is possible to generalize this result beyond first countable spaces, but it requires expanding
our notion of what a “sequence” can be. If you think of a sequence in X as a map from the (ordered)
set of natural numbers N to X , then one possible way to generalize is to consider more general
partially ordered sets as domains. Recall that a binary relation ă defined on some subset of all
pairs of elements in a set I is called a partial order (Halbordnung or Teilordnung) if it satisfies
(i) x ă x for all x, (ii) x ă y and y ă x implies x “ y, and (iii) x ă y and y ă z implies x ă z. We
write “x ą y” as a synonym for “y ă x”, and the set I together with its partial order ă is called a
partially ordered set (partiell geordnete Menge). One obvious example is pN,ďq, though unlike
this example (which is totally ordered), it is not generally required in a partially ordered set pI,ăq
that every pair of elements x, y P I satisfy either x ă y or y ă x. We will see more exotic examples
below.

Definition 4.18. A directed set (gerichtete Menge) pI,ăq consists of a set I with a partial
order ă such that for every pair α, β P I, there exists an element γ P I with γ ą α and γ ą β.

The natural numbers pN,ďq clearly form a directed set, but in topology, one also encounters
many interesting examples of directed sets that need not be totally ordered or countable.

Example 4.19. If X is a space and x P X , one can define a directed set pI,ăq where I is the set
of all neighborhoods of x in X , and U ă V for U ,V P I means V Ă U . This is a directed set because
given any pair of neighborhoods U ,V Ă X of x, the intersection U X V is also a neighborhood of x
and thus defines an element of I with U X V Ă U and U X V Ă V . Note that neither of U and V

need be contained in the other, so they might not satisfy either U ă V or V ă U .

Definition 4.20. Given a space X , a net (Netz) txαuαPI in X is a function I Ñ X : α ÞÑ xα,
where pI,ăq is a directed set.

Definition 4.21. We say that a net txαuαPI in X converges to x P X if for every neighbor-
hood U Ă X of x, there exists an element α0 P I such that xα P U for every α ą α0.

Convergence of nets is also sometimes referred to in the literature as Moore-Smith convergence,
see e.g. [Kel75]. Note that a net txαuαPI whose underlying directed set is pI,ăq “ pN,ďq is simply
a sequence, and the above definition then reduces to the usual notion of convergence for a sequence.
We can now prove the most general corrected version of “Lemma” 4.9.

Lemma 4.22. In any space X, a subset A Ă X is not open if and only if there exists a point
x P A and a net txαuαPI in X that converges to x but satisfies xα R A for every α P I.

Proof. If A Ă X is open then it is a neighborhood of every x P A, so the nonexistence of
such a net is an immediate consequence of Definition 4.21. Conversely, if A is not open, then
Lemma 4.15 provides a point x P A such that for every neighborhood V Ă X of x, there exists a
point

xV P V such that xV R A.
Taking pI,ăq to be the directed set of all neighborhoods of x, ordered by inclusion as in Ex-
ample 4.19, the collection of points txVuVPI is now a net which converges to x since for every
neighborhood U Ă X of x,

V ą U ñ xV P V Ă U .

�
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Putting all this together leads to the following statement equating continuity with a generalized
notion of sequential continuity. The proof is just a repeat of arguments we’ve already worked
through, but we’ll spell it out for the sake of completeness.

Theorem 4.23. For any spaces X and Y , a map f : X Ñ Y is continuous if and only if for
every net txαuαPI in X converging to a point x P X, the net tfpxαquαPI in Y converges to fpxq.

Proof. Suppose f is continuous and txαuαPI is a net in X converging to x P X . Then for
any neighborhood U Ă Y of fpxq, f´1pUq Ă X is a neighborhood of x, hence there exists α0 P I
such that α ą α0 implies xα P f´1pUq, or equivalently, fpxαq P U . This proves that tfpxαquαPI

converges in the sense of Definition 4.21 to fpxq.
To prove the converse, let us suppose that f : X Ñ Y is not continuous, so there exists an

open set U Ă Y for which f´1pUq Ă X is not open. Then by Lemma 4.22, there exists a point
x P f´1pUq and a net txαuαPI in X that converges to x but satisfies xα R f´1pUq for every α P I.
Now tfpxαquαPI is a net in Y that does not converge to fpxq, since U is an open neighborhood of
fpxq but fpxαq is never in U . �

Nets take a bit of getting used to in comparison with sequences. The following addendum to
Example 4.10 may help in this regard, but it may also make you feel deeply unsettled.

Example 4.24. For the identity map Φ : X Ñ Y in Example 4.10, one could extract from the
above proof an example of a net txαuαPI in X that converges to 0 without tΦpxαquαPI converging
to 0 in Y , but here is perhaps a slightly simpler example. Define I as the set of all finite subsets of
r0, 1s, with the partial order A ă B for A,B Ă r0, 1s defined to mean A Ă B. Note that pI,ăq is
a directed set since for any two finite subsets A,B Ă r0, 1s, A Y B is also a finite subset and thus
an element of I. Now choose for each A P I a continuous function

fA : r0, 1s Ñ r0, 1s

such that fA|A “ 0 but
ş1
0

|fAptq|2 dt ą 1{4. The net tΦpfAquAPI in Y clearly does not converge
to 0 since none of these functions belong to the ball B1{2p0q in Y . But tfAuAPI does converge to
0 in X : indeed, since X has the product topology, any neighborhood U Ă X of 0 contains some
open neighborhood of 0 that is of the form

ś
αPr0,1s Uα for open neighborhoods Uα Ă r´1, 1s of 0

such that Uα “ r´1, 1s for all α outside of some finite subset A0 Ă r0, 1s. It follows that for all
A P I with A ą A0 P I,

fApαq “ 0 P Uα for all α P A0,

implying fA P U .

5. Compactness

We saw in our discussion of metric spaces (Lecture 2) that boundedness is not a meaningful
notion in topology, i.e. even if we have data such as a metric with which to define what a “bounded”
set is, it may still be homeomorphic to sets that are not bounded. Instead, we consider compact
sets, a notion that is topologically invariant. The main definition carries over from Lecture 2 with
no change.

Definition 5.1. Given a space X and subset A Ă X , an open cover/covering (offene
Überdeckung) of A is a collection of open subsets tUα Ă XuαPI such that A Ă Ť

αPI Uα.

We will also occasionally use the notation

A Ă
ď

UPO

U
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to indicate an open covering of A, where O is a collection of open subsets of X , i.e. O Ă T , where
T is the topology of X .

Definition 5.2. A subset A Ă X is compact (kompakt) if every open cover of A has a finite
subcover (eine endliche Teilüberdeckung), i.e. given an arbitrary open cover tUαuαPI of A, one can
always find a finite subset tα1, . . . , αNu Ă I such that A Ă Uα1

Y . . .Y UαN
. We say that X itself

is a compact space if X is a compact subset of itself.

Exercise 5.3. Show that a subset A Ă X is compact if and only if A with the subspace
topology is a compact space.

Example 5.4. For any space X with the discrete topology, a subset A Ă X is compact if and
only if A is finite. Indeed, the collection of subsets ttxu Ă XuxPA forms an open covering of A in
the discrete topology, and it has a finite subcovering if and only if A is finite, hence compactness
implies finiteness. The converse follows from the next example.

Example 5.5. In any space X , every finite subset A Ă X is compact. Indeed, for A “
ta1, . . . , aNu with an open covering tUαuαPI , pick any αi P I with ai P Uαi

for i “ 1, . . . , N , then
the sets Uα1

, . . . ,UαN
form an open subcover.

Example 5.6. A subset A Ă Rn in Euclidean space with its standard topology is compact
if and only if it is closed and bounded. This is known as the Heine-Borel theorem, and in one
direction it is easy to prove; see Exercise 5.7 below. For the other direction, you have probably
seen a proof in your analysis classes of the Bolzano-Weierstrass theorem, stating that if A is closed
and bounded then every sequence in A has a convergent subsequence with limit in A; we say in this
case that A is sequentially compact. We will prove in the following that compactness and sequential
compactness are equivalent for second countable spaces, and every subset of Rn is second countable
(see Exercise 5.9 below). A frequently occurring concrete example is the sphere

Sn Ă Rn`1,

which is a closed and bounded subset of Rn`1 and is therefore compact.

Exercise 5.7. Show that in any metric space, compact subsets must be both closed and
bounded.
Hint: For closedness, you may want to assume the theorem proved below that compact first
countable spaces are also sequentially compact—recall that all metric spaces are first countable.

Remark 5.8. Note that the converse of Exercise 5.7 is generally false: being closed and
bounded is not enough for compactness in arbitrary metric spaces. Here is an important class of
examples from functional analysis: a vector space H with an inner product x , y is called a Hilbert
space (Hilbertraum) if it is complete (meaning all Cauchy sequences converge) with respect to
the metric dpx, yq “

a
xx´ y, x´ yy. The closed unit ball sB1p0q “ tx P H | xx, xy ď 1u is clearly

both closed and bounded in H, and it is compact if H is finite dimensional since, in this case, H is
both linearly isomorphic and homeomorphic to Rn (or Cn in the complex case) with its standard
inner product. But if H is infinite dimensional, then sB1p0q contains an infinite orthonormal set
e1, e2, e3, . . ., i.e. satisfying

xei, eiy “ 1 for all i, xei, ejy “ 0 if i ‰ j.

It then follows by a standard argument of Euclidean geometry that dpei, ejq “
?
2 whenever i ‰ j,

so for any r ă
?
2{2, no ball of radius r in H can contain more than one of these vectors. It

follows that tBrpxq | x P Hu is an open cover of sB1p0q that has no finite subcover. This way of
characterizing the distinction between finite- and infinite-dimensional Hilbert spaces in terms of
the compactness of the unit ball has useful applications, e.g. in the theory of elliptic PDEs. The
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latter has many quite deep applications in geometry and topology, for instance the index theory of
Atiyah-Singer (see [Boo77,BB85]), gauge-theoretic invariants of smooth manifolds [DK90], and
the theory of pseudoholomorphic curves in symplectic topology [MS12,Wen18].

Exercise 5.9. A space X is called separable (separabel) if it contains a countable subset
A Ă X that is also dense (dicht), meaning the closure of A is X .

(a) Show that if X is a metric space and A Ă X is a dense subset, then the collection of open
balls tB1{npxq Ă X | n P N, x P Au forms a base for the topology of X .

(b) Deduce that every separable and metrizable space is second countable.
(c) Show that Rn with its standard topology is separable.
(d) Show that if X is any second countable space, then every subset A Ă X with the subspace

topology is also second countable.

Example 5.10. A union of finitely many compact subsets in a space X is also compact. (This
is an easy exercise.)

The next result implies that closed subsets in compact spaces are also compact.

Proposition 5.11. For any compact subset K Ă X, if A Ă X is closed and also is contained
in K, then A is compact.

Proof. Suppose tUαuαPI is an open cover of A. Since A is closed, XzA is open, so that
supplementing the collection tUαuαPI with XzA defines an open cover of X , and therefore also an
open cover of K. Since K is compact, there is then a finite subset tα1, . . . , αNu Ă I such that

K Ă Uα1
Y . . . Y UαN

Y pXzAq.
But A Ă K is disjoint from XzA, so this means A Ă Uα1

Y . . . Y UαN
, and we have found the

desired finite subcover for A. �

The following theorem is just a repeat of Theorem 2.9, but in the more general context of
topological rather than metric spaces. The proof carries over word for word.

Theorem 5.12. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y . �

Now would be a good moment to introduce the quotient topology, since it provides a large
class of new examples of compact spaces.

Definition 5.13. Suppose X is a space and „ is an equivalence relation on X , with the set of
equivalence classes denoted by X{„. The quotient topology on X{„ is the strongest topology
for which the natural projection map π : X Ñ X{„ sending each point x P X to its equivalence
class rxs P X{„ is continuous. Equivalently, a subset U Ă X{„ is open in the quotient topology if
and only if π´1pUq is an open subset of X .

I suggest you pause for a moment to make sure you understand why the two descriptions of
the quotient topology in that definition are equivalent. Applying Theorem 5.12 to the continuous
projection π : X Ñ X{„, we now have:

Corollary 5.14. For any compact space X with an equivalence relation „, X{„ with the
quotient topology is also compact. �

Example 5.15. Since Sn is compact, so is RP
n “ Sn

L
tx „ ´xu if we assign it the quotient

topology. (Note that by Exercise 2.17(c), the quotient topology on RPn is metrizable, and can be
defined in terms of a natural metric induced on the quotient from the Euclidean metric restricted
to Sn.)
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Exercise 5.16. The space S1, known as the circle, is normally defined as the unit circle in
R2 and endowed with the subspace topology (induced by the Euclidean metric on R2). Show that
the following spaces with their natural quotient topologies are both homeomorphic to S1:

(a) R{Z, meaning the set of equivalence classes of real numbers where x „ y means x´y P Z.
(b) r0, 1s{„, where 0 „ 1.

For the next example, we introduce a convenient piece of standard notation. The quotient of a
space X by a subset A Ă X is defined as

X{A :“ X{„
with the quotient topology, where the equivalence relation is defined such that x „ y for every
x, y P A and otherwise x „ x for all x P X . In other words, X{A is the result of modifying X by
“collapsing A to a point”.

(c) Show that for every n P N, Sn is homeomorphic to Dn{Sn´1, where

Dn :“ tx P Rn | |x| ď 1u.
Remark: Part (b) becomes a special case of part (c) if we replace r0, 1s by D1 “ r´1, 1s.

The remainder of this lecture will be concerned with the extent to which compactness is
equivalent to the notion of sequential compactness (Folgenkompaktheit), defined as follows:

Definition 5.17. A subset A Ă X is sequentially compact if every sequence in A has a
subsequence that converges to a point in A.

As you might guess from our discussion of sequential continuity in the previous lecture, com-
pactness and sequential compactness are not generally equivalent without some extra condition.
But as with continuity, one obtains a result free of extra conditions by replacing sequences with
nets.

Definition 5.18. Suppose pI,ăq is a directed set and txαuαPI is a net in a space X . A point
x P X is called a cluster point (Häufungspunkt) of txαuαPI if for every neighborhood U Ă X of
x and every α0 P I, there exists α ą α0 such that xα P U .

Notice that the above definition is almost identical to that of convergence of txαuαPI to x

(see Definition 4.21), only the roles of “for every” and “there exist” have been reversed at the end.
Informally, x being a cluster point does not require xα to be arbitrarily close to x for all sufficiently
large α, but only that one should be able to find some α arbitrarily large for which xα is arbitrarily
close. You should take a moment to think about what this definition means in the special case
pI,ăq “ pN,ďq, where the net becomes a sequence, so the notion should be already familiar.

Definition 5.19. Given two directed sets pI,ăq and pJ,ăq, and nets txαuαPI and tyβuβPJ in
a space X , we call tyβuβPJ a subnet (Teilnetz) of txαuαPI if yβ “ xφpβq for all β P J and some
function φ : J Ñ I with the property that for every α0 P I, there exists β0 P J for which β ą β0
implies φpβq ą α0.

If pI,ăq and pJ,ăq in the above definition are both pN,ďq so that txαuαPI and tyβuβPI become
sequences xn and yk respectively, then yk will be a subnet of xn if it is of the form yk “ xnk

for
some sequence nk P N satisfying limkÑ8 nk “ 8. This agrees with at least one of the standard
definitions of the term subsequence (Teilfolge); a slightly stricter definition would require the
sequence nk to be monotone, but this difference is harmless. One should however be careful
not to fall into the trap of thinking that a subnet of a sequence is always a subsequence—even if
pI,ăq “ pN,ďq, Definition 5.19 allows much more general choices for the directed set pJ,ăq and the
function φ : J Ñ N underlying a subnet of a sequence. In particular, the following lemma cannot be
used to find convergent subsequences without imposing further conditions (cf. Lemma 5.22 below).
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Lemma 5.20. A net txαuαPI in X has a cluster point at x P X if and only if it has a subnet
convergent to x.

Proof. Let us prove that a convergent subnet can always be derived from a cluster point x.
Let Nx denote the set of all neighborhoods of x in X , and define J “ I ˆ Nx with a partial order
ă defined by

pα,Uq ą pβ,Vq ô α ą β and U Ă V .

This makes pJ,ăq a directed set since pI,ăq is already a directed set and the intersection of two
neighborhoods is a neighborhood contained in both. Now since x is a cluster point of the net
txαuαPI , there exists a function φ : J Ñ I such that for all pβ,Uq P J , φpβ,Uq “: α satisfies α ą β

and xα P U . It is then straightforward to check that txφpβ,Uqupβ,UqPJ is a subnet convergent to x.
The converse is easier, so I will leave it as an exercise. �

Here is the most general result relating compactness to nets.

Theorem 5.21. A space X is compact if and only if every net in X has a convergent subnet.

Proof. We prove first that if X is compact, then every net txαuαPI has a cluster point (and
therefore by Lemma 5.20 a convergent subnet). Arguing by contradiction, suppose no x P X is
a cluster point of txαuαPI . Then one can associate to every x P X a neighborhood Ux and an
element αx P I such that for every α ą αx, xα R Ux. Without loss of generality let us suppose
the neighborhoods Ux are all open. Then the collection of sets tUxuxPX forms an open cover of X ,
and therefore has a finite subcover since X is compact. This means there is a finite set of points
x1, . . . , xN P X such that X “ Ux1

Y . . .Y UxN
. Now since pI,ăq is a directed set, we can find an

element β P I satisfying
β ą αxi

for all i “ 1, . . . , N,

hence xβ R Uxi
for every i “ 1, . . . , N . But the latter sets cover X , so this is impossible, and we

have found a contradiction.
For the converse, we shall prove that if X is not compact then there exists a net with no

cluster point. Being noncompact means one can find a collection O of open subsets such that
X “ Ť

UPO U but no finite subcollection of them has union equal to X . Define I to be the set of
all finite subcollections of the sets in O, so by assumption, one can associate to every A P I a point
xA P X satisfying

(5.1) xA R
ď

UPA

U .

Define a partial order ă on I by
A ă B ô A Ă B,

and notice that pI,ăq is now a directed set since the union of any two finite subcollections is
another finite subcollection that contains both. This makes txAuAPI a net in X , and we claim
that it has no cluster point. Indeed, if x P X is a cluster point of txAuAPI , then since the sets in
O cover X , there is a set V P O that is a neighborhood of x, and it follows that there must exist
some A ą tVu in I for which

xA P V Ă
ď

UPA

U .

This contradicts (5.1) and thus proves the claim that there is no cluster point. �

The next step is to impose countability axioms so that Theorem 5.21 gives us corollaries about
sequential compactness.

Lemma 5.22. If xn P X is a sequence with a cluster point at x P X and x has a countable
neighborhood base, then xn has a subsequence converging to x.
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Proof. As in the proof of Lemma 4.16, we can assume without loss of generality that our
countable neighborhood base has the form of a nested sequence of neighborhoods

X Ą U1 Ą U2 Ą . . . Q x.
Since x is a cluster point, we can choose k1 P N so that xk1 P U1, and then inductively for each
n P N, choose kn P N such that xkn P Un and kn ą kn´1. Then xkn is a subsequence of xn and it
converges to x, since for all neighborhoods V Ă X of x, we have V Ą UN for some N P N, implying

n ě N ñ xkn P Un Ă UN Ă V .

�

Corollary 5.23. If X is compact and first countable, then it is also sequentially compact. �

Example 5.24. Though it is not so easy to see this, the space r0, 1sR of (not necessarily
continuous) functions R Ñ r0, 1s with the topology of pointwise convergence is compact, but
not sequentially compact. Compactness follows directly from a deep result known as Tychonoff’s
theorem, which we will discuss in the next lecture. For the construction of a sequence in r0, 1sR
with no convergent subsequence, see Exercise 6.5.

To prove compactness from sequential compactness, it turns out that we will need to invoke
the second countability axiom. In practice, almost all of the spaces that topologists spend their
time thinking about are second countable, resulting from the fact that most of them are separable
and metrizable (see Exercise 5.9). One useful property shared by all second countable (but not
necessarily compact) spaces is the following.

Lemma 5.25. If X is second countable, then every open cover of X has a countable subcover.

Proof. Assume tUαuαPI is an open cover of X and B is a countable base. Then each Uα is a
union of sets in B, and the collection of all sets in B that are contained in some Uα is a countable
subcollection B1 Ă B that also covers X . Let us denote B1 “ tV1,V2,V3, . . .u. We can now choose
for each Vn P B1 an element αn P I such that Vn Ă Uαn

, and tUαn
unPN is then a countable subcover

of tUαuαPI . �

If you now take the second half of the proof of Theorem 5.21 and redo it with the focus on
sequences instead of nets, and with Lemma 5.25 in mind, the result is the following.

Theorem 5.26. If X is second countable and sequentially compact, then it is compact.

Proof. We need to show that every open cover of X has a finite subcover. Since X is second
countable, we can first use Lemma 5.25 to reduce the given open cover to a countable subcover
U1,U2,U3, . . . Ă X . Now arguing by contradiction, suppose that X is sequentially compact but the
sets U1, . . . ,Un do not cover X for any n P N, hence there exists a sequence xn P X such that

(5.2) xn R U1 Y . . .Y Un

for every n P N. Some subsequence xkn then converges to a point x P X , which necessarily lies
in UN for some N P N. It follows that xkn also lies in UN for all n sufficiently large, but this
contradicts (5.2) as soon as kn ě N . �

Exercise 5.27. Consider the space

X “
 
f P r0, 1sR

ˇ̌
fpxq ‰ 0 for at most countably many points x P R

(
,

with the subspace topology that it inherits from r0, 1sR.
(a) Show that X is sequentially compact.

Hint: For any sequence fn P X , the set
Ť
nPNtx P R | fnpxq ‰ 0u is also countable.
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(b) For each x P R, define Ux “ tf P X | ´ 1 ă fpxq ă 1u. Show that the collection
tUx Ă X | x P Ru forms an open cover of X that has no finite subcover, hence X is not
compact.

Corollary 5.23 and Theorem 5.26 combine to give the following result that is easy to remember:

Corollary 5.28. A second countable space is compact if and only if it is sequentially compact.
�

6. Tychonoff’s theorem and the separation axioms

Topic 1: Products of compact spaces. Here is a result that may sound less surprising at
first than it actually is.

Theorem 6.1 (Tychonoff’s theorem). For any collection of compact spaces tXαuαPI , the prod-
uct

ś
αPI Xα is compact.

Nonmathematical remark. Thinking like an Anglophone may lead you to false assumptions
about the pronunciation of the name Tychonoff, e.g. I was mispronouncing it for years until I finally
looked up the name on Wikipedia in the context of teaching this course. The original Russian
spelling is Tihonov, which would normally get transliterated into English as Tikhonov. The
reason he instead became known outside of Russia as Tychonoff is that his papers were published
in German, hence different phonetic conventions.

When I is a finite set, Theorem 6.1 says something not at all surprising, and the proof is
straightforward, so let’s start with that.

Proof of Theorem 6.1 for finite products. By induction, it will suffice to prove that
if X and Y are both compact spaces then so is X ˆ Y . We will do so by showing that every
net in X ˆ Y has a convergent subnet. Recall that a net tpxα, yαquαPI in X ˆ Y converges to
px, yq P X ˆ Y if and only if the nets txαuαPI in X and tyαuαPI in Y converge to x and y

respectively. (The corresponding fact about sequences was proved in Exercise 4.4—the proof for
nets is the same.) Now, since X is compact, txαuαPI has a subnet txφpβquβPJ convergent to some
point x P X , where J is some other directed set with a suitable function φ : J Ñ I. Compactness
of Y implies in turn that tyφpβquβPJ has a subnet tyφpψpγqquγPK convergent to some point y P Y .
We therefore obtain a subnet

tpxφ˝ψpγq, yφ˝ψpγqquγPK

of the original net tpxα, yαquαPI that converges in X ˆ Y to px, yq. �

The much less obvious aspect of Theorem 6.1 is that it is also true for infinite products, even
those for which the index set I is uncountably infinite. So it follows for instance that the space

r0, 1sR “ tnot necessarily continuous functions f : R Ñ r0, 1su “
ź

αPR

r0, 1s

with the topology of pointwise convergence is compact, as an immediate consequence of the fact that
r0, 1s is compact. Of course, this does not mean that every sequence of functions fn : R Ñ r0, 1s
has a pointwise convergent subsequence! That would be truly surprising, but it is false (see
Exercise 6.5); it turns out that r0, 1sR is not a first countable space, so it is allowed to be compact
without being sequentially compact.

For a slightly different example, r´1, 1sN is compact. We can identify this space with the set
of all sequences in r´1, 1s, again with the topology of pointwise convergence, i.e. a sequence of
sequences txnkukPN P r´1, 1sN converges as n Ñ 8 to a sequence txkukPN if limnÑ8 xnk “ xk for
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every k P N. Now observe that r´1, 1sN also contains the unit ball in the infinite-dimensional
Hilbert space

ℓ2r´1, 1s :“
#

txk P RukPN

ˇ̌
ˇ̌
ˇ

8ÿ

k“1

|xk|2 ă 8
+

with metric defined by

dptxku, tykuq2 “
8ÿ

k“1

|xk ´ yk|2.

The unit ball in ℓ2r´1, 1s is clearly noncompact since it contains the sequence of sequenes

p1, 0, 0, . . .q, p0, 1, 0, . . .q, p0, 0, 1, 0, . . .q, . . . ,
which converges pointwise to 0 but stays at a constant distance away from 0 with respect to
the metric, so it can have no convergent subsequence in the topology of ℓ2r´1, 1s. It may seem
surprising in this case that the larger set r´1, 1sN is compact, but the reason is that r´1, 1sN has a
much weaker topology than ℓ2r´1, 1s: since it is easier to converge pointwise than it is to converge
in the ℓ2-norm, r´1, 1sN has more sequences with convergent subsequences (or subnets, as the case
may be).

Remark 6.2. One conclusion you should draw from the above discussion is that Tychonoff’s
theorem depends crucially on the way we defined the product topology on

ś
αPI Xα, i.e. it is

a result about the topology of pointwise convergence. The result becomes false, for instance, if
we replace the usual product topology by the “box” topology from Exercise 4.6. For a concrete
example, consider the set r´1, 1sN with the box topology, meaning sets of the form

 
f P r´1, 1sN

ˇ̌
fpkq P Uk for all k P N

(

for arbitrary collections of open subsets tUk Ă r´1, 1sukPN are open. Then the sequence of constant
functions fnpkq :“ 1{n converges pointwise to 0, but we claim that it has no cluster point in the
box topology. Indeed, the box topology contains the product topology, so if any subnet of fn
converges in the box topology, then it must also converge in the product topology and hence
pointwise, meaning the only limit it could possibly converge to is 0, and 0 is therefore the only
possible cluster point. But in the box topology,

U :“
 
f P r´1, 1sN

ˇ̌
fpkq P p´1{k, 1{kq for all k P N

(

is an open neighborhood of 0 satisfying fn R U for all n P N, so 0 is not a cluster point of this
sequence.

Let’s go ahead and prove another special case of Tychonoff’s theorem. The next proof is still
relatively straightforward, and it applies for instance to r´1, 1sN. Part of the idea is to make our
lives easier by dealing with sequences instead of nets, which is made possible by the following
simple observation:

Lemma 6.3. If X1, X2, X3, . . . is a countably infinite sequence of spaces that are all second
countable, then

ś8
i“1Xi is also second countable.

Proof. Fix for each i “ 1, 2, 3, . . . a countable base Bi for the topology of Xi. Then for each
n P N, the collection of sets

On :“
#
U1 ˆ . . .ˆ Un ˆXn`1 ˆXn`2 ˆ . . . Ă

8ź

i“1

Xi

ˇ̌
ˇ̌
ˇ Ui P Bi for each i “ 1, . . . , n

+

is countable since B1 ˆ . . . ˆ Bn is countable. Then the countable union of countable sets O1 Y
O2 Y O3 Y . . . is a base for

ś8
i“1Xi, and it is countable. �
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Proof of Theorem 6.1, second countable case. Assume the set I is countable and the
spaces Xα are all second countable for α P I. In light of Lemma 6.3 and Theorem 5.26, it will
now suffice to prove that for any sequence X1, X2, X3, . . . of second countable spaces,

ś8
i“1Xi is

sequentially compact. The idea is to combine the argument above for the case of finite products with
Cantor’s diagonal method. In order to avoid too many indices, let us denote elements f P

ś8
i“1Xi

as functions f : N Ñ Ť8
i“1Xi that satisfy fpiq P Xi for each i P N. Now given a sequence

fn P ś8
i“1Xi, the compactness of X1 guarantees that there is a subsequence f1

n of fn for which the
sequence f1

np1q in X1 converges. Continuing inductively, we can construct a sequence of sequences
fkn P ś8

i“1Xi for k, n P N such that for every k ě 2, tfknu8
n“1 is a subsequence of tfk´1

n u8
n“1 and

the sequence fknpkq in Xk converges as n Ñ 8. It follows that for every fixed k P N, the sequence
tfnn pkqu8

n“1 in Xk converges, thus tfnn u8
n“1 is a convergent subsequence of the original sequence fn

in
ś8
i“1Xi. �

The ideas in the special cases we’ve treated so far can be applied toward a general proof of
Tychonoff’s theorem, but the general case requires one major ingredient that wasn’t needed so far:
the axiom of choice. This makes e.g. the compactness of r´1, 1sr0,1s somewhat harder to grasp
intuitively, as invoking the axiom of choice means that the existence of a cluster point for every
sequence in r´1, 1sr0,1s is guaranteed, but there is nothing even slightly resembling an algorithm
for finding one. It is known in fact that this is not just a feature of any particular method of
proving the theorem—by a result due to Kelley [Kel50], if one assumes that the usual axioms of
set theory (not including choice) hold and that Tychonoff’s theorem also holds, then the axiom of
choice follows, thus the two are actually equivalent.

Speaking only for myself, I had a Ph.D. in mathematics already for several years before I ever
started to find the axiom of choice remotely worrying, so if you’ve never worried about it before, I
don’t encourage you to start worrying now. If you take functional analysis, you’ll encounter a few
more fundamental results such as the Hahn-Banach theorem and the existence of bases on Banach
spaces that depend on the axiom of choice in similar ways, and you’ll need to get used to this
unless you prefer to avoid most of modern analysis. As far as this particular course on topology
is concerned, we actually could have skipped the general case of Tychonoff’s theorem with no
significant loss of continuity—I am including it here mainly for the sake of cultural education, and
because the proof itself is interesting.

The proof given below is based on the characterization of compactness in terms of convergent
subnets (Theorem 5.21) and is due to Paul Chernoff [Che92]. As with the standard results in
functional analysis I just mentioned, it uses the axiom of choice in a somewhat indirect way, namely
via Zorn’s lemma, which is known to be equivalent to the axiom of choice. I do not want to go far
enough into abstract set theory here to explain why it is equivalent: the proof is elementary but
somewhat tedious, and you can find it explained e.g. in [Jän05] or [Kel75]. I would recommend
reading through that proof exactly once in your life. For our purposes, we will just take the
following statement of Zorn’s lemma as a black box.

Lemma 6.4 (Zorn’s lemma). Suppose pP ,ăq is a nonempty partially ordered set in which every
totally ordered subset A Ă P has an upper bound, i.e. for every subset in which all pairs x, y P A

satisfy x ă y or y ă x, there exists an element p P P such that p ą a for all a P A. Then every
totally ordered subset A Ă P also has an upper bound p P P that is a maximal element, i.e. such
that no q P P with q ‰ p satisfies q ą p. �

Proof of Theorem 6.1, general case. We shall continue to denote elements of
ś
αPI Xα

by functions f : I Ñ Ť
αPI Xα satisfying fpαq P Xα for each α P I. Assuming all the Xα are

compact, it suffices by Theorem 5.21 to prove that every net tfβuβPK in
ś
αPI Xα has a cluster

point. The idea of Chernoff’s proof is as follows: we introduce below the notion of a “partial”
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cluster point, which may be a function defined only on a subset of I. We will show that the set of
all partial cluster points has a partial order for which Zorn’s lemma applies and delivers a maximal
element. The last step is to show that a maximal element in the set of partial cluster points must
in fact be a cluster point of tfβuβPK .

To define partial cluster points, notice that for any subset J Ă I, restricting any function f Pś
αPI Xα to the smaller domain J defines an element f |J P ś

αPJ Xα. We will refer to a pair pJ, gq
as a partial cluster point of the net tfβuβPK if J is a subset of I and g P ś

αPJ Xα is a cluster
point of the net tfβ|JuβPK in

ś
αPJ Xα obtained by restricting the functions fβ : I Ñ Ť

αPI Xα

to J Ă I. Let P denote the set of all partial cluster points of tfβuβPK . It is easy to see that
P is nonempty: indeed, for each individual α P I, the compactness of Xα implies that the net
tfβpαquβPK in Xα has a cluster point xα P Xα, hence ptαu, xαq P P .

There is also an obvious partial order on P : we shall write pJ, gq ď pJ 1, g1q whenever J Ă J 1

and g “ g1|J . In order to satisfy the main hypothesis of Zorn’s lemma, we claim that every totally
ordered subset A Ă P has an upper bound. Being totally ordered means that for any two elements
of A, one is obtained from the other by restricting the function to a aubset. We can therefore
define a set J8 Ă I with a function g8 P ś

αPJ8
Xα by

J8 “
ď

tJ | pJ,gqPAu

J,

with g8pαq defined as gpαq for any pJ, gq P A such that α P J . The total ordering condition
guarantees that pJ8, g8q is independent of choices, but it is not immediately clear whether it is an
element of P , i.e. whether g8 is a cluster point of tfβ|J8

uβPK . To see this, suppose U Ă ś
αPJ8

Xα

is a neighborhood of g8, and recall that by the definition of the product topology, this means

g8 P
ź

αPJ8

Uα Ă U

for some collection of open sets Uα Ă Xα such that Uα “ Xα for all α outside some finite subset
J0 Ă J8. Since J0 is finite, and A is totally ordered, there exists some pJ, gq P A such that J0 Ă J .
Then the fact that pJ, gq is a partial cluster point means that for every β0 P I, there exists a β ą β0
for which

fβ |J P
ź

αPJ

Uα.

It follows that fβ |J8
P
ś
αPJ8

Uα as well, hence pJ8, g8q is indeed a partial cluster point.
We can now apply Zorn’s lemma and conclude that P has a maximal element pJM , gM q P P .

We claim JM “ I, which means gM is a cluster point of the original net tfβuβPK in
ś
αPI Xα.

Note that since gM P
ś
αPJM

Xα is a cluster point of tfβ|JM
uβPK , Lemma 5.20 provides a subnet

tfφpγquγPL of tfβuβPK in
ś
αPI Xα whose restriction to JM converges to gM . But if JM ‰ I,

then choosing an element α0 P IzJM , we can exploit the fact that Xα0
is compact and use the

same trick as in the proof of Tychonoff for finite products to find a further subnet that also
converges at α0 to some element x0 P Xα0

. We have therefore found a subnet of tfβuβPK whose
restriction to JM Y tα0u converges to the function g1

M P ś
αPJMYtα0u Xα defined by g1

M |JM
“ gM

and g1
M pα0q “ x0. This means pJM Y tα0u, g1

M q P P and pJM Y tα0u, g1
M q ą pJM , gM q, which is a

contradiction since pJM , gM q is maximal. �

Exercise 6.5. Consider the space r0, 1sR of all functions f : R Ñ r0, 1s, with the topology
of pointwise convergence. Tychonoff’s theorem implies that r0, 1sR is compact, but one can show
that it is not first countable, so it need not be sequentially compact.

(a) For x P R and n P N, let xpnq P t0, . . . , 9u denote the nth digit to the right of the deci-
mal point in the decimal expansion of x. Now define a sequence fn P r0, 1sR by setting
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fnpxq “ xpnq

10
. Show that for any subsequence fkn of fn, there exists x P R such that

fknpxq does not converge, hence fn has no pointwise convergent subsequence.
Food for thought: Could you do this if you also had to assume that x is rational? Pre-
sumably not, because r0, 1sQ is a product of countably many second countable spaces,
and we’ve proved that such products are second countable (unlike r0, 1sR). This implies
that since r0, 1sQ is compact, it must also be sequentially compact.

(b) The compactness of r0, 1sR does imply that every sequence has a convergent subnet,
or equivalently, a cluster point. Use this to deduce that for any given sequence fn P
r0, 1sR, there exists a function f P r0, 1sR such that for every finite subset X Ă R, some
subsequence of fn converges to f at all points in X .
Achtung: Pay careful attention to the order of quantifiers here. We’re claiming that
the element f exists independently of the finite set X Ă R on which we want some
subsequence to converge to f . (If you could let f depend on the choice of subset X ,
this would be easy—but that is not allowed.) On the other hand, the actual choice of
subsequence is allowed to depend on the subset X .

Challenge: Find a direct proof of the statement in part (b), without passing through Tychonoff’s
theorem. I do not know of any way to do this that isn’t approximately as difficult as actually
proving Tychonoff’s theorem and dependent on the axiom of choice.

So much for Tychonoff’s theorem. In truth, aside from the easy case of finite products, the
general version of this theorem will probably not be mentioned again in this course. You may
hear of it again if you take functional analysis since it lies in the background of the Banach-
Alaoglu theorem on compactness in the weak˚-topology, and I will have occasion to mention it in
Topologie II next semester in the context of the Eilenberg-Steenrod axioms for Čech homology.
But right now we need to discuss a few more mundane things.

Topic 2: Separation axioms. Recall from Proposition 5.11 that closed subsets of compact
spaces are always compact. Your intuition probably tells you that all compact sets are closed, but
this in general is false. Here is a counterexample.

Example 6.6. Recall from Example 2.2 the so-called “line with two zeroes”. We defined it
as a quotient X :“ pR ˆ t0, 1uq{„ by the equivalence relation such that px, 0q „ px, 1q for all
x ‰ 0, with a topology defined via the pseudometric dprpx, iqs, rpy, jqsq “ |x´ y|, i.e. the open balls
Brpxq :“ ty P X | dpy, xq ă ru for x P X and r ą 0 form a base of the topology. Each x P Rzt0u
corresponds to a unique point rpx, 0qs “ rpx, 1qs P X , but for x “ 0 there are two distinct points,
which we shall abbreviate by

00 :“ rp0, 0qs P X and 01 :“ rp0, 1qs P X.
As we saw in Exercise 2.3, the one-point subset t01u Ă X is not closed, but it certainly is compact
since finite subsets are always compact (see Example 5.5). The failure of t01u to be closed results
from the fact that since dp00, 01q “ 0, every neighborhood of 00 also contains 01, implying that
Xzt01u cannot be open.

The example of the line with two zeroes is pathological in various ways, e.g. it has the property
that every sequence convergent to 01 also converges to the distinct point 00. We would now like
to formulate some precise conditions to exclude such behavior. The most important of these will
be the Hausdorff axiom, but there is a whole gradation of stronger or weaker variations on the
same theme, known collectively as the separation axioms (Trennungsaxiome). Intuitively, they
measure the degree to which topological notions such as convergence of sequences and continuity
of maps can recognize the difference between two disjoint points or subsets.
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Definition 6.7. A space X is said to satisfy axiom T0 if for every pair of distinct points
x, y P X , there exists an open subset of X that contains either only x or only y.

Since almost all spaces we want to consider will satisfy the T0 axiom, we should point out some
examples of spaces that do not. One obvious example is any space of more than one element with
the trivial topology: if the only open subset other than H is X , then you clearly cannot find an
open set that contains x and not y ‰ x or vice versa. A slightly more interesting example is the
line with two zeroes as in Example 6.6 above, with the pseudometric topology: it fails to be a T0
space because every open set that contains 00 or 01 must contain both of them.

Definition 6.8. A space X is said to satisfy axiom T1 if for every pair of distinct points
x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that x R Uy and y R Ux.

Obviously every T1 space is also T0. The following alternative characterization of the T1 axiom
is immediate from the definitions:

Proposition 6.9. A space X satisfies axiom T1 if and only if for every point x P X, the subset
txu Ă X is closed. �

Definition 6.10. A space X is said to satisfy axiom T2 (the Hausdorff axiom) if for every
pair of distinct points x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that
Ux X Uy “ H.

Every Hausdorff space is clearly also T1 and T0. Here is an easy criterion with which to
recognize a non-Hausdorff space:

Exercise 6.11. Show that if X is Hausdorff, then for any sequence xn P X satisfying xn Ñ x

and xn Ñ y, we have x “ y.

Finding an example that is T1 but not Hausdorff requires only a slight modification of our
previous “line with two zeroes”.

Example 6.12. Consider X “ pR ˆ t0, 1uq{„ again with px, 0q „ px, 1q for every x ‰ 0, but
instead of the pseudometric topology as in Example 6.6, assign it the quotient topology, meaning
U Ă X is open if and only if its preimage under the projection map π : R ˆ t0, 1u Ñ X :

px, iq ÞÑ rpx, iqs is open. Recall that the quotient topology is the strongest topology for which π

is a continuous map, and in this case, it turns out to be slightly stronger than the pseudometric
topology. For example, the open set

V :“ pp´1, 1q ˆ t0uq Y pp´1, 0q ˆ t1uq Y pp0, 1q ˆ t1uq Ă R ˆ t0, 1u
is π´1pUq for U :“ πpVq Ă X , thus U is open in the quotient topology. But U contains 00 and not
01, so it is not an open set in the pseudometric topology. The existence of this set implies that
X with the quotient topology satisfies T0. By exchanging the roles of 0 and 1, one can similarly
construct an open neighborhood of 01 that does not contain 00, so the space also satisfies T1.
But it does not satisfy T2: even in the quotient topology, every neighborhood of 00 has nonempty
intersection with every neighborhood of 01.

Exercise 6.11 has a converse of sorts, which I will state here only for first countable spaces.
The countability axiom can be removed at the cost of talking about nets instead of sequences; I
will leave the details of this as an exercise for the reader.

Proposition 6.13. A first countable space X is Hausdorff if and only if the limit of every
convergent sequence in X is unique.
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Proof. In light of Exercise 6.11, we just need to show that if X is a first countable space that
is not Hausdorff, we can find a sequence xn P X that converges to two distinct points x, y P X .
Since X is not Hausdorff, we can pick two distinct points x and y such that every neighborhood
of x intersects every neighborhood of y. Fix countable neighborhood bases X Ą U1 Ą U2 Ą . . . Q x
and X Ą V1 Ą V2 . . . Q y. Then by assumption, for each n P N there exists a point xn P Un X Vn.
It is now straightforward to verify that xn Ñ x and xn Ñ y. �

The Hausdorff axiom can still be strengthened a bit by talking about neighborhoods of closed
sets rather than points. This can be useful, for instance, when considering the quotient space X{A
defined by collapsing some closed subset A Ă X to a point; cf. Exercise 6.20 below.

Definition 6.14. A space X is called regular (regulär) if for every point x P X and every
closed subset A Ă X not containing x, there exist neighborhoods Ux Ă X of x and UA Ă X of A
such that Ux X UA “ H. We say X satisfies axiom T3 if it is regular and also satisfies T1.

Definition 6.15. A space X is called normal if for every pair of disjoint closed subsets
A,B Ă X , there exist neighborhoods UA Ă X of A and UB Ă X of B such that UA X UB “ H.
We say X satisfies axiom T4 if it is normal and also satisfies T1.

Remark 6.16. The point of including T1 in the definitions of T3 and T4 is that it makes each
one-point subset txu Ă X closed, thus producing obvious implications

(6.1) T4 ñ T3 ñ T2 ñ T1 ñ T0.

Without assuming T1, it is possible for spaces to be regular or normal without being Hausdorff,
though we will not consider any examples of this. In fact, almost all spaces we actually want to
think about in this course will be Hausdorff, and most will also be normal, thus satisfying all of
these axioms.

Remark 6.17. Some of the above definitions, especially for axioms T3 and T4, can be found
in a few not-quite-equivalent variations in various sources in the literature. One common variation
is to interchange the meanings of “regular” with “T3” and “normal” with “T4”, which destroys the
first two implications in (6.1). These discrepancies are matters of convention which are to some
extent arbitrary: you are free to choose your favorite convention, but must then be careful about
stating your definitions precisely and remaining consistent.

We can now give a better answer to the question of when a compact set must also be closed.

Theorem 6.18. If X is Hausdorff, then every compact subset of X is closed.

Proof. Given a compact set K Ă X , we need to show that XzK is open, or equivalently, that
every x P XzK is contained in an open set disjoint from K. By assumption X is Hausdorff, so for
each y P K, we can find open neighborhoods Uy Ă X of x and Vy Ă X of y such that Uy XVy “ H.
Then the sets tVyuyPK form an open cover of K, and since the latter is compact by assumption,
we obtain a finite subset y1, . . . , yN P K such that

K Ă Vy1 Y . . .Y VyN .

The set U :“ Uy1 X . . .XUyN is then an open neighborhood of x and is disjoint from Vy1 Y . . .YVyN ,
implying in particular that it is disjoint from K. �

Exercise 6.19. Prove:
(a) A finite topological space satisfies the axiom T1 if and only if it carries the discrete

topology.
(b) X is a T2 space (i.e. Hausdorff) if and only if the diagonal ∆ :“ tpx, xq P X ˆ Xu is a

closed subset of X ˆX .
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(c) Every compact Hausdorff space is regular, i.e. compact ` T2 ñ T3.
Hint: The argument needed for this was already used in the proof of Theorem 6.18.

(d) Every metrizable space satisfies the axiom T4 (in particular it is normal).
Hint: Given disjoint closed sets A,A1 Ă X , each x P A admits a radius ǫx ą 0 such that
the ball Bǫxpxq is disjoint from A1, and similarly for points in A1 (why?). The unions of
all these balls won’t quite produce the disjoint neighborhoods you want, but try cutting
their radii in half.

Exercise 6.20. Suppose X is a Hausdorff space and „ is an equivalence relation on X . Let
X{„ denote the quotient space equipped with the quotient topology and denote by π : X Ñ X{„
the canonical projection. Given a subset A Ă X , we will sometimes also use the notation X{A
explained in Exercise 5.16.

(a) A map s : X{„ Ñ X is called a section of π if π ˝ s is the identity map on X{„. Show
that if a continuous section exists, then X{„ is Hausdorff.

(b) Show that if X is also regular and A Ă X is a closed subset, then X{A is Hausdorff.
(c) Consider X “ R with the non-closed subset A “ p0, 1s. Which of the separation axioms

T0, . . . , T4 does X{A satisfy?

Just for fun: think about some other examples of Hausdorff spaces X with non-Hausdorff quotients
X{„. What stops you from constructing continuous sections X{„ Ñ X?

Remark 6.21. In earlier decades, it was common to define compactness slightly differently:
what many papers and textbooks from the first half of the 20th centuary call a “compact space” is
what we would call a “compact Hausdorff space”. You should be aware of this discrepancy if you
consult the older literature.

7. Connectedness and local compactness

We would like to formalize the idea that in some spaces, you can find a continuous path
connecting any point to any other point, and in other spaces you cannot.

Definition 7.1. A space X is called path-connected (wegzusammenhängend) if for every
pair of points x, y P X , there exists a continuous map γ : r0, 1s Ñ X such that γp0q “ x and
γp1q “ y.

A subset of X is similarly called path-connected if it is a path-connected space in the subspace
topology, which is equivalent to saying that any two points in the subset can be connected by a
continuous path in that subset. We will refer to any maximal path-connected subset of a space X
as a path-component (Wegzusammenhangskomponente) of X .

Exercise 7.2. Show that any two path-components of a space X must be either identical or
disjoint, i.e. the path-components partition X into disjoint subsets. One can also express this by
saying that there is a well-defined equivalence relation „ on X such that x „ y if and only if x
and y belong to the same path-component. (Why is that an equivalence relation?)

The notion of path-connectedness is framed in terms of maps into X , but there is also a “dual”
perspective based on functions defined on X . To motivate this, notice that if f : X Ñ t0, 1u is any
continuous function and x, y P X belong to the same path-component, then continuity demands
fpxq “ fpyq. (We will formalize this observation in the proof of Theorem 7.11 below.)

Definition 7.3. A space X is connected (zusammenhängend) if every continuous map X Ñ
t0, 1u is constant.
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In many textbooks one finds a cosmetically different definition of connectedness in terms of
subsets that are both open and closed, but the two definitions are equivalent due to the following
result.

Proposition 7.4. A space X is connected if and only if H and X are the only subsets of X
that are both open and closed.

Proof. We prove first that the condition in this statement implies connectedness. The key
observation is that the sets t0u and t1u in t0, 1u are each both open and closed, so if f : X Ñ t0, 1u
is continuous, the same must hold for both f´1p0q and f´1p1q in X . Then one of these is the
empty set and the other is X , so f is constant.

Conversely, suppose X contains a nonempty subset X0 Ă X that is both open and closed
but X0 ‰ X . Then X1 :“ XzX0 is also a nonempty open and closed subset, implying that X is
the union of two disjoint open subsets X0 and X1. We can now define a nonconstant continuous
function f : X Ñ t0, 1u by f |X0

“ 0 and f |X1
“ 1. Checking that it is continuous is easy since

t0, 1u only contains four open sets: the main point is that f´1p0q “ X0 and f´1p1q “ X1 are both
open. �

Remark 7.5. The important fact about t0, 1u used in the above proof was that it is a space
of more than one element with the discrete topology: officially t0, 1u carries the subspace topology
as a subset of R, but this happens to match the discrete topology since 0 and 1 are each centers
of open balls in R that do not touch any other points of t0, 1u. If we preferred, we could have
replaced Definition 7.3 with the condition that every continuous map f : X Ñ Y to any space Y
with the discrete topology is constant.

We can of course also talk about connected subsets A Ă X , meaning subsets that become
connected spaces with the subspace topology. Spaces or subsets that are not connected are some-
times called disconnected. By analogy with path-components, any maximal connected subset of
X will be called a connected component (Zusammenhangskomponente) of X .

Proposition 7.6. Any two connected components A,B Ă X are either identical or disjoint.

Proof. If A and B are both maximal connected subsets of X and AXB ‰ H, then we claim
that A Y B is also connected. Indeed, any continuous function f : A Y B Ñ t0, 1u must restrict
to constant functions on both A and B, so if y P A X B, then fpxq “ fpyq for every x P A Y B,
implying that every continous function A Y B Ñ t0, 1u is constant. Now if A and B are not
identical, then the set A Y B is strictly larger than either A or B, giving a contradiction to the
maximality assumption. �

Proposition 7.7. Every connected component A Ă X of a space X is a closed subset.

Proof. There is nothing to prove if A “ X , so assume this is not the case, and thus A
is connected but A Y txu is not connected for every x P XzA. Then there exists a nonconstant
continuous function f : AYtxu Ñ t0, 1u, but it must be constant on A since the latter is connected,
so without loss of generality, we may suppose f |A “ 0 and fpxq “ 1. This means f´1p0q “ A, and
since t0u is open and closed in t0, 1u, it follows that A is open and closed as a subset of A Y txu,
or equivalently, both A and txu are open subsets of A Y txu.

Since AY txu carries the subspace topology as a subset of X , this means that there exist open
subsets Ux,Vx Ă X whose intersections with A Y txu are A and txu respectively. Concretely, this
means Ux contains A but not x, while Vx contains x but is disjoint from A. Since such a set exists
for all x P XzA, we can take their union,

V “
ď

xPXzA

Vx,
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which is manifestly an open subset of X and disjoint from A, but also contains XzA, so in fact
V “ XzA. This proves that XzA is open, or equivalently, A is closed. �

We note one obvious case in which connected components will necessarily be both closed and
open: here openness follows from the fact that the complement of a connected component is a
union of disjoint connected components, and finite unions of closed sets are closed.

Corollary 7.8. If X is a space with only finitely many connected components, then each of
them is both closed and open. �

Exercise 7.9. Suppose the connected components of X are labeled as a collection of subsets
tXαuαPI , endow each with the subspace topology, and consider the continuous inclusion maps
iα : Xα ãÑ X . These can be assembled into a continuous map

(7.1)
ž

αPI

iα :
ž

αPI

Xα Ñ X

whose restriction to each Xβ Ă š
αPI Xα is iβ. Show that this map is a homeomorphism if and

only if every Xα is an open subset of X . (In particular, Corollary 7.8 implies that this is always
true if I is finite, and we will see in Prop. 7.16 below that it is also true if X is locally connected.)

Example 7.10. The set Q of rational numbers is a perfectly nice algebraic object, but when
endowed with the subspace topology as a subset of R, it becomes a very badly behaved topological
space. We claim that if A Ă Q is any subset with more than one element, then A is disconnected.
Indeed, given x, y P A with x ă y, we can find an irrational number r P RzQ with x ă r ă y, and
the sets A´ :“ A X p´8, rq and A` :“ A X pr,8q are then nonempty open subsets of A which
are complements of each other, hence both are open and closed. This proves that the connected
components of Q are simply the one-point subspaces txu Ă Q for all x P Q. But the disjoint union
of these one-point subspaces produces Q with the discrete topology, not the standard topology
of Q, so (7.1) in this case fails to be a homeomorphism.

It is time to clarify the relationship between connectedness and path-connectedness.

Theorem 7.11. Every path-connected space X is connected.

Proof. If X is not connected, then there exist points x, y P X and a continuous function
f : X Ñ t0, 1u such that fpxq “ 0 and fpyq “ 1. But if X is path-connected, then there also exists
a continuous map γ : r0, 1s Ñ X with γp0q “ x and γp1q “ y. The composition g :“ f ˝ γ is then
a continuous function g : r0, 1s Ñ t0, 1u satisfying gp0q “ 0 and gp1q “ 1, and this violates the
intermediate value theorem. �

Surprisingly, the converse of this theorem is false.

Example 7.12. Define X Ă R2 to be the subset of R2 consisting of the vertical line tx “ 0u
and the graph of the equation ty “ sinp1{xqu for x ‰ 0. The latter is a sine curve that oscillates
more and more rapidly as x Ñ 0. We claim that

X0 :“ tx “ 0u
is a path-component of X . It clearly is path-connected, so we need to show that there does not
exist any continuous path γ : r0, 1s Ñ X that begins on the sine curve ty “ sinp1{xqu and ends on
the line tx “ 0u. Since tx “ 0u is a closed subset, the preimage of this set under γ is closed (and
therefore compact) in r0, 1s, implying that it has a minimum τ P p0, 1s. We can therefore restrict
our path to γ : r0, τ s Ñ X and assume that it lies on the sine curve for all 0 ď t ă τ but ends
on the vertical line at t “ τ . Now observe that due to the rapid oscillation as x Ñ 0, we can find
for any y P r´1, 1s a sequence tn P r0, τq with tn Ñ τ such that γptnq Ñ p0, yq. The point y here
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is arbitrary, yet continuity of γ requires γptnq Ñ γpτq, so this is a contradiction and proves the
claim. In particular, this proves that X is not path-connected. The other path-components of X
are now easy to identify: they are

X´ :“ X X tx ă 0u and X` :“ X X tx ą 0u,
the portions of the sine curve lying to the left and right ofX0, so there are three path-components in
total. The path-components are path-connected and therefore (by Theorem 7.11) also connected.
But neither X´ nor X` is closed, so by Prop. 7.7, neither of these can be a connected component.
The maximal connected subset containing X´, for instance, must be a closed set containing X´

and therefore contains the closure ĚX´, which includes points in X0. Since X0 is path-connected,
it follows that the connected component containing X´ also contains all of X0. But the same
argument applies equally well to X`, and these two observations together imply that all three
path-components are in the same connected component, i.e. X is connected.

The space in Example 7.12 is sometimes called the topologist’s sine curve. There is a certain
“local” character to the pathologies of this space, i.e. part of the reason for its bizarre proper-
ties is that one can zoom in on certain points in X arbitrarily far without making it look more
reasonable—in particular this is true for the points in X0 that are in the closure of X´ and X`.
One can use neighborhoods of points to formalize this notion of “zooming in” arbitrarily far.

Definition 7.13. A space X is locally connected (lokal zusammenhängend) if for all points
x P X , every neighborhood of x contains a connected neighborhood of x.

The version of this for path-connectedness is completely analogous.

Definition 7.14. A space X is locally path-connected (lokal wegzusammenhängend) if for
all points x P X , every neighborhood of x contains a path-connected neighborhood of x.

Local path-connectedness obviously implies local connectedness by Theorem 7.11. Since most
spaces we can easily imagine will have both properties, it is important at this juncture to look at
some examples that do not. The topologist’s sine curve in Example 7.12 is one such space: it is not
locally connected (even though it is connected), since sufficiently small neighborhoods of points
p0, yq P X for ´1 ă y ă 1 always have infinitely many pieces of the sine curve passing through and
are thus disconnected. Here is an example that is path-connected, but not locally:

Example 7.15. Let X Ă R2 denote the compact set

X “
˜

8ď

n“1

Ln

¸
Y L8,

where for each n P N, Ln denotes the straight line segment from p0, 1q to p1{n, 0q, and the case n “
8 is included for the vertical segment from p0, 1q to p0, 0q. Then sufficiently small neighborhoods
of p0, 0q in this space are never connected, so X is not locally connected. Notice however that
there are continuous paths along the line segments Ln from any point in X to p0, 1q, so X is
path-connected.

Proposition 7.16. If X is locally connected, then its connected components are open subsets.
Similarly, if X is locally path-connected, then its path-components are open subsets.

Proof. If X is locally connected and A Ă X is a maximal connected subset, then for each
x P A, fix a connected neighborhood Ux Ă X of x. Now for U :“

Ť
xPA Ux, any continuous function

f : U Ñ t0, 1u must restrict to a constant on each Ux and also on A, implying that f is constant,
hence U is connected. The maximality of A thus implies A “ U , but U is also a neighborhood of
A and thus contains an open set containing A, therefore A is open.
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A completely analogous argument works in the locally path-connected case, taking path-
connected neighborhoods Ux and using the fact that their union must also be path-connected. �

A consequence of this result is that the phenomenon allowing certain spaces to be connected
but not path-connected is essentially local:

Theorem 7.17. Every space that is connected and locally path-connected is also path-connected.

Proof. If X is locally path-connected, then by Prop. 7.16 its path-components are open.
Then if A Ă X is a path-component, XzA is a union of path-components and is therefore also
open, implying that A is both open and closed. If X is connected, it follows that A “ X , so X is
a path-component. �

Exercise 7.18.

(a) Prove that if X and Y are both connected, then so is X ˆ Y .3

Hint: Start by showing that for any x P X and y P Y , the subsets txu ˆ Y and X ˆ tyu
in X ˆ Y are connected. Then think about continuous maps X ˆ Y Ñ t0, 1u.

(b) Show that for any collection of path-connected spaces tXαuαPI , the space
ś
αPI Xα is

path-connected in the usual product topology.
Hint: You might find Exercise 4.5 helpful.

(c) Consider RN with the “box topology” which we discussed in Exercise 4.6. Show that the set
of all elements f P RN represented as functions f : N Ñ R that satisfy limnÑ8 fpnq “ 0

is both open and closed, hence RN in the box topology is not connected (and therefore
also not path-connected).

With the definition of local connectedness in mind, we now briefly revisit the subject of com-
pactness.

Definition 7.19. A space X is locally compact (lokal kompakt) if every point x P X has a
compact neighorhood.

Local compactness is one of the notions for which one can find multiple inequivalent definitions
in the literature, but as we’ll see in a moment, all the plausible definitions of this concept are
equivalent if we only consider Hausdorff spaces. Let’s first note a few examples.

Example 7.20. The Euclidean space Rn is locally compact, and more generally, so is any
closed subset X Ă Rn endowed with the subspace topology. Indeed, since closed and bounded
subsets of Rn are compact, every x P X Ă Rn has a compact neighborhood of the form ĞBrpxq XX

for any r ą 0.

Example 7.21. This is a non-example: a Hilbert space is not locally compact if it is infinite
dimensional. This is due to the fact that every neighborhood of a point x must contain some closed
ball ĞBrpxq, but the latter is not compact (cf. Remark 5.8).

Example 7.22. Since a space is a neighborhood of all of its points, every compact space is
(trivially) locally compact.

The last example is the one that becomes slightly controversial if you look at alternative
definitions of local compactness in the literature, and indeed, if we had phrased Definition 7.19
more analogously to the definition of local (path-)connectedness, it would be easy to imagine spaces
that are compact without being locally compact. As it happens, this never happens for Hausdorff
spaces, and since we will mainly be interested in Hausdorff spaces, we shall take the following

3The analogous statement about infinite products is also true, but it takes more work to prove it.
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result as an excuse to avoid worrying any further about discrepancies in definitions. It will also be
a useful result in its own right.

Theorem 7.23. If X is Hausdorff, then the following conditions are equivalent:
(i) X is locally compact (in the sense of Definition 7.19);
(ii) For all x P X, every neighborhood of x contains a compact neighborhood of x;
(iii) If K Ă U Ă X where K is compact and U is open, then K Ă V Ă sV Ă U for some open

set V with compact closure sV.

Proof. It is clear that (iii) ñ (ii) ñ (i). The implication (ii) ñ (iii) is a relatively straight-
forward exercise using the finite covering property for the compact set K. We will therefore focus
on the implication (i) ñ (ii).

Assume we are given a neighborhood U Ă X of x and would like to find a compact neighborhood
inside U . By assumption, x also has a compact neighborhood K Ă X . It will do no harm to replace
U with a smaller neighorhood such as the interior of U X K, so without loss of generality, let us
assume U is open and contained in K, in which case (since X is Hausdorff and K is therefore
closed) its closure sU is also contained in K and is thus compact. We define the boundary of sU by

B sU “ sU X ĘXzU .
This is a closed subset of sU and is therefore also compact, and we observe that since x is contained
in a neighborhood disjoint from XzU , x is not in the closure ĘXzU and thus

x R B sU .
Since X is Hausdorff, for every y P B sU there exists a pair of open neighborhoods

x P Ay Ă X, y P By Ă X such that Ay XBy “ H.

Then the sets By for y P B sU form an open cover of the compact set B sU , hence there exists a finite
subset ty1, . . . , yNu Ă B sU such that

B sU Ă
Nď

i“1

Byi .

Now the set

V :“ U X
˜

Nč

i“1

Ayi

¸

is an open neighborhood of x contained in U and disjoint from the neighborhood
ŤN
i“1Byi of B sU .

The latter implies that for any y P B sU , y has a neighborhood disjoint from V , hence y R sV.
Similarly, V Ă U implies y cannot be in the closure of V if it is in the interior of ĘXzU , so we
conclude sV Ă U . The compactness of sV follows because it is a closed subset of sU and the latter is
compact. �

Exercise 7.24. Extend Theorem 7.23 to the following statement: if X is locally compact and
Hausdorff, then for any nested pair of subsets K Ă U Ă X with K compact and U open, there
exists an open set V Ă X with compact closure sV such that K Ă V Ă sV Ă U .

Exercise 7.25. There is a cheap trick to view any topological space as a compact space with a
single point removed. For a spaceX with topology T , let t8u denote a set consisting of one element
that is not in X , and define the one point compactification of X as the set X˚ “ X Y t8u
with topology T ˚ consisting of all subsets in T plus all subsets of the form pXzKq Y t8u Ă X˚

where K Ă X is closed and compact.
(a) Verify that T ˚ is a topology and that X˚ is always compact.
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(b) Show that if X is first countable and Hausdorff, a sequence in X Ă X˚ converges to
8 P X˚ if and only if it has no convergent subsequence with a limit in X . Conclude that
if X is first countable and Hausdorff, X˚ is sequentially compact.

(c) Show that for X “ R, X˚ is homeomorphic to S1. (More generally, one can use stere-
ographic projection to show that the one point compactification of Rn is homeomorphic
to Sn.)

(d) Show that if X is already compact, then X˚ is homeomorphic to the disjoint union
X > t8u.

(e) Show that X˚ is Hausdorff if and only if X is both Hausdorff and locally compact.
Notice that Q is not locally compact, since every neighborhood of a point x P Q contains sequences
without convergent subsequences, e.g. any sequence of rational numbers that converges to an
irrational number sufficiently close to x. The one point compactification Q˚ is a compact space,
and by part (b) it is also sequentially compact, but those are practically the only nice things we
can say about it.

(f) Show that for any x P Q, every neighborhood of x in Q˚ intersects every neighborhood
of 8, so in particular, Q˚ is not Hausdorff.
Advice: Do not try to argue in terms of sequences with non-unique limits (cf. part (g)
below), and do not try to describe precisely what arbitrary compact subsets of Q can
look like (the answer is not nice). One useful thing you can say about arbitrary compact
subsets of Q is that they can never contain the intersection of Q with any open interval.
(Why not?)

(g) Show that every convergent sequence in Q˚ has a unique limit. (Since Q˚ is not Hausdorff,
this implies via Proposition 6.13 that Q˚ is not first countable—in particular, 8 does not
have a countable neighborhood base.)

(h) Find a point in Q˚ with a neighborhood that does not contain any compact neighborhood.

Exercise 7.26. Given spaces X and Y , let CpX,Y q denote the set of all continuous maps
from X to Y , and consider the natural evaluation map

ev : CpX,Y q ˆX Ñ Y : pf, xq ÞÑ fpxq.
It is easy to show that ev is a continuous map if we assign the discrete topology to CpX,Y q, but
usually one can also find more interesting topologies on CpX,Y q for which ev is continuous. The
compact-open topology is defined via a subbase consisting of all subsets of the form

UK,V :“
 
f P CpX,Y q

ˇ̌
fpKq Ă V

(
,

where K ranges over all compact subsets of X , and V ranges over all open subsets of Y . Prove:
(a) If Y is a metric space, then convergence of a sequence fn P CpX,Y q in the compact-open

topology means that fn converges uniformly on all compact subsets of X .
(b) If CpX,Y q carries the topology of pointwise convergence (i.e. the subspace topology

defined via the obvious inclusion CpX,Y q Ă Y X), then ev is not sequentially continuous
in general.

(c) If CpX,Y q carries the compact-open topology, then ev is always sequentially continuous.
(d) If CpX,Y q carries the compact-open topology and X is locally compact and Hausdorff,

then ev is continuous.
(e) Every topology on CpX,Y q for which ev is continuous contains the compact-open topol-

ogy. (This proves that if X is locally compact and Hausdorff, the compact-open topology
is the weakest topology for which the evaluation map is continuous.)
Hint: If pf0, x0q P ev´1pV q where V Ă Y is open, then pf0, x0q P O ˆ U Ă ev´1pV q for
some open O Ă CpX,Y q and U Ă X . Is UK,V a union of sets O that arise in this way?
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(f) For the compact-open topology on CpQ,Rq, ev : CpQ,Rq ˆ Q Ñ R is not continuous.

Exercise 7.27. One of the good reasons to use the notation XY for the set of all functions
f : Y Ñ X between two sets is that there is an obvious bijection

ZXˆY Ñ pZY qX

sending a function F : X ˆ Y Ñ Z to the function Φ : X Ñ ZY defined by

(7.2) Φpxqpyq “ F px, yq.
The existence of this bijection is sometimes called the exponential law for sets. In this exercise we
will explore to what extent the exponential law carries over to topological spaces and continuous
maps. We will see that this is also related to the question of how to define a natural topology on
the group of homeomorphisms of a space.

If X and Y are topological spaces, let us denote by CpX,Y q the space of all continuous maps
X Ñ Y , with the compact-open topology, which has a subbase consisting of all sets of the form

UK,V :“
 
f P CpX,Y q

ˇ̌
fpKq Ă V

(

for K Ă X compact and V Ă Y open (see Exercise 7.26 above). Assume Z is also a topological
space.

(a) Prove that if F : X ˆ Y Ñ Z is continuous, then the correspondence (7.2) defines a
continuous map Φ : X Ñ CpY, Zq.

(b) Prove that if Y is locally compact and Hausdorff, then the converse also holds: any
continuous map Φ : X Ñ CpY, Zq defines a continuous map F : X ˆ Y Ñ Z via (7.2).

Let’s pause for a moment to observe what these two results imply for the case X :“ I “ r0, 1s. Ac-
cording to part (a), a homotopy between two maps Y Ñ Z can always be regarded as a continuous
path in CpY, Zq, and part (b) says that the converse is also true if Y is locally compact and Haus-
dorff, hence two maps Y Ñ Z are homotopic if and only if they lie in the same path-component
of CpY, Zq.4

(c) Deduce from part (b) a new proof of the following result from Exercise 7.26(d): if X is
locally compact and Hausdorff, then the evaluation map ev : CpX,Y qˆX Ñ Y : pf, xq ÞÑ
fpxq is continuous.
Hint: This is very easy if you look at it from the right perspective.
Remark: If you were curious to see a counterexample to part (b) in a case where Y is not
locally compact, you could now extract one from Exercise 7.26(f).

(d) The following cannot be deduced directly from part (b), but it is a similar result and
requires a similar proof: show that if Y is locally compact and Hausdorff, then

CpX,Y q ˆ CpY, Zq Ñ CpX,Zq : pf, gq ÞÑ g ˝ f
is a continuous map.
Hint: Exercise 7.24 is useful here.

4Since CpX ˆ Y,Zq and CpX,CpY, Zqq both have natural topologies in terms of the compact-open topology,
you may be wondering whether the correspondence (7.2) defines a homeomorphism between them. The answer to
this is more complicated than one would like, but Steenrod showed in a famous paper in 1967 [Ste67] that the
answer is “yes” if one restricts attention to spaces that are compactly generated, a property that most respectable
spaces have. The caveat is that CpX, Y q in the compact-open topology will not always be compactly generated if X
and Y are, so one must replace the compact-open topology by a slightly stronger one that is compactly generated
but otherwise has the same properties for most practical purposes. If you want to know what “compactly generated”
means and why it is a useful notion, see [Ste67]. These issues are somewhat important in homotopy theory at more
advanced levels, though it is conventional to worry about them as little as possible.
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Now let’s focus on maps from a space X to itself. A group G with a topology is called a
topological group if the maps

G ˆG Ñ G : pg, hq ÞÑ gh and G Ñ G : g ÞÑ g´1

are both continuous. Common examples include the standard matrix groups GLpn,Rq, GLpn,Cq
and their subgroups, which have natural topologies as subsets of the vector space of (real or
complex) n-by-n matrices. Another natural example to consider is the group

HomeopXq “
 
f P CpX,Xq

ˇ̌
f is bijective and f´1 P CpX,Xq

(

for any topological space X , where the group operation is defined via composition of maps. We
would like to know what topologies can be assigned to CpX,Xq so that HomeopXq Ă CpX,Xq,
with the subspace topology, becomes a topological group. Notice that the discrete topology clearly
works; this is immediate because all maps between spaces with the discrete topology are automat-
ically continuous, so there is nothing to check. But the discrete topology is not very interesting.
Let TH denote the topology on CpX,Xq with subbase consisting of all sets of the form UK,V and
UXzV,XzK , where again K Ă X can be any compact subset and V Ă X any open subset. Notice
that if X is compact and Hausdorff, then for any V open and K compact, XzV is compact and
XzK is open, thus TH is again simply the compact-open topology. But if X is not compact or
Hausdorff, TH may be stronger than the compact-open topology.

(e) Show that if X is locally compact and Hausdorff, then HomeopXq with the topology TH
is a topological group.
Hint: Notice that fpKq Ă V if and only if f´1pXzV q Ă XzK. Use this to show directly
that f ÞÑ f´1 is continuous, and reduce the rest to what was proved already in part (d).

Conclusion: We’ve shown that if X is compact and Hausdorff, then HomeopXq with the compact-
open topology is a topological group. This is actually true under somewhat weaker hypotheses,
e.g. it suffices to know that X is Hausdorff, locally compact and locally connected. (If you’re
interested, a quite clever proof of this fact may be found in [Are46].)

Just for fun, here’s an example to show that just being locally compact and Hausdorff is
not enough: let X “ t0u Y ten | n P Zu Ă R with the subspace topology, and notice that X
is neither compact (since it is unbounded) nor locally connected (since every neighborhood of
0 is disconnected). Consider the sequence fk P HomeopXq defined for k P N by fkp0q “ 0,
fkpenq “ en´1 for n ď ´k or n ą k, fkpenq “ en for ´k ă n ă k, and fkpekq “ e´k. It is not hard
to show that in the compact-open topology on CpX,Xq, fk Ñ Id but f´1

k ­Ñ Id as k Ñ 8, hence
the map HomeopXq Ñ HomeopXq : f ÞÑ f´1 is not continuous.

8. Paths, homotopy and the fundamental group

The rest of this course will concentrate on algebraic topology. The class of spaces we consider
will often be more restrictive than up to this point, e.g. we will usually (though not always) require
them to be Hausdorff, second countable, locally path-connected and one or two other conditions
that are satisfied in all interesting examples.5 It will happen often from now on that the best
way to prove any given result is with a picture, but I might not always have time to produce the
relevant picture in these notes. I’ll do what I can.

As motivation, let us highlight two examples of questions that the tools of algebraic topology
are designed to answer.

Sample question 8.1. The following figures show two examples of knots K and K0 in R3:

5The question of which examples are considered “interesting” depends highly on context, of course. In functional
analysis, one encounters many interesting spaces of functions that do not have all of the properties we just listed.
But this is not a course in functional analysis.
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K Ă R3 K0 Ă R3

The first knot K is known as the trefoil knot (Kleeblattknoten), and the second K0 is the trivial
knot or unknot (Unknoten). Roughly speaking, a knot is a subset in R3 that is homeomorphic to
S1 and satisfies some additional condition to avoid overly “wild” behavior, e.g. one could sensibly
require each of K and K0 to be the image of some infinitely differentiable 1-periodic map R Ñ R3.
The question then is: can K be deformed continuously to K0? Let us express this more precisely.
If you imagine K and K0 as physical knots in space, then when you move them around, you don’t
move only the knots—you also displace the air around them, and the motion of this collection of
air particles over time can be viewed as defining a continuous family of homeomorphisms on R3.
Mathematically, the question is then, does there exists a continuous map

ϕ : r0, 1s ˆ R3 Ñ R3

such that ϕpt, ¨q : R3 Ñ R3 is a homeomorphism for every t P r0, 1s, ϕp0, ¨q is the identity map on
R3 and ϕp1, ¨q : R3 Ñ R3 sends K0 to K?

It turns out that the answer is no: in particular, if a homeomorphism ϕp1, ¨q on R3 sending
K0 to K exists, then there must also be a homeomorphism between R3zK and R3zK0, and we
will see that the latter is impossible. The reason is because we can associate to these spaces
groups π1pR3zKq and π1pR3zK0q, which would need to be isomorphic if R3zK and R3zK0 were
homeomorphic, and we will be able to compute enough information about both groups to show
that they are not isomorphic.

Sample question 8.2. Here is another pair of spaces defined as subsets of R3:

A

F

A

F 1

A question of tremendous practical import: can the set F in the picture at the left be shifted
continuously to match the set F 1 in the picture at the right, but without “passing through” A,
i.e. is there a continuous family of embeddings F ãÑ R3zA that begins as the natural inclusion and
ends by sending F to F 1? If there is, then you may want to adjust your bike lock.

Of course there is no such continuous family of embeddings, and to see why, you could just
delete the bicycle from the picture and pay attention only to the loop representing the bike lock,
which is shown “linked” with A in the left picture and not in the right picture. The precise way
to express the impossibility of deforming one picture to the other is that this loop is parametrized
by a “noncontractible loop” γ : S1 Ñ R3zA, meaning γ represents a nontrivial element in the
fundamental group π1pR3zAq.
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Our task in this lecture is to define what the fundamental group is for an arbitrary space. We
will then develop a few more of its general properties in the next lecture and spend the next four
or five weeks developing methods to compute it.

We must first discuss paths in a space X . Since the unit interval r0, 1s will appear very often
in the rest of this course, let us abbreviate it from now on by

I :“ r0, 1s.
For two points x, y P X , a path (Pfad) from x to y is a map γ : I Ñ X satisfying γp0q “ x and
γp1q “ y.6 We will sometimes use the notation

x
γ
 y

to indicate that γ is a path from x to y.
The inverse of a path x

γ
 y is the path

y
γ´1

 x

defined by γ´1ptq :“ γp1 ´ tq. The reason for this terminology will become clearer when we give
the definition of the fundamental group below. The same goes for the notion of the product of
two paths: there is no natural multiplication defined for a pair of paths between arbitrary points,

but given x α
 y and y

β
 z, we can define the product path x

α¨β
 z by

(8.1) pα ¨ βqptq “
#
αp2tq if 0 ď t ď 1{2,
βp2t´ 1q if 1{2 ď t ď 1.

This operation is also called a concatenation of paths. The trivial path at a point x P X is
defined as the constant path x ex

 x, i.e.

exptq “ x.

The idea is for this to play the role of the identity element in some kind of group structure.
If we want to turn concatenation into a product structure on a group, then we have one

immediate problem: it is not associative. In fact, given paths x α
 y, y

β
 z and z

γ
 a, we have

α ¨ pβ ¨ γq ‰ pα ¨ βq ¨ γ,
though clearly the images of these two concatenations are the same, and their difference is only in
the way they are parametrized. We would like to introduce an equivalence relation on the set of
paths that forgets this distinction in parametrizations.

Definition 8.3. Two maps f, g : X Ñ Y are homotopic (homotop) if there exists a map

H : I ˆX Ñ Y such that Hp0, ¨q “ f and Hp1, ¨q “ g.

The map H is in this case called a homotopy (Homotopie) from f to g, and when a homotopy
exists, we shall write

f „
h
g.

It is straightforward to show that „
h

is an equivalence relation. In particular, if there are

homotopies from f to g and from g to h, then by reparametrizing the parameter in I “ r0, 1s we
can “glue” the two homotopies together to form a homotopy from f to h. The definition of the
new homotopy is analogous to the definition of the concatenation of paths in (8.1).

6This seems a good moment to emphasize that all maps in this course are assumed continuous unless otherwise
noted.
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For paths in particular we will need a slightly more restrictive notion of homotopy that fixes
the end points.

Definition 8.4. For two paths α and β from x to y, we write

α „
h`

β

and say α is homotopic with fixed end points to β if there exists a map H : I ˆ I Ñ X

satisfying Hp0, ¨q “ α, Hp1, ¨q “ β, Hps, 0q “ x and Hps, 1q “ y for all s P I.
Exercise 8.5. Show that for any two points x, y P X , „

h`
defines an equivalence relation on

the set of all paths from x to y.

We will now prove several easy results about paths and homotopies. In most cases we will
give precise formulas for the necessary homotopies, but one can also represent the main idea quite
easily in pictures (see e.g. [Hat02, pp. 26–27]). We adopt the following convenient terminology:
if H : I ˆ X Ñ Y is a homotopy from f0 :“ Hp0, ¨q : X Ñ Y to f1 :“ Hp1, ¨q : X Ñ Y , then we
obtain a continuous family of maps fs :“ Hps, ¨q : X Ñ Y for s P I. The words “continuous
family” will be understood as synonymous with “homotopy” in this sense.

Proposition 8.6. If α „
h`

α1 are homotopic paths from x to y and β „
h`

β1 are homotopic

paths from y to z, then
α ¨ β „

h`
α1 ¨ β1.

Proof. By assumption, there exist continuous families of paths x αs
 y and y

βs
 z for s P I

with α0 “ α, α1 “ α1, β0 “ β and β1 “ β1. Then a homotopy with fixed end points from α ¨ β to
α1 ¨ β1 can be defined via the continuous family

x
αs¨βs
 z for s P I.

�

We next show that while concatenation of paths is not an associative operation, it is associative
“up to homotopy”.

Proposition 8.7. Given paths x α
 y, y

β
 z and z

γ
 a,

pα ¨ βq ¨ γ „
h`

α ¨ pβ ¨ γq.

Proof. A suitable homotopyH : IˆI Ñ X can be defined as a family of linear reparametriza-
tions of the sequence of paths α, β, γ:

Hps, tq “

$
’’&
’’%

α
´

4t
s`1

¯
if 0 ď t ď s`1

4
,

βp4t ´ ps` 1qq if s`1
4

ď t ď s`2
4
,

γ
´

4
2´spt ´ 1q ` 1

¯
if s`2

4
ď t ď 1.

�

And finally, a result that allows us to interpret the constant paths ex as “identity elements”
and γ and γ´1 as “inverses”:

Proposition 8.8. For any path x
γ
 y, the following relations hold:

(i) ex ¨ γ „
h`

γ
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(ii) γ „
h`

γ ¨ ey
(iii) γ ¨ γ´1 „

h`
ex

(iv) γ´1 ¨ γ „
h`

ey

Proof. For (i), we define a family of reparametrizations of the concatenated path ex ¨ γ that
shrinks the amount of time spent on ex from 1{2 to 0:

Hps, tq “
#
x if 0 ď t ď 1´s

2
,

γ
´

2
s`1

pt´ 1q ` 1
¯

if 1´s
2

ď t ď 1.

The homotopy for (ii) is analogous.
For (iii), the idea is to define a family of paths that traverse only part of γ up to some time

depending on s, then stay still for a suitable length of time and, in a third step, follow γ´1 back
to x:

Hps, tq “

$
’&
’%

γp2tq if 0 ď t ď 1´s
2
,

γp1 ´ sq if 1´s
2

ď t ď 1`s
2
,

γp2 ´ 2tq if 1`s
2

ď t ď 1.

The last relation follows from this by interchanging the roles of γ and γ´1. �

The last three propositions combine to imply that the group structure in the following definition
is a well-defined associative product which admits an identity element and inverses.

Definition 8.9. Given a space X and a point p P X , the fundamental group (Fundamen-
talgruppe) of X with base point (Basispunkt) p is defined as the set of equivalence classes of
paths p p up to homotopy with fixed end points:

π1pX, pq :“
!
paths p

γ
 p

) L
„
h`

.

The product of two equivalence classes rαs, rβs P π1pX, pq is defined via concatenation:

rαsrβs :“ rα ¨ βs,

and the identity element is represented by the constant path reps. The inverse element for rγs P
π1pX, pq is represented by the reversed path γ´1.

Since the paths representing elements of π1pX, pq have the same fixed starting and ending
point, we often think of them as loops in X . We will establish some general properties of π1pX, pq
in the next lecture, starting with the observation that whenever X is path-connected, π1pX, pq
up to isomorphism does not actually depend on the choice of the base point p P X , thus we can
sensibly write it as π1pXq. We will also prove that for any two homeomorphic spaces X and Y ,
π1pXq and π1pY q are isomorphic groups. Computing π1pXq for a given space X is not always easy
or possible, but we will develop some methods that are very effective on a wide class of spaces.
I can already mention two simple examples: first, π1pRnq is the trivial group, resulting from the
relatively obvious fact that (by linear interpolation) every path in Rn from a point to itself is
homotopic with fixed end points to the constant path. In contrast, we will see that π1pS1q is
isomorphic to the integers, and this simple result already has many useful applications, e.g. we will
derive from it a very easy proof of the fundamental theorem of algebra.
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9. Some properties of the fundamental group

Since the fundamental group π1pX, pq depends on a pair pX, pq consisting of a space X and a
point p P X , it will be useful to formalize a few notions concerning such pairs.

Definition 9.1. A pointed space (punktierter Raum) is a pair pX, pq consisting of a topolog-
ical space X and a point p P X . The point p P X is in this case called the base point (Basispunkt)
of X . Given pointed spaces pX, pq and pY, qq, any continuous map f : X Ñ Y satisfying fppq “ q

is called a pointed map or map of pointed spaces, and can be denoted by

f : pX, pq Ñ pY, qq.
We also sometimes refer to such objects as base-point preserving maps. Finally, given two
pointed maps f, g : pX, pq Ñ pY, qq, a homotopy H : I ˆ X Ñ Y from f to g that satisfies
Hps, pq “ q for all s P I is called a pointed homotopy, or homotopy of pointed maps,
or base-point preserving homotopy. One can equivalently describe such a homotopy as a
continuous 1-parameter family of pointed maps fs :“ Hps, ¨q : pX, pq Ñ pY, qq defined for s P I.

We would now like to clarify to what extent π1pX, pq depends on p in addition to X .

Theorem 9.2. Given p, q P X, any homotopy class (with fixed end points) of paths p
γ
 q

determines a group isomorphism

Φγ : π1pX, qq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
Proof. Note that in writing the formula above for Φγprαsq, we are implicitly using the fact

(Proposition 8.7) that concatenation of paths is an associative operation up to homotopy, so one
can represent Φγprαsq by either of the paths γ ¨ pα ¨γ´1q or pγ ¨αq ¨γ´1 without the result depending
on this choice. Similarly, Proposition 8.6 implies that the homotopy class of γ ¨ α ¨ γ´1 with fixed
end points only depends on the homotopy classes of γ and α (also with fixed end points).7 This
proves that Φγ is a well-defined map as written. The propositions in the previous lecture imply in
a similarly straightforward manner that Φγ is a homomorphism, i.e.

Φγprαsrβsq “ rγ ¨ α ¨ β ¨ γ´1s “ rγ ¨ α ¨ γ´1 ¨ γ ¨ β ¨ γ´1s “ ΦγprαsqΦγprβsq,
and

Φγpreqsq “ rγ ¨ eq ¨ γ´1s “ rγ ¨ γ´1s “ reps.
It remains only to observe that Φγ and Φγ´1 are inverses of each other, hence both are isomor-
phisms. �

Corollary 9.3. If X is path-connected, then π1pX, pq up to isomorphism is independent of
the choice of base point p P X.

Due to this corollary, it is conventional to abbreviate the fundamental group by

π1pXq :“ π1pX, pq
whenever X is path-connected, and we will see many theorems about π1pXq in situations where
the base point plays no important role. If X is not path-connected but X0 Ă X denotes the
path-component containing p, then π1pX, pq “ π1pX0, pq – π1pX0q, so in practice it is sufficient to
restrict our attention to path-connected spaces. Some caution is nonetheless warranted in using
the notation π1pXq: strictly speaking, π1pXq is not a concrete group but only an isomorphism
class of groups, and the subtle distinction between these two notions occasionally leads to trouble.
You should always keep in the back of your mind that even if the base point is not mentioned, it
is an essential piece of the definition of π1pXq.

7Note that the homotopy class of γ determines that of γ´1. (Why?)
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We next discuss some alternative ways to interpret π1pX, pq. Recall the following useful nota-
tional device: given a space X with subset A Ă X , we define

X{A :“ X{„
with the quotient topology, where the equivalence relation defines a „ b for all a, b P A. In other
words, this is the quotient space obtained from X by “collapsing” the subset A to a single point.
For example, it is straightforward (see Exercise 5.16) to show that Dn{Sn´1 is homeomorphic to Sn

for every n P N, and if we replace D1 “ r´1, 1s by the unit interval I “ r0, 1s, we obtain the special
case

r0, 1s
L

t0, 1u “ I
L

BI – S1.

Here we have used the notation
BX :“ “boundary of X”,

which comes from differential geometry, so for instance BDn “ Sn´1 and we can therefore also
identify Sn with Dn{BDn. A specific homeomorphism I{BI Ñ S1 can be written most easily by
thinking of S1 as the unit circle in C:

I{BI Ñ S1 : rts ÞÑ e2πit.

Lemma 9.4. For any space X and subset A Ă X, there is a canonical bijection between the
set of all continuous maps f : X Ñ Y that are constant on A and the set of all continuous maps
g : X{A Ñ Y . For any two maps f and g that correspond under this bijection, the diagram

(9.1)
X X{A

Y

π

f

g

commutes, where π : X Ñ X{A denotes the quotient projection; in other words, g ˝ π “ f .

Proof. The diagram determines the correspondence: given g : X{A Ñ Y , we can define
f :“ g˝π to obtain a mapX Ñ Y that is automatically constant on A, and conversely, if f : X Ñ Y

is given and is constant on A, then there is a well-defined map g : X{A Ñ Y : rxs ÞÑ fpxq. Our
main task is to show that f is continuous if and only if g is continuous. In one direction this
is immediate: if g is continuous, then f “ g ˝ π is the composition of two continuous maps and
is therefore also continuous. Conversely, if f is continuous, then for every open set U Ă Y , we
know f´1pUq Ă X is open. A point rxs P X{A is then in g´1pUq if and only if x P f´1pUq, so
g´1pUq “ πpf´1pUqq and thus π´1pg´1pUqq “ f´1pUq is open. By the definition of the quotient
topology, this means that g´1pUq Ă X{A is open, so g is continous. �

Remark 9.5. Commutative diagrams such as (9.1) will appear more and more often as we
get deeper into algebraic topology. When we say that such a diagram commutes, it means that
any two maps obtained by composing a sequence of arrows along different paths from one place in
the diagram to another must match. This was an especially simple example, but later we will also
encounter larger diagrams like

A B C˚

A B1 C 1

f

α

g

β γ

f 1 g1

The purpose of this one is to communicate the two relations β ˝ f “ f 1 ˝ α and γ ˝ g “ g1 ˝ β.
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f

A

fpAq

Figure 1. A map f : I2 Ñ D2 which descends to a homeomorphism g : I2{A Ñ
D2 in the proof of Theorem 9.6.

Lemma 9.4 gives a canonical bijection between the set of all paths p
γ
 p in X beginning and

ending at the base point and the set of all continuous pointed maps

pI{BI, r0sq Ñ pX, pq.

It is easy to check moreover that two paths p
γ
 p are homotopic with fixed end points if and only

if they correspond to maps pI{BI, r0sq Ñ pX, pq in the same pointed homotopy class. Under the
aforementioned homeomorphism I{BI – S1 Ă C that identifies r0s “ r1s with 1, this gives us an
alternative description of π1pX, pq as

π1pX, pq “
 
pointed maps γ : pS1, 1q Ñ pX, pq

( L
„
h`
,

where „
h`

now denotes the equivalence relation defined by pointed homotopy. The group structure

of π1pX, pq is less easy to see from this perspective, but it will nonetheless be extremely useful to
think of elements of π1pXq as represented by loops γ : S1 Ñ X .

Theorem 9.6. A loop γ : pS1, 1q Ñ pX, pq represents the identity element in π1pX, pq if and
only if there exists a continuous map u : D2 Ñ X with u|BD2 “ γ.

Proof. I can’t explain this proof without a picture, so to start with, have a look at Figure 1.
It depicts a map f : I2 Ñ D2 Ă C that collapses the red region consisting of three sides of the
square

A :“ pBI ˆ Iq Y pI ˆ t1uq Ă I2

to the single point fpAq “ t1u Ă D2, but is bijective everywhere else, and maps the path Iˆt0u Ă I2

to the loop BD2. By Lemma 9.4, f determines a map

g : I2{A Ñ D2

which is continuous and bijective, and it is also an open map (i.e. it maps open sets to open sets),
hence its inverse is also continuous and g is therefore a homeomorphism. Now, a path γ : I Ñ X

with γp0q “ γp1q “ p represents the identity in π1pX, pq if and only if there exists a homotopy
H : I2 Ñ X with Hp0, ¨q “ γ and H |A ” p. Applying Lemma 9.4 again, such a map is equivalent
to a map h : I2{A Ñ X which sends the equivalence class represented by every point in A to
the base point p. In this case, h ˝ g´1 is a map D2 Ñ X whose restriction to BD2 is the loop
S1 – I{BI Ñ X determined by γ : I Ñ X . �

Remark 9.7. Maps γ : S1 Ñ X that admit extensions over D2 as in the above theorem are
called contractible loops (zusammenziehbare Schleifen).
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Definition 9.8. A space X is called simply connected (einfach zusammenhängend) if it is
path-connected and its fundamental group is trivial.

It is common to denote the trivial group by “0”, so for path-connected spaces, we can write

X is simply connected ô π1pXq “ 0.

By Theorem 9.6, this is equivalent to the condition that every map γ : S1 Ñ X admits a continuous
extension u : D2 Ñ X satisfying u|BD2 “ γ. Note that there was no need to mention the base point
in this formulation: if X is path-connected, then π1pXq “ 0 means π1pX, pq “ 0 for every p, so
for a given loop γ : S1 Ñ X we are free to choose p :“ γp1q P X as the base point and then apply
Theorem 9.6.

Examples 9.9. Though we will need to develop a few more tools before we can prove it, the
sphere S2 is simply connected. (Try to imagine a loop in S2 that cannot be filled in by a disk—but
do not try too hard!)

In contrast, R2zt0u is not simply connected: we will see that the natural inclusion map γ :

S1 ãÑ R2zt0u is an example of a loop that cannot be extended to a map u : D2 Ñ R2zt0u. Of
course, it can be extended to a map D2 Ñ R2, but it will turn out that such an extension must
always hit the origin somewhere—in other words, the loop is contractible in R2, but not contractible
in R2zt0u. This observation has many powerful implications, e.g. we will see that it is the key idea
behind one of the simplest proofs of the fundamental theorem of algebra, that every nonconstant
complex polynomial has a root.

Another example with nontrivial fundamental group is the torus T2 :“ S1 ˆ S1. Pictures
of this space embedded in R3 typically depict it as the surface of a tube (or a doughnut or a
bagel—depending on your cultural preferences). Can you visualize a loop on this surface that is
contractible in R3 but not in T2?

One can also use the fundamental group to gain insight into homotopy classes of non-closed
paths:

Theorem 9.10. Two paths x
α,β
 y in X are homotopic with fixed end points if and only if the

concatenated path x
α¨β´1

 x represents the identity element in π1pX, xq.

Proof. The condition α „
h`

β means the existence of a homotopy H : I2 Ñ X with certain

properties as depicted at the left in Figure 2, but by a suitable choice of homeomorphism I2 – D2

as shown to the right of that picture, we can equally well regard H as a map D2 Ñ X . The
loop γ :“ H |BD2 : S1 Ñ X can then be viewed as the concatenation α ¨ ey ¨ β´1 ¨ ex, which by
Proposition 8.8 is homotopic with fixed end points to α ¨β´1. The result then follows directly from
Theorem 9.6. �

Corollary 9.11. A space X is simply connected if and only if for every pair of points p, q P X,
there exists a path from p to q and it is unique up to homotopy with fixed end points. �

We must next discuss in what sense π1 is a topological invariant.

Theorem 9.12. One can associate to every pointed map f : pX, pq Ñ pY, qq a group homo-
morphism

f˚ : π1pX, pq Ñ π1pY, qq : rγs ÞÑ rf ˝ γs,
which has the following properties:

(i) For any pointed maps pX, pq fÑ pY, qq and pY, qq gÑ pZ, rq, pg ˝ fq˚ “ g˚ ˝ f˚.



9. SOME PROPERTIES OF THE FUNDAMENTAL GROUP 59

αα

ββ

xx y y

Figure 2. Two equivalent pictures of the same homotopy with fixed end points
x and y between two paths α and β, using a homeomorphism I2 – D2.

(ii) The map associated to the identity map pX, pq IdÑ pX, pq is the identity homomorphism
π1pX, pq 1Ñ π1pX, pq.

(iii) Each homomorphism f˚ depends only on the pointed homotopy class of f .

Proof. It is clear that up to homotopy (with fixed end points), the loop q
f˝γ
 q in Y depends

only on the pointed homotopy class of f : pX, pq Ñ pY, qq and the homotopy class with fixed end
points of the loop p

γ
 p. This shows that f˚ : π1pX, pq Ñ π1pY, qq is a well-defined map. It

is similarly easy to check that it is a homomorphism and satisfies the first two stated properties:

e.g. for any two loops p
α,β
 p, we have

f˚prαsrβsq “ rf ˝ pα ¨ βqs “ rpf ˝ αq ¨ pf ˝ βqs “ f˚rαsf˚rβs
and

f˚reps “ reqs.
�

Corollary 9.13. If X and Y are homeomorphic path-connected spaces then π1pXq and π1pY q
are isomorphic.

Proof. Given a homeomorphism f : X Ñ Y , choose any base point p P X and set q :“ fppq P
Y so that f is now a pointed map pX, pq Ñ pY, qq and f´1 is a pointed map pY, qq Ñ pX, pq. Using
Theorem 9.12, the commutative diagram of continuous maps

pY, qq

pX, pq pX, pq

f´1f

Id

then gives rise to a similar commutative diagram of group homomorphisms

π1pY, qq

π1pX, pq π1pX, pq

f´1

˚f˚

1
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Reversing the roles of pX, pq and pY, qq produces similar diagrams to show that f˚ and f´1
˚ are

inverse homomorphisms, hence both are isomorphisms. �

Remark 9.14. The fancy way to summarize Theorem 9.12 is that π1 defines a “covariant
functor” from the category of pointed spaces and pointed homotopy classes to the category of groups
and homomorphisms. We will discuss categories and functors more next semester in Topologie II.

Let us finally work out a few concrete examples.

Example 9.15. For each n ě 0, the Euclidean space Rn is simply connected. Indeed, since it
is path-connected, we are free to choose the base point 0 P Rn, and can then observe that every
loop 0

γ
 0 is homotopic to the constant loop via the continuous family of loops

γs : I Ñ Rn : t ÞÑ sγptq for s P I.

Example 9.16. Since every open ball Brpxq in Rn is homeomorphic to Rn itself, Corollary 9.13
implies that π1pBrpxqq also vanishes, i.e. Brpxq is simply connected.

Example 9.17. Our first example of a nontrivial fundamental group (and probably also the
most important one to take note of in this course) is the circle: we claim that

π1pS1q – Z.

The proof is based on a pair of lemmas that we will prove (in more general forms) in a few weeks,
though I suspect you will already find them easy to believe. Regarding S1 as the unit circle in C,
consider the map

f : R Ñ S1 : t ÞÑ e2πit.

This is our first interesting example of a so-called covering map (Überlagerung): it is surjective,
and it looks like a homeomorphism on the small scale (i.e. if you zoom in close enough on any
particular point in R), but it is not injective, in fact it “wraps” the line R around S1 infinitely
many times. The next two statements are special cases of results that we will later prove about a
much more general class of covering spaces:

(1) Given a path x
γ
 y in S1 and a point x̃ P f´1pxq, there exists a unique path x̃

γ̃
 ỹ in R

that is a “lift” of γ in the sense that f ˝ γ̃ “ γ.
(2) Given a homotopy H : I ˆ I Ñ S1 of paths x

γ
 y (with fixed end points) and a point

x̃ P f´1pxq, there exists a unique homotopy rH : I ˆ I Ñ R of lifted paths x̃
γ̃
 ỹ which

lifts H in the sense that f ˝ rH “ H .

Now for any rγs P π1pS1, 1q represented by a path 1
γ
 1, there is a unique lift to a path 0

γ̃
 γ̃p1q

in R. Unlike γ, the end point of the lift need not match its starting point, but the fact that it is a
lift implies γ̃p1q P f´1p1q “ Z, and the fact that homotopies can be lifted implies that this integer
does not change if we replace γ with any other representative of rγs P π1pS1, 1q. We therefore
obtain a well-defined map

Φ : π1pS1, 1q Ñ Z : rγs ÞÑ γ̃p1q.
It is easy to show that Φ is a group homomorphism by lifting concatenated paths. Moreover, Φ
is surjective since Φprγksq “ k for each of the loops γkptq “ e2πikt with k P Z, as these have lifts
γ̃ptq “ kt. Injectivity amounts to the statement that γ must be homotopic to a constant whenever
its lift satisfies γ̃p1q “ 0, and this follows from the fact that π1pRq “ 0: indeed, in this case γ̃ is not
just a path in R but is also a loop, thus it represents an element of π1pR, 0q “ 0 and is therefore
homotopic to the constant loop. Composing that homotopy with f : R Ñ S1 gives a homotopy of
the original loop γ to a constant.
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Exercise 9.18.

(a) Given two pointed spaces pX, xq and pY, yq, prove that π1pX ˆ Y, px, yqq is isomorphic to
the product group π1pX, xq ˆ π1pY, yq.
Hint: Use the projections pX : X ˆY Ñ X and pY : X ˆY Ñ Y to define a natural map
from π1 of the product to the product of π1’s, then prove that it is an isomorphism.

(b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product
topology).

10. Retractions and homotopy equivalence

Having proved that two homeomorphic spaces always have isomorphic fundamental groups, it
is natural to wonder whether the converse is true. The answer is an emphatic no, but this will turn
out to be more of an advantage than a disadvantage: it becomes much easier to compute π1pXq
if we are free to replace X with another space X 1 that is not homeomorphic to X but still has
certain features in common. This idea leads us naturally to the notion of homotopy equivalence,
another equivalence relation on topological spaces that is strictly weaker than homeomorphism.

Let us first discuss conditions that make the homomorphisms f˚ : π1pX, pq Ñ π1pY, qq injective
or surjective.

Definition 10.1. For a space X with subset A Ă X , a map f : X Ñ A is called a retraction
(Retraktion) if f |A is the identity map A Ñ A. Equivalently, if i : A ãÑ X denotes the natural
inclusion map, then f being a retraction means that the following diagram commutes:

(10.1)
A A

X

Id

i f

We say in this case that A is a retract of X .

Example 10.2. For A :“ R ˆ t0u Ă R2, the map f : R2 Ñ A : px, yq ÞÑ px, 0q is a retraction.

A wide class of examples of retractions arises from the following general construction.

Definition 10.3. The wedge sum of two pointed spaces pX, pq and pY, qq is the space

X _ Y :“ pX > Y q
L

„
where the equivalence relation sets p P X equivalent to q P Y and is otherwise trivial. More
generally, any (potentially infinite) collection of pointed spaces tpXα, pαquαPJ has a wedge sum

ł

αPJ

Xα :“
ž

αPJ

Xα

M
„,

where the equivalence relation identifies all the base points pα „ pβ for α, β P J . The wedge sum
is naturally also a pointed space, with base point rpαs P

Ž
β Xβ.

Remark 10.4. I did not specify the topology on X _ Y or
Ž
αXα, but by now you know

enough to deduce from context what it must be: e.g. for the wedge of two spaces, we assign the
disjoint union topology to X > Y and then endow pX > Y q{„ with the resulting quotient topology.
We will see many more constructions of this sort that involve a combination of quotients with
disjoint unions and/or products, so you should always assume unless otherwise specified that the
topology is whatever arises naturally from disjoint union, product and/or quotient topologies.
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The notation for wedge sums is slightly nonideal since the definition of
Ž
αXα depends not just

on the spaces Xα but also on their base points pα P Xα, and it is not true in general that changing
base points always produces homeomorphic wedge sums. It is true however for most examples
that arise in practice, so the ambiguity in notation will usually not cause a problem. Note that
since each of the individual spaces Xα are naturally subspaces of

š
β Xβ, they can equally well

be regarded as subspaces of
Ž
βXβ , and it is straightforward to show that the obvious inclusion

Xα ãÑ Ž
β Xβ for each α is a homeomorphism onto its image. But while the intersection of Xβ

and Xγ in
š
αXα for β ‰ γ is always empty, in

Ž
αXα they intersect at the base point, and only

there. The next example should be understood in this context.

Example 10.5. For the wedge sum X _ Y of two pointed spaces pX, pq and pY, qq, there is a
natural base-point preserving retraction

f : X _ Y Ñ X : rxs ÞÑ
#
x if x P X,
p if x P Y .

In words, f maps X Ă X _ Y to itself as the identity map while collapsing all of Y Ă X _ Y to
the base point. One can analogously define a natural retraction X _ Y Ñ Y , and for a wedge sum
of arbitrarily many spaces, a natural retraction

Ž
βPJ Xβ Ñ Xα for each α P J .

Exercise 10.6. Convince yourself that the map f : X_Y Ñ X in Example 10.5 is continuous.

Example 10.7. For X “ Y “ S1, the wedge sum S1 _ S1 is a space homeomorphic to the
symbols “8” and “8”, i.e. a so-called figure eight. Note that in this case, we did not need to specify
the base points on the two copies of S1 because choosing different base points leads to wedge sums
that are homeomorphic. As a special case of Example 10.5, there are two retractions S1 _S1 Ñ S1

that collapse either the top half or the bottom half of the “8” to a point.

The next example originates in the proof of the Brouwer fixed point theorem that we sketched
at the end of Lecture 1 (cf. Theorem 1.13).

Example 10.8. As explained in Lecture 1, if there exists a continuous map f : Dn Ñ Dn with
no fixed point, then one can use it to define a map g : Dn Ñ BDn “ Sn´1 that satisfies gpxq “ x

for all x P BDn. The idea is to follow the unique line from x through fpxq until arriving at some
point of the boundary, which is defined to be gpxq. This makes g a retraction of Dn to BDn. The
main step in the proof of Brouwer’s fixed point theorem is to show that no such retraction exists.
We will carry this out for n “ 2 in a moment.

Theorem 10.9. If f : X Ñ A is a retraction and i : A ãÑ X denotes the inclusion, then for
any choice of base point a P A, the induced homomorphism i˚ : π1pA, aq Ñ π1pX, aq is injective,
while f˚ : π1pX, aq Ñ π1pA, aq is surjective.

Proof. Since the maps in the commutative diagram (10.1) all send the base point a P A to
itself, Theorem 9.12 produces a corresponding commutative diagram of homomorphisms:

π1pA, aq π1pA, aq

π1pX, aq

1

i˚ f˚

In particular, f˚ ˝ i˚ is both injective and surjective, which is only possible if i˚ is injective and f˚

is surjective. �
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Proof of the Brouwer fixed point theorem for n “ 2. If there is a map f : D2 Ñ D2

with no fixed point, then there is also a retraction g : D2 Ñ BD2 “ S1 as explained in Example 10.8,
so Theorem 10.9 implies that the induced homomorphism g˚ : π1pD2q Ñ π1pS1q is surjective. As
we saw at the end of the previous lecture, π1pS1q – Z, and an easy modification of Example 9.15
shows that π1pD2q “ 0. (In fact, the same argument proves that every convex subset of Rn is
simply connected—this will also follow from the more general Corollary 10.23 below.) But there
is no surjective homomorphism from the trivial group to Z, so this is a contradiction. �

Definition 10.10. Assume X is a space with subset A Ă X and i : A ãÑ X denotes the
inclusion. A deformation retraction (Deformationsretraktion) of X to A is a homotopy H :

I ˆ X Ñ X such that Hps, ¨q|A “ IdA for every s P I, Hp1, ¨q “ IdX and Hp0, ¨q “ i ˝ f for
some retraction f : X Ñ A. If a deformation retraction exists, we say that A is a a deformation
retract (Deformationsretrakt) of X .

You should imagine a deformation retraction as a gradual “pulling” of all points in X toward
the subset A until eventually all of them end up in A.

Example 10.11. We call X Ă Rn a star-shaped domain (sternförmige Menge) if for every
x P X , the rescaled vector tx is also in X for every t P r0, 1s. In this case Hpt, xq :“ tx defines a
deformation retraction of X to the one-point subset t0u.

Example 10.12. This is actually a non-example: while the maps f : S1 _ S1 Ñ S1 in
Example 10.7 are retractions, i ˝ f in this case is not homotopic to the identity on S1 _ S1, so
S1 is not a deformation retract of S1 _ S1. We are not yet in a position to prove this, as it will
require more knowledge of π1pS1 _ S1q than we presently have, but the necessary results will be
proved within the next four lectures. For now, feel free to try to imagine how you might define
a homotopy of maps S1 _ S1 Ñ S1 _ S1 that starts with the identity and ends with a retraction
collapsing one of the circles. (Keep in mind however that it is not possible, so don’t try too hard.)

Example 10.13. The sphere Sn´1 Ă Rnzt0u is a deformation retract of the punctured Eu-
clidean space. A suitable homotopy H : I ˆ pRnzt0uq Ñ Rnzt0u can be defined by

Hpt, xq “ x

t` p1 ´ tq|x| ,

which makesHp1, ¨q the identity map, whileHp0, xq :“ x{|x| retracts Rnzt0u to Sn´1 andHpt, xq “
x for x P Sn´1. It is important to observe that no continuous map can be defined in this way with
all of Rn as its domain: the removal of one point changes the topology of Rn in an essential way
that makes the deformation retraction to Sn´1 possible. (We will later be able to prove that Rn

does not admit any retraction to Sn´1. When n “ 2, this already follows from Theorem 10.9 since
π1pS1q – Z and π1pR2q “ 0.)

Example 10.14. Writing Sn “
 

px, zq P Rn ˆ R
ˇ̌

|x|2 ` z2 “ 1
(
, define the two “poles” p˘ “

p0,˘1q. Removing these poles produces a space that can be decomposed into a 1-parameter family
of pn´ 1q-spheres, i.e. there is a homeomorphism

Snztp`, p´u –ÝÑ Sn´1 ˆ p´1, 1q : px, zq ÞÑ
ˆ

x

|x| , z
˙
.

If we identify Snztp`, p´u with Sn´1 ˆ p´1, 1q in this way, then we see that the “equator”
Sn´1 ˆ t0u Ă Sn is a deformation retract of Snztp`, p´u. This follows from the fact that t0u
is a deformation retract of p´1, 1q.

Definition 10.15. A map f : X Ñ Y is a homotopy equivalence (Homotopieäquivalenz) if
there exists a map g : Y Ñ X such that g˝f and f ˝g are each homotopic to the identity map on X
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and Y respectively. When this exists, we say that g is a homotopy inverse (Homotopieinverse) of
f , and that the spaces X and Y are homotopy equivalent (homotopieäquivalent). This defines
an equivalence relation on topological spaces which we shall denote in these notes by

X »
h.e.

Y.

Exercise 10.16. Verify that homotopy equivalence defines an equivalence relation.

Remark 10.17. The notation “ »
h.e.

” for homotopy equivalence is not universal, and there are

several similar but slightly different standards that frequently appear in the literature. This one
happens to be my current favorite, but I may change to something else next year.

Example 10.18. A homeomorphism f : X Ñ Y is obviously also a homotopy equivalence,
with homotopy inverse f´1.

Example 10.19. If H : I ˆ X Ñ X is a deformation retraction with Hp0, ¨q “ f ˝ i for a
retraction f : X Ñ A, then the inclusion i : A ãÑ X is a homotopy inverse of f , so that both f

and i are homotopy equivalences and thus X »
h.e.

A. Indeed, the retraction condition implies that

f ˝ i is not just homotopic but also equal to IdA, and adding the word “deformation” provides the
condition i ˝ f „

h
IdX .

Definition 10.20. We say that a space X is contractible (zusammenziehbar or kontrahier-
bar) if it is homotopy equivalent to a one-point space.

Remark 10.21. The above definitions imply immediately that any space admitting a defor-
mation retraction to a one-point subset (as in Example 10.11) is contractible. The converse is not
quite true. Indeed, suppose txu is a one-point space and f : X Ñ txu is a homotopy equivalence
with homotopy inverse g : txu Ñ X and a homotopy H : I ˆ X Ñ X from IdX to g ˝ f . (We
do not need to discuss any homotopy of f ˝ g since there is only one map txu Ñ txu.) Then if
p :“ gpxq P X , F : X Ñ tpu denotes the constant map at p and i : tpu ãÑ X is the inclusion,
we have F ˝ i “ Idtpu, and H is a homotopy from IdX to i ˝ F . Unfortunately, the definition of
homotopy equivalence does not guarantee that this homotopy will satisfy Hpt, pq “ p for all t P I,
so H might not be a deformation retraction in the strict sense of Definition 10.10. It turns out that
this distinction matters, but only for fairly strange spaces: see [Hat02, p. 18, Exercise 6] for an
example of a space that is contractible but does not admit a deformation retraction to any point.

We can now state the main theorem of this lecture.

Theorem 10.22. If f : X Ñ Y is a homotopy equivalence with fppq “ q, then the induced
homomorphism f˚ : π1pX, pq Ñ π1pY, qq is an isomorphism.

Since a one-point space contains only one path and therefore has trivial fundamental group,
this implies:

Corollary 10.23. For every contractible space X, π1pXq “ 0. �

Proof of Theorem 10.22. Here is a preliminary remark: if you’re only half paying at-
tention, then you might reasonably think this theorem follows immediately from Theorem 9.12.
Indeed, we stated in that theorem that the homomorphism f˚ : π1pX, pq Ñ π1pY, qq depends only
on the pointed homotopy class of f , and the same is of course true of the compositions g ˝ f and
f ˝ g, which ought to make g˚ ˝ f˚ and f˚ ˝ g˚ both the identity if g ˝ f and f ˝ g are homotopic
to the identity. The problem however is that we are not paying attention to the base point: the
definition of homotopy equivalence never mentions any base point and says “homotopy” rather than
“pointed homotopy,” while in Theorem 9.12, maps and homotopies are always required to preserve
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base points. In particular, if fppq “ q and g : Y Ñ X is a homotopy inverse of f , then there is
no reason to expect gpqq “ p, in which case g˚ : π1pY, qq Ñ π1pX, gpqqq cannot be an inverse of
f˚ : π1pX, pq Ñ π1pY, qq, as its target is not even the same group as the domain of f˚. The main
content of the following proof is an argument to cope with this annoying detail.

With that out of the way, we proceed in two steps. Assume f : X Ñ Y is a map with homotopy
inverse g : Y Ñ X , satisfying fppq “ q and gpqq “ r, so we have a sequence of pointed maps

pX, pq fÝÑ pY, qq gÝÑ pX, rq
and induced homomorphisms

(10.2) π1pX, pq f˚ÝÑ π1pY, qq g˚ÝÑ π1pX, rq.
By assumption there exists a homotopy H : I ˆ X Ñ X , which we shall write as a 1-parameter
family of maps

hs :“ Hps, ¨q : X Ñ X for s P I,
satisfying h0 “ IdX and h1 “ g ˝ f . We can therefore define a path p

γ
 r by

γptq :“ htppq,
and by Theorem 9.2, this gives rise to an isomorphism

Φγ : π1pX, rq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
We claim that the diagram

π1pX, pq π1pY, qq

π1pX, rq

f˚

Φ´1

γ

g˚

commutes, or equivalently, Φγ ˝ g˚ ˝ f˚ is the identity map on π1pX, pq. Given a loop p
α
 p, the

element Φγ ˝ g˚ ˝ f˚rαs “ Φγ ˝ pg ˝ fq˚rαs is represented by γ ¨ pg ˝ f ˝αq ¨ γ´1, so we need to show
that the latter is homotopic with fixed end points to α. A precise formula for such a homotopy is
provided by the following 1-parameter family of loops: for s P I, let

αs :“ γs ¨ phs ˝ αq ¨ γ´1
s ,

where p
γs
 γpsq denotes the path γsptq :“ γpstq. (For a visualization of what this homotopy is

actually doing, I recommend the picture on page 37 of [Hat02].) This proves the claim, and since
Φγ is an isomorphism, it implies that g˚ ˝ f˚ “ Φ´1

γ is also an isomorphism.
If we extend the sequence (10.2) one step further to include f˚ : π1pX, rq Ñ π1pY, fprqq, a

repeat of the same argument shows that

f˚ ˝ g˚ : π1pY, qq Ñ π1pY, fprqq
is also an isomorphism, and this concludes step 1 of the proof.

In step 2, we examine the sequence of maps:

π1pX, pq f˚ÝÑ π1pY, qq g˚ÝÑ π1pX, rq f˚ÝÑ π1pY, fprqq.
The conclusion of step 1 was that both of the maps one can form by composing two maps in
this sequence are isomorphisms, and since both of these contain the same map g˚ (though in
different roles), it follows that g˚ is injective and surjective, thus an isomorphism. The map
f˚ in the statement of the theorem can then be written as a composition of two isomorphisms
g´1

˚ ˝ pg˚ ˝ f˚q. �
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Example 10.24. Here are some examples of contractible spaces, which therefore have iso-
morphic (trivial) fundamental groups even though they are not all homeomorphic: Rn, Dn (not
homeomorphic to Rn since it is compact), any convex subset or star-shaped domain in Rn as in
Example 10.11. A quite different type of example comes from graph theory: a graph is a combi-
natorial object consisting of a set V (called the vertices) and a set E whose elements (the edges)
are unordered pairs of vertices. A graph is typically represented by depicting the vertices as points
and the edges tx, yu P E as curves connecting the corresponding vertices x and y to each other.
One can thus naturally view a graph as a topological space in which each vertex is a point and each
edge is a subset homeomorphic to r0, 1s (possibly with its end points identified if its two vertices
are the same one). A graph is called a tree if there is exactly one path (up to parametrization)
connecting any two of its vertices. It is not hard to show that any finite graph with this property is
a contractible space: pick your favorite vertex v P V , draw the unique path from v to every other
vertex, then define a deformation retraction to v by pulling everything back along these paths.

Example 10.25. Viewing S1 as the unit circle in C, associate to each z P C the loop γz :

S1 ãÑ Cztzu : eiθ ÞÑ z ` eiθ. Since these are pointed maps pS1, 1q Ñ pCztzu, z` 1q, they represent
elements rγzs P π1pCztzu, z`1q. We claim in fact that this group is isomorphic to Z, and that rγzs
generates it. The proof is mainly the observation that γzpS1q is a deformation retract of Cztzu, by a
construction analogous to Example 10.13, hence γz is a homotopy equivalence and therefore induces
an isomorphism π1pS1, 1q Ñ π1pCztzu, z ` 1q. Since the identity map pS1, 1q Ñ pS1, 1q represents
a generator of π1pS1, 1q, composing this with γz now represents a generator of π1pCztzu, z ` 1q as
claimed.

Exercise 10.26. For a point z P C and a continuous map γ : r0, 1s Ñ Cztzu with γp0q “ γp1q,
one defines the winding number of γ about z as

windpγ; zq “ θp1q ´ θp0q P Z

where θ : r0, 1s Ñ R is any choice of continuous function such that

γptq “ z ` rptqe2πiθptq

for some function r : r0, 1s Ñ p0,8q. Notice that since γptq ‰ z for all t, the function rptq is
uniquely determined, and requiring θptq to be continuous makes it unique up to the addition of a
constant integer, hence θp1q ´ θp0q depends only on the path γ and not on any additional choices.
One of the fundamental facts about winding numbers is their important role in the computation
of π1pS1q: as we saw in Example 9.17, viewing S1 as tz P C | |z| “ 1u, the map

π1pS1, 1q Ñ Z : rγs ÞÑ windpγ; 0q
is an isomorphism to the abelian group pZ,`q. Assume in the following that Ω Ă C is an open set
and f : Ω Ñ C is a continuous function.

(a) Suppose fpzq “ w and w R fpUztzuq for some neighborhood U Ă Ω of z. This implies
that the loop f ˝ γǫ for γǫ : r0, 1s Ñ Ω : t ÞÑ z ` ǫe2πit has image in Cztwu for all
ǫ ą 0 sufficiently small, hence windpf ˝ γǫ;wq is well defined. Show that for some ǫ0 ą 0,
windpf ˝ γǫ;wq does not depend on ǫ as long as 0 ă ǫ ď ǫ0.

(b) Show that if the ball Brpz0q of radius r ą 0 about z0 P Ω has its closure contained in Ω,
and the loop γptq “ z0 ` re2πit satisfies windpf ˝ γ;wq ‰ 0 for some w P C, then there
exists z P Brpz0q with fpzq “ w.
Hint: Recall that if we regard elements of π1pX, pq as pointed homotopy classes of maps
S1 Ñ X , then such a map represents the identity in π1pX, pq if and only if it admits a
continuous extension to a map D2 Ñ X . Define X in the present case to be Cztwu.
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(c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has
a root.
Hint: Consider loops γptq “ Re2πit with R ą 0 large.

(d) We call z0 P Ω an isolated zero of f : Ω Ñ C if fpz0q “ 0 but 0 R fpUztz0uq for
some neighborhood U Ă Ω of z0. Let us say that such a zero has order k P Z if
windpf ˝ γǫ; 0q “ k for γǫptq “ z0 ` ǫe2πit and ǫ ą 0 small (recall from part (a) that this
does not depend on the choice of ǫ if it is small enough). Show that if k ‰ 0, then for
any neighborhood U Ă Ω of z0, there exists δ ą 0 such that every continuous function
g : Ω Ñ C satisfying |f ´ g| ă δ everywhere has a zero somewhere in U .

(e) Find an example of the situation in part (d) with k “ 0 such that f admits arbitrarily
close perturbations g that have no zeroes in some fixed neighborhood of U .
Hint: Write f as a continuous function of x and y where x` iy P Ω. You will not be able
to find an example for which f is holomorphic—they do not exist!

General advice: Throughout this problem, it is important to remember that Cztwu is homotopy
equivalent to S1 for every w P C. Thus all questions about π1pCztwuq can be reduced to questions
about π1pS1q.

11. The easy part of van Kampen’s theorem

The main question of this lecture is the following: If X is the union of two subsets AYB and
we know both π1pAq and π1pBq, what can we say about π1pXq?

Example 11.1. The sphere Sn can be viewed as the union of two subsets A and B that are both
homeomorphic to Dn, e.g. when n “ 2, we would take the northern and southern “hemispheres”
of the globe. Since Dn is contractible, π1pAq “ π1pBq “ 0. We will see below that this is almost
enough information to compute π1pSnq.

The next lemma is the “easy” first half of an important result about fundamental groups
known as the Seifert-van Kampen theorem, or often simply van Kampen’s theorem. The much
more powerful “hard” part of the theorem will be dealt with in the two subsequent lectures, though
the easy part already has several impressive applications. We will state it here in somewhat
greater generality than is needed for most applications: on first reading, you are free to replace
the arbitrary open covering X “ Ť

αPJ Aα with a covering by two open subsets X “ AYB, which
will be the situation in all of the examples below.

Lemma 11.2. Suppose X “
Ť
αPJ Aα for a collection of open subsets tAα Ă XuαPJ satisfying

the following conditions:

(1) Aα is path-connected for every α P J ;
(2) Aα XAβ is path-connected for every pair α, β P J ;
(3)

Ş
αPJ Aα ‰ H.

Let Aα
iα
ãÑ X denote the natural inclusion maps. Then for any base point p P Ş

αPJ Aα, π1pX, pq
is generated by the subgroups

piαq˚ pπ1pAα, pqq Ă π1pX, pq,
i.e. every element of π1pX, pq is a product of elements of the form piαq˚rγs for some α P J and
rγs P π1pAα, pq.

Before proving the lemma, let’s look at several more examples, starting with a rehash of
Example 11.1 above.



68 FIRST SEMESTER (TOPOLOGIE I)

Example 11.3. Denote points in the unit sphere Sn by px, zq P RnˆR such that |x|2 `z2 “ 1,
and define the open subsets

A :“ tz ą ´ǫu Ă Sn, B :“ tz ă ǫu Ă Sn

for some ǫ ą 0 small. Then A – B – Rn, so both have trivial fundamental group. Moreover,
AXB – Sn´1ˆp´ǫ, ǫq is path-connected if n ě 2. (Note that this is not true if n “ 1: the 0-sphere
S0 is just the set of two points t1,´1u Ă R, so it is not path-connected.) The lemma therefore
implies that for any p P AXB, π1pSn, pq is generated by images of homomorphisms into π1pSn, pq
from the groups π1pA, pq and π1pB, pq, both of which are trivial, therefore π1pSn, pq is trivial.

We just proved:

Corollary 11.4. For all n ě 2, Sn is simply connected. �

Here is an easy application:

Theorem 11.5. For every n ě 3, R2 is not homeomorphic to Rn.

Proof. The complement of one point in Rn is homotopy eqivalent to Sn´1, thus π1pRnztptuq –
π1pSn´1q “ 0 if n ě 3, while π1pR2ztptuq – π1pS1q – Z. It follows that R2ztptu and Rnztptu for
n ě 3 are not homeomorphic, hence neither are R2 and Rn. �

A wider class of examples comes from the following general construction known as gluing of
spaces. Assume X , Y and A are spaces and we have inclusions8

iX : A ãÑ X, iY : A ãÑ Y.

We then define the space
X YA Y :“ pX > Y q

L
„

where the equivalence relation identifies iXpaq P X with iY paq P Y for every a P A. As usual in
such constructions, we assign to X > Y the disjoint union topology and then give X YA Y the
quotient topology. We say that X YA Y is the space obtained by gluing X to Y along A. Note
that we can regard X and Y both as subspaces of X YA Y , and their intersection is a subspace
homeomorphic to A. The wedge sum of two spaces (see Example 10.3) is the special case of this
construction where A is a single point. (The notation is slightly non-ideal since XYAY depends on
the inclusions of A into X and Y , not just on the three spaces themselves, but in most interesting
examples the inclusions are obvious, so the notation is easy to interpret.)

Example 11.6. If X “ Y “ Dn and A “ Sn´1 is included in both as the boundary BDn, then
the descriptions of Sn in Examples 11.1 and 11.3 translates into

Dn YSn´1 Dn – Sn.

Example 11.7. In Example 1.2 we gave a description of RP2 as the space obtained by gluing
a disk D2 to a Möbius strip

M :“
 

peiθ, t cospθ{2q, t sinpθ{2qq P S1 ˆ R2
ˇ̌
eiθ P S1, t P r´1, 1s

(

along their boundaries, which are both homeomorphic to S1. Choose a particular inclusion of S1

as the boundary of M, e.g.

S1
ãÑ M : eiθ ÞÑ pe2iθ, cospθq, sinpθqq.

8The technical meaning of the word inclusion in this context is a map A ãÑ X which is injective and is a
homeomorphism onto its image (with the subspace topology). Such a map is also sometimes called a topological

embedding.



11. THE EASY PART OF VAN KAMPEN’S THEOREM 69

Then our picture of RP2 can be expressed succinctly as

RP
2 – D2 YS1 M.

Lemma 11.2 can now be applied to this as follows. There is an obvious deformation retraction of
M to the “central” circle S1 ˆ t0u Ă M, defined via the homotopy

H : I ˆ M Ñ M : ps, peiθ, t cospθ{2q, t sinpθ{2qqq ÞÑ peiθ, st cospθ{2q, st sinpθ{2qq,

thus M »
h.e.

S1. The gluing construction allows us to view both D2 and M as subsets of RP
2,

but they are not open subsets as required by the lemma. This can easily be fixed by slightly
expanding both of them. Concretely, by adding a neighborhood of BM in M to D2, we obtain an
open neighborhood A Ă RP

2 of D2 that is homeomorphic to an open disk, and similarly, adding
a neighborhood of BD2 in D2 to M gives an open neighborhood B Ă RP

2 of M that admits a
deformation retraction to M and thus also to the central circle S1 ˆ t0u Ă M. We now have

π1pAq – π1pD̊2q “ 0 and π1pBq – π1pMq – π1pS1q – Z,

and notice also that A and B are both path connected, and so is A X B since we can arrange for
the latter to be homeomorphic to S1 ˆ p´1, 1q, i.e. it is the union of an annular neighborhood of
BD2 in D2 with another annular neighborhood of BM in M. The lemma thus implies that for any
p P A X B, π1pRP2, pq is generated by the element iB˚ rγs P π1pRP2, pq, where iB : B ãÑ RP

2 is
the inclusion and γ : pS1, 1q Ñ pB, pq is any loop such that rγs generates π1pB, pq – Z. In light
of the deformation retraction to the central circle, the inclusion of that circle into B induces an
isomorphism of fundamental groups, thus we can take γ to be the obvious inclusion of S1 into B
as the central circle:

γ : S1 –Ñ S1 ˆ t0u Ă M Ă RP
2,

eiθ ÞÑ peiθ, 0q.
(11.1)

The conclusion is that if we regard γ in this way as a loop in RP
2, then rγs generates π1pRP2, pq.

The loop γ is not hard to visualize if you translate from our picture of RP2 as D2 YS1 M back to
the usual definition of RP2 as a quotient of S2 (see Example 1.2): in the latter picture you can
realize γ as a path along the equator of S2 that goes exactly halfway around. Note that this is not
a loop in S2, but it becomes a loop when you project it to RP

2 since its starting and end point
are antipodal.

A word of caution is in order: we have not yet actually computed π1pRP2q, we have only shown
that every element in π1pRP2q is a power of a single element rγs. It is still possible that π1pRP2q is
trivial because γ is contractible—this will turn out not to be the case, but we are not in a position
to prove it just yet. We can say one more thing, however: rγs2 is the identity element in π1pRP2, pq.
Indeed, rγs2 is represented by the concatenation of γ with itself, which can also be realized as the
projection through S2 πÑ RP

2 of a path that goes all the way around the equator in S2, i.e. it
is the concatenation of two paths that go halfway around. But if α : S1 Ñ S2 parametrizes
this loop around the equator, then there is obviously an extension of α to a map u : D2 Ñ S2

satisfying u|BD2 “ α, namely the inclusion of either the northern or southern hemisphere of S2.
The map π ˝ u : D2 Ñ RP2 is then an extension over the disk of our loop representing rγs2, which
proves via Theorem 9.6 that rγs2 is trivial. This proves that π1pRP2q is either the trivial group
or is isomorphic to Z2; we will see that it is the latter when we prove that the generator rγs is
nontrivial.

Here is another pair of general constructions that produce many more examples.
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Definition 11.8. Given a space X , the cone (Kegel) of X is the space

CX :“ pX ˆ Iq{pX ˆ t1uq.
The single point in CX represented by px, 1q for every x P X is sometimes called the “summit”

or “node” of the cone.

Exercise 11.9. Show that CSn´1 is homeomorphic to Dn.

Lemma 11.10. For every space X, the cone CX is contractible.

Proof. There is an obvious deformation retraction of X ˆ I to X ˆ t1u defined by pushing
every px, tq P X ˆ I upward in the t-coordinate. Writing down this same deformation retraction
on the quotient pX ˆ Iq{pX ˆ t1uq, the result is that everything gets pushed to a single point, the
summit of the cone. �

Definition 11.11. Given a space X , the suspension (Einhängung) of X is the space

SX :“ C`X YXˆt0u C´X,

where C`X :“ CX as above, and C´X is the “reversed” cone pX ˆ r´1, 0sq{pX ˆ t´1uq. Equiva-
lently, the suspension can be written as

SX “ pX ˆ r´1, 1sq
L

„
where px, 1q „ py, 1q and px,´1q „ py,´1q for every x, y P X .

Exercise 11.12. Show that SSn´1 – Sn.

We can now generalize the result that π1pSnq “ 0 for n ě 2 as follows.

Theorem 11.13. If X is path-connected, then its suspension SX is simply connected.

Proof. We define A,B Ă SX to be open neighborhoods of C`X and C´X respectively, e.g.

A :“ pX ˆ p´ǫ, 1sq
L

pX ˆ t1uq, B :“ pX ˆ r´1, ǫqq
L

pX ˆ t´1uq
for any ǫ P p0, 1q. The subspaces are both contractible for the same reason that C`X and C´X

are: one can define deformation retractions to a point by pushing upward in A and downward
in B. Moreover, AXB “ X ˆ p´ǫ, ǫq is path-connected if and only if X is path-connected, and in
that case, Lemma 11.2 implies that π1pSXq is generated by the images of homomorphisms from
π1pAq and π1pBq, both of which are trivial, therefore π1pSXq is trivial. �

Let us finally prove the lemma.

Proof of Lemma 11.2. We assume X “
Ť
αPJ Aα and p P

Ş
αPJ Aα, where the sets Aα Ă X

are open and path-connected, and AαXAβ is also path-connected for every pair α, β P J . What we
need to show is that every loop p

γ
 p in X is homotopic with fixed end points to a concatenation

of finitely many loops based at p that are each contained in one of the subsets Aα. To start with,
observe that since γ : I Ñ X is continuous, Iα :“ γ´1pAαq is an open subset of I for every α,
and is therefore a union of open subintervals of I.9 The union of all these open subintervals for all
α P J thus forms an open covering of I, which has a finite subcovering since I is compact, giving
rise to a finite collection of open subintervals

I “ I1 Y . . . Y IN

9Remember that since sets like r0, ǫq Ă I that include an end point are open subsets of I, they are included in
the term “open subinterval of I”.
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such that for each j “ 1, . . . , N , γpIjq Ă Aαj
for some αj P J . After relabeling the αj ’s if necessary,

we can then find a finite increasing sequence

0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that γprtj´1, tjsq Ă Aαj
for each j “ 1, . . . , N . In particular, for j “ 1, . . . , N ´ 1, each γptjq

lies in both Aαj
and Aαj`1

. The intersection of these two sets is path-connected by assumption, so
choose a path βj in Aαj

X Aαj`1
from γptjq to the base point p. Then if we write γj :“ γ|rtj´1,tjs

and reparametrize each of these paths to define them on the usual interval I, we have

γ “ γ1 ¨ . . . ¨ γN „
h`

γ1 ¨ β1 ¨ β´1
1 ¨ γ2 ¨ β2 ¨ β´1

2 ¨ . . . ¨ βN´2 ¨ β´1
N´2 ¨ γN´1 ¨ βN´1 ¨ β´1

N´1 ¨ γN .

The latter is the concatenation we were looking for since γ1 ¨ β1 is a loop from p to itself in Aα1
,

β´1
1 ¨ γ2 ¨ β2 is a loop from p to itself in Aα2

, and so forth up to β´1
N´2 ¨ γN´1 ¨ βN´1 in AαN´1

and
β´1
N´1 ¨ γN in AαN

. �

To conclude this lecture, we would like to restate Lemma 11.2 in more precise terms. This
requires a few notions from combinatorial group theory.

Definition 11.14. Suppose tGαuαPJ is a collection of groups, with the identity element in
each denoted by eα P Gα. For any integer N ě 0, an ordered set b1b2 . . . bN together with a
corresponding ordered set α1, α2, . . . , αN P J is called a word in tGαuαPJ if bi P Gαi

for each
i “ 1, . . . , N . Informally, we call the elements of the sequence letters, and denote the word by
b1 . . . bN even though, strictly speaking, the set of indices α1, . . . , αN P J is also part of the data
defining the word.10 Note that this definition includes the so-called empty word, with N “ 0,
i.e. the word with no letters. A word a1 . . . aN is called a reduced word if:

‚ none of the letters bi are the identity element eαi
P Gαi

in the corresponding group, and
‚ no two adjacent letters bi and bi`1 satisfy αi “ αi`1, i.e. the groups that appear in

adjacent positions are distinct.
Note that the empty word trivially satisfies both conditions, thus it is a reduced word.

There is an obvious map called reduction from the set of all words to the set of all reduced
words: it acts on a given word b1 . . . bN by replacing all adjacent pairs bibi`1 with their product
in Gα whenever αi “ αi`1 “ α, and removing all eα’s.

Definition 11.15. The free product (freies Produkt) ˚αPJ Gα of a collection of groups
tGαuαPJ is defined as the set of all reduced words in tGαuαPJ . The product of two reduced words
w “ b1 . . . bN and w1 “ b1

1 . . . b
1
N 1 in this group is defined to be the reduction of the concatenated

word ww1 “ b1 . . . bNb
1
1 . . . b

1
N 1 . The identity element is the empty word, and will be denoted by

e P ˚
αPJ

Gα.

We will typically deal with collections of only finitely many groups G1, . . . , GN , in which case
the free product is usually denoted by

G1 ˚ . . . ˚GN .
In general, this is an enormous group, e.g. it is always infinite if there are at least two nontrivial
groups in the collection, no matter how small those groups are. It is also always nonabelian in
those cases. Let us see some examples.

10This is important to remember in case some Gα and Gβ contain common elements for α ‰ β, e.g. if they
are both subgroups of a single larger group. If not, then this detail is safe to ignore and the notation b1 . . . bN for a
word is completely unambiguous.
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Example 11.16. Consider two copies of the same group G “ H “ Z2, with the unique
nontrivial elements of G and H denoted by a P G and b P H . Then G ˚ H consists of all possible
reduced words built out of these two letters, plus the empty word e, so

Z2 ˚ Z2 – G ˚H “ te, a, b, ab, ba, aba, bab, abab, baba, . . .u .

For an example of how multiplication in Z2 ˚ Z2 works, the product of aba and ab is a, i.e. this is
the result of reducing the unreduced word abaab since aa and bb are both identity elements.

Example 11.17. Let G “ Z with a generator denoted by a P G, and H “ Z2 with nontrivial
element b. If we write G as a multiplicative group so that its elements are all of the form ap for
p P Z, then

Z ˚ Z2 – G ˚H “
 
e, ap, b, apb, bap, apbaq, bapbaq, apbaqbar, . . .

ˇ̌
p, q, r, . . . P Z

(
.

For an example of a product, apbar times a´1b gives apbar´1b.

With this terminology understood, here is what we actually proved when we proved Lemma 11.2.

Lemma 11.18. Given X “ Ť
αPJ Aα and p P Ş

αPJ Aα as in Lemma 11.2, there exists a natural
group homomorphism

˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq

sending each reduced word rγ1s . . . rγN s P ˚αPJ π1pAα, pq with rγis P π1pAαi
, pq to the concatenation

rγ1 ¨ . . . ¨ γN s P π1pX, pq, and Φ is surjective. �

The existence of the homomorphism Φ is an easy and purely algebraic fact, which we’ll expand
on a bit in the next lecture. The truly nontrivial statement here is that Φ is surjective. If we
can now identify the kernel of Φ, then Φ descends to an isomorphism from the quotient of the
free product by kerΦ to π1pX, pq, and we will thus have a formula for π1pX, pq. Identifying the
kernel and then using the resulting formula in applications will be our main topic for the next two
lectures.

12. Normal subgroups, generators and relations

Before stating the general version of the Seifert-van Kampen theorem, we need to collect a
few more useful algebraic facts about groups and the free product. The following result is easy to
prove directly from the definitions.

Proposition 12.1. Assume tGαuαPJ is a collection of groups. Then:

(1) For each α P J , the free product ˚βPJ Gβ contains a distinguished subgroup isomorphic
to Gα: it consists of the empty word plus all reduced words of exactly one letter which is
in Gα.

(2) If we regard each Gα as a subgroup of ˚γPJ Gγ as described above, then for every α, β P J
with α ‰ β, Gα X Gβ “ teu, and any two nontrivial elements g P Gα and h P Gβ satisfy
gh ‰ hg in ˚γPJ Gγ .

(3) For any group H with a collection of homomorphisms tΦα : Gα Ñ HuαPJ , there exists a
unique homomorphism

Φ : ˚
αPJ

Gα Ñ H

whose restriction to each of the subgroups Gα Ă ˚βPJ Gβ is Φα.
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The third item in this list deserves brief comment: the homomorphism Φ : ˚αPJ Gα Ñ H

exists and is unique because every element of ˚αPJ Gα is uniquely expressible as a reduced word
g1 . . . gN with gi P Gαi

for some specified α1, . . . , αN P J , hence the definition of Φ can only be

Φpg1 . . . gN q “ Φα1
pg1q . . .ΦαN

pgN q P H.
It is similarly straightfoward to verify that Φ by this definition is a homomorphism.

Remark 12.2. In Lemma 11.18 at the end of the previous lecture the homomorphism

(12.1) ˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq

is determined as in the proposition above by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq
induced by the inclusions iα : Aα ãÑ X .

We now address the previously unanswered question about the homomorphism (12.1) from
Lemma 11.18: what is its kernel?

We can make two immediate observations about this: first, for any group homomorphism
Ψ : G Ñ H , kerΨ is a normal subgroup of G. Recall that a subgroup K Ă G is called normal if
it is invariant under conjugation with arbitrary elements of G, i.e.

gkg´1 P K for all k P K and g P G.
This condition is abbreviated by “gKg´1 “ K”. It is obviously satisfied if K “ kerΨ since Ψpkq “ e

implies Ψpgkg´1q “ ΨpgqΨpkqΨpg´1q “ ΨpgqeΨpgq´1 “ e. Recall further that for any subgroup
K Ă G, the quotient G{K is defined as the set of all left cosets of K, meaning subsets of the
form gK :“ tgh | h P Ku for fixed elements g P G. For arbitrary subgroups K Ă G, the quotient
G{K does not have a natural group structure, but it does when K is a normal subgroup: indeed,
the condition gKg´1 “ K gives rise to a well-defined product

paKqpbKq :“ pabqK P G{K
since, as subsets of G, aKbK “ apbKb´1qbK “ abKK “ abK. In particular, any homomorphism
Ψ : G Ñ H between groups G and H gives rise to a normal subgroup K :“ kerΨ Ă G and thus a
quotient group G{K, such that Ψ descends to a well-defined injective homomorphism

G{ kerΨ Ñ H : gK ÞÑ Ψpgq.
This is an isomorphism whenever the original homomorphism Ψ is surjective. (A standard reference
for these basic notions from group theory is [Art91].)

The second observation concerns certain specific elements that obviously belong to the kernel
of the map (12.1). Consider the inclusions

jαβ : Aα XAβ ãÑ Aα

for each pair α, β P J , and recall that iα : Aα ãÑ X denotes the inclusion of Aα Ă X . Then the
following diagram commutes,

Aα

Aα XAβ X

Aβ

iα
jαβ

jβα
iβ

meaning iα ˝ jαβ “ iβ ˝ jβα, since both are just the inclusion of Aα X Aβ into X . This trivial
observation has a nontrivial consequence for the homomorphism Φ. Indeed, for any loop p

γ
 p in
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AαXAβ representing a nontrivial element of π1pAαXAβ , pq, the two elements pjαβq˚rγs P π1pAα, pq
and pjβαq˚rγs P π1pAβ , pq belong to distinct subgroups in the free product ˚γPJ π1pAγ , pq, yet
clearly

piαq˚pjαβq˚rγs “ piβq˚pjβαq˚rγs P π1pX, pq
since iα ˝ jαβ “ iβ ˝ jβα. It follows that Φppjαβq˚rγsq “ Φppjβαq˚rγsq, hence kerΦ must contain
the reduced word formed by the two letters pjαβq˚rγs P π1pAα, pq and pjβαq˚rγs´1 P π1pAβ , pq:

pjαβq˚rγspjβαq˚rγs´1 P kerΦ.

Combining this with the first observation, kerΦ must contain the smallest normal subgroup of
˚γPJ π1pAγ , pq that contains all elements of this form.

Definition 12.3. For any group G and subset S Ă G, we denote by

xSy Ă G

the smallest subgroup of G that contains S, i.e. xSy is the set of all products of elements g P S and
their inverses g´1. Similarly,

xSyN Ă G

denotes the smallest normal subgroup of G that contains S. Concretely, this means xSyN is the
set of all conjugates of products of elements of S and their inverses.

We are now in a position to state the complete version of the Seifert-van Kampen theorem.
The first half of the statement is just a repeat of Lemma 11.18, which we have proved already. The
second half tells us what kerΦ is, and thus gives a formula for π1pX, pq.

Theorem 12.4 (Seifert-van Kampen). Suppose X “
Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ with nonempty intersection, denote by iα : Aα ãÑ X and
jαβ : Aα XAβ ãÑ Aα the inclusion maps for α, β P J , and fix p P Ş

αPJ Aα.
(1) If Aα XAβ is path-connected for every pair α, β P J , then the natural homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq

induced by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq is surjective.
(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then

kerΦ “
A!

pjαβq˚rγspjβαq˚rγs´1
ˇ̌
ˇ α, β P J, rγs P π1pAα XAβ , pq

)E
N
.

In particular, Φ then descends to an isomorphism

˚
αPJ

π1pAα, pq
M
kerΦ

–ÝÑ π1pX, pq.

Remark 12.5. In most applications we will consider coverings of X by only two subsets
X “ A Y B, and the condition on triple intersections in the second half of the statement then
merely demands that A X B be path-connected, which we already needed for the first half. (One
can take the third subset in that condition to be either A or B; we never said that α, β and γ need
to be distinct!)

I will give you the remaining part of the proof of this theorem in the next lecture. Let’s now
discuss some simple applications.

Example 12.6. Consider the figure-eight S1 _ S1 with its natural base point p P S1 _ S1,
i.e. S1 _ S1 is the union of two circles A,B Ă S1 _ S1 with A X B “ tpu. These are not
open subsets, but we can do the usual trick of replacing both with homotopy equivalent open
neighborhoods: define A1 Ă S1 _ S1 as a small open neighborhood of A and B1 Ă S1 _ S1 as a
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small open neighborhood of B such that there exist deformation retractions of A1 to A and B1

to B. The inclusions A ãÑ A1 and B ãÑ B1 then induce isomorphisms Z – π1pA, pq –ÝÑ π1pA1, pq
and Z – π1pB, pq –ÝÑ π1pB1, pq. The intersection A1 X B1 is now a pair of line segments with one
intersection point at p, so it admits a deformation retraction to p and is thus contractible, implying
π1pA1 XB1, pq “ 0. This makes kerΦ in Theorem 12.4 trivial, hence the map

π1pA, pq ˚ π1pB, pq Ñ π1pS1 _ S1, pq
determined by the homomorphisms of π1pA, pq and π1pB, pq to π1pS1 _ S1, pq induced by the
inclusions A,B ãÑ S1 _ S1 is an isomorphism. To see more concretely what this group looks like,
fix generators α P π1pA, pq – Z and β P π1pB, pq – Z, each of which can also be identified with
elements of π1pS1 _ S1, pq via the inclusions of A and B into S1 _ S1. Then

π1pS1 _ S1, pq – Z ˚ Z “ te, αp, βq, αpβq, βpαq, αpβqαr, . . . | p, q, r, . . . P Zu .
These elements are easy to visualize: α and β are represented by loops that start and end at p and
run once around the circles A or B respectively, so each element in the above list is a concatenation
of finitely many repetitions of these two loops and their inverses. Notice that αβ ‰ βα, so
π1pS1 _ S1q is our first example of a nonabelian fundamental group.

Example 12.7. Recall from Exercise 7.25 that for each n P N, one can identify Sn with the
one point compactification of Rn, a space defined by adjoining a single point called “8” to Rn:

Sn – Rn Y t8u.

This gives rise to an inclusion map Rn
i

ãÑ Sn with image Snzt8u. We claim that for any compact
subset K Ă R3 such that R3zK is path-connected, and any choice of base point p P R3zK,

i˚ : π1pR3zK, pq Ñ π1pS3zK, pq
is an isomorphism. To see this, define the open subset A :“ R3zK Ă S3zK, and choose B0 Ă S3zK
to be an open ball about 8, i.e. a set of the form pR3zĞBRp0qqYt8u where ĞBRp0q Ă R3 is any closed
ball large enough to contain K. Since p might not be contained in B0 but R3zK is path-connected,
we can then define a larger set B by adjoining to B0 the neighborhood in R3zK of some path from
a point in B0 to p: this can be done so that both B0 and B are homeomorphic to an open ball, so in
particular they are contractible. The intersection AXB is then Bzt8u and is thus homoemorphic
to R3zt0u and homotopy equivalent to S2, implying π1pA X Bq “ 0. The Seifert-van Kampen
theorem therefore gives an isomorphism π1pR3zK, pq ˚ π1pB, pq Ñ π1pS3zK, pq, but π1pB, pq is the
trivial group, so this proves the claim.

A frequently occuring special case of this example is when K Ă R3 is a knot, i.e. the image of
an embedding S1 ãÑ R3. The fundamental group π1pR3zKq is then called the knot group of K,
and the argument above shows that we are free to adjoin a point at infinity and thus replace the
knot group with π1pS3zKq. This will be convenient for certain computations.

As in the previous lecture, we shall conclude this one by introducing some more terminology
from combinatorial group theory in order to state a more usable variation on the Seifert-van
Kampen theorem.

Definition 12.8. Given a set S, the free group on S is defined as

FS :“ ˚
αPS

Z,

or in other words, the set of all reduced words ap11 a
p2
2 . . . a

pN
N for N ě 0, pi P Z with pi ‰ 0,

ai P S and ai ‰ ai`1 for every i, with the product defined by concatenation of words followed by
reduction. The elements of S are called the generators of FS .
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Example 12.9. The computation in Example 12.6 gives π1pS1 _ S1q – Ftα,βu – Z ˚ Z, where
the set generating Ftα,βu consists of the two loops α and β parametrizing the two circles that form
S1 _ S1.

Proposition 12.10. Every group is isomorphic to a quotient of a free group by some normal
subgroup.

Proof. Pick any subset S Ă G that generates G, e.g. one can choose S :“ G, though smaller
subsets are usually also possible. Then the unique homomorphism Φ : FS Ñ G sending each
g P S Ă FS to g P G is surjective, thus Φ descends to an isomorphism FS{ kerΦ Ñ G. �

Definition 12.11. Given a set S, a relation in S is defined to mean any equation of the form
“a “ b” where a, b P FS .

Definition 12.12. For any set S and a set R consisting of relations in S, we define the group

tS | Ru :“ FS

M
xR1yN

where R1 is the set of all elements of the form ab´1 P FS for relations “a “ b” in R. The elements
of S are called the generators of this group, and elements of R are its relations.

Let us pause a moment to interpret this definition. By a slight abuse of notation, we can write
each element of tS | Ru as a reduced word w formed out of letters in S, with the understanding that
w represents an equivalence class in the quotient FS{xR1yN , thus it is possible to have w “ w1 in
tS | Ru even if w and w1 are distinct elements of FS . This will happen if and only if w´1w1 belongs
to the normal subgroup xR1yN , and in particular, it happens whenever “w “ w1” is one of the
relations in R. The relations are usually necesary because most groups are not free groups: while
free groups are easy to describe (they depend only on their generators), most groups have more
interesting structure than free groups, and this structure is encoded by relations. Proposition 12.10
implies that every group can be presented in this way, i.e. every group is isomorphic to tS | Ru
for some set of generators S and relations R. Indeed, if G “ FS{ kerΦ for a set S and a surjective
homomorphism Φ : FS Ñ G, then we can take S as the set of generators and define R to consist
of all relations of the form “a “ b” such that ab´1 P kerΦ; the latter is equivalent to the condition
Φpaq “ Φpbq, so the relations tell us precisely when two products of generators give us the same
element in G.

Definition 12.13. Given a group G, a choice of generators S and relations R such that
G – tS | Ru is called a presentation of G. We say that G is finitely presented if it admits a
presentation such that S and R are both finite sets.

Example 12.14. The group tau :“ ta | Hu consisting of a single generator a with no relations
is isomorphic to the free group Ftau on one element. The isomorphism ap ÞÑ p identifies this with
the integers Z.

Example 12.15. The group ta, b | ab “ bau has two generators and is abelian, so it is isomor-
phic to Z2. An explicit isomorphism is defined by apbq ÞÑ pp, qq. To see that this is an isomorphism,
observe first that since Fta,bu is free, there exists a unique homomorphism Φ : Fta,bu Ñ Z2 with
Φpaq “ p1, 0q and Φpbq “ p0, 1q, and Φ is clearly surjective since it necesarily sends apbq to pp, qq.
Since Z2 is abelian, we also have

Φpabpbaq´1q “ Φpaba´1b´1q “ Φpaq ` Φpbq ´ Φpaq ´ Φpbq “ 0,

so kerΦ contains abpbaq´1 and therefore also contains the smallest normal subgroup containing
abpbaq´1, which is the group xR1yN appearing in the quotient ta, b | ab “ bau “ Fta,bu{xR1yN . This
proves that Φ descends to a surjective homomorphism ta, b | ab “ bau Ñ Z2. Finally, observe that
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since ab “ ba in the quotient ta, b | ab “ bau, every reduced word in Fta,bu is equivalent in this
quotient to a word of the form apbq for some pp, qq P Z2, and Φpapbqq then vanishes if and only if
apbq “ e, proving that Φ is also injective.

Example 12.16. The group ta | ap “ eu is isomorphic to Zp :“ Z{pZ, with an explicit
isomorphism defined in terms of the unique homomorphism Ftau Ñ Zp that sends a to r1s.

Example 12.17. We will prove in Lecture 14 that for the trefoil knot K Ă R3 Ă S3, (see
Lecture 8), π1pS3zKq – ta, b | a2 “ b3u, and Exercise 12.19 below proves that this group is not
abelian. By contrast, the unknot K0 Ă R3 Ă S3 has π1pS3zK0q – Z, which is abelian. This implies
via Example 12.7 that π1pR3zKq fl π1pR3zK0q, so R3zK and R3zK0 are not homeomorphic, hence
the trefoil cannot be deformed continuously to the unknot.

Note that for any given set of generators S and relations R, it is often possible to reduce these
to smaller sets without changing the isomorphism class of the group that they define. For the
relations in particular, it is easy to imagine multiple distinct choices of the subset R1 Ă FS that
will produce the same normal subgroup xR1yN . In general, it is a very hard problem to determine
whether or not two groups described via generators and relations are isomorphic; in fact, it is
known that there does not exist any algorithm to decide whether a given presentation defines the
trivial group. Nonetheless, generators and relations provide a very convenient way to describe
many simple groups that arise in practice, especially in the context of van Kampen’s theorem.
This is due to the following reformulation of Theorem 12.4 for the case of two open subsets when
all fundamental groups are finitely presented.

Corollary 12.18 (Seifert-van Kampen for finitely-presented groups). Suppose X “ A Y B

where A,B Ă X are open and path-connected subsets such that A XB is also path-connected, and
jA : A X B ãÑ A and jB : A X B ãÑ B denote the inclusions. Suppose moreover that there exist
finite presentations

π1pAq –
 

taiu
ˇ̌

tRju
(
, π1pBq –

 
tbku

ˇ̌
tSℓu

(
, π1pA XBq –

 
tcpu

ˇ̌
tTqu

(
,

with the indices i, j, k, ℓ, p, q each ranging over finite sets. Then

π1pXq –
 

taiu Y tbku
ˇ̌

tRju Y tSℓu Y tpjAq˚cp “ pjBq˚cpu
(
.

�

In other words, as generators for π1pXq, one can take all generators of π1pAq together with all
generators of π1pBq. The relations must then include all of the relations among the generators of
π1pAq and π1pBq separately, but there may be additional relations that mix the generators from
π1pAq and π1pBq: these extra relations set pjAq˚cp P π1pAq equal to pjBq˚cp P π1pBq for each of
the generators cp of π1pA X Bq. These extra relations are exactly what is needed to describe the
normal subgroup kerΦ in the statement of Theorem 12.4. The relations in π1pAXBq do not play
any role.

Exercise 12.19. Let us prove that the finitely-presented groupG “ tx, y | x2 “ y3u mentioned
in Example 12.17 is nonabelian.

(a) Denoting the identity element by e, consider the related group

H “ tx, y | x2 “ y3, y3 “ e, xyxy “ eu.
Show that every element of H is equivalent to one of the six elements e, x, y, y2, xy, xy2 P
H . This proves that H has order at most six, though in theory it could be less, since
some of those six elements might still be equivalent to each other. To prove that this is
not the case, construct (by writing down a multiplication table) a nonabelian group H 1
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of order six that is generated by two elements a, b satisfying the relations a2 “ b3 “ e and
abab “ e. Show that there exists a surjective homomorphism H Ñ H 1, which is therefore
an isomorphism since |H | ď 6.
Remark: You don’t need this fact, but you might in any case notice that H is isomorphic
to the dihedral group (Diedergruppe) of order 6.

(b) Show that H is a quotient of G by some normal subgroup, and deduce that G is also
nonabelian.

Exercise 12.20. Given a group G, the commutator subgroup rG,Gs Ă G is the subgroup
generated by all elements of the form

rx, ys :“ xyx´1y´1

for x, y P G.

(a) Show that rG,Gs Ă G is always a normal subgroup, and it is trivial if and only if G is
abelian.

(b) The abelianization (Abelisierung) of G is defined as the quotient group G
L

rG,Gs. Show
that this group is always abelian, and it is equal to G if G is already abelian.11

(c) Given any two abelian groups G,H , find a natural isomorphism from the abelianization
of the free product G ˚H to the Cartesian product G ˆH .

(d) Prove that the abelianization of tx, y | x2 “ y3u is isomorphic to Z.
Hint: An isomorphism ϕ from the abelianization to Z will be determined by two integers,
ϕpxq and ϕpyq. If ϕ exists, how must these two integers be related to each other?

13. The Seifert-van Kampen theorem and π1 of surfaces

Topic 1: Proof of the Seifert-van Kampen theorem. We have put off the proof of the
Seifert-van Kampen theorem long enough. Here again is the statement.

Theorem 13.1 (Seifert-van Kampen). Suppose X “ Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ , iα : Aα ãÑ X and jαβ : Aα X Aβ ãÑ Aα denote the natural
inclusion maps for α, β P J , and p P Ş

αPJ Aα.

(1) If Aα XAβ is path-connected for every pair α, β P J , then the unique homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq

that restricts to each subgroup π1pAα, pq Ă ˚βPJ π1pAβ , pq as piαq˚ is surjective.
(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then

kerΦ “ xSyN ,

i.e. the smallest normal subgroup containing the set

S :“
!

pjαβq˚rγspjβαq˚rγs´1
ˇ̌
ˇ α, β P J, rγs P π1pAα XAβ , pq

)
.

In particular, if we abbreviate F :“ ˚αPJ π1pAα, pq, then Φ descends to an isomorphism

F
M

xSyN Ñ π1pX, pq.

11Note that ifG “ tS | Ru is a finitely-presented group with generators S and relations R, then its abelianization
is tS | R1u where R1 is the union of R with all relations of the form “ab “ ba” for a, b P S.
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Proof. We proved the first statement already in Lecture 11, so assume the hypothesis of the
second statement holds. As observed in the previous lecture, Φppjαβq˚γq “ Φppjβαq˚γq for every
α, β P J and γ P π1pAα X Aβ , pq, thus kerΦ clearly contains xSyN , and in particular, Φ descends
to a surjective homomorphism F

L
xSyN Ñ π1pX, pq. We need to show that this homomorphism is

injective, or equivalently, that whenever Φpwq “ Φpw1q for a pair of reduced words w,w1 P F , their
equivalence classes in F

L
xSyN must match.

Given a loop p
γ
 p in X , let us say that a factorization of γ is any finite sequence tpγi, αiquNi“1

such that αi P J and p
γi
 p is a loop in Aαi

for each i “ 1, . . . , N , and

γ „
h`

γ1 ¨ . . . ¨ γN .

The first half of the theorem follows from the fact (proved in Lemma 11.2) that every γ has a
factorization. Now observe that any factorization as described above determines a reduced word
w P F , defined as the reduction of the word rγ1s . . . rγN s with rγis P π1pAαi

, pq for i “ 1, . . . , N ,
and this word satisfies Φpwq “ rγs. Conversely, every reduced word w P Φ´1prγsq can be realized
as a factorization of γ by choosing specific loops to represent the letters in w. The theorem will
then follow if we can show that any two factorizations of γ can be related to each other by a finite
sequence of the following operations and their inverses:

(A) Given two adjacent loops γi and γi`1 such that αi “ αi`1, replace them with their
concatenation p

γi¨γi`1

 p. (This does not change the corresponding reduced word in F ,
as it just implements a step in the reduction of an unreduced word.)

(B) Replace some γi with any loop γ1
i that is homotopic (with fixed end points) in Aαi

. (This
also does not change the corresponding reduced word in F ; in fact it doesn’t even change
the unreduced word from which it is derived.)

(C) Given a loop γi that lies in Aαi
X Aβ for some β P J , replace αi with β. (In the

corresponding reduced word in F , this replaces a letter of the form pjαiβq˚rγis P π1pAαi
, pq

with one of the form pjβαi
q˚rγis P π1pAβ , pq, thus it changes the word but does not change

its equivalence class in F
L

xSyN .)

We now prove that any two factorizations tpγi, αiquNi“1 and tpγ1
i, α

1
iquN 1

i“1 of γ are related by these
operations. By assumption γ1 ¨ . . . ¨ γN „

h`
γ1
1 ¨ . . . ¨ γ1

N 1 , so there exists a homotopy

H : I2 Ñ X

with Hp0, ¨q “ γ1 ¨ . . . ¨ γN , Hp1, ¨q “ γ1
1 ¨ . . . ¨ γ1

N and Hps, 0q “ Hps, 1q “ p for all s P I. Since I2

is compact, one can find a number ǫ ą 0 such that for every ps, tq P I2,12

rs´ 2ǫ, s` 2ǫs ˆ rt´ 2ǫ, t` 2ǫs Ă H´1pAαq for some α P J.
For suitably small ǫ “ 1{n with n P N, we can therefore break up I2 into n2 boxes of side length
ǫ which are each contained in H´1pAαq for some α P J , forming a grid in I2. For each box in the
diagram there may be multiple α P J that satisfy this condition, but let us choose a specific one to
associate to each box. (These choices are indicated by the three colors in Figure 3.) Notice that
each vertex in the grid is contained in the intersection of H´1pAαq for each of the α P J associated
to boxes that it touches. We can now perturb this diagram slightly to fill I2 with a collection of
boxes of slightly varying sizes such that every vertex in the interior touches only three of them (see

12I do not consider this statement completely obvious, but it is a not very difficult exercise in point-set topology,
and since that portion of the course is now over, I would rather leave it as an exercise than give the details here.
Here is a hint: if the claim is not true, one can find a sequence psk, tkq P I2 such that the box of side length 1{k
about psk , tkq is not fully contained in any of the subsets H´1pAαq. This sequence has a convergent subsequence.
What can you say about its limit?
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perturbation

Aα Aα

AβAβ

AγAγ

γ1 γ2 γN

. . .

. . .

p p

γ1
1 γ1

2
γ1
N 1

Figure 3. A grid on the domain of the homotopy H : I2 Ñ X between two
factorizations γ1 ¨ . . . ¨ γN and γ1

1 ¨ . . . ¨ γ1
N 1 of a loop p

γ
 p in X . In this example,

there are three open sets Aα, Aβ , Aγ Ă X , and colors are used to indicate that
each of the small boxes filling I2 has image lying in (at least) one of these subsets.
In the perturbed picture at the right, every vertex in the interior touches exactly
three boxes.

the right side of Figure 3). We can similarly assume after such a perturbation that the vertices
in ts “ 0u and ts “ 1u never coincide with the starting or ending times of the loops γi, γ1

i in the
concatenations γ1 ¨ . . . ¨γN and γ1

1 ¨ . . . ¨γ1
N 1 . Moreover, each vertex still lies in the same intersection

of sets H´1pAαq as before, assuming the perturbation is sufficiently small.
Now suppose ps, tq P I2 is a vertex in the interior of the perturbed grid. Then ps, tq is on the

boundary of exactly three boxes in the diagram, each of which belongs to one of the sets H´1pAαq,
H´1pAβq and H´1pAγq for three associated elements α, β, γ P J (they need not necessarily be
distinct). If p0, tq is a vertex with t R t0, 1u, then it is on the boundary of exactly two boxes
and thus lies in H´1pAα X Aβq for two associated elements α, β P J , but it also lies in H´1pAγq
where γ :“ αi is associated to the particular path γi whose domain as part of the concatenation
Hp0, ¨q “ γ1 ¨ . . . ¨ γN contains p0, tq. For vertices p1, tq with t R t0, 1u, choose Aγ :“ Aα1

i
similarly

in terms of the concatenation γ1
1 ¨ . . . ¨ γ1

N 1 . In any of these cases, we have associated to each vertex
ps, tq a path-connected set Aα XAβ XAγ that contains Hps, tq, thus we can choose a path13

Hps, tq δps,tq

 p in Aα XAβ XAγ .

Since Hps, tq “ p for t P t0, 1u, this definition can be extended to vertices with t P t0, 1u by
defining δps,tq as the trivial path. Now if E is any edge in the diagram, i.e. a side of one of the
boxes, connecting two neighboring vertices ps0, t0q and ps1, t1q, then we can identify E with the
unit interval in order to regard H |E : E Ñ X as a path, and thus associate to E a loop

p
γE
 p in Aα XAβ , γE :“ δ´1

ps0,t0q ¨H |E ¨ δps1,t1q,

13This is the specific step where we need the assumption that triple intersections are path-connected. If
you’re curious to see an example of the second half of the theorem failing without this assumption, I refer you to
[Hat02, p. 44].
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where α, β P J are the two (not necessarily distinct) elements associated to the boxes bordered
by E.

With these choices in place, any path through I2 that follows a sequence of edges E1, . . . , Ek
starting at some vertex in ps0, 0q and ending at a vertex ps1, 1q produces various factorizations of γ
in the form tpγEi

, βiquki“1. Here there is some freedom in the choices of βi P J : whenever a given
edge Ei lies in H´1pAβq X H´1pAγq, we can choose βi to be either β or γ and thus produce two
valid factorizations, which are related to each other by operation (C) in the list above.

We can now describe a procedure to modify the factorization tpγi, αiquNi“1 to tpγ1
i, α

1
iquN 1

i“1. We
show first that tpγi, αiquNi“1 is equivalent via our three operations to the factorization corresponding
to the sequence of edges in ts “ 0u moving from t “ 0 to t “ 1. This is not so obvious because,
although Hp0, ¨q is a parametrization of the concatenated path γ1 ¨ . . . ¨ γN , the times that mark
the boundaries between one path and the next in this concatenation need not have anything to
do with the vertices of our chosen grid. Instead, our perturbation of the grid ensured that each γi
in the concatenation hits vertices only in the interior of its domain, not at starting or end points.
Denote by p0, t1q, . . . , p0, tm´1q the particular grid vertices in the domain of γi, thus splitting up
γi into a concatenation of paths γi “ γ1i ¨ . . . ¨ γmi which have these vertices as starting and/or end
points. Then

γi „
h`

pγ1i ¨ δp0,t1qq ¨ pδ´1
p0,t1q ¨ γ2i ¨ δp0,t2qq ¨ . . . ¨ pδ´1

p0,tm´1q ¨ γmi q in Aαi
.

We can now apply operations (B) and (A) in that order to replace γi with the sequence of loops
of the form δ´1

p0,tj´1q ¨ γji ¨ δp0,tjq in Aαi
as indicated above. The result is a new factorization that

has more loops in the sequence, but the resulting concatenation is broken up along points that
include all vertices in ts “ 0u. It is also broken along more points, corresponding to the pieces of
the original concatenation γ1 ¨ . . . ¨ γN , but after applying operation (C) if necessary, we can now
apply operation (A) to combine all adjacent loops whose domains belong to the same edge. The
result is precisely the factorization corresponding to the sequence of edges in ts “ 0u. The same
procedure can be used to modify tpγ1

i, α
1
iquN 1

i“1 to the factorization corresponding to the sequence
of edges in ts “ 1u.

To finish, we need to show that the factorization given by the edges in ts “ 0u can be trans-
formed into the corresponding factorization at ts “ 1u by applying our three operations. The core
of the idea for this is shown in Figure 4, where the purple curves show two sequences of edges which
represent two factorizations. In this case the difference between one path and the other consists
only of replacing two edges on adjacent sides of a particular box Q Ă I2 with their two opposite
sides, and we can change from one to the other as follows. First, if the box Q is in H´1pAαq,
apply the operation (C) to both factorizations until all the loops corresponding to sides of Q are
regarded as loops in Aα. Having done this, both factorizations now contain two consecutive loops
in Aα that correspond to two sides of Q, so we can apply the operation (A) to concatenate each of
these pairs, reducing two loops to one distinguished loop through Aα in each factorization. Those
two distinguished loops are also homotopic in Aα, as one can see by choosing a homotopy of paths
through the square Q that connects two adjacent sides to their two opposite sides (Figure 4, right).
This therefore applies the operation (B) to change one factorization to the other.

We note finally that for any sequence of edges that includes edges in tt “ 0u or tt “ 1u, those
edges represent the constant path at the base point p, and since concatenation with constant paths
produces homotopic paths, adding these edges or removing them from the diagram changes the
factorization by a combination of operations (A) and (B). It now only remains to observe that the
path of edges along ts “ 0u can always be modified to the path of edges along ts “ 1u by a finite
sequence of the modifications just described.

�



82 FIRST SEMESTER (TOPOLOGIE I)

AαAα

AβAβ

AγAγ

Q

Figure 4. The magenta paths in both pictures are sequences of edges that define
factorizations of γ, differing only at pairs of edges that surround a particular boxQ.
We can change one to the other by applying the three operations in our list.

Exercise 13.2. Recall that the wedge sum of two pointed spaces pX, xq and pY, yq is defined
as X _ Y “ pX > Y q{„ where the equivalence relation identifies the two base points x and y. It is
commonly said that whenever X and Y are both path-connected and are otherwise “reasonable”
spaces, the formula

(13.1) π1pX _ Y q – π1pXq ˚ π1pY q
holds. We saw for instance in Example 12.6 that this is true when X and Y are both circles. The
goal of this problem is to understand slightly better what “reasonable” means in this context, and
why such a condition is needed.

(a) Show by a direct argument (i.e. without trying to use Seifert-van Kampen) that if X and
Y are both Hausdorff and simply connected, then X _ Y is simply connected.
Hint: Hausdorff implies that Xztxu and Y ztyu are both open subsets. Consider loops
γ : r0, 1s Ñ X_Y based at rxs “ rys and decompose r0, 1s into subintervals in which γptq
stays in either X or Y .

(b) Call a pointed space pX, xq nice14 if x has an open neighborhood that admits a deforma-
tion retraction to x. Show that the formula (13.1) holds whenever pX, xq and pY, yq are
both nice.

(c) Here is an example of a space that is not “nice” in the sense of part (b):
the so-called Hawaiian earring can be defined as the subset of R2

consisting of the union for all n P N of the circles of radius 1{n
centered at p1{n, 0q. As usual, we assign to this set the subspace
topology induced by the standard topology of R2. Show that in
this space, the point p0, 0q does not have any simply connected open
neighborhood.

(d) It is tempting to liken the Hawaiian earring to the infinite wedge sum of circles X :“Ž8
n“1 S

1, defined as above by choosing a base point in each copy of the circle and then
identifying all the base points in the infinite disjoint union

š8
n“1 S

1. Since both X and

14Not a standardized term, I made it up.
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the Hawaiian earring are unions of infinite collections of circles that all intersect each
other at one point, it is not hard to imagine a bijection between them. Show however
that such a bijection can never be a homeomorphism; in particular, unlike the Hawaiian
earring, X is “nice” for any choice of base point.
Hint: Pay attention to how the topology of X is defined—it is a quotient of a disjoint
union.

Topic 2: Fundamental groups of surfaces. We will discuss two more applications of the
Seifert-van Kampen theorem: one to the study of surfaces, and the other (in the next lecture) to
knots. Let’s talk about surfaces.

Someday, when we talk about topological manifolds in this course (namely in Lecture 18), I
will give you a precise mathematical definition of what the word “surface” means, but that day is
not today. For now, we’re just going to consider a class of specific examples that can be presented
in a way that is convenient for computing their fundamental groups. A theorem we will discuss
later in the semester implies that all compact surfaces can be presented in this way, but that is
rather far from obvious.

We are going to consider pictures of polygons such as the following:

a

a

b

b

c

Suppose in general that P Ă R2 is the compact convex region bounded by some polygon with N

edges, each of which has been labeled with a letter ai and an arrow. The letters a1, . . . , aN need
not all be distinct. We then define a topological space

X :“ P
L

„,

where the equivalence relation is trivial on the interior of P but acts on its boundary by identifying
all vertices to a single point and identifying any pair of edges labeled by the same letter via a
homeomorphism that matches the directions of the arrows. In the picture above, this means the
two edges labeled with “a” get identified, and so do the two edges labeled with “b”. (By the time
you’ve read to the end of this lecture, you should be able to form a fairly clear picture of this
surface in your mind, but I suggest reading somewhat further before you try this.)

Example 13.3. Take P to be a square whose sides have two labels a and b such that opposite
sides of the square have matching letters and arrows pointing in the same direction. You could then
build a physical model of X “ P {„ in two steps: take a square piece of paper and bend it until
you can tape together the two opposite sides labeled a, producing a cylinder. The two boundary
components of this cylinder are circles labeled b, so if you were doing this with a sufficiently
stretchable material (paper is not stretchable enough), you could then bend the cylinder around
and tape together its two circular boundary components. The result is what’s depicted in the
picture at the right, a space conventionally known as the 2-torus (or just “the torus” for short)
and denoted by T2. It is homeomorphic to the product S1 ˆ S1.
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a

a

bb

Example 13.4. If you relax your usual understanding of what a “polygon” is, you can also
allow edges of the polygon to be curved as in the following example with only two edges:

a

a

a

The polygon itself is homeomorphic to the disk D2, but identifying the two edges via a homeomor-
phism matching the arrows means we identify each point on BD2 with its antipodal point. The
result matches the second description of RP2 that we saw in the first lecture, see Example 1.2.

Theorem 13.5. Suppose X “ P {„ is a space defined as described above by a polygon P with
N edges labeled by (possibly repeated) letters a1, . . . , aN , where we are listing them in the order in
which they appear as the boundary is traversed once counterclockwise. Let G denote the set of all
letters that appear in this list, and for each i “ 1, . . . , N , write pi “ 1 if the arrow at edge i points
counterclockwise around the boundary and pi “ ´1 otherwise. Then π1pXq is isomorphic to the
group with generators G and exactly one relation a

p1
1 . . . a

pN
N “ e:

π1pXq –
 
G

ˇ̌
a
p1
1 . . . a

pN
N “ e

(
.

Proof. Let P 1 :“ BP
L

„ Ă X . Since all vertices are identified to a point, P 1 is homeomorphic
to a wedge sum of circles, one for each of the letters that appear as labels of edges, hence by an
easy application of the Seifert-van Kampen theorem,

π1pP 1q – π1pS1q ˚ . . . ˚ π1pS1q – Z ˚ . . . ˚ Z “ FG,

the free group generated by the set G. Now decompose X into two open subsets A and B, where
A is the interior of the polygon (not including its boundary) and B is an open neighborhood
of P 1. We can arrange this so that AXB is homeomorphic to an annulus S1 ˆ p´1, 1q occupying
a neighborhood of BP in the interior of P , so for any choice of base point p P A X B, π1pA X
B, pq – Z is generated by a loop that circles around parallel to BP . Since the neighborhood
of BP admits a deformation retraction to BP , there is similarly a deformation retraction of B
to P 1, giving π1pB, pq – π1pP 1q “ FG. Likewise, A is homeomorphic to an open disk, hence
π1pAq “ 0. The Seifert-van Kampen theorem then idenifies π1pX, pq with a quotient of the free
product π1pA, pq˚π1pB, pq – π1pP 1q “ FG, modulo the normal subgroup generated by the relation
that if jA : AXB ãÑ A and jB : AXB ãÑ B denote the inclusion maps and rγs P π1pAXB, pq – Z

is a generator, then pjAq˚rγs “ pjBq˚rγs. The left hand side of this equation is the trivial element
since π1pAq “ 0. On the right hand side, we have the element of π1pB, pq represented by a
loop p

γ
 p in the annulus A X B that is parallel to the boundary of the polygon. Under the

deformation retraction of A X B to P 1, γ becomes the concatenated loop a
p1
1 . . . a

pN
N defined by

composing a traversal of BP with the quotient projection BP Ñ P 1, thus producing the relation
a
p1
1 . . . a

pN
N “ e. �
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Example 13.6. Applying the theorem to the torus in Example 13.3 gives

π1pT2q – ta, b | aba´1b´1 “ eu “ ta, b | ab “ bau – Z2.

Notice that this matches the result of applying Exercise 9.18(a), which gives π1pS1ˆS1q – π1pS1qˆ
π1pS1q – Z ˆ Z.

Example 13.7. For the picture of RP2 in Example 13.4, we obtain

π1pRP2q – ta | a2 “ eu – Z2.

In Lecture 1, I drew you some pictures of topological spaces that I called “surfaces of genus g”
for various values of a nonnegative integer g. I will now give you a precise definition of this space
which, unfortunately, looks completely different from the original pictures, but we will soon see
that it is equivalent.

Definition 13.8. For any integer g ě 0, the closed orientable surface Σg of genus
(Geschlecht) g is defined to be S2 if g “ 0, and otherwise Σg :“ P {„ where P is a polygon
with 4g edges labeled by 2g distinct letters tai, biugi“1 in the order

a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg,

such that the arrows point counterclockwise on the first instance of each letter in this sequence
and clockwise on the second instance.

Once you’ve fully digested this definition, you may recognize that Σ1 is defined by the square
in Example 13.3, i.e. it is the torus T2. The diagram for Σ2 is shown at the bottom of Figure 5.
The projective plane RP2 is not an “orientable” surface, so it is not Σg for any g, though it is
sometimes called a “non-orientable surface of genus 1”. This terminology will make more sense
when we later discuss the classification of surfaces.

In order to understand what Σg has to do with pictures we’ve seen before, we consider an
operation on surfaces called the connected sum. It can be defined on any pair of surfaces Σ and
Σ1, or more generally, on any pair of n-dimensional topological manifolds, though for now we will
consider only the case n “ 2. Since I haven’t yet actually given you precise definitions of the terms
“surface” and “topological manifold,” for now you should just assume Σ and Σ1 come from the list
of specific examples Σ0 “ S2, Σ1 “ T2, Σ2, Σ3, . . . defined above.

Given a pair of inclusions D2 ãÑ Σ and D2 ãÑ Σ1, the connected sum (zusammenhängende
Summe) of Σ and Σ1 is defined as the space

Σ#Σ1 :“
´
ΣzD̊2

¯
YS1

´
Σ1zD̊2

¯
.

The result of this operation is not hard to visualize in many concrete examples, see e.g. Figure 6.
More generally, for topological n-manifolds M and M 1, one defines the connected sum M#M 1

by choosing inclusions of Dn into M and M 1, then removing the interiors of these disks and gluing
together MzD̊n and M 1zD̊n along Sn´1 “ BDn. The notation M#M 1 obscures the fact that the
definition of the connected sum depends explicitly on choices of inclusions of Dn into both spaces,
and it is not entirely true in general that M#M 1 up to homeomorphism is independent of this
choice. It is true however for surfaces:

Lemma 13.9 (slightly nontrivial). Up to homeomorphism, the connected sum Σ#Σ1 of two
closed connected surfaces Σ and Σ1 does not depend on the choices of inclusions D2 ãÑ Σ and
D2 ãÑ Σ1.

Sketch of a proof. A complete proof of this would be too much of a digression and require
more knowledge about the classification of surfaces than is presently safe to assume, but I can
give the rough idea. The main thing you need to believe is that “up to orientation” (I’ll come
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γ

–

–

Figure 5. The connected sum T2#T2 is formed by cutting holes D2 out of two
copies of T2 along some loop γ, and then gluing together the two copies of T2zD2.
The result is Σ2, the closed orientable surface of genus 2.

back to that detail in a moment), any inclusion i0 : D2 ãÑ Σ can be deformed into any other
inclusion i1 : D2 ãÑ Σ through a continuous family of inclusions it : D2 ãÑ Σ for t P I. You should
imagine this roughly as follows: since D2 is homeomorphic via the obvious rescalings to the disk
D2
r of radius r for every r ą 0, one can first deform i0 and i1 to inclusions whose images lie in
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–#

Figure 6. The connected sum of two surfaces is defined by cutting a hole out
of each of them and gluing the rest together along the resulting boundary circle.

arbitrarily small neighborhoods of two points z0, z1 P Σ. Now since Σ is connected (and therefore
also path-connected, as all topological manifolds are locally path-connected), we can choose a path
γ from z0 to z1, and the idea is then to define it as a continuous family of inclusions D2 ãÑ Σ such
that the image of it lies in an arbitrarily small neighborhood of γptq for each t. You should be able
to imagine concretely how to do this in the special case Σ “ R2. That it can be done on arbitrary
connected surfaces Σ depends on the fact that every point in Σ has a neighborhood homeomorphic
to R2 (in other words, Σ is a topological 2-manifold).

Now for the detail that was brushed under the rug in the previous paragraph: even if i0, i1 :

D2 ãÑ Σ are two inclusions that send 0 to the same point z P Σ and have images in an arbitrarily
small neighborhood of z, it is not always true that i0 can be deformed to i1 through a continuous
family of inclusions. For example, if we take Σ “ R2, it is not true for the two inclusions i0, i1 :

D2 ãÑ R2 defined by i0px, yq “ pǫx, ǫyq and i1px, yq “ pǫx,´ǫyq. In this example, both inclusions
are defined as restrictions of injective linear maps R2 Ñ R2, but one has positive determinant and
the other has negative determinant, so one cannot deform from one to the other through injective
linear maps. One can use the technology of local homology groups (which we’ll cover next semester)
to remove the linearity from this argument and show that there also is no deformation from i0
to i1 through continuous inclusions. The issue here is one of orientations : i0 is an orientation-
preserving map, while i1 is orientation-reversing. It turns out that two inclusions of D2 into R2

can be deformed to each other through inclusions if and only if they are either both orientation
preserving or both orientation reversing. This obstruction sounds like bad news for our proof,
but the situation is saved by the following corollary of the classification of surfaces: every closed
orientable surface admits an orientation-reversing homeomorphism to itself. For example, if you
picture the torus as the usual tube embedded in R3 and you embed it so that it is symmetric
about some 2-dimensional coordinate plane, then the linear reflection through that plane restricts
to a homeomorphism of T2 that is orientation reversing. Once we see what all the other closed
orientable surfaces look like, it will be easy to see that one can do that with all of them. Actually,
it is also not so hard to see this for the surfaces Σg defined as polygons: you just need to choose
a sufficiently clever axis in the plane containing the polygon and reflect across it. Once this is
understood, you realize that the orientation of your inclusion D2 ãÑ Σ does not really matter, as
you can always replace it with an inclusion having the opposite orientation and the picture you
get in the end will be homeomorphic to the original.

With this detail out of the way, you just have to convince yourself that if you have a pair of
continuous families of inclusions it : D2 ãÑ Σ and jt : D2 ãÑ Σ1 defined for t P r0, 1s, then the
resulting glued surfaces

Σ#tΣ
1 :“

´
ΣzitpD̊2q

¯
YS1

´
Σ1zjtpD̊2q

¯

are homeomorphic for all t. It suffices in fact to prove that this is true just for t varying in an
arbitrarily small interval pt0 ´ ǫ, t0 ` ǫq since r0, 1s is compact and can therefore be covered by
finitely many such intervals. A homeomorphism Σ#tΣ

1 Ñ Σ#sΣ
1 for t ‰ s is easy to define if we

can first find a homeomorphism Σ Ñ Σ that sends itpzq ÞÑ ispzq for every z P D2 and similarly
on Σ1. This is not hard to construct if t and s are sufficiently close. �
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Now we are in a position to relate Σg with the more familiar pictures of surfaces.

Theorem 13.10. For any nonnegative integers g, h, Σg#Σh – Σg`h. In particular, Σg is the
connected sum of g copies of the torus:

Σg – T2# . . .#T2loooooomoooooon
g

Proof. The result becomes obvious if one makes a sufficiently clever choice of hole to cut
out of Σg and Σh, and Lemma 13.9 tells us that the resulting space up to homeomorphism is
independent of this choice. The example of g “ h “ 1 is shown in Figure 5, and the same idea
works (but is more effort to draw) for any values of g and h. �

Now that we know how to draw pretty pictures of the surfaces Σg, we can also observe that we
have already proved something quite nontrivial about them: we have computed their fundamental
groups!

Corollary 13.11 (of Theorem 13.5). The closed orientable surface Σg of genus g ě 0 has a
fundamental group with 2g generators and one relation, namely

π1pΣgq –
 
a1, b1, . . . , ag, bg

ˇ̌
a1b1a

´1
1 b´1

1 a2b2a
´1
2 b´1

2 . . . agbga
´1
g b´1

g “ e
(
.

�

Using the commutator notation from Exercise 12.20, the relation in Corollary 13.11 can be
conveniently abbreviated as

gź

i“1

rai, bis “ e.

Exercise 13.12. Show that the abelianization (cf. Exercise 12.20) of π1pΣgq is isomorphic to
the additive group Z2g.
Hint: π1pΣgq is a particular quotient of the free group on 2g generators. Observe that the abelian-
ization of the latter is identical to the abelianization of π1pΣgq. (Why?)

By the classification of finitely generated abelian groups, Zm and Zn are never isomorphic
unless m “ n, so Exercise 13.12 implies that π1pΣgq and π1pΣhq are not isomorphic unless g “ h.
This completes the first step in the classification of closed surfaces:

Corollary 13.13. For two nonnegative integers g ‰ h, Σg and Σh are not homeomorphic. �

Exercise 13.14. Assume X and Y are path-connected topological manifolds of dimension n.
(a) Use the Seifert-Van Kampen theorem to show that if n ě 3, then π1pX#Y q – π1pXq ˚

π1pY q. Where does your proof fail in the cases n “ 1 and n “ 2?
(b) Show that the formula of part (a) is false in general for n “ 1, 2.

Exercise 13.15. For integers g,m ě 0, let Σg,m denote the compact surface obtained by
cutting m disjoint disk-shaped holes out of the closed orientable surface with genus g. (By this
convention, Σg “ Σg,0.) The boundary BΣg,m is then a disjoint union of m circles, e.g. the case
with g “ 1 and m “ 3 is shown in Figure 7.

(a) Show that π1pΣg,1q is a free group with 2g generators, and if g ě 1, then any simple
closed curve parametrizing BΣg,1 represents a nontrivial element of π1pΣg,1q.15
Hint: Think of Σg as a polygon with some of its edges identified. If you cut a hole in
the middle of the polygon, what remains admits a deformation retraction to the edges.
Prove it with a picture.

15Terminology: one says in this case that BΣg,1 is homotopically nontrivial or essential, or equivalently,
BΣg,1 is not nullhomotopic.
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Figure 7. The surface Σ1,3 as in Exercise 13.15.

(b) Assume γ is a simple closed curve separating Σg
into two pieces homeomorphic to Σh,1 and Σk,1
for some h, k ě 0. (The picture at the right shows
an example with h “ 2 and k “ 4.) Show that
the image of rγs P π1pΣgq under the natural pro-
jection to the abelianization of π1pΣgq is trivial.

γ

Hint: What does γ look like in the polygonal picture from part (a)? What is it homotopic
to?

(c) Prove that if g ě 2 and G denotes the group
 
a1, b1, . . . , ag, bg

ˇ̌ śg
i“1rai, bis “ e

(
, then

for any proper subset J Ă t1, . . . , gu, śiPJ rai, bis is a nontrivial element of G.
Hint: Given j P J and ℓ P t1, . . . , guzJ , there is a homomorphism Φ : Fta1,b1,...,ag ,bgu Ñ
Ftx,yu that sends aj ÞÑ x, bj ÞÑ y, aℓ ÞÑ y, bℓ ÞÑ x and maps all other generators to the
identity. Show that Φ descends to the quotient G and maps

ś
iPJ rai, bis P G to something

nontrivial.
(d) Deduce from part (c) that if h ą 0 and k ą 0, then the curve γ in part (b) represents a

nontrivial element of π1pΣgq.
(e) Generalize part (a): show that if m ě 1, π1pΣg,mq is a free group with 2g ` m ´ 1

generators.

14. Torus knots, and an introduction to covering spaces

Topic 1: Knot groups. Back in Lecture 8, I showed you two simple examples of knots
K Ă R3: the trefoil and the unknot. I claimed that it is impossible to deform one of these knots
into the other, and in fact that the complements of both knots in R3 are not homeomorphic. It is
time to prove this.

We will consider both as special cases of a more general class of knots called torus knots. Fix
the standard embedding of the torus

f : T2 :“ S1 ˆ S1
ãÑ R3,

where by “standard,” I mean the one that you usually picture when you imagine a torus embedded
in R3 (see the surface bounding the grey region in Figure 9). Given any two relatively prime
integers p, q P Z, the pp, qq-torus knot is defined by

Kp,q :“
 
fpepiθ, eqiθq

ˇ̌
θ P R

(
Ă R3.

In other words, Kp,q is a knot lying on the image of the embedded torus fpT2q Ă R3, obtained
from a loop that rotates p times around one of the dimensions of T2 “ S1 ˆS1 and q times around
the other. Note that p and q must be relatively prime in order for this loop in T2 to be embedded.

Example 14.1. K2,3 is the trefoil knot (Figure 8, left).

Example 14.2. K1,0 is the unknot (Figure 8, right).
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K2,3 Ă R3 K1,0 Ă R3

Figure 8. The trefoil knot K2,3 and unknot K1,0.

Recall that for any knot K Ă S3, its knot group is defined as the fundamental group of the
so-called knot complement, π1pR3zKq. We saw in Example 12.7 that the natural inclusion R3 ãÑ S3

defined by identifying S3 with the one-point compactification R3 Y t8u induces an isomorphism of
π1pR3zKq to π1pS3zKq. We shall now answer the question: given relatively prime integers p and
q, what is π1pS3zKp,qq?

Here is a useful trick for picturing S3. By definition, S3 “ BD4, but notice that D4 is also
homeomorphic to the “box” D2 ˆ D2, whose boundary consists of the two pieces BD2 ˆ D2 and
D2 ˆ BD2, intersecting each other along BD2 ˆ BD2. The latter is a copy of T2, and the pieces
S1 ˆ D2 and D2 ˆ S1 are called solid tori since we usually picture them as the region in R3

bounded by the standard embedding of the torus. The homeomorphism D4 – D2 ˆD2 thus allows
us to identify S3 with the space constructed by gluing together these two solid tori along the
obvious identification of their boundaries:

S3 – pS1 ˆ D2q YT2 pD2 ˆ S1q.

A picture of this decomposition is shown in Figure 9. Here the 2-torus along which the two solid
tori are glued together is depicted as the standard embedding of T2 in R3, so this is where we
will assume Kp,q lies. The region bounded by this torus is S1 ˆ D2, shown in the picture as an
S1-parametrized family of disks D2. It requires a bit more imagination to recognize D2 ˆ S1 in
the picture: instead of a family of disks, we have drawn it as a D2-parametrized family of circles,
where it is important to understand that one of those circles passes through 8 P S3 and thus
looks like a line instead of a circle in the picture. This picture will now serve as the basis for a
Seifert-van Kampen decomposition of S3zKp,q into two open subsets. They will be defined as open
neighborhoods of the two subsets

A0 :“ pS1 ˆ D2qzKp,q, B0 :“ pD2 ˆ S1qzKp,q.

In order to define suitable neighborhoods, let us identify a neighborhood of fpT2q in R3 with
p´1, 1q ˆ T2 such that fpT2q becomes t0u ˆ T2 Ă R3. We then define

A :“
´
S1 ˆ D̊2

¯
Y
`
p´1, 1q ˆ pT2zf´1pKp,qqq

˘
,

and

B :“
´
D̊2 ˆ S1

¯
Y
`
p´1, 1q ˆ pT2zf´1pKp,qqq

˘
.
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S1 ˆ D2

D2 ˆ S1

8

8

Figure 9. The sphere S3 “ R3 Y t8u decomposed as a union of two solid
tori whose common boundary is the “standard” embedding of T2 in R3: S3 –
BpD2 ˆD2q “ pS1 ˆD2q YT2 pD2 ˆS1q. The vertical blue line passing through the
middle is actually a circle in S3 passing through the point at 8.

By contracting the interval p´1, 1q, we can define a deformation retraction of A to A0 and then
retract further by contractng the disk D2 to its center, eventually producing a deformation retrac-
tion of A to the circle S1 ˆ t0u at the center of the inner solid torus—this is the red circle in
Figure 9 that passes through the center of each disk. In an analogous way, there is a deformation
retraction of B to the center t0u ˆ S1 of the outer solid torus, which is the blue line through 8 in
the picture, though you might prefer to perturb this to one of the parallel circles tzuˆS1 Ă D2ˆS1

for z ‰ 0, since these actually look like circles in the picture. We can now regard π1pAq and π1pBq
as separate copies of the integers whose generators we shall call a and b respectively,

π1pAq – ta | Hu, π1pBq – tb | Hu.
The intersection is

A XB “ p´1, 1q ˆ
`
T2zf´1pKp,qq

˘
»
h.e.

T2zf´1pKp,qq »
h.e.

S1.

That last homotopy equivalence deserves an explanation: if you draw T2 as a square with its
sides identified, then f´1pKp,qq looks like a straight line that periodically exits one side of the
square and reappears at the opposite side. Now draw another straight path parallel to this one (I
recommend using a different color), and you will easily see that after removing f´1pKp,qq from T2,
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what remains admits a deformation retraction to the parallel path, which is an embedded copy
of S1. We will call the generator of its fundamental group c,

π1pA XBq – tc | Hu.
According to the Seifert-van Kampen theorem (in particular Corollary 12.18, the version for finitely-
presented groups), we can now write

π1pS3zKp,qq –
 
a, b

ˇ̌
pjAq˚c “ pjBq˚c

(
,

where jA and jB denote the inclusions of A X B into A and B respectively. To interpret this
properly, we should choose a base point in AXB and picture a, b and c as represented by specific
loops through this base point, so without loss of generality, a is a loop near the boundary T2 of
S1 ˆ D2 that wraps once around the S1 direction, and b is another loop near T2 that wraps once
around the S1-direction of D2 ˆS1, which is the other dimension of T2 “ S1 ˆS1. The interesting
part is c, as it is represented by a loop in T2 that is parallel to Kp,q, thus it wraps p times around
the direction of a and q times around the direction of b. This means pjAq˚c “ ap and pjBq˚c “ bq,
so putting all of this together yields:

Theorem 14.3. π1pS3zKp,qq – ta, b | ap “ bqu. �

Example 14.4. For pp, qq “ p1, 0q, we obtain the knot group of the unknot: π1pS3zK1,0q –
ta, b | a “ eu “ tb | Hu “ Z. In particular, this is an abelian group.

Example 14.5. The knot group of the trefoil is π1pS3zK2,3q – ta, b | a2 “ b3u. We proved in
Exercise 12.19 that this group is not abelian, in contrast to Example 14.4, hence π1pS3zK2,3q and
π1pS3zK1,0q are not isomorphic.

Corollary 14.6. The knot complements R3zK1,0 and R3zK2,3 are not homeomorphic. �

Topic 2: Every group is π1 of some space. Before moving on from the Seifert-van Kampen
theorem, I would like to sketch one more application, which answers the question, “which groups
can be fundamental groups of nice spaces?” If we are only interested in finitely-presented groups
and decide that “nice” should mean “compact and Hausdorff”, then the answer turns out to be that
there is no restriction at all.

Theorem 14.7. Every finitely-presented group is the fundamental group of some compact
Hausdorff space.

Proof. The following lemma will be used as an inductive step. Suppose X0 is a compact
Hausdorff space with a finitely-presented fundamental group

π1pX0, pq –
 

taiu
ˇ̌

tRju
(
.

Then for any loop γ : pS1, 1q Ñ pX0, pq, we claim that the space

X :“ D2 Yγ X0 :“
`
D2 >X0

˘M
z „ γpzq P X0 for all z P BD2

is compact and Hausdorff with

π1pX, pq –
 

taiu
ˇ̌

tRju, rγs “ e
(
,

i.e. its fundamental group has the same generators and one new relation, defined by setting rγs P
π1pX0, pq equal to the trivial element. This claim follows easily16 from the Seifert-van Kampen
theorem using the decomposition X “ A Y B where A “ D̊2 and B is an open neighborhood

16I am glossing over the detail where we need to prove that X is also compact and Hausdorff. This is not
completely obvious, but it is yet another exercise in point-set topology that I feel justified in not explaining now
that that portion of the course is finished.
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of X0 obtained by adding a small annulus near the boundary of BD2. Since the annulus admits
a deformation retraction to BD2, we have B »

h.e.
X0, while A X B »

h.e.
S1 and A is contractible.

According to Corollary 12.18, π1pX, pq then inherits all the generators and relations of π1pBq –
π1pX0q, no new generators from π1pAq “ 0, and one new relation from the generator of π1pAXBq –
Z, whose inclusion into A is trivial, so the relation says that its inclusion into B must become the
trivial element. That inclusion is precisely rγs P π1pX0, pq, hence the claim is proved.

Now suppose G is a finitely-presented group with generators x1, . . . , xN and relations w1 “
e, . . . , wm “ e for wi P Ftx1,...,xNu. We start with a space X0 whose fundamental group is the
free group on tx1, . . . , xNu: the wedge sum of N circles will do. As the previous paragraph
demonstrates, we can then attach a 2-disk for each individual relation we would like to add to the
fundamental group, and doing this finitely many times produces a compact Hausdorff space with
the desired fundamental group. �

Topic 3: Covering spaces. We now leave the Seifert-van Kampen theorem behind and
introduce the second major tool for computing fundamental groups: the theory of covering spaces.

Definition 14.8. A map f : Y Ñ X is called a covering map (Überlagerung), or simply a
cover of X , if for every x P X , there exists an open neighborhood U Ă X such that

f´1pUq “
ď

αPJ

Vα

for a collection of disjoint open subsets tVα Ă Y uαPJ such that f |Vα
: Vα Ñ U is a homeomorphism

for each α P J . The domain Y of this map is called a covering space (Überlagerungsraum) of X .
Any subset U Ă X satisfying the conditions stated above is said to be evenly covered.

Example 14.9. The map f : R Ñ S1 : θ ÞÑ eiθ is a covering map of S1.

Example 14.10. The map S1 Ñ S1 sending eiθ to ekiθ for any nonzero k P Z is also a covering
map of S1.

Example 14.11. The n-dimensional torus Tn :“ S1 ˆ . . . ˆ S1looooooomooooooon
n

admits a covering map

Rn Ñ Tn : pθ1, . . . , θnq ÞÑ peiθ1 , . . . , eiθnq.
More generally, it is straightforward to show that given any two covering maps fi : Yi Ñ Xi for
i “ 1, 2, there is a “product” cover

Y1 ˆ Y2
f1ˆf2ÝÑ X1 ˆX2 : px1, x2q ÞÑ pf1px1q, f2px2qq.

Example 14.12. For any space X , the identity map X Ñ X is trivially a covering map.

Example 14.13. Another trivial example of a covering map can be defined for any space X
and any set J by setting Xα :“ X for every α P J and defining f :

š
αPJ Xα Ñ X as the unique

map that restricts to each Xα “ X as the identity map on X . This is a disconnected covering
map. We will usually restrict our attention to covering spaces that are connected.

Example 14.14. For each n P N, the quotient projection Sn Ñ RP
n “ Sn{„ is a covering

map.

Theorem 14.15. If X is connected and f : Y Ñ X is a cover, then the number (finite or
infinite) of points in f´1pxq Ă Y does not depend on the choice of a point x P X.

Proof. Given x P X , choose an evenly covered neighborhood U Ă X of x and write f´1pUq “Ť
αPJ Vα. Then for every y P U , |f´1pyq| “ |J |, and it follows that for every n P t0, 1, 2, 3, . . . ,8u,

the subset Xn :“ tx P X | |f´1pxq| “ nu Ă X is open. If x P Xn, notice that
Ť
m‰nXm is also

open, thus Xn is also closed, so connectedness implies Xn “ X . �
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In the setting of the above theorem, the number of points in f´1pxq is called the degree
(Grad) of the cover. If degpfq “ n, we sometimes call f an n-fold cover.

Examples 14.16. The cover S1 Ñ S1 : z ÞÑ zk from Example 14.10 has degree |k|, while the
quotient projection Sn Ñ RPn has degree 2 and the cover R Ñ S1 from Example 14.9 has infinite
degree.

Remark 14.17. Some authors strengthen the definition of a covering map f : Y Ñ X by
requiring f to be surjective. We did not require this in Definition 14.8, but notice that if X is
connected, then it follows immediately from Theorem 14.15. In practice, it is only sensible to
consider covers of connected spaces, and we shall always assume connectedness.

Note that in Definition 14.8, one should explicitly require the sets Vα Ă f´1pUq to be open.
This is important, as part of the point of that definition is that X can be covered by open neigh-
borhoods U whose preimages are homeomorphic to disjoint unions of copies of U , i.e.

f´1pUq –
ž

αPJ

U .

This is true specifically because each of the sets Vα is open, and therefore (as the complement ofŤ
β‰α Vβ) also closed in f´1pUq. To put it another way, in a covering map, every point x P X has

a neighborhood U such that f´1pUq is the disjoint union of homeomorphic neighborhoods of the
individual points in f´1pxq. An important consequence of this definition is that every covering
map f : Y Ñ X is also a local homeomorphism, meaning that for each y P Y and x :“ fpyq, f
maps some neighborhood of y homeomorphically to some neighborhood of x.

15. The lifting theorem

Almost every result in covering space theory is based on the answer to the following question:
given a map f : A Ñ X and a covering map p : Y Ñ X , can f be “lifted” to a map f̃ : A Ñ Y

satisfying p ˝ f̃ “ f? This problem can be summarized with the diagram

(15.1)
Y

A X

p
f̃

f

in which the maps f and p are given, but the dashed arrow for f̃ indicates that we do not know
whether such a map exists. If it does, then we call f̃ a lift of f to the cover. It is easy to see that
lifts do not always exist: take for instance the cover p : R Ñ S1 : θ ÞÑ eiθ and let f : S1 Ñ S1

be the identity map. A lift f̃ : S1 Ñ R would need to associate to every eiθ P S1 some point
φ :“ f̃peiθq such that eiφ “ eiθ. It is easy to define a function that does this, but can we make it
continuous? If it were continuous, then f̃peiθq would have to increase by 2π as eiθ turns around
the circle from θ “ 0 to θ “ 2π, producing two values f̃pe2πiq “ f̃p1q ` 2π even though e2πi “ 1.
The goal of this lecture is to determine precisely which maps can be lifted to which covering spaces
and which cannot.

We start with the following observation: choose base points a P A and x P X to make
f : pA, aq Ñ pX, xq into a pointed map. Then if a lift f̃ : A Ñ Y exists and we set y :“ f̃paq to
make f̃ a pointed map, p now becomes one as well since ppyq “ ppf̃paqq “ fpaq “ x, hence (15.1)
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becomes a diagram of pointed maps and induces a corresponding diagram of group homomorphisms

(15.2)

π1pY, yq

π1pA, aq π1pX, xq.

p˚
f̃˚

f˚

The existence of this diagram implies a nontrivial condition that relates the homomorphisms f˚

and p˚ but has nothing intrinsically to do with the lift: it implies im f˚ Ă im p˚, i.e. these are
two subgroups of π1pX, xq, and one of them must be contained in the other. The lifting theorem
states that under some assumptions that are satisfied by most reasonable spaces, this necessary
condition is also sufficient.

Theorem 15.1 (lifting theorem). Assume X,Y,A are all path-connected spaces, A is also
locally path-connected, p : pY, y0q Ñ pX, x0q is a base-point preserving covering map and f :

pA, a0q Ñ pX, x0q is a base-point preserving map. Then a (continuous) lift f̃ : A Ñ Y of f exists
if and only if

f˚ pπ1pA, a0qq Ă p˚ pπ1pY, y0qq ,
and in that case there is exactly one lift satisfying f̃pa0q “ y0.

Let us discuss some applications before we get to the proof.

Corollary 15.2. For any covering map p : Y Ñ X between path-connected spaces and any
space A that is simply connected and locally path-connected, every map f : A Ñ X can be lifted
to Y . �

Corollary 15.3. For every base-point preserving covering map p : pY, y0q Ñ pX, x0q between
path-connected spaces, the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q is injective.

Proof. Suppose γ̃ : pS1, 1q Ñ pY, y0q is a loop such that p˚rγ̃s “ e P π1pX, x0q. Then
γ :“ p ˝ γ̃ : pS1, 1q Ñ pX, x0q admits an extension u : pD2, 1q Ñ pX, x0q with u|BD2 “ γ. But D2 is
simply connected, so u admits a lift ũ : pD2, 1q Ñ pY, y0q satisfying p ˝ ũ “ u, thus p ˝ ũ|BD2 “ γ

implies that ũ|BD2 : pS1, 1q Ñ pY, y0q is a lift of γ. Uniqueness of lifts then implies ũ|BD2 “ γ̃ and
thus rγ̃s “ e P π1pY, y0q. �

Corollary 15.4. If X is simply connected, then every path-connected covering space of X is
also simply connected. �

Example 15.5. Corollary 15.4 implies that there does not exist any covering map S1 Ñ R.

Here is an application important in complex analysis. Observe that

p : C Ñ C˚ :“ Czt0u : z ÞÑ ez

is a covering map. Writing ppx` iyq “ exeiy, we can picture p as a transformation from Cartesian
to polar coordinates: it maps every horizontal line tIm z “ constu to a ray in C˚ emanating from
the origin, and every vertical line tRe z “ constu to a circle in C˚, which it covers infinitely many
times. This shows that p is not bijective, so it has no global inverse, but it will admit inverses if we
restrict it to suitably small domains, and it is useful to know what domains will generally suffice
for this. In other words, we would like to know which open subsets U Ă C˚ can be the domain of
a continuous function

log : U Ñ C such that elog z “ z for all z P U .
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For simplicity, we will restrict our attention to path-connected17 domains and also assume 1 P U ,
so that we can adopt the convention logp1q :“ 0. Defining f : pU , 1q ãÑ pC˚, 1q as the inclusion,
the desired function log : pU , 1q Ñ pC, 0q will then be the unique solution to the lifting problem

pC, 0q

pU , 1q X

p
log

f

Theorem 15.1 now gives the answer: log : U Ñ C exists if and only if f˚pπ1pU , 1qq Ă p˚pπ1pC, 0qq “
0, or in other words, if every loop in U can be extended to a map D2 Ñ C˚. Using the notion of
the winding number from Exercise 10.26, this is the same as saying every loop γ : S1 Ñ U satisfies
windpγ; 0q “ 0. For example, log : U Ñ C can be defined whenever U is simply connected, or if U
has the shape of an annulus whose outer circle does not enclose the origin. Examples that do not
work include any annulus whose inner circle encloses the origin: this will always contain a loop
that winds nontrivially around the origin, so that trying to define log along this loop produces a
function that shifts by 2πi as one rotates fully around the loop. Notice that when log : U Ñ C

exists, it is uniquely determined by the condition logp1q “ 0; without this one could equally well
modify any given definition of log by adding integer multiples of 2πi.

The proof of the lifting theorem requires two lemmas that are also special cases of the theorem.
We assume for the remainder of this lecture that pY, y0q pÑ pX, x0q is a covering map and X , Y
and A are all path-connected.

Lemma 15.6 (the path lifting property). Every path γ : pI, 0q Ñ pX, x0q has a unique lift
γ̃ : pI, 0q Ñ pY, y0q.

Proof. Since I is compact, we can find a finite partition 0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that for each j “ 1, . . . , N , the image of γj :“ γ|rtj´1,tjs lies in an evenly covered open subset
Uj Ă X with p´1pUjq “ Ť

αPJ Vα. Now given any y P p´1pγptj´1qq, we have y P Vα for a unique
α P J , and γj has a unique lift γ̃j : rtj´1, tjs Ñ Y with γ̃jptj´1q “ y, defined by

γ̃j “ pp|Vα
q´1 ˝ γj .

With this understood, the unique lift γ̃ of γ with γ̃p0q “ y0 can be constructed by lifting γ̃1 as
explained above, then lifting γ̃2 with starting point γ̃2pt1q :“ γ̃1pt1q, and continuing in this way to
cover the entire interval. �

Lemma 15.7 (the homotopy lifting property). Suppose H : I ˆ A Ñ X is a homotopy with
Hp0, ¨q “ f : A Ñ X, and f̃ : A Ñ Y is a lift of f . Then there exists a unique lift rH : I ˆA Ñ Y

of H satisfying rHp0, ¨q “ f̃ .

Proof. The previous lemma implies that each of the paths s ÞÑ Hps, aq P X for a P A

have unique lifts s ÞÑ rHps, aq P Y with rHp0, aq “ f̃paq. One should then check that the map
rH : I ˆA Ñ Y defined in this way is continuous; I leave this as an exercise. �

Proof of Theorem 15.1. We shall first define an appropriate map f̃ : A Ñ Y and then
show that the definition is independent of choices. Its uniqueness will be immediately clear, but its
continuity will not be: in the final step we will use the hypothesis that A is locally path-connected
in showing that f̃ is continuous.

17Since U Ă C˚ is open, it is locally path-connected, thus it will automatically be path-connected if it is
connected.
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Given a P A, choose a path a0
α
 a, giving a path x0

f˝α
 fpaq, which lifts via Lemma 15.6 to

a unique path Ćf ˝ α in Y that starts at y0. If a lift f̃ exists, it clearly must satisfy

f̃paq “ Ćf ˝ αp1q.
We claim that this point in Y does not depend on the choice of the path α and thus gives a

well-defined (though not necessarily continuous) map f̃ : A Ñ Y . Indeed, suppose a0
β
 a is

another path. Then α ¨ β´1 is a loop based at a0 and thus represents an element of π1pA, a0q, and
f˚rα ¨β´1s P π1pX, x0q is represented by the loop pf ˝αq ¨ pf ˝ β´1q. The hypothesis im f˚ Ă im p˚

then implies the existence of a loop y0
γ̃
 y0 in Y such that

rpf ˝ αq ¨ pf ˝ β´1qs “ p˚rγ̃s “ rp ˝ γ̃s,
so there is a homotopy H : I2 Ñ X with Hp0, ¨q “ γ :“ p ˝ γ̃, Hp1, ¨q “ pf ˝ αq ¨ pf ˝ β´1q, and
Hps, 0q “ Hps, 1q “ x0 for all s P I. Notice that γ̃ is a lift of γ : pI, 0q Ñ pX, x0q. Now Lemma 15.7
provides a lift rH : I2 Ñ Y of H with rHp0, ¨q “ γ̃. In this homotopy, the paths s ÞÑ rHps, 0q and
s ÞÑ rHps, 1q are lifts of the constant path Hp¨, 0q “ Hp¨, 1q ” x0 starting at γ̃p0q “ γ̃p1q “ y0, so the
uniqueness in Lemma 15.6 implies that both are also constant paths, hence rHps, 0q “ rHps, 1q “ y0
for all s P I. This shows that the unique lift of pf ˝ αq ¨ pf ˝ β´1q to a path in Y starting at y0 is
actually a loop, i.e. its end point is also y0: indeed, this lift is rHp1, ¨q. This lift is necessarily the
concatenation of the lift Ćf ˝ α of f ˝ α starting at y0 with the lift of f ˝ β´1 starting at Ćf ˝ αp1q.
Since it ends at y0, we conclude that this second lift is simply the inverse of Ćf ˝ β, implying that

Ćf ˝ αp1q “ Ćf ˝ βp1q,
which proves the claim.

It remains to show that f̃ : A Ñ Y as defined by the above procedure is continuous. Given
a P A with x “ fpaq P X and y “ f̃paq P Y , choose any neighborhood V Ă Y of y that is small
enough for U :“ ppVq Ă X to be an evenly covered neighborhood of x, with p|V : V Ñ U a
homeomorphism. It will suffice to show that a has a neighborhood O Ă A with f̃pOq Ă V . Since
A is locally path-connected, we can choose O Ă f´1pUq to be a path-connected neighborhood of a,

fix a path a0
γ
 a in A and, for any a1 P O, choose a path a

β
 a1 in O. Now γ ¨ β is a path from

a0 to a1, so
f̃paq “ Ćf ˝ γp1q “ y P V and f̃pa1q “ Ćf ˝ γ ¨ Ćf ˝ βp1q,

where Ćf ˝ β is the unique lift of f ˝ β starting at y. Since f ˝ β lies entirely in the evenly covered
neighborhood U , this second lift is simply pp|Vq´1 ˝ pf ˝ βq, which lies entirely in V , proving
f̃pa1q P V . �

Example 15.8. If the local path-connectedness assumption on A is dropped, then the proof
above gives a procedure for defining a unique lift f̃ : A Ñ Y , but it may fail to be continuous. A
concrete example is depicted in [Hat02, p. 79], Exercise 7. The idea is to take the usual circle
S1 Ă R2 but replace a portion just to the right of the top point p0, 1q with a curve resembling
the graph of the function y “ sinp1{xq ` 1. The resulting space A is simply connected but not
locally path-connected: to see the latter, note that small neighborhoods of p0, 1q in A are never
path-connected because there is no continuous path starting on the infinitely oscillating sine curve
and ending at p0, 1q. The space is nonetheless path-connected and even simply connected because
one can connect two such points to each other by going the other way around the circle, and
such paths are unique up to homotopy. Now consider the covering map R Ñ S1 : θ ÞÑ eiθ and
a continuous map f : A Ñ S1 defined as the identity on most of A, but projecting the graph of
y “ sinp1{xq ` 1 to the circle in the obvious way near p0, 1q. One can define a lift f̃ : A Ñ R
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by choosing f̃p0, 1q to be any point in p´1pfp0, 1qq and then lifting paths to define f̃ everywhere
else. But since every neighborhood of p0, 1q contains some points that cannot be reached except
by paths rotating almost all the way around the circle, this neighborhood will contain points a P A
for which f̃paq differs from f̃p0, 1q by nearly 2π. In particular, f̃ cannot be continuous at p0, 1q.

16. Classification of covers

Throughout this lecture, all spaces should be assumed path-connected and locally path-connected
unless otherwise noted. We will occasionally need a slightly stronger condition, which we will ab-
breviate with the word “reasonable”:18

Definition 16.1. We will say that a space X is reasonable if it is path-connected and locally
path-connected, and every point x P X has a simply connected neighborhood.

For the purposes of the theorems in this lecture, the definition of the term “reasonable” can
be weakened somewhat at the expense of making it more complicated, but we will stick with the
above definition since it is satisfied by almost all spaces we would ever like to consider. A popular
example of an “unreasonable” space is the so-called Hawaiian earring, see Exercise 13.2(c).

We will state several theorems in this lecture related to the problem of classifying covers of
a given space. All of them are in some way applications of the lifting theorem (Theorem 15.1).
Before stating them, we need to establish what it means for two covers of the same space to be
“equivalent”.

Definition 16.2. Given two covers pi : Yi Ñ X for i “ 1, 2, a map of covers from p1 to p2
is a map f : Y1 Ñ Y2 such that p2 ˝ f “ p1, i.e. the following diagram commutes:

(16.1)
Y1 Y2

X

f

p1
p2

We call f an isomorphism of covers if it is additionally a homeomorphism, and say in this case
that the two covers p1 and p2 are isomorphic (or equivalent). If base points x P X and yi P Yi
are specified such that pi : pYi, yiq Ñ pX, xq and f : pY1, y1q Ñ pY2, y2q are also pointed maps,
then we call f an isomorphism of pointed covers. In the case where p1 and p2 are both the
same cover p : Y Ñ X , an isomorphism of covers from p to itself is called a deck transformation
(Decktransformation) of p : Y Ñ X .

The terms covering translation and automorphism are also sometimes used as synonyms
for “deck transformation”. The set of all deck transformations of a given cover p : Y Ñ X forms a
group, called the automorphism group

Autppq :“
 
f : Y Ñ Y

ˇ̌
f is a homeomorphism such that p ˝ f “ p

(
,

where the group operation is defined by composition of maps.

Example 16.3. For the cover p : R Ñ S1 : θ ÞÑ eiθ, Autppq consists of all maps fk : R Ñ R of
the form fkpθq “ θ ` 2πk for k P Z, so in particular, Autppq is isomorphic to Z.

Example 16.4. Figure 10 illustrates a covering map p : Y Ñ S1 _ S1 of degree 3. If we label
the base point of S1 _S1 as x, then the three elements of p´1pxq Ă Y are the three dots in the top
portion of the diagram: label them y1, y2 and y3 from bottom to top. The covering map is defined
such that each loop or path beginning and ending at any of the points y1, y2, y3 is sent to the

18This is not a universally standard term.
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a

bb

b

b

a

a

a

Figure 10. A 3-fold cover of S1 _ S1 with trivial automorphism group.

loop in S1 _ S1 labeled by the same letter with the orientations of the arrows matching. Suppose
f : Y Ñ Y is a deck transformation satisfying fpy1q “ y2. Then since f is a homeomorphism, it
must map the loop labeled a based at y1 to a loop based at y2 that also must be labeled a. But no
such loop exists, so we conclude that there is no deck transformation sending y1 to y2. By similar
arguments, it is not hard to show that the only deck transformation of this cover is the identity
map, in other words, Autppq is the trivial group.

Almost everything we will be able to prove about maps of covers is based on the following
observation: if the diagram (16.1) commutes, it means that f : Y1 Ñ Y2 is a lift of the map
p1 : Y1 Ñ X to the cover Y2, i.e. in our previous notation for lifts, f “ p̃1. The fact that p1 itself is
a covering map is irrelevant for this observation. Now if all the spaces involved are path-connected
and locally path-connected, the lifting theorem gives us a condition characterizing the existence
and uniqueness of a map of covers: for any choices of base points x P X , y1 P p´1

1 pxq Ă Y1 and
y2 P p´1

2 pxq Ă Y2, a map of covers f : Y1 Ñ Y2 satisfying fpy1q “ y2 exists (and is unique) if and
only if

pp1q˚π1pY1, y1q Ă pp2q˚π1pY2, y2q.
This map will then be an isomorphism if and only if there exists a map of covers going the other
direction, and the latter exists if and only if the reverse inclusion holds. This proves:

Theorem 16.5. Two covers pi : Yi Ñ X for i “ 1, 2 are isomorphic if and only if for some
choice of base points x P X and yi P p´1

i pxq Ă Yi for i “ 1, 2, the subgroups pp1q˚π1pY1, y1q and
pp2q˚π1pY2, y2q in π1pX, xq are identical. �

Next we use the same perspective to study deck transformations of a single cover p : Y Ñ X .
Given x P X and y1, y2 P p´1pxq Ă Y , the uniqueness of lifts implies that there exists at most
one deck transformation f : Y Ñ Y sending y1 to y2. We’ve seen in Example 16.4 that this
transformation might not always exist.

Definition 16.6. A cover p : Y Ñ X is called regular (or equivalently normal) if for every
x P X and all y1, y2 P p´1pxq Ă Y , there exists a deck transformation sending y1 to y2.

Exercise 16.7. Show that if p : Y Ñ X is a covering map of path-connected and locally path-
connected spaces, then p is also regular if the following slightly weaker condition holds: for some
fixed x P X , any two elements y1, y2 P p´1pxq Ă X satisfy y2 “ fpy1q for some deck transformation
f P Autppq.

If degppq ă 8, the previous remarks about uniqueness of deck transformations imply |Autppq| ď
degppq, and equality is satisfied if and only if p is regular. By the lifting theorem, the desired deck
transformation sending y1 to y2 will exist if and only if

(16.2) p˚π1pY, y1q “ p˚π1pY, y2q.
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Let us try to translate this into a condition for recognizing when p is regular. Recall that any path

y1
γ̃
 y2 in Y determines an isomorphism

Φγ̃ : π1pY, y2q Ñ π1pY, y1q : rαs ÞÑ rγ̃ ¨ α ¨ γ̃´1s.
Since y1 and y2 are both in p´1pxq, the projection of this concatenation down to X gives a
concatenation of loops, i.e. γ :“ p˝ γ̃ is a loop x x and thus represents an element rγs P π1pX, xq.
Now in order to check whether (16.2) holds, we can represent an arbitrary element of π1pY, y1q as
Φγ̃rαs for some loop y2

α
 y2, and then observe

p˚Φγ̃rαs “ rp ˝ pγ̃ ¨ α ¨ γ̃´1qs “ rγ ¨ pp ˝ αq ¨ γ´1s “ rγsp˚rαsrγs´1.

This proves that the subgroup p˚π1pY, y1q Ă π1pX, xq is the conjugate of p˚π1pY, y2q Ă π1pX, xq
by the specific element rγs P π1pX, xq, so the desired deck transformation exists if and only if
p˚π1pY, y2q is invariant under conjugation with rγs. We could now ask the same question about
deck transformations sending yi to y2 for arbitrary yi P p´1pxq, and the answer in each case can be
expressed in terms of conjugation of p˚π1pY, y2q by some element rγs P π1pX, xq for which the loop

γ lifts to a path yi
γ̃
 y2. Now observe: any loop x

γ
 x can arise in this way for some choice of

yi P p´1pxq. Indeed, if γ is given, then γ´1 has a unique lift to a path from y2 to some other point
in p´1pxq, and the inverse of this path is then a lift of γ. Using Exercise 16.7 above, the question
of regularity therefore reduces to the question of whether p˚π1pY, y2q is invariant under arbitrary
conjugations, and we have thus proved:

Theorem 16.8. If Y and X are path-connected and locally path-connected, then a cover p :

pY, y0q Ñ pX, x0q is regular if and only if the subgroup p˚π1pY, y0q Ă π1pX, x0q is normal. �

Notice that while the algebraic condition in this theorem appears to depend on a choice of base
points, the condition of p being regular clearly does not. It follows that if p˚π1pY, y0q Ă π1pX, x0q
is a normal subgroup, then this condition will remain true for any other choice of base points x P X
and y P p´1pxq Ă Y .

The next two results require the restriction to “reasonable” spaces in the sense of Definition 16.1.

Theorem 16.9 (the Galois correspondence). If X is a reasonable space with base point x0 P X,
there is a natural bijection from the set of all isomorphism classes of pointed covers p : pY, y0q Ñ
pX, x0q to the set of all subgroups of π1pX, x0q: it is defined by

rp : pY, y0q Ñ pX, x0qs ÞÑ p˚π1pY, y0q.
It is easy to verify from the definition of isomorphism for covers that the map in this theorem is

well defined, and we proved in Theorem 16.5 that it is injective. Surjectivity will be a consequence
of the folloing result, which will be proved in the next lecture.

Theorem 16.10. Every reasonable space admits a simply connected covering space.

Notice that if pi : pYi, yiq Ñ pX, x0q for i “ 1, 2 are two reasonable covers satisfying π1pY1q “
π1pY2q “ 0, then Theorem 16.5 implies that they are isomorphic covers. For this reason it is
conventional to abuse terminology slightly by referring to any simply connected cover of a given
space X as “the” universal cover (universelle Überlagerung) of X . It is often denoted by rX.

Examples 16.11. The universal cover ĂS1 of S1 is R, due to the covering map R Ñ S1 : θ ÞÑ eiθ.
Similarly, ĄRPn – Sn for n ě 2, and ĂTn – Rn.

A substantially less obvious class of examples is given by the surfaces Σg of genus g ě 2:
these have universal cover rΣg – R2. A standard construction of this cover comes from hyperbolic
geometry, where instead of R2 we consider the open disk D̊2 with a Riemannian metric that has
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constant negative curvature. One can identify each of the surfaces Σg with the quotient of D̊2 by
a suitable group of isometries and then define a covering map D̊2 Ñ Σg as the quotient projection.

For the remainder of this lecture, fix a base-point preserving covering map p : pY, y0q Ñ pX, x0q
where X and Y are assumed reasonable, and denote

G :“ π1pX, x0q, H :“ p˚π1pY, y0q Ă G.

If H is not a normal subgroup, then there is no natural notion of a quotient group G{H , but we
can still define G{H as the set of left cosets

G
M
H “

 
gH Ă G

ˇ̌
g P G

(
,

where gH denotes the subset tgh | h P Hu Ă G. One can similarly consider the set of right cosets

H
I
G “

 
Hg Ă G

ˇ̌
g P G

(
.

These two sets are identical if and only if H is normal, in which case both are denoted by G{H
and they form a group. With or without this condition, G

M
H and G

I
H have the same number

(finite or infinite) of elements, which is called the index of H in G and denoted by

rG : Hs :“
ˇ̌
ˇG

M
H
ˇ̌
ˇ “

ˇ̌
ˇH

I
G
ˇ̌
ˇ .

In the following we will make repeated use of the fact that for any y P p´1px0q, any path y0
γ̃
 y

gives rise to a loop γ :“ p ˝ γ̃ based at x0, and conversely, any such loop gives rise to a path that
starts at y0 and ends at some point in p´1px0q.

Lemma 16.12. There is a natural bijection

Φ : p´1px0q Ñ H
I
G : y ÞÑ Hrγs,

where x0
γ
 x0 is any loop that lifts to a path y0

γ̃
 y.

Corollary 16.13. degppq “ rG : Hs. �

Proof of Lemma 16.12. We first show that Φ is well defined. Given two choices of paths
α̃, β̃ from y0 to y, we have loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0, and α̃ ¨ β̃´1 is a loop based
at y0. We therefore have

rαsrβs´1 “ rp ˝ pα̃ ¨ β̃´1qs “ p˚rα̃ ¨ β̃´1s P H,
implying Hrαs “ Hrβs.

The surjectivity of Φ is obvious: given rγs P G, there exists a lift γ̃ of γ to a path from y0 to
some point y P p´1px0q, so Φpyq “ Hrγs.

To see that Φ is injective, suppose Φpyq “ Φpy1q, choose paths y0
α̃
 y and y0

β̃
 y1, giving rise

to loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0 such that

Hrαs “ Φpyq “ Φpy1q “ Hrβs,

thus rαsrβs´1 P H . It follows that there exists a loop y0
γ̃
 y0 projecting to γ :“ p ˝ γ̃ such that

rα ¨ β´1s “ rγs, hence rαs “ rγs ¨ rβs, so α is homotopic to γ ¨ β with fixed end points. Since γ lifts
to a loop γ̃ and homotopies can also be lifted, we conclude that α̃ is homotopic to γ̃ ¨ β̃ with fixed
end points, implying y “ α̃p1q “ β̃p1q “ y1. �
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If the cover is regular so H Ă G is normal, then degppq “ |Autppq|, and Corollary 16.13
therefore implies that Autppq has the same order as the quotient group G{H . The next result
should then seem relatively unsurprising.

Theorem 16.14. For a regular cover p : pY, y0q Ñ pX, x0q of reasonable spaces with π1pX, x0q “
G and p˚π1pY, y0q “ H Ă G, there exists a group isomorphism

Ψ : Autppq Ñ G{H : f ÞÑ rγsH,

where x0
γ
 x0 is any loop that has a lift to a path from y0 to fpy0q.

Notice that the universal cover p : p rX, x̃0q Ñ pX, x0q is automatically regular since the trivial
subgroup of π1pX, x0q is always normal, so applying this theorem to the universal cover gives:

Corollary 16.15. For the universal cover p : p rX, x̃0q Ñ pX, x0q, there is an isomorphism
Autppq Ñ π1pX, x0q sending each deck transformation f to the homotopy class of any loop x0  x0
that lifts to a path x̃0  fpx̃0q. �

Proof of Theorem 16.14. Regularity implies that the map Autppq Ñ p´1px0q : f ÞÑ fpy0q
is bijective, so Ψ is then well defined and bijective due to Lemma 16.12. For the identity element
Id P Autppq, we have ΨpIdq “ rγsH for any loop γ that lifts to a loop from y0 to Idpy0q “ y0, which
means rγs P H , so rγsH is the identity element in G{H .

It remains to show that Ψpf ˝ gq “ ΨpfqΨpgq for any two deck transformations f, g P Autppq.
Choose loops α, β based at x0 which lift to paths y0

α̃
 fpy0q and y0

β̃
 gpy0q. Then f ˝ β̃ is a path

from fpy0q to f ˝ gpy0q and can thus be concatenated with α̃, forming a path

y0
α̃¨pf˝β̃q
 f ˝ gpy0q.

Now since f P Autppq, p ˝ f “ p implies p ˝ pf ˝ β̃q “ p ˝ β̃ “ β, thus

Ψpf ˝ gq “ rp ˝ pα̃ ¨ pf ˝ β̃qqs “ rαsrβs “ ΨpfqΨpgq.
�

Corollary 16.15 says that we can compute the fundamental group of any reasonable space X if
we can understand the deck transformations of its universal cover. Combining this with the natural
bijection Autppq Ñ p´1px0q that sends each deck transformation to its image on the base point,
we also obtain from this an intuitively appealing interpretation of the meaning of π1pX, x0q: every
loop γ based at x0 lifts uniquely to a path starting at x̃0 and ending at some point in p´1px0q. As
far as π1pX, x0q is concerned, all that matters is the end point of the lift: two loops are equivalent
in π1pX, x0q if and only if their lifts to rX have the same end point, and a loop is trivial in π1pX, x0q
if and only if its lift to rX is also a loop.

Example 16.16. Applying Corollary 16.15 to the cover p : R Ñ S1 : θ ÞÑ eiθ reproduces the
isomorphism π1pS1, 1q – Z we discussed at the end of Lecture 9. The loop γkptq :“ e2πikt in S1

for each k P Z lifts to R with base point 0 as the path γ̃kptq “ 2πkt.

Example 16.17. For each n ě 2, Corollary 16.15 implies π1pRPnq – Z2, as this is the auto-
morphism group of the universal cover p : Sn Ñ RP

n, defined as the natural quotient projection.
Concretely, after fixing base points x0 P RP

n and y0 P p´1px0q Ă Sn, each loop in RP
n based at

x0 lifts to Sn as a path that starts at y0 and ends at either y0 or its antipodal point ´y0. The
nontrivial element of π1pRPn, x0q is thus represented by any loop whose lift to Sn starts and ends
at antipodal points.
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17. The universal cover and group actions

In Theorem 16.14, we saw a formula that can be used to compute the automorphism group of
any regular cover as a quotient of two fundamental groups. I want to mention how this generalizes
for non-regular covers: we will not prove this generalization, but if you’re curious, you can read a
proof in [Hat02, Prop. 1.39], and the arguments involved will by this point seem very familiar.

Theorem 17.1. For any covering map p : pY, y0q Ñ pX, x0q of reasonable spaces with π1pX, x0q “
G and p˚π1pY, y0q “ H Ă G, there is a natural isomorphism Autppq Ñ NpHq{H, where NpHq
denotes the normalizer (Normalisator) of H in G, meaning the largest subgroup of G in which
H is a normal subgroup. �

Notice that there always exists a subgroup of G in which H is normal, e.g. H itself is such a
subgroup, and it may well happen that no larger subgroup satisfies this condition, in which case
NpHq “ H and Autppq is therefore trivial. If H is normal in G, then NpHq “ G and the cover is
therefore regular, hence Theorem 17.1 reduces to Theorem 16.14.

We will not discuss Theorem 17.1 any further, but we have some unfinished business from the
previous lecture: it remains to prove the surjectivity of the Galois correspondence (Theorem 16.9),
and the existence of the universal cover (Theorem 16.10). The latter is actually a special case of
the former: recall from Corollary 15.3 that the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q induced
by a covering map p : pY, y0q Ñ pX, x0q is always injective, thus the existence of a universal cover
amounts to the statement that the image of the Galois correspondence includes the trivial subgroup
of π1pX, x0q. We will prove this first, and then use it to deduce the Galois correspondence in full
generality.

As before, we need to restrict our attention to “reasonable spaces,” meaning spaces that are
path-connected and locally path-connected, and in which every point has a simply connected
neighborhood. The first two conditions are needed in order to apply the lifting theorem, which we
used several times in the previous lecture. The third condition has not yet been used, but this is the
moment where we will need it. In constructing a universal cover p : p rX, x̃0q Ñ pX, x0q, the theorems
at the end of the previous lecture give some useful intuition on what to aim for: in particular,
there needs to be a one-to-one correspondence between p´1px0q Ă rX and π1pX, x0q. What we will
actually construct is a cover for which these two sets are not just in bijective correspondence but
are literally the same set. In set-theoretic terms, the construction is quite straightforward, but
giving it a topology that makes it a covering map is a bit subtle—that is where we will need to
assume that simply connected neighborhoods exist.

Proof of Theorem 16.10 (the universal cover). We will not give every detail but sketch
the main idea. Given a reasonable space X with base point x0 P X , define the set

rX :“ tpaths γ : pI, 0q Ñ pX, x0qu
L

„
h`
,

i.e. it is the set of all equivalence classes of paths that start at the base point, with equivalence
defined as homotopy with fixed end points. Since this definition does not specify the end point of
any path but the equivalence relation leaves these end points unchanged, we obtain a natural map

p : rX Ñ X : rγs ÞÑ γp1q,
which is obviously surjective since X is path-connected. Notice that p´1px0q “ π1pX, x0q.

We claim that rX can be assigned a topology that makes p : rX Ñ X into a covering map. To
see this, suppose U Ă X is a path-connected subset and iU : U ãÑ X denotes its inclusion. The
induced homomorphism iU˚ : π1pU , xq Ñ π1pX, xq is trivial if and only if every loop S1 Ñ U based
at x can be extended to a map D2 Ñ X . Notice that this is weaker in general than demanding
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an extension D2 Ñ U ; the latter would mean that U is simply connected, but we do not want to
assume this. Notice also that if this condition holds for some choice of base point x P U , then the
usual change of base-point arguments imply that it will hold for any other base point y P U , thus
we can sensibly speak of the condition that iU˚ : π1pUq Ñ π1pXq is trivial. With this understood,
consider the collection of sets

B :“
 
U Ă X

ˇ̌
U is open and path-connected and iU˚ : π1pUq Ñ π1pXq is trivial

(
.

It is a straightforward exercise to verify the following properties:
(1) U P B if and only if for every pair of paths α, β in U with the same end points, α and β

are homotopic in X with fixed end points (cf. Corollary 9.11).
(2) If U P B and V Ă U is a path-connected open subset, then V P B.
(3) B is a base for the topology of X .

In particular, the third property holds because X is reasonable: every point x P X has a simply
connected neighborhood, which contains an open neighborhood that necessarily belongs to B, and
it follows that every open subset of X is a union of such sets.

Now for any U P B with a point x P U and a path γ in X from x0 to x, let

Urγs :“
!

rγ ¨ αs P rX
ˇ̌
ˇ α is a path in U starting at x

)
.

Notice that Urγs depends only on the homotopy class rγs P rX ; this relies on the fact that since
U P B, the path α in the definition above is uniquely determined up to homotopy in X by its end
point. It follows in fact that p : rX Ñ X restricts to a bijection

Urγs
pÑ U .

With all this in mind, one can now show that

rB :“
!
Urγs Ă rX

ˇ̌
ˇ U P B and rγs P rX with γp1q P U

)

is a base for a topology on rX such that each U P B is evenly covered by p : rX Ñ X .
There is an obvious choice of base point in rX : define x̃0 P rX as the homotopy class of

the constant path at x0. It remains to prove that π1p rX, x̃0q “ 0. Since we now know that
p : p rX, x̃0q Ñ pX, x0q is a covering map, Corollary 15.3 implies that p˚ : π1p rX, x̃0q Ñ π1pX, x0q is
injective, thus it will suffice to show that the subgroup p˚π1p rX, x̃0q in π1pX, x0q is trivial. This
subgroup is the set of homotopy classes rγs P π1pX, x0q for which the loop γ lifts to a loop γ̃ based
at x̃0. The lift of γ to rX can be written as

γ̃ptq “ rγts P rX,
where for each t P I we define

γtpsq :“
#
γpsq for 0 ď s ď t,

γptq for t ď s ď 1.

Then assuming γ̃ is a loop, we find γ̃p1q “ rγs “ γ̃p0q “ rconsts, which is simply the statement
that γ is homotopic with fixed end points to a constant loop, hence rγs P π1pX, x0q is the trivial
element. �

I do not have the energy to draw the picture myself, but I highly recommend looking at
the picture of the universal cover of S1 _ S1 on page 59 of [Hat02]. The idea here is that for
every homotopically nontrivial loop in S1 _ S1, one obtains a non-closed path in the universal
cover rX. One can thus construct rX one path at a time if one denotes by a and b the generators
of π1pS1 _ S1, xq – Fta,bu: at each step, the loops a, b, a´1 and b´1 furnish four homotopically
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distinct choices of loops to traverse, which lift to four distinct paths in rX from one copy of the base
point to another. Starting at the natural base point x̃0 and following this procedure recursively
produces the fractal picture in [Hat02, p. 59].

The application to the Galois correspondence requires a brief digression on topological groups
and group actions.

Definition 17.2. A topological group (topologische Gruppe) is a group G with a topology
such that the maps

G ˆG Ñ G : pg, hq ÞÑ gh and G Ñ G : g ÞÑ g´1

are both continuous.

Popular examples of topological groups include the various subgroups of the real or com-
plex general linear groups GLpn,Rq and GLpn,Cq, e.g. the orthogonal group Opnq and unitary
group Upnq, the special linear groups SLpn,Rq and SLpn,Cq, and so forth. We saw in Exercise 7.27
that for any locally compact and locally connected Hausdorff space X , the group of homeomor-
phisms HomeopXq is a topological group with the group operation defined by composition. Finally,
any group can be regarded as a topological group if we assign to it the discrete topology; this fol-
lows from the fact that every map on a space with the discrete topology is continuous. Topological
groups with the discrete topology are often referred to as discrete groups.

Definition 17.3. Given a topological group G and a space X , a (continuous) G-action
(Wirkung) on X is a (continuous) map

GˆX Ñ X : pg, xq ÞÑ g ¨ x
such that the identity element e P G satisfies e ¨ x “ x for all x P X and pghq ¨ x “ g ¨ ph ¨ xq holds
for all g, h P G and x P X .

Notice that for any G-action on X , there is a natural group homomorphism G Ñ HomeopXq
sending g P G to the homeomorphism ϕg : X Ñ X defined by ϕgpxq “ g ¨ x. If G is a discrete
group then the converse is also true: every group homomorphism G Ñ HomeopXq comes from a
G-action on X .

Example 17.4. For any covering map p : Y Ñ X , Autppq acts as a discrete group on Y by
f ¨ y :“ fpyq.

Example 17.5. Regarding Z2 as a discrete group, a Z2-action on any space X is determined
by the homeomorphism ϕ1 : X Ñ X associated to the nontrivial element 1 P Z2, and this is
necessarily an involution, i.e. it is its own inverse. A frequently occurring example is the action
of Z2 on Sn defined via the antipodal map x ÞÑ ´x.

Example 17.6. Here is a non-discrete example: any subgroup of the orthogonal group Opnq
acts on Sn´1 Ă Rn by matrix-vector multiplication, A ¨ x “ Ax.

For any G-action on X and a subset U Ă X , we denote

g ¨ U :“ tg ¨ x | x P Uu Ă X.

Similarly, for each point x P X , we define its orbit (Bahn) as the subset

G ¨ x :“ tg ¨ x | g P Gu Ă X.

One can easily check that for any two points x, y P X , their orbits G ¨x and G ¨y are either identical
or disjoint, thus there is an equivalence relation „ on X such that x „ y if and only if G ¨x “ G ¨y.
The quotient topological space defined by this equivalence relation is denoted by

X{G :“ X{„ “ torbits G ¨ x Ă X | x P Xu.
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Example 17.7. The quotient Sn{Z2 arising from the action in Example 17.5 is RP
n.

Proposition 17.8. Regarding π1pX, x0q as a discrete group, any covering map p : pY, y0q Ñ
pX, x0q of reasonable spaces with π1pY q “ 0 gives rise to a natural action of π1pX, x0q on Y .

Proof. There are at least two ways to see the action of π1pX, x0q on a simply connected cover.
First, Corollary 16.15 identifies π1pX, x0q with Autppq, and the latter acts on Y as explained in
Example 17.4.

Alternatively, one can appeal to the uniqueness of the universal cover, so p : pY, y0q Ñ pX, x0q
is necessarily isomorphic to the specific cover rX “ tpaths x0  xu{ „

h`
that we constructed in the

proof of Theorem 16.10. Then the obvious way for homotopy classes of loops rαs P π1pX, x0q to
act on homotopy classes of paths rγs P rX is by concatenation:

rαs ¨ rγs :“ rα ¨ γs.
It is easy to verify that this also defines a group action. �

Exercise 17.9. Show that the two actions of π1pX, x0q on the universal cover constructed in
the above proof are the same.

Definition 17.10. A G-action on X is free (frei) if the only element g P G satisfying g ¨x “ x

for some x P X is the identity g “ e.
The action is called properly discontinuous (eigentlich diskontinuierlich) if every x P X has

a neighborhood U Ă X such that
pg ¨ Uq X U “ H

for every g P G with g ¨ x ‰ x.

Exercise 17.11. Show that if a G-action is free and properly discontinuous, then G is discrete.

Exercise 17.12. Show that for any covering map p : Y Ñ X , the action of Autppq on Y as in
Example 17.4 is free and properly discontinuous.

The observation that actions of deck transformation groups are free already has some nontrivial
consequences, for instance:

Proposition 17.13. There exists no covering map p : D2 Ñ X with degppq ą 1.

Proof. If degppq ą 1, then since π1pD2q “ 0, we observe that the cover p : D2 Ñ X must be
regular and therefore has a nontrivial deck transformation group Autppq which acts freely on D2.
But the Brouwer fixed point theorem rules out the existence of any nontrivial free group action
on D2. �

The main purpose of the above definitions is that they lead to the following theorem, whose
proof is now an easy exercise.

Theorem 17.14. If G acts on X freely and properly discontinuously, then the quotient projec-
tion

q : X Ñ X{G : x ÞÑ G ¨ x
is a regular covering map with Autpqq “ G. �

Now we are ready to finish the proof of the Galois correspondence.

Proof of Theorem 16.9. We have already shown that the correspondence is well defined
and injective, so we need to prove surjectivity, in other words: given a reasonable space X with
base point x0 P X and any subgroup H Ă G :“ π1pX, x0q, we need to find a reasonable space Y
with a covering map p : pY, y0q Ñ pX, x0q such that p˚π1pY, y0q “ H . Since X is reasonable, there
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exists a universal cover f : p rX, x̃0q Ñ pX, x0q, whose automorphism group is isomorphic to G, so
this isomorphism defines a free and properly discontinuous action of G on rX. It also defines a free
and properly discontinuous action of every subgroup of G on rX, and in particular an H-action.
Define

Y :“ rX{H and p : Y Ñ X : H ¨ x̃ ÞÑ fpx̃q.
It is straightforward to check that this is a covering map, and it is base-point preserving if we
define y0 :“ H ¨ x̃0 as the base point of Y . Moreover, the quotient projection q : p rX, x̃0q Ñ pY, y0q
is now the universal cover of Y , and it fits into the following commutative diagram:

p rX, x̃0q pX, x0q

pY, y0q

f

q
p

Given a loop γ in X based at x0, let γ1 denote its lift to a path in Y starting at y0, and let γ̃
denote the lift to a path in rX starting at x̃0, The subgroup p˚π1pY, y0q Ă π1pX, x0q is precisely
the set of all homotopy classes rγs P π1pX, x0q for which γ1 is a loop. Notice that since all maps in
the diagram are covering maps, γ̃ is also a lift of γ1 via the covering map q. Then rγs P H so that
γ1 is a loop if and only if the end point of γ̃ is in q´1py0q “ H ¨ x̃0. Under the natural bijection
between π1pX, x0q and f´1px0q “ G ¨ x̃0, this just means rγs P H , hence p˚π1pY, y0q “ H . �

18. Manifolds

I have mentioned manifolds already a few times in this course, but now it is time to discuss
them somewhat more precisely. While we do not plan to go to deeply into this subject this semester,
the goal is in part to understand what the main definitions are and why, forming the basis of the
subject known as “geometric topology”. In so doing, we will also establish an inventory of examples
and concepts that will serve as useful intuition when we start to talk about homology next week.

Definition 18.1. A topological manifold (Mannigfaltigkeit) of dimension n ě 0 (often
abbreviated with the term “n-manifold”) is a second countable Hausdorff space M such that every
point p P M has a neighborhood homeomorphic to Rn.

More generally, a topological n-manifold with boundary (Mannigfaltigkeit mit Rand) is
a second countable Hausdorff space M such that every point p P M has a neighborhood homeo-
morphic to either Rn or the so-called “n-dimensional half-space”

Hn :“ r0,8q ˆ Rn´1.

The third condition in each of these definitions is probably the most intuitive and is the
most distinguishing feature of manifolds: we abbreviate it by saying that manifolds are “locally
Euclidean”. It means in effect that sufficiently small open subsets of a manifold can be described via
local coordinate systems. The technical term for this is “chart”: a chart (Karte) on an n-manifold
with boundary is a homeomorphism

ϕ : U Ñ Ω

where U Ă M and Ω Ă Hn are open subsets. As special cases, Ω may be the whole of Hn, or an
open ball in Hn disjoint from

BHn :“ t0u ˆ Rn´1,

in which case Ω is also homeomorphic to Rn. It follows that on any n-manifold (with or without
boundary), every point is in the domain of a chart. Conversely, if we are given a collection of charts
tϕα : Uα Ñ ΩαuαPJ such that M “ Ť

αPJ Uα, then after shrinking the domains and targets of these
charts if necessary, we can assume every point p P M is in the domain of some chart ϕα : Uα Ñ Ωα



108 FIRST SEMESTER (TOPOLOGIE I)

such that Ωα is either an open ball in HnzBHn or a half-ball with boundary on BHn, so that Ω

is homeomorphic to either Rn or Hn. This means M is locally Euclidean, so both versions of the
third condition in our definition can be rephrased as the condition that M is covered by charts.
The boundary of a manifold M with boundary can now be defined as the subset

BM :“
 
p P M

ˇ̌
ϕppq P BHn for some chart ϕ

(
,

which is clearly an pn´ 1q-manifold (without boundary).
The word “topological” is included before “manifold” in order to make the distinction between

topological manifolds and smooth manifolds, which we will discuss a little bit below. By default
in this course, you should assume that everything we refer to simply as a “manifold” is actually
a topological manifold unless otherwise specified. (If this were a differential geometry course,
you would instead want to assume that “manifold” always means smooth manifold.) One can
regard manifolds without boundary as being special cases of manifolds M with boundary such
that BM “ H, so we shall also use “manifold” as an abbreviation for the term “manifold with
boundary” and will generally specify “without boundary” when we want to assume BM “ H. You
should be aware that some books adopt different conventions for such details, e.g. some authors
assume BM “ H always unless the words “with boundary” are explicitly included.

Manifolds are usually what we have in mind when we think of spaces that are “nice” or “rea-
sonable”. In particular, the following is an immediate consequence of the observation that every
point in Rn or Hn has a neighborhood homeomorphic to the closed n-disk:

Proposition 18.2. For an n-manifold M and a point p P M , every neighborhood of p contains
one that is homeomorphic to Dn. �

Corollary 18.3. Manifolds are locally compact and locally path-connected. They are also
locally contractible, meaning every neighborhood of every point in M contains a contractible
neighborhood. In particular, they are “reasonable” in the sense of Definition 16.1. �

It follows via Theorem 7.17 that a manifold M is connected if and only if it is path-connected.
More generally, the path-components ofM are the same as its connected components (cf. Prop. 7.16),
each of which are open and closed subsets, hence M is homeomorphic to the disjoint union of its
connected components. It is similarly easy to show that these connected components are also
manifolds.

Definition 18.4. A manifold M is closed (geschlossen) if it is compact and BM “ H. It is
open (offen) if none of its connected components are closed, i.e. all of them either are noncompact
or have nonempty boundary.

You need to be aware that these usages of the words “closed” and “open” are different from
the notions of closed or open subsets in a topological space. The distinction between a “closed
manifold” and a “closed subset” is at least more explicit in German: the former is a geschlossene
Mannigfaltigkeit, while the latter is an abgeschlossene Teilmenge. For openness there is the same
ambiguity in German and English, but it is rarely a problem: you just need to pay attention to the
context in which these adjectives are used and what kinds of nouns they are modifying. We will
not have much occasion to talk about open manifolds in this course, and many authors apparently
dislike seeing the word “open” used in this way, but it has some advantages, e.g. in differential
topology, there are some elegant theorems that can be stated most naturally for open manifolds
but are not true for manifolds that are not open.

Example 18.5. Any discrete space with only countably many points is a 0-manifold. (Dis-
crete spaces with uncountably many points are excluded because they are not second countable.)
Conversely, this is an accurate description of every 0-manifold, and the closed ones are those that
are finite. Note that a 0-manifold can never have boundary.
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Example 18.6. The line R, the interval p´1, 1q and the circle S1 are all examples of 1-manifolds
without boundary, where S1 is closed and the others are open. Further examples without boundary
are obtained by taking arbitrary countable disjoint unions of these examples, e.g. S1 > R is a 1-
manifold without boundary, though it is neither closed nor open since it has one closed component
and one that is not closed. Some examples of 1-manifolds with nonempty boundary include the
interval I “ r0, 1s, whose boundary is the compact 0-manifold BI “ t0, 1u, and r0, 1q, whose
boundary is Br0, 1q “ t0u.

Example 18.7. The word surface (Fläche) refers in general to a 2-dimensional manifold.
Examples without boundary include S2, T2 “ S1 ˆ S1, the surfaces Σg of genus g ě 0, RP2, R2,
and arbitrary countable disjoint unions of any of these. One can also take connected sums of these
examples to obtain more, though as we’ve seen, not all of the examples that arise in this way are
new, e.g. Σg for g ě 1 is the g-fold connected sum of copies of T2. Some compact examples with
boundary include D2 (with BD2 “ S1) and the surface Σg,m of genus g with m ě 1 holes cut out,
which has BΣg,m – šm

i“1 S
1. An obvious noncompact example with nonempty boundary is the

half-plane H2, with BH2 – R.

Example 18.8. Some examples of arbitrary dimension n without boundary are Sn, RP
n,

Rn, Tn :“ S1 ˆ . . . ˆ S1, any open subset of any of these, and anything obtained from these by
(countable) disjoint unions or connected sums.19 Some obvious examples with nonempty boundary
are Dn (with BDn “ Sn´1), and r´1, 1s ˆTn´1, whose boundary is the disjoint union of two copies
of Tn´1.

While we don’t plan to do very much with it in this course, we now make a brief digression on
the subject of smooth manifolds, which are the main object of study in differential geometry and
differential topology. As preparation, observe that if ϕα : Uα Ñ Ωα and ϕβ : Uβ Ñ Ωβ are two
charts on the same manifold M , then on any region Uα X Uβ where they overlap, we can think of
them as describing two alternative coordinate systems, so that there is a well-defined “coordinate
transformation” map switching from one to the other. To be more precise, ϕαpUα X Uβq and
ϕβpUα XUβq are open subsets of Ωα and Ωβ respectively, and there is a homeomorphism from one
to the other defined via the following diagram:

Uα X Uβ

ϕαpUα X Uβq ϕβpUα X Uβq
ϕα

ϕβ

ϕβ˝ϕ´1

α

The map ϕβ ˝ ϕ´1
α is called the transition map (Übergang) relating ϕα and ϕβ . The key point

about a transition map is that its domain and target are open subsets of a Euclidean space (or half-
space), thus we know what it means for such a map to be “differentiable”. This observation makes
it possible to do differential calculus on manifolds and to speak of functions f : M Ñ R as being
differentiable or not: the idea is that f should be called differentiable if it appears differentiable
whenever it is written in a local coordinate system. But for this to be well defined, we need to be
assured that the answer to the differentiability question will not change if we change coordinate
systems, i.e. if we compose our local coordinate expression for f with a transition map. If all
conceivable charts for M are allowed, then the answer will indeed sometimes change, because the
composition of a differentiable function with a non-differentiable map is not usually differentiable.
We therefore need to be able to assume that transition maps are always differentiable, and since

19Recall from Lecture 13 the connected sum of two n-manifolds M and N : it is defined by deleting the interiors
of two embedded n-disks from M and N and then gluing them together along the spheres Sn´1 at the boundaries
of these disks.
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this is not true if all conceivable charts are allowed, we need to restrict the class of charts that
we consider. This restriction introduces a bit of structure on M that is not determined by its
topology, but is something extra:

Definition 18.9. A smooth structure (glatte Struktur) on an n-dimensional topological
manifold M is a maximal collection of charts tϕα : Uα Ñ ΩαuαPJ for which M “ Ť

αPJ Uα and the
corresponding transition maps ϕβ ˝ ϕ´1

α for all α, β P J are of class C8. A topological manifold
endowed with a smooth structure is called a smooth manifold (glatte Mannigfaltigkeit).

It is easy to see that a single topological manifold can have multiple distinct smooth structures,
e.g. on M “ R, the functions ϕαptq “ t and ϕβptq “ t3 are homeomorphisms R Ñ R and can thus
be regarded as charts, but ϕα ˝ϕ´1

β is not everywhere differentiable, hence ϕα and ϕβ can each be
regarded as belonging to smooth structures on R, but they are distinct smooth structures. That
is a relatively uninteresting example, but there are also known examples of topological manifolds
admitting multiple smooth structures that are not even equivalent up to diffeomorphism (the
smooth version of homeomorphism), as well as topological manifolds that do not admit any smooth
structure at all. Such things are very hard to prove, but you should not worry about them right
now, because the basic fact is that most manifolds we encounter in nature have natural smooth
structures. A very high proportion of them come from the following geometric version of the
implicit function theorem.

Theorem 18.10 (implicit function theorem). Suppose U Ă Rn is an open subset, F : U Ñ Rk

is a C8-map and q P Rk is a point such that for all p P F´1pqq, the derivative dF ppq : Rn Ñ Rk

is surjective (we say in this case that q is a regular value of F ). Then F´1pqq Ă Rn is a smooth
manifold of dimension n´ k. �

The above theorem is provided “for your information,” meaning we do not plan to either prove
or use it in any serious way in this course, but you should be aware that it exists because it provides
many examples of manifolds that arise naturally in various applications. For instance:

Example 18.11. The n-sphere Sn “ F´1p1q, where F : Rn`1 Ñ R : x ÞÑ |x|2, which has 1 as
a regular value.

Example 18.12. The special linear group SLpn,Rq “ det´1p1q for the determinant map det :

Rnˆn Ñ R. One can show that 1 is a regular value of det by relating the derivative of the
determinants of a family of matrices passing through 1 to the trace of the derivative of that family
of matrices. Thus SLpn,Rq is a smooth manifold of dimension n2 ´ 1.

Now let’s look at a couple of non-examples.

Example 18.13. The wedge sum S1_S1 is not a manifold of any dimension. It does look like a
1-manifold in the complement of the base point x P S1 _S1, but x does not have any neighborhood
homeomorphic to Euclidean space. Indeed, sufficiently small neighborhoods U Ă S1 _ S1 of x all
look like two line segments intersecting, so that if we delete the point x, we obtain a space Uztxu
with four path-components. This cannot happen in an n-manifold for any n, as deleting a point
from R produces two path-components, while deleting a point from Rn with n ě 2 leaves a space
that is still path-connected.

Example 18.14. Here is a space that is locally Euclidean and second countable, but not
Hausdorff: the line with two zeroes, i.e. pRˆ t0, 1uq{„ with px, 0q „ px, 1q for all x ‰ 0. We should
emphasize that we are considering the quotient topology on this space, not the pseudometric
topology (cf. Example 6.12). Now 00 :“ rp0, 0qs and 01 :“ rp0, 1qs each have neighborhoods that
can be identified with open intervals in R, and so (obviously) does every other point, thus this
space would be a 1-manifold if we did not require manifolds to be Hausdorff.
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You probably don’t need much convincing by this point that spaces which are Hausdorff and
second countable are “good,” while those that lack either of these properties are “bad”. Nonetheless,
it’s worth taking a moment to consider why it would be bad if we dropped either of these conditions
from the definition of a manifold. The first answer is clearly that if we dropped the Hausdorff axiom,
then Example 18.14 would be a manifold, and we don’t like Example 18.14. But there are better
reasons. One of them is related to the implicit function theorem, Theorem 18.10 above, which
produces many examples of manifolds that are subsets of larger-dimensional Euclidean spaces.
Notice that in this situation, it is completely unnecessary to verify whether those subsets are
Hausdorff or second countable, because every subset of a finite-dimensional Euclidean space is
both. (See Exercise 5.9 if you’ve forgotten how we know that Rn is second countable.) Now, it is
reasonable to ask whether all conceivable manifolds arise from something similar to Theorem 18.10,
i.e. are all of them embeddable into RN for some N P N? The answer is yes, though clearly it
would not be if the Hausdorff and second countability conditions were not included:

Theorem 18.15. Every topological manifold is homeomorphic to a closed subset of RN for
N P N sufficiently large. �

This is another theorem that I am providing “for your information,” as I do not intend to
use it for anything and therefore will not prove it. A readable proof for the case of a compact
manifold appears in [Hat02, Corollary A.9]. The noncompact case is significantly harder and
proofs typically do not appear in textbooks, but the idea is outlined and some precise references
given in [Lee11, p. 116]. I would caution you in any case against taking this theorem more
seriously than it deserves: while it’s nice to know that all manifolds are in some sense submanifolds
of some RN , many of them do not come with any canonical choice of embedding into RN , so this
property is not in any way intrinsic to their structure and one should (and usually can) avoid using
it to prove things about manifolds. It might also be argued that Theorem 18.15 undermines my
point about the Hausdorff and second countability assumptions being indispensable, since it may
seem desirable to be able to consider “manifolds” that are more general than just submanifolds of
Euclidean spaces.

As a general principle, mathematicians consider a definition to be a “good” definition if it
appears as the hypothesis for a good theorem. I’m not sure if Theorem 18.15 truly qualifies as a
good theorem. But I want to talk about another one that I think is better.

Theorem 18.16. Every connected nonempty 1-manifold without boundary is homeomorphic to
either S1 or R.

If this statement sounds at first too restrictive, it makes up for it by being extremely useful. In
combination with the implicit function theorem, one can deduce from it e.g. the possible topologies
of regular level sets of arbitrary smooth functions F : Rn Ñ Rn´1. This ability has a surprising
number of beautiful applications in differential topology and related fields; one example is the
definition of the “mapping degree,” sketched in Exercise 19.14. Those applications are typically
based on the following corollary for compact manifolds with boundary.

Corollary 18.17. Every compact 1-manifold M with boundary is homeomorphic to a disjoint
union of finitely many copies of S1 and r0, 1s. In particular, BM consists of evenly many points.

Proof. Since M is compact, it can have at most finitely many connected components (oth-
erwise we can find a noncompact closed subset by choosing one point from every component).
Restricting to connected components, it will therefore suffice to show that every connected com-
pact 1-manifoldM is either S1 or r0, 1s. Theorem 18.16 implies thatM – S1 if BM “ H, so assume
otherwise. Then BM is a closed subset and therefore is compact, and it is also a 0-manifold, which
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means it is a nonempty finite set. Let us modify M by attaching a half-line r0,8q to each boundary
point, that is, let

xM :“ M YBM

˜ ž

pPBM

r0,8q
¸
.

This makes xM a noncompact connected 1-manifold with empty boundary, so by Theorem 18.16,
xM – R. It follows that M Ă xM is homeomorphic to a path-connected compact subset of R. All
such subsets are compact intervals ra, bs, hence M – r0, 1s. �

The proof of Theorem 18.16 is not conceptually very hard, though writing it down correctly
with all the details is a little annoying, so I will settle for a sketch.20 My main objective is to point
out explicitly where the Hausdorff and second countability conditions are needed. You saw already
from Example 18.14 that the theorem becomes false if the Hausdorff condition is dropped, and
after the proof we will look at an even stranger example to see what can happen without second
countability.

Proof of Theorem 18.16 (sketch). Given a nonempty connected 1-manifold M without
boundary, let N P N denote the smallest possible number (finite or infinite) of charts in any
collection tϕα : Uα

–Ñ RuαPJ such that M “ Ť
αPJ Uα. We consider the following cases.

Case 1: N “ 1. Then M is homeomorphic to R, so we are done.
Case 2: N “ 2. Assume M “ U Y V , where ϕ : U

–Ñ R and ψ : V
–Ñ R are charts. Since M is

connected, we have U X V ‰ H, and we can also assume that neither of U or V fully contains the
other since then N would be 1. We claim that for any connected component W of U X V , ϕpWq
and ψpWq are each infinite half-intervals in R, i.e. they are intervals of the form p´8, aq or pa,8q
for a P R. This requires the assumption that M is Hausdorff. (Exercise: show that the space in
Example 18.14 is covered by two charts for which this claim does not hold.) The main point is to
show that if xn P W is any sequence such that xn Ñ x P V but x R U , then ϕpxnq diverges to ˘8.
Indeed, suppose to the contrary that xn can be replaced by a subsequence for which ϕpxnq P R

is bounded. Then after replacing xn with a further subsequence, we can assume ϕpxnq converges
to some point y P R. But then xn “ ϕ´1pϕpxnqq Ñ ϕ´1pyq since ϕ´1 is continuous, and the
Hausdorff axiom therefore implies ϕ´1pyq “ x since limits of convergent sequences are unique.
This contradicts the assumption that x R U .

Once the claim is established, we observe that at most two disjoint infinite half-intervals can
fit into R, and it follows that U XV has at most two connected components. If it has only one, then
one can easily find a homeomorphism of M to R, which actually reduces us to the case N “ 1. If
there are instead two components, then there is a homeomorphism of M to S1 that identifies two
points in separate components of U X V with antipodal points on the circle.

Case 3: N ą 2 but N ă 8. Writing M “ ŤN
i“1 Ui where the Ui are domains of charts, the

same arguments as above using the Hausdorff property imply that for each i ‰ j, Ui X Uj has
at most two connected components. One can now imagine several possibilities, but all of them
produce homeomorphisms from M to either S1 or R. For instance, if some intersection Ui X Uj
has two components, then for the same reason as in case 2, the union of these two sets forms a
connected component of M that is homeomorphic to S1, meaning (since M is connected) all the
other Uk must be contained in Ui Y Uj and we’re actually back in the case N “ 2. If this does
not happen but there exists a set ti1, . . . , imu P t1, . . . , Nu such that Uij X Uij`1

for every j and
Uim X Ui1 each have one connected component while all other intersections are empty, then the
union of these m sets again forms a connected component homeomorphic to S1. In all other cases,

20A more complete version of the proof is explained as a series of straightforward exercises in [Gal87].
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M will be homeomorphic to R, and one can construct a homeomorphism by identifying each Ui
with a (finite or half-infinite) subinterval of R and piecing these intervals together.

Case 4: N “ 8. In this case M cannot be compact, but since it is second countable, we
know that any uncountably infinite cover by charts can be replaced by a countable subcover
U1,U2,U3, . . ., cf. Lemma 5.25. The same argument as usual implies that UiXUj always has at most
two components for i ‰ j, and any case with two components leads as before to a homeomorphism
M – S1 and thus a contradiction. A similar contradiction arises in the second scenario described
in case 3 above. The result is that one can find a homeomorphism of M to some countable union
of (finite or half-infinite) intervals with connected overlap regions, and the latter will always be
homeomorphic to R. �

The second countability axiom was used at the end of this proof by appealing to the fact that
R can be identified with the union of a countable sequence of overlapping open intervals. This
would be a lot less obvious if we were required to fit in uncountably many open intervals, and I
would now like to describe an example of what strange beasts can arise if the second countability
axiom is dropped. We will need to appeal to a rather non-obvious result from elementary set
theory. Recall that a totally ordered set pI,ăq consists of a set I with a partial order ă such
that for all pairs of elements x, y P I, at least one of the conditions x ă y or y ă x holds. Such a
set is said to be well ordered if every subset of I contains a smallest element. The most familiar
example of a well-ordered set is the natural numbers. For the purposes of our example below, we
need a well-ordered set that is uncountable.

Lemma 18.18. There exists an uncountable well-ordered set pω1,ďq such that for every x P ω1,
at most countably many elements y P ω1 satisfy y ď x.

Understanding this lemma requires some knowledge of the ordinal numbers (Ordinalzahlen),
which we do not have time to describe here in detail, but the intuitive idea is to think of any
well-ordered set as a “number,” call two such numbers equivalent if there exists an order-preserving
bijection from one to the other, and write x ď y whenever there exists an order-preserving injection
from x into y. Informally, an ordinal number can be regarded as an equivalence class of well-ordered
sets under this notion of equivalence. We can then think of each natural number n P N as an
ordinal number by identifying it with the set t1, . . . , nu, and this identification obviously produces
the correct ordering relation for the natural numbers. But there are also infinite ordinal numbers,
e.g. the set N itself. Informally again, the set ω1 in the above lemma is defined to be the “smallest
uncountable ordinal”.

To see what this really means, we need a slightly more formal definition of the ordinal
numbers—the informal description above is a bit hard to make precise in formal set-theoretic
terms. A more concrete description of the ordinal numbers was introduced by Johann von Neu-
mann, and the idea is to regard each ordinal number as a set whose elements are also sets, namely
each ordinal is the set of all ordinals that precede it. In particular, we label the empty set H as 0,
identify the natural number 1 with the set t0u “ tHu, identify 2 with the set t0, 1u “ tH, tHuu,
identify

3 “ t0, 1, 2u “ tH, tHu, ttHuuu
and so forth. Although the notation quickly becomes confusing, one can make sense of von Neu-
mann’s general definition:

Definition 18.19. A set S is an ordinal number if and only if S is well ordered with respect
to set membership and every element of S is also a subset of S.

If this definition makes your head spin, rest assured that I have the same reaction, but the
concept of the ordinal numbers does not rely on anything other than the standard axioms of set
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theory. With this definition in place, one can define ω1 as the union of all countable ordinals,
which is necessarily uncountable since it would otherwise contain itself.

We now use this to construct a Hausdorff space that is path-connected and locally homeomor-
phic to R but is not second countable. This space and various related constructions are sometimes
referred to as the long line. Let

L “ ω1 ˆ r0, 1q,
and define a total order on L such that px, sq ď py, tq whenever either x ď y or both x “ y and
s ď t hold. Writing x ă y to mean x ď y and x ‰ y for x, y P L, the total order determines
a natural topology on L, called the order topology, whose base is the collection of all “open”
intervals

pa, bq :“ tx P L | a ă x ă bu
for arbitrary values a, b P L. The proof of the following statement is an amusing exercise for a
rainy day.

Proposition 18.20. Every point of L has a neighborhood homeomorphic to either R or (in the
case of p0, 0q P L) the half-interval r0,8q. Moreover, L is Hausdorff and is sequentially compact,
but not compact; in particular the set tpx, 1{2q | x P ω1u Ă L is an uncountable discrete subset of
L, implying that L cannot be second countable. �

I’m guessing you find it especially surprising that this enormous space L is sequentially com-
pact, but that has to do with a peculiar property built into the definition of the set ω1: every
sequence in ω1 has an upper bound. This is almost immediate from the definition of the ordinal
numbers, as for any given sequence xn P ω1, the elements xn are also (necessarily countable) sets
of ordinal numbers, hence their union

Ť
n xn is another ordinal number and is countable, meaning

it is an element of ω1, and it clearly bounds the sequence from above.
In dimensions n ě 2, there are further constructions of non-second countable but locally

Euclidean Hausdorff spaces which do not rely on anything so exotic as the ordinal numbers. An
example is the Prüfer surface; see the exercise below. But I’m only talking about these things now
in order to explain why I will never mention them again.

Exercise 18.21. The Prüfer surface is an example of a space that would be a connected
2-dimensional manifold if we did not require manifolds to be second countable. It is defined as
follows: let H “ tpx, yq P R2 | y ą 0u, and associate to each a P R a copy of the plane Xa :“ R2.
The Prüfer surface is then

Σ :“ H >
˜ž

aPR

Xa

¸N
„

where the equivalence relation identifies each point px, yq P Xa for y ą 0 with the point pa`yx, yq P
H. Notice that H and Xa for each a P R can be regarded naturally as subspaces of Σ.

(a) Prove that Σ is Hausdorff.
(b) Prove that Σ is path-connected.
(c) Prove that every point in Σ has a neighborhood homeomorphic to R2.
(d) Prove that a second countable space can never contain an uncountable discrete subset.

Then find an uncountable discrete subset of Σ.

19. Surfaces and triangulations

As far as I’m aware, dimension one is the only case in which the problem of classifying arbitrary
(compact or noncompact) manifolds up to homeomorphism has a reasonable solution. In this
lecture we will do the next best thing in dimension two: we will classify all compact surfaces. We
will focus in particular on closed and connected surfaces. The classification of compact connected
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surfaces with boundary can easily be derived from this (see Exercise 20.13), and of course compact
disconnected surfaces are all just disjoint unions of finitely many connected surfaces, so we lose no
generality by restricting to the connected case.

Let us first enumerate the closed connected surfaces that we are already familiar with.

Examples 19.1. The sphere S2 “ Σ0 and torus T2 “ Σ1 are both examples of “oriented
surfaces of genus g,” which can be defined for any nonnegative integer g ě 0 and denoted by Σg.
In particular, we’ve seen that for each g ě 1, Σg is homeomorphic to the g-fold connected sum of
copies of T2, and we have also computed its fundamental group

π1pΣgq –
#
a1, b1, . . . , ag, bg

ˇ̌
ˇ̌

gź

i“1

rai, bis “ e

+
,

whose abelianization is isomorphic to Z2g.

Examples 19.2. An analogous sequence of surfaces can be defined by taking repeated con-
nected sums of copies of RP2, e.g. RP2#RP

2 is homeomorphic to the Klein bottle. By the same
trick that we used in Lecture 13 to understand Σg, the g-fold connected sum #

g
i“1RP

2 is homeo-
morphic to a space obtained from a polygon with 2g edges by identifying them in pairs according
to the sequence a1, a1, . . . , ag, ag, thus

π1
`
#
g
i“1RP

2
˘

–
 
a1, . . . , ag

ˇ̌
a21 . . . a

2
g “ e

(
.

Exercise 19.3. For i “ 1, . . . , g´ 1, let ei P Zg´1 denote the ith standard basis vector. Show
that there is a well-defined homomorphism G :“ ta1, . . . , ag | a21 . . . a2g “ eu Ñ Zg´1 ‘Z2 such that

ai ÞÑ
#

pei, 0q for i “ 1, . . . , g ´ 1,

p´1, . . . ,´1, 1q for i “ g,

and that it descends to an isomorphism of the abelianization of G to Zg´1 ‘ Z2.

Appealing to the standard classification of finitely generated abelian groups, we deduce from
the above exercise that all of our examples so far are topologically distinct:

Lemma 19.4. No two of the closed surfaces listed in Examples 19.1 and 19.2 are homeomorphic.
�

You might now be wondering whether new examples can be constructed by taking the con-
nected sum of a surface from Example 19.1 with some surface from Example 19.2. The answer is
no:

Proposition 19.5. RP
2#T2 is homeomorphic to the connected sum of RP

2 with the Klein
bottle.21

Proof. Given any surface Σ with two disjoint disks removed, one can construct a new surface
by attaching a “handle” of the form r´1, 1s ˆ S1:

Σ1 :“
´
ΣzpD̊2 > D̊2q

¯
YS1>S1

`
r´1, 1s ˆ S1

˘
.

This operation is essentially the same as the connected sum, except we allow the two disks to be
embedded (disjointly) into a single surface Σ rather than two separate surfaces; we sometimes call
this a “self-connected sum”. As with the connected sum, it depends on a choice of embedding

i1 > i2 : D2 > D2
ãÑ Σ,

21This proposition has its very own Youtube video, see https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s .
Maybe you’ll find it helpful. . . I’m not entirely sure if I did.

https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s
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but only up to homotopy through embeddings, i.e. modifying the embedding through a continuous
1-parameter family of embeddings will change Σ1 into something homeomorphic to the original Σ1.

Let us now shift our perspective on the operation that changes Σ into Σ1. For this it would be
helpful to have some pictures, and I do not have time to draw them, but I recommend having a
look at Figure 1 in [FW99]. Suppose the two holes you’re drilling in Σ are right next to each other,
but before you drill them, you push the surface up a bit from underneath, creating a disk-shaped
lump. Now pick two smaller disk-shaped areas within that lump and push those up even further.
Then drill the holes in those two places and attach the handle. We haven’t changed any of the
topology in creating these “lumps,” but we have changed the picture, and if you’re imagining it the
way that I intended, it now looks like instead of cutting out two holes and attaching a handle, you
cut out one hole (the base of the original lump) and attached Σ1,1, the torus with a disk removed.
In other words, you performed the connected sum of Σ with T2:

Σ1 – Σ#T2.

So far so good. . . now let’s modify the procedure once more. Viewing D2 as the unit disk in C, let’s
replace one of our embeddings i1 : D2 Ñ Σ with another one that has the same image but changes
the parametrization by complex conjugation:

i11 : D2
ãÑ Σ : z ÞÑ i1pz̄q.

While we will now be cutting out the same two holes in Σ, the way that we attach the handle at
the first hole needs to change because i11|BD2 parametrizes the circle in the opposite direction from
i1|BD2 . The effect is the same as if you were to cut open Σ1 along the circle at the boundary of the
first hole, flip it’s orientation and then glue it back together. Unfortunately you cannot do this in
3-dimensional space—for the same reasons that you cannot embed a Klein bottle into R3—but it’s
easy to define the topological space that results from this modification. The effect is precisely to
replace the torus in the above description of a connected sum with the Klein bottle; if we call Σ2

the space that results from attaching the handle along this modified gluing map, we have

Σ2 – Σ#K2,

where K2 denotes the Klein bottle.
Finally, let’s specify this to the case Σ “ RP2. The projective plane has a special property that

many surfaces don’t: it contains an embedded Möbius band, call it M. Now suppose we construct
RP

2#T2 by embedding two small disks disjointly into M Ă RP
2, then cutting both out and gluing

in a handle. By the previous remarks, the homeomorphism type of the resulting surface will not
change if we now move the first hole continuously along a circle traversing M, and the orientation
reversal as we traverse M thus allows us to deform i1 : D2 ãÑ RP2 to i11 : D2 ãÑ RP2 through a
continuous family of embeddings disjoint from the second disk. This proves that if Σ “ RP2, then
the two surfaces Σ1 and Σ2 described above are homeomorphic. �

It is sometimes useful to make a distinction between two types of handle attachment that were
described in the above proof. In one case, the two holes D2 ãÑ Σ are embedded “right next to each
other” and with opposite orientations—in precise terms, this means we focus on the domain of a
single chart on Σ, assume both holes are in this domain, define i11 by translating the image of i2
in some direction to make it disjoint, and then define i1pzq “ i11pz̄q. The handle attachment that
results is straightforward to draw, see e.g. Figure 1 in [FW99]. If we then leave the positions of the
two holes the same but reverse an orientation by replacing i1 with i11, the handle attachment can
no longer be embedded in R3, though this does not stop some authors from trying to draw pictures
of it anyway (see Figure 2 in [FW99]). This type of handle attachment is sometimes referred to
as a cross-handle. One should not take this terminology too seriously since the main point of the
above prove was that in certain cases such as Σ “ RP

2, there is no globally meaningful distinction
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between ordinary handles and cross-handles, i.e. if the two holes do not lie in the same chart, it
is not always possible to say that we are dealing with one type of handle and not the other. The
distinction does make sense however if both holes are in the same chart, so we will occasionally
also use the term “cross-handle” in this situation.

Proposition 19.5 told us that the most obvious way to produce new examples of closed con-
nected surfaces out of the inventory in Examples 19.1 and 19.2 does not actually give anything
new. The reason for this turns out to be that there are no others:

Theorem 19.6. Every closed connected surface is homeomorphic to either Σg for some g ě 0

or #
g
i“1RP

2 for some g ě 1, where the integer g is in each case unique.

The uniqueness in this statement already follows from the computations of fundamental groups
explained above, so in light of Proposition 19.5, we only still need to show that every closed
connected surface other than the sphere is homeomorphic to something constructed out of copies
of T2 and RP

2 by connected sums. (Note that whenever both T2 and RP
2 appear in this collection,

Prop. 19.5 allows us to replace T2 with two copies of RP2, as RP
2#RP

2 is the Klein bottle.) We
will sketch a proof of this below that is due to John Conway and known colloquially as Conway’s
“ZIP proof”. Another readable account of it is given in [FW99].

To frame the problem properly, let us say that for Σ a compact (but not necessarily closed or
connected) surface, Σ is ordinary if there is a finite sequence of compact surfaces

Σp0q,Σp1q, . . . ,Σpmq “ Σ

such that Σp0q is a finite disjoint union of spheres
šN
i“1 S

2, and each Σpj`1q is homeomorphic to
something obtained from Σpjq by performing one of the following operations:

(1) Removing an open disk from the interior, i.e.

Σpj`1q – ΣpjqzD̊2

for some embedding D2 ãÑ ΣpjqzBΣpjq;
(2) Attaching a handle (or “cross-handle”) to connect two separate boundary components

ℓ1, ℓ2 Ă BΣpjq, i.e.
Σpj`1q – Σpjq Yℓ1>ℓ2 pr´1, 1s ˆ S1q

for some choice of homeomorphism Bpr´1, 1s ˆ S1q “ S1 > S1 Ñ ℓ1 > ℓ2;
(3) Attaching a disk (called a cap) to a boundary component ℓ Ă BΣpjq, i.e.

Σpj`1q – Σpjq Yℓ D
2

for some choice of homeomorphism BD2 “ S1 Ñ ℓ;
(4) Attaching a Möbius band (called a cross-cap) M to a boundary component ℓ Ă BΣpjq,

i.e.
Σpj`1q – Σpjq Yℓ M

for some choice of homeomorphism BM – S1 Ñ ℓ.
The classification of 1-manifolds is implicitly in the background of the last three operations: since
Σpjq is a compact 2-manifold, BΣpjq is a closed 1-manifold and is therefore always a finite disjoint
union of circles. Observe now that each of the operations can be reinterpreted in terms of connected
sums, e.g. cutting out two holes and then attaching a handle or cross-handle is equivalent to taking
the connected sum with T2 or RP2#RP2, while attaching a cap or cross-cap gives connected sums
with S2 or RP2 respectively. It follows that any ordinary surface that is also closed and connected
necessarily belongs to our existing inventory of closed and connected surfaces, thus it will suffice
to prove:

Lemma 19.7. Every closed surface is ordinary.
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At this point in almost every topology class, it becomes necessary to cheat a bit and appeal to a
fundamental result about surfaces that is believable and yet far harder to prove than we have time
to discuss in any detail. I’m referring to the existence of triangulations. This is not only a useful
tool in classifying surfaces, but also will play a large motivational role when we introduce homology.
The following is thus simultaneously a necessary digression behind the proof of Lemma 19.7 and
also a preview of things to come.

The idea of a triangulation is to decompose a topological n-manifold into many homeomorphic
pieces that we think of as “n-dimensional triangles”. More precisely, the standard n-simplex is
defined as the set

∆n :“
 

pt0, . . . , tnq P In`1
ˇ̌
t0 ` . . . ` tn “ 1

(

for each integer n ě 0. This makes ∆0 the one-point space t1u Ă R, while ∆1 is a compact line
segment in R2 homeomorphic to the interval I, ∆2 is the compact region in a plane bounded by
a triangle, ∆3 is the compact region in a 3-dimensional vector space bounded by a tetrahedron,
and so forth. For a surface Σ, we would now like to view copies of ∆2 as fundamental building
blocks of Σ, arranged in such a way that the intersection between any two of those building blocks
is either empty or is a copy of ∆1 or ∆0. One can express this condition in purely combinatorial
terms by thinking of ∆n as the convex hull of its n ` 1 vertices, which are the standard basis
vectors of Rn`1. In this way, an n-simplex is always determined by n ` 1 vertices, and this idea
can be formalized via the notion of a simplicial complex.

Definition 19.8. A simplicial complex (Simplizialkomplex) K consists of two sets V and
S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where S is a
subset of the set of all finite subsets of V , and σ P S is called an n-simplex of K if it has n ` 1

elements. We require the following conditions:
(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.

For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its boundary faces also
belong to the complex. With this condition in place, the first condition is then equivalent to the
requirement that every vertex in the set V belongs to at least one simplex.

The complex K is said to be finite if V is finite, and it is n-dimensional if

sup
σPS

|σ| “ n` 1,

i.e. n is the largest number for which K contains an n-simplex.

Though the definition above is purely combinatorial, there is a natural way to associate a
topological space |K| to any simplicial complex. We shall describe it only in the case of a finite
complex,22 since that is what we need in our applications. Given K “ pV, Sq, choose a numbering
of the vertices V “ tv1, . . . , vNu and associate to each k-simplex σ “ tvi0 , . . . , viku the set

∆σ :“
!

pt1, . . . , tNq P IN
ˇ̌
ˇ ti0 ` . . .` tik “ 1 and tj “ 0 for all vj R σ

)
.

Notice that ∆σ is homeomorphic to the standard k-simplex ∆k, but lives in the subspace of RN

spanned by the specific coordinates corresponding to its vertices. The polyhedron (Polyeder) of

22The polyhedron of a finite simplicial complex has an obvious topology because it comes with an embedding
into some finite-dimensional Euclidean space. For infinite complexes this is not true and thus more thought is
required to define the right topology on |K|. We would need to talk about this if we wanted to define triangulations
of noncompact spaces, but since we don’t, we will not.
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K is then the compact space
|K| :“

ď

σPS

∆σ Ă RN .

While the definition above makes |K| a subset of a Euclidean space that may have very large
dimension in general, it is not so hard to picture |K| in a few simple examples.

Example 19.9. Suppose V “ tv0, v1, v2u and S is defined to consist of all subsets of V . Then
|K| is just the standard 2-simplex ∆2.

Example 19.10. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u
and B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the
triangle ∆2, which we can label A and B, and they intersect each other along a single common
edge connecting the vertices labeled v1 and v2.

Definition 19.11. A triangulation (Triangulierung) of a closed topological n-manifold M

is a homeomorphism of M to the polyhedron of a finite n-dimensional simplicial complex.

In particular, this makes precise the notion of decomposing a surface Σ into triangles (copies
of ∆2) whose intersections with each other are always simplices of lower dimension. Observe
that in a triangulated surface Σ, the fact that every point in one of the 1-simplices σ has a
neighborhood homeomorphic to R2 implies that σ is a boundary face of exactly two 2-simplices
in the triangulation. One can say the same about the pn ´ 1q-simplices in any triangulation of a
closed n-manifold.

Theorem 19.12. Every closed surface admits a triangulation.

This theorem is old enough for the first proof to have been published in German [Rad25],
and it was not the main result of the paper in which it appeared, yet it is in some sense far harder
than it has any right to be—it seems to be one of the rare instances in mathematics where learning
cleverer high-powered techniques does not really help. I can at least sketch what is involved. Since
a closed surface Σ can be covered by finitely many charts, it can also be covered by a finite collection
of regions homeomorphic to D2, which is homeomorphic to the standard 2-simplex ∆2. Of course
the interiors of these 2-simplices overlap, which is not allowed in a triangulation, but the idea is to
examine each of the overlap regions and subdivide it further into simplices. By “overlap region,”
what I mean is the following: if D1, . . . , DN Ă Σ denote the finite collection of disks Di – ∆2

covering Σ, whose boundaries are loops BDi, then the closure of each connected component of
ΣzŤi BDi is a region that needs to be subdivided into triangles. After perturbing each of the disks
Di so that its boundary intersects the other boundaries only finitely many times, we can arrange
for each of these overlap regions to be bounded by embedded circles, and notice that since each of
the regions is contained in at least one of the disks Di, we can view them as subsets of R2. Now, I
don’t know about you, but I find it not so hard to believe that regions in R2 bounded by embedded
circles can be subdivided into triangles in a reasonable way—I would imagine that writing down
a complete algorithm to do this is a pain in the neck, but it sounds plausible. It may surprise you
however to know that it is very far from obvious what the region bounded by an embedded circle
in R2 can look like in general. Actually the answer is simple and is what you would expect: the
region is homeomorphic to a disk, but this is not at all easy to prove, it is an important theorem
in classical topology known as the Schönflies theorem. With this result in hand, one can formulate
an algorithm for triangulating surfaces as sketched above by triangulating the disk-like overlap
regions. Complete accounts of this are given in [Moi77] and [Tho92].

Note that if Σ is not just a topological 2-manifold but also has a smooth structure, then one
can avoid the Schönflies theorem by appealing to some basic facts from Riemannian geometry.
Choosing a Riemannian metric allows us to define the notion of a “straight line” (geodesic) on
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the manifold, and one can arrange in this case for the disks Di to be convex, so that the overlap
regions are also convex and therefore obviously homeomorphic to disks. This trick actually works
in arbitrary dimensions, leading to the result that smooth manifolds can be triangulated in any
dimension. For topological manifolds this is not true in general: it is true in dimension three (see
[Moi77]), but from dimension four upwards there are examples of topological manifolds that do
not admit triangulations. The case of dimension five has only been known for a few years—see
[Man14] for a readable survey of this subject and its history.

But enough about triangulations: let’s just assume that surfaces can be triangulated and use
this to finish the classification theorem.

Proof of Lemma 19.7. Assume Σ is a closed surface homeomorphic to the polyhedron |K|
of a finite 2-dimensional simplicial complex K “ pV, Sq with 2-simplices σ1, . . . , σN . By abuse of
notation, we shall also denote by σ1, . . . , σN the corresponding subsets of Σ homeomorphic to the
standard 2-simplex ∆2. The latter is homeomorphic to D2 – S2zD̊2, thus

Σp0q :“ σ1 > . . . > σN
is ordinary. The idea now is to reconstruct Σ from this disjoint union by gluing pairs of 2-simplices
together along corresponding boundary faces one at a time, producing a sequence of compact
surfaces Σpjq, each of which may be disconnected and have nonempty boundary except for the last
in the sequence, which is Σ. The operation changing Σpjq to Σpj`1q is performed by gluing together
two arcs ℓ1, ℓ2 Ă BΣpjq, i.e. informally we can write

Σpj`1q “ Σpjq
L
ℓ1 „ ℓ2.

Here ℓ1 and ℓ2 are two distinct boundary faces of 2-simplices, so they are each homeomorphic to
the compact interval I, and their interiors are disjoint, though they may have boundary points
(vertices of the triangulation) in common. One can now imagine various scenarios:

Case 1 : ℓ1 Y ℓ2 forms a single connected component of BΣpjq. Gluing them together is then
equivalent to attaching either a cap or a cross-cap to that boundary component, depending on the
orientation of the homeomorphism that identifies them.

Case 2 : ℓ1 and ℓ2 form part of a single boundary component of BΣpjq, but not all of it, i.e. their
boundary vertices are not exactly the same, so that there are either one or two gaps between them
forming additional arcs on BΣpjq. Gluing them together then is equivalent to attaching a cap or
cross-cap as in case 1, except that it leaves one or two holes where the gaps were, so we can realize
this operation by attaching the cap/cross-cap and drilling holes afterward.

Case 3 : ℓ1 and ℓ2 lie on different connected components of BΣpjq. Then neither can be the
entirety of a boundary component since both are homeomorphic to I instead of S1, though it’s
useful to imagine what would happen if both really were the entirety of a boundary component:
gluing them together would then be equivalent to attaching a handle. The useful way to turn this
picture into reality is to imagine both ℓ1 and ℓ2 as making up most of their respective boundary
components, each leaving a very small gap where their end points fail to come together. Gluing ℓ1
to ℓ2 is then equivalent to attaching a handle but then drilling a small hole in it.

In all of these cases, the operation that converts Σpjq into Σpj`1q can be realized by a finite
sequence of operations from our stated list, so carrying out this procedure as many times as
necessary to convert Σp0q into Σ produces a surface that is ordinary. �

Exercise 19.13. Recall that if Σ is a surface with boundary, the boundary BΣ is defined as
the set of all points p P Σ such that some chart ϕ : U

–Ñ Ω Ă H2 defined on a neighborhood U Ă Σ

of p satisfies ϕppq P BH2. Here H2 :“ r0,8q ˆ R Ă R2, BH2 :“ t0u ˆ R Ă H2, and Ω is an open
subset of H2. One can analogously define p P Σ to be an interior point of Σ of some chart maps it
to H2zBH2. Prove that no point on BΣ is also an interior point of Σ.
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Hint: If you have two charts defined near p such that one sends p to BH2 while the other sends it to
H2zBH2, then a transition map relating these two charts maps some neighborhood in H2 of a point
x P H2zBH2 to a neighborhood in H2 of a point y P BH2. What happens to this homeomorphism
if you remove the points x and y? Think about the fundamental group.
Remark: A similar result is true for topological manifolds of arbitrary dimension, but you do not
yet have enough tools at your disposal to prove this. A proof using singular homology will be
possible before the end of the semester.

Exercise 19.14. This exercise concerns manifolds with smooth structures, which were dis-
cussed briefly in Lecture 18 (see especially Definition 18.9 and Theorem 18.10). We will need the
following additional notions:

‚ For two smooth manifolds M and N , a map f : M Ñ N is called smooth if for every
pair of smooth charts ψβ on N and ϕα on M , the map fβα :“ ψβ ˝f ˝ϕ´1

α is C8 wherever
it is defined. (In other words, f is “C8 in local coordinates”.)

‚ For f : M Ñ N a smooth map between smooth manifolds, a point q P N is a regular
value of f if for all charts ϕα on M and ψβ on N such that q is in the domain of ψβ , ψβpqq
is a regular value of fβα. (In other words, q is a “regular value of f in local coordinates”.)

An easy corollary of the usual implicit function theorem (Theorem 18.10) then states that if M is
a smooth m-manifold without boundary, N is a smooth n-manifold and f : M Ñ N is a smooth
map that has q P N as a regular value, the preimage f´1pqq Ă M is a smooth submanifold23 of
dimension m´n. If M has boundary, then one should assume additionally that q is a regular value
of the restricted map f |BM : BM Ñ N , and the conclusion is then that Q :“ f´1pqq is a smooth
manifold of dimension m´ n with boundary BQ “ QX BM .

We will use the following perturbation lemma as a block box: if M and N are compact smooth
manifolds, q P N and f : M Ñ N is continuous, then every neighborhood of f in CpM,Nq with
the compact-open topology contains a smooth map fǫ : M Ñ N for which q is a regular value of
both fǫ and fǫ|BM . Moreover, if f |BM is already smooth and has q as a regular value, then the
perturbation can be chosen such that fǫ|BM “ f |BM . Proofs of these statements can be found in
standard books on differential topology such as [Hir94].

If you take all of this as given, then you can use it to define something quite beautiful. Assume
M and N are closed connected smooth manifolds of the same dimension n. Then for any smooth
map f : M Ñ N with regular value q P N , the implicit function theorem implies that f´1pqq is a
compact 0-manifold, i.e. a finite set of points. Define the mod 2 mapping degree deg2pfq P Z2

of f by
deg2pfq :“ |f´1pqq| (mod 2),

i.e. deg2pfq is 0 if the number of points in f´1pqq is even and 1 if it is odd.
(a) Prove that deg2pfq depends only on the homotopy class of f :M Ñ N .

Hint: If you have a homotopy H : IˆM Ñ N between two maps, perturb it as necessary
and look at H´1pqq. Use the classification of compact 1-manifolds.
Remark: One can show with a little more effort that deg2pfq also does not depend on the
choice of the point q, and moreover, it has a well-defined extension to continuous (but
not necessarily smooth) maps f :M Ñ N , defined by setting deg2pfq :“ deg2pfǫq for any
sufficiently close smooth perturbation fǫ.

(b) Prove that every continuous map f : S2 Ñ S2 homotopic to the identity is surjective.
(c) What goes wrong with this discussion of we allow M to be a noncompact manifold?

Describe two homotopic maps f, g : R Ñ S1 for which deg2pfq ‰ deg2pgq.
23A subset Y Ă M of a smooth manifold M is called a smooth submanifold if it admits the structure of a

smooth manifold such that the inclusion Y ãÑ M is smooth.
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(d) Prove that if n ą m, every continuous map Sm Ñ Sn is homotopic to a constant map.
Hint: What does it mean for a point q P Sn to be a regular value of f : Sm Ñ Sn if
n ą m?

20. Orientations and higher homotopy groups

The first portion of this lecture is in part an addendum to the classification of surfaces, though
it will also introduce some concepts that will be useful to have in mind when we discuss homology.
In the second portion, we will start expanding our repertoire of algebraic topological invariants
with a brief sketch of the higher homotopy groups.

Topic 1: Orientations of 1-manifolds and surfaces. I have used the word “orientation”
many times in this course without giving any precise explanation of what it means. I want to do
that now, at least for manifolds of dimensions one and two. The canonical example to have in
mind is the Klein bottle:

What most of us find strange about the Klein bottle is that we cannot make a meaningful distinction
between the “inside” and the “outside” of the surface. If, for instance, you were an insect and
somebody tried to trap you inside a glass Klein bottle, you could just walk along the surface
until you are standing on the opposite side of the glass, and you are free. In mathematical terms,
this means that the Klein bottle K2 Ă R3 admits an embedded loop γ : I Ñ K2 along which a
continuous family of nonzero vectors V ptq P R3 can be found which are orthogonal to the surface at
each γptq and satisfy V p1q “ ´V p0q. By contrast, if you take any embedded loop γ : I Ñ T2 Ă R3

on the torus and choose a normal vector field V ptq along this loop, V p1q will always need to be
a positive multiple of V p0q. That’s because there is a meaningful distinction between the outside
and inside of the torus T2 Ă R3. The fancy way of saying this in differential geometric language is
that the normal bundle of the standard immersion K2 í R3 is nontrivial, whereas the standard
embedding T2 ãÑ R3 has trivial normal bundle.

But this discussion of “inside” vs. “outside” is not really satisfactory, because whenever we talk
about normal vectors, we are referring to a piece of data that is not intrinsic to the spaces T2

or K2. It depends rather on how we choose to embed or immerse them in R3. So how can we talk
about orientations without mentioning normal vectors?

To answer this, imagine again that you are an insect standing on the surface of the Klein
bottle, and while standing in place, you turn around in a circle, rotating 360 degrees to your left.
An observer from the outside will see you turn, but the direction of the turn that observer sees
will depend on which side of the glass you are standing on. In particular, if you turn around like
this and then follow the aforementioned path to come back to the same point but on the other side
of the glass, then when you turn again 360 degrees to the left, the outside observer will see you
turning the other way. We can use this turning idea to formulate a precise notion of orientation
without mentioning normal vectors.
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Informally, let us agree that an orientation of a surface should mean a choice of which kinds of
rotations at each point are to be labeled “clockwise” as opposed “counterclockwise”. This is still not
a precise mathematical definition, but now we are making progress. The term “counterclockwise
rotation” has a precise and canonical definition in R2, for instance, thus we can agree that R2

has a canonical orientation. The natural thing to do is then to use charts to define orientations
on a surface Σ via their local identifications with R2. There’s just one obvious problem with this
idea: if all charts are allowed, then the definition of an orientation at some point might depend on
our choice of chart to use near that point, because the transition map relating two charts might
interchange counterclockwise and clockwise rotations. It therefore becomes important to restrict
the class of allowed charts so that transition maps do not change orientations, i.e. so that they are
orientation preserving. Our main task is to give the latter term a precise definition, and this can
be done in terms of winding numbers.

Recall the following notion from Exercise 10.26. For z P C and ǫ ą 0, define a counterclockwise
loop about z by

γz,ǫ : S
1

ãÑ C : eiθ ÞÑ z ` ǫeiθ.

Note that for fixed z P C, varying the value of ǫ ą 0 does not change the homotopy class of this
loop in Cztzu, and for a suitable choice of base point it is always a generator of π1pCztzuq – Z.
For k P Z, define also the loop

γkz,ǫ : S
1 Ñ C : eiθ ÞÑ z ` ǫekiθ,

which covers γz,ǫ exactly k times if k ą 0, covers it |k| times with reversed orientation if k ă 0,
and is constant if k “ 0. Now for any other loop α : S1 Ñ Cztzu, the winding number
(Windungszahl) of α about z is an integer characterized uniquely by the condition

windpα; zq “ k ðñ α „
h
γkz,ǫ in Cztzu.

If U ,V Ă C are open subsets and f : U Ñ V is a homeomorphism, then for any z P U with
fpzq “ w P V , we can assume the loop γz,ǫ lies in U for all ǫ ą 0 sufficiently small, and the fact
that f is bijective makes f ˝ γz,ǫ a loop in Cztwu. It follows that there is a well-defined winding
number windpf ˝ γz,ǫ;wq P Z, and shrinking ǫ ą 0 to a smaller number ǫ1 ą 0 obviously will not
change it since γz,ǫ and γz,ǫ1 are homotopic in Uztzu, so that f ˝ γz,ǫ and f ˝ γz,ǫ1 are homotopic
in Cztwu.

Lemma 20.1. In the situation described above, windpf ˝ γz,ǫ;wq is always either 1 or ´1.

Proof. Choose ǫ ą 0 small enough so that the image of f ˝ γz,ǫ lies in a ball Brpwq about
w with radius r ą 0 sufficiently small such that Brpwq Ă V . Then for δ P p0, rq, the homotopy
class of γw,δ generates π1pBrpwqztwuq – π1pCztwuq – Z, and k :“ windpf ˝ γz,ǫ;wq is the unique
integer such that f ˝ γz,ǫ is homotopic in Brpwqztwu to γkw,δ. Since γz,ǫ generates π1pCztzuq, there
is also a unique integer ℓ P Z such that f´1 ˝ γw,δ is homotopic in Cztzu to γℓz,ǫ. This implies

γz,ǫ “ f´1 ˝ f ˝ γz,ǫ „
h
f´1 ˝ γkw,δ „

h
γkℓz,ǫ in Cztzu,

hence kℓ “ 1. Since k and ℓ are both integers, we conclude both are ˘1. �

Exercise 20.2. Show that in the setting of Lemma 20.1, the subsets U˘ “ tz P U | windpf ˝
γz,ǫ; fpzqq “ ˘1u are each both open and closed, so in particular, the sign of this winding number
is constant on each connected component of U .
Hint: Since the two sets are complementary, it suffices to prove both are open. What happens to
windpf ˝ γz,ǫ;wq if you perturb z and w independently of each other by very small amounts?



124 FIRST SEMESTER (TOPOLOGIE I)

One can define winding numbers just as well for loops in R2 by identifying R2 with C via
px, yq Ø x ` iy. We have been using complex numbers purely for notational convenience, but
in the following we will refer instead to domains in R2 or the half-plane H2. The discussion also
makes sense for homeomorphisms between open subsets of H2 as long as we only consider points
z in the interior H2zBH2, since the loop γz,ǫ is then contained in H2 for ǫ sufficiently small. Note
that by Exercise 19.13, a homeomorphism between open subsets of H2 always maps points in BH2

to BH2 and points in H2zBH2 to H2zBH2.

Definition 20.3. Given open subsets U ,V Ă H2, a homeomorphism f : U Ñ V is called
orientation preserving (orientierungserhaltend) if windpf ˝ γz,ǫ; fpzqq “ 1 for all z P H2zBH2

and ǫ ą 0 sufficiently small. It is called orientation reversing (orientierungsumkehrend) if
windpf ˝ γz,ǫ; fpzqq “ ´1 for all z P H2zBH2 and ǫ ą 0 sufficiently small.

Lemma 20.1 and Exercise 20.2 together imply that a homeomorphism is always either orienta-
tion preserving or orientation reversing on each individual connected component. This notion can
also be defined in all positive dimensions, not only dimension two. In dimension one the proper
definition is fairly obvious:

Definition 20.4. Given open subsets U ,V in R or H :“ r0,8q, a homeomorphism f : U Ñ V

is called orientation preserving if it is an increasing function, and orientation reversing if it
is a decreasing function.

I will refrain from stating the definition for dimensions n ě 3 for now since it requires a certain
amount of language (involving degrees of maps between spheres) that we have not yet adequately
defined. A more straightforward definition is available however if you are willing to restrict from
homeomorphisms to diffeomorphisms, i.e. bijections that are C8 and have C8 inverses. Actually
C1 is good enough: the point is that the derivative dfpxq : Rn Ñ Rn of such a map at any point
x is guaranteed to be an invertible linear map, so it has a nonzero determinant. One then calls
the map orientation preserving if the determinant of its derivative is everywhere positive, and
orientation reversing if that determinant is everywhere negative. We will not worry about this in
the following since we will almost exclusively talk about orientations for manifolds of dimension
at most two. Nonetheless, there is no harm in stating a definition of orientation that is valid for
topological manifolds of arbitrary dimension, and the definition will look slightly familiar if you
recall our discussion of smooth structures in Lecture 18.

Definition 20.5. An orientation (Orientierung) of an n-manifold M for n ě 1 is a collection
of charts tϕα : Uα Ñ ΩαuαPJ such that M “ Ť

αPJ Uα and all transition maps ϕβ ˝ ϕ´1
α are

orientation preserving. If M is a 0-manifold, we define an orientation on M to be a function
ǫ : M Ñ t1,´1u, which partitions M into sets of positively/negatively oriented points M˘ :“
ǫ´1p˘1q.

We say that M is orientable (orientierbar) if it admits an orientation, and refer to any
manifold endowed with the extra structure of an orientation as an oriented manifold (orientierte
Mannigfaltigkeit).

Specializing again to dimension 2, an orientation of M allows you to draw small circles around
arbitrary points in M and label them “counterclockwise” or “clockwise” in a consistent way, where
consistency means in effect that you can never deform a counterclockwise circle continuously
through small circles around other points and end up with a clockwise circle. The actual defi-
nition of counterclockwise comes from the special collection of charts that an orientation provides:
we call these oriented charts, and define a small circle about a point in M to be counterclockwise
if and only if it looks counterclockwise in an oriented chart.
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If M is a 1-manifold, then instead of talking about circles or rotations, we can simply label
orientations with arrows: the orientation defines which paths in M can be called “increasing” as
opposed to “decreasing”.

Remark 20.6. One can show that any orientation-preserving homeomorphism between open
subsets of H2 restricts to the boundary as an orientation-preserving homeomorphism between open
subsets of BH2 – R. It follows that there is a natural notion of induced boundary orientation,
i.e. on any orientable surface Σ with boundary, a choice of orientation on Σ induces a natural
orientation on BΣ by taking the oriented charts on the latter to be restrictions of the oriented
charts on Σ. An analogous statement is true for manifolds with boundary in all dimensions.
For dimM “ 1, one defines the boundary orientation of BM by setting ǫppq “ 1 whenever the
“increasing” direction of M points toward p, and ǫppq “ ´1 whenever this direction points away
from p. (Different authors may define this in slightly different ways, but it hardly matters: the
point is just to choose a convention and be consistent about it.)

Let us specialize this discussion to manifolds with triangulations, i.e. manifolds that are home-
omorphic to the polyhedron of a simplicial complex. The latter is an essentially combinatorial
notion, so orientations of such objects can also be defined in combinatorial terms. Recall that
if J is any finite set, any bijection π : J Ñ J is a permutation of its elements, that is, one can
identify π with some element of the symmetric group on N objects after choosing a numbering
v1, . . . , vN for the elements in J . The symmetric group is generated by flips, meaning permutations
that interchange two elements of J while leaving the rest fixed, and we say that π is an even or
permutation if it can be written as a composition of evenly many flips; otherwise it is an odd
permutation. If we represent π by a matrix, then we can recognize the even/odd permutations as
those for which this matrix has positive/negative determinant respectively. To motivate the next
definition, recall the definition of the standard n-simplex ∆n “ tpt0, . . . , tnq | t0 ` . . . ` tn “ 1u.
Any element of the symmetric group on n ` 1 objects can be regarded as a permutation of the
vertices of ∆n numbered from 0 to n, and the matrix representation of this permutation then
defines a linear map on Rn`1 that permutes the standard basis vectors accordingly. That linear
map preserves the subset ∆n Ă Rn`1, and it is an orientation-preserving transformation on Rn`1

if and only if its determinant is positive, which is equivalent to requiring the permutation to be
even.

Definition 20.7. For a simplicial complex K “ pV, Sq, an orientation of an n-simplex σ P S
for n ě 1 is an equivalence class of orderings of the vertices v P σ, where two orderings are defined
to be equivalent if and only if they are related to each other by an even permutation. An orientation
of a 0-simplex is defined simply as an assignment of the number `1 or ´1 to that vertex.

For simplices of dimension 1 or 2 there are easy ways to illustrate in pictures what this definition
means; see Figure 11. The figure shows the six possible ways of ordering the three vertices of a 2-
simplex, where the individual choices in each row are related to each other by even permutations and
thus define equivalent orientations, whereas each choice is related to the one directly underneath
it by a single flip, which is an odd permutation. We can represent the orientation itself by drawing
a circular arrow that follows the direction of the sequence of vertices labeled 0, 1, 2, and this
arrow depends only on the orientation since even permutations of three objects are also cyclical
permutations.

Another intuitive fact you can infer from Figure 11 is that an orientation of a 2-simplex
induces a natural boundary orientation for each of its 1-dimensional boundary faces. The latter
orientations are represented in the picture by arrows pointing from one vertex to another, meant
to indicate the ordering of the two vertices, and the visual recipe is simply that the arrows of



126 FIRST SEMESTER (TOPOLOGIE I)

0

0

0

0

0

01 1

1

1

1 1

2

2

2

2

2

2

„

„

„

„

Figure 11. The six distinct orderings that define the two possible orientations
of a 2-simplex.

all three edges together should describe the same kind of rotation as the circular arrow on the 2-
simplex. This can also be reduced to a purely combinatorial algorithm, and it makes sense in every
dimension. Recall that for an n-simplex σ “ tv0, . . . , vnu, the kth boundary face Bpkqσ of σ is the
pn´1q-simplex whose vertices include all the v0, . . . , vn except vk. Clearly if the vertices v0, . . . , vn
come with an ordering, then the vertices of Bpkqσ inherit an ordering from this, though here we
have to be a bit careful because applying an even permutation to v0, . . . , vn and then eliminating
vk may produce a sequence that differs from v0, . . . , vk´1, vk`1, . . . , vn by an odd permutation. To
get a well-defined orientation on Bpkqσ, one can instead do the following: notice that the sequence
v0, . . . , vk can be reordered as vk, v0, . . . , vk´1, vk`1, . . . , vn by a sequence of k flips. Permutations
of this new sequence that fix the first object vk are then equivalent to permutations of the vertices
of Bpkqσ, so the even/odd parity of the permutation does not change if we remove vk from the list.
We must not forget however that in order to produce the list with vk at the front, we performed k
flips, meaning a permutation that is even if and only if k is even. This discussion implies that the
following notion of boundary orientation is well defined.

Definition 20.8. Given an oriented n-simplex for n ě 2 with vertices v0, . . . , vn ordered
accordingly, the induced boundary orientation of its kth boundary face Bpkqσ is defined as the
same ordering of its vertices (with vk removed) if k is even, and otherwise it is defined by any odd
permutation of this ordering. For n “ 1, the boundary orientations are defined by assigning the
sign `1 to Bp0qσ “ tv1u and ´1 to Bp1qσ “ tv0u.

You should now take a moment to stare again at Figure 11 and assure yourself that the
boundary orientations indicated there are consistent with this definition.

Definition 20.9. An oriented triangulation of a closed surface Σ is a triangulation Σ – |K|
together with a choice of orientation for each 2-simplex in the complex K such that for every 1-
simplex σ in K, the two induced boundary orientations that it inherits as a boundary face of two
distinct 2-simplices are opposite.
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Figure 12. An oriented triangulation of the 2-torus (left) and a failed attempt
to orient a triangulation of the Klein bottle (right).

The point of the condition on 1-simplices is to ensure that the orientations of any two neigh-
boring 2-simplices are “compatible” in the sense that each of the circular arrows can be pushed
continuously into the other. Figure 12 (left) shows an example of an oriented triangulation of T2.
The arrows on 1-simplices in this picture are not meant to represent boundary orientations, but
are just the usual indications of which 1-simplices on the boundary of the square should be glued
together and how. We see in particular that the orientations indicated by these arrows on sim-
plices c and d are the right boundary orientation on the right hand side but the wrong one on
the left hand side. According to Definition 20.9, this is exactly what we want. Figure 12 (right)
then shows what goes wrong if we try to do the same thing with a Klein bottle. If we imagine
that this triangulation admits an orientation, then it will be represented by either clockwise or
counterclockwise circles in each 2-simplex in the picture, all of them the same because they must
induce opposite orientations on all the 1-dimensional boundary faces between them. In the picture
they are all drawn counterclockwise. But notice that in both copies of each of the 1-simplices c
and d, the arrow matches the induced boundary orientation, so this picture does not define a valid
oriented triangulation. The next theorem implies in fact that no triangulation of the Klein bottle
can be oriented.

Theorem 20.10. The following conditions are equivalent for any closed connected surface Σ.
(1) Σ is orientable.
(2) Σ admits an oriented triangulation.
(3) Σ does not contain any subset homeomorphic to the Möbius band.

Corollary 20.11. Every closed, connected and orientable surface is homeomorphic to Σg for
some g ě 0. �

All of the ideas required for proving Theorem 20.10 have been discussed already, so let us merely
sketch how they need to be put together. The equivalence of (1) and (2) is easy to understand by
drawing small circles: clearly a choice of “counterclockwise circles” around points in the interior of
any 2-simplex σ Ă Σ determines a cyclic ordering of the vertices of that simplex, and conversely.
Notice that this correspondence has a slightly non-obvious corollary: if some triangulation of Σ
can be oriented, then so can all others. It should also be intuitively clear why (1) implies (3):
if Σ contains a Möbius band, then no globally consistent notion of counterclockwise circles can
be defined since following a loop around the Möbius band would reverse it. For the converse, we
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can appeal to the classification of surfaces and observe that any surface Σ satisfying the third
condition is homeomorphic to one of the surfaces Σg, which can be represented by a polygon with
4g sides. In the polygon picture, it is an easy exercise to construct an oriented triangulation for Σg.
Alternatively, one can understand the relationship between (2) and (3) in terms of the presence
of cross-caps or cross-handles in our proof of the classification of surfaces: the orientable surfaces
are precisely those which can be constructed without any cross-caps or cross-handles, which turns
out to work if and only if the 2-simplices can be assigned orientations for which the gluing maps
between matching 1-simplices are orientation reversing.

Exercise 20.12. Construct an explicit oriented triangulation of Σg for each g ě 0. Then, just
for fun, count how many k-simplices it has for each k “ 0, 1, 2. You will find that the number of
0-simplices minus the number of 1-simplices plus the number of 2-simplices is 2 ´ 2g. (Someday
we’ll discuss the Euler characteristic, and then you’ll see why this is true.)

Exercise 20.13. In Exercise 13.15 we considered the space Σg,m, defined by cutting the
interiors of m ě 0 disjoint disks out of the oriented surface Σg of genus g ě 0.

(a) Prove that every compact, orientable, connected surface with boundary is homeomorphic
to Σg,m for some values of g,m ě 0.
Hint: If Σ is a compact 2-manifold, then BΣ is a closed 1-manifold, and we classified all of
the latter. With this knowledge, there is a cheap trick by which you can turn any compact
surface with boundary into a closed surface, and then apply what you have learned about
the classification of closed surfaces. Don’t forget to keep track of orientations.

(b) Prove that Σg,m is homeomorphic to Σh,n if and only if g “ h and m “ n.

This concludes our discussion of surfaces.

Topic 2: Further ideas for detecting holes. The rest of this course will be about homology,
but before defining it, I want to discuss some related ideas that should help motivate the definition.
In some sense, all of the algebraic topological invariants we discuss in this course can be viewed as
methods for “detecting holes” in a topological space. Let me describe a few concrete examples in
which the fundamental group either does or does not succeed in this task.

Example 20.14. If we replace R2 with R2zD̊2, then the fundamental group changes from 0

to Z, with the boundary of D2 representing a generator of π1pR2zD̊2q, so this is one type of hole
that π1 detects very well.

Example 20.15. A 3-dimensional generalization of Example 20.14 is to replaceR3 by pR2zD̊2qˆ
R, which amounts to cutting the neighborhood of a line t0uˆR Ă R2ˆR out of R3. Since the extra
factor R is contractible, this example essentially admits a deformation retraction to the previous
one, so we still find a generator of π1ppR2zD̊2q ˆ Rq – π1pR2zD̊2q – Z which detects the removal
of the tube D̊2 ˆ R.

Example 20.16. A different type of generalization of Example 20.14 is to remove a 3-dimensional
ball from R3, and here the fundamental group performs less well: π1pR3q is 0, and π1pR3zD̊3q is
still zero since R3zD̊3 is homotopy equivalent to S2 and the latter is simply connected. There
clearly is a “hole” here, but π1 does not see it.

Example 20.17. There are also examples in which π1 seems to detect something other than
a hole. Let Σg,m denote the surface of genus g with m holes cut out, so Σ2 is homeomorphic to a
surface constructed by gluing together two copies of Σ1,1 along their common boundary:

Σ2 – Σ1,1 YBΣ1,1
Σ1,1.
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Let γ : S1 Ñ Σ2 denote a loop parametrizing the common boundary of these copies of Σ1,1. As
we saw in Exercise 13.15, γ represents a nontrivial element in π1pΣ2q, though it is in the kernel of
the natural homomorphism of π1pΣ2q to its abelianization. The latter will turn out to related to
the following geometric observation: while γ cannot be extended to any map D2 Ñ Σ2, it can be
extended to a map on some surface with boundary S1, e.g. it admits an extension to the inclusion
Σ1,1 ãÑ Σ2. In this sense, there is no actual hole there for γ to detect; it is instead detecting a
different phenomenon that has to do with the distinction between “disk-shaped” holes and “holes
with genus”.

I’m now going to start suggesting possible remedies for the drawbacks encountered in the last
two examples. We will have to try a few times before we can point to the “right” remedy, but all
of the objects we discuss along the way are also interesting and worthy of study.

Remedy 1: Higher homotopy groups. For any integer k ě 0, fix a base point t0 P Sk and
associate to any pointed space pX, x0q the set

πkpX, x0q “
 
f : pSk, t0q Ñ pX, x0q

( L
„
h`
,

where the equivalence relation „
h`

here means base-point preserving homotopy. This clearly repro-

duces the fundamental group when k “ 1. When k “ 0, S0 “ BD1 “ t1,´1u is a discrete space
with two points, one of which must be the base point and is thus constrained to map to x0, but
the other can move freely within each path-component of X , so π0pX, x0q is in bijective correspon-
dence with the set of path-components of X . This set does not naturally have any group structure,
though it does naturally have a “neutral” element, represented by the map that sends both points
in S0 to the base point x0. It turns out that for k ě 2, πkpX, x0q can always be given the structure
of an abelian group whose identity element is represented by the constant map

0 :“ rpSk, t0q Ñ pX, x0q : t ÞÑ x0s.
The precise definition of the group operation is a bit less obvious than for k “ 1, so I will not
go into it in this brief sketch. As with the fundamental group, one can show that πkpX, x0q is
independent of the base point up to isomorphism whenever X is path-connected, and it is also
isomorphic for any two spaces that are homotopy equivalent. We will prove these statements next
semester in Topologie II, but feel free to have a look at [Hat02, §4.1] if you can’t bear to wait.

Here are a couple of things that can be proved about the higher homotopy groups using
something resembling our present state of knowledge in this course:

Example 20.18. The identity map Sk Ñ Sk represents a nontrivial element of πkpSkq for
every k ě 1. This follows from Exercise 19.14, which sketches the notion of the mod 2 mapping
degree in order to show that every map Sk Ñ Sk homotopic to the identity is surjective (and
therefore nonconstant). More generally, one can use the integer-valued mapping degree for maps
Sk Ñ Sk to prove that πkpSkq – Z, just like the case k “ 1. A very nice account of this is given
in [Mil97].

Example 20.19. For every pair of integers k, n P N with n ą k, πkpSnq “ 0. This follows
easily from a general result in differential topology that allows us to approximate any continuous
map between smooth manifolds by a smooth map for which any given point in the target space
can be assumed to be a regular value. When n ą k, the latter means that for any given q P Sn and
a continuous map f : Sk Ñ Sn, we can approximate f with a map whose image does not contain q
and is thus contained in Snztqu – Rn. The latter admits a deformation retraction to any point it
contains, so composing the perturbed map Sk Ñ Snztqu with a deformation retraction of Snztqu
to the base point gives a homotopy of f to the constant map.
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Now here is the first piece of bad news about πk: in general it is rather hard to compute. So
hard, in fact, that the answers to certain basic questions about πk remain unknown, e.g. one of the
most popular open questions in modern topology is how to compute πkpSnq in general when k ą n.
Various special cases are known, but the as-yet incomplete effort to extend these special cases to a
general theorem has played a large role in motivating the development of modern homotopy theory.
We will need to have more and easier techniques at our disposal before we can discuss such things
in earnest.

21. Bordism groups and simplicial homology

The higher homotopy groups do remedy one of the drawbacks of π1 that I pointed out in the
last lecture: e.g. π2 can be used to detect the hole in R3zD̊3 since, by homotopy invariance,

π2pR3zD̊3q – π2pS2q – Z,

with the inclusion S2 ãÑ R3zD̊3 representing a generator. But there’s another drawback here:
while πk can detect higher-dimensional holes, they are still holes of a fairly specific type which one
might call “sphere-shaped” holes. What kind of hole is not sphere-shaped, you ask? Is there such
a thing as a “torus-shaped” hole? How about this one:

Example 21.1. Let X “ S1 ˆR2 and X0 “ S1 ˆ D̊2, so XzX0 “ S1 ˆ pR2zD̊2q admits a defor-
mation retraction to B sX0 “ S1 ˆS1 “ T2. By homotopy invariance, we have π1pXq – π1pS1q – Z

and π1pXzX0q – π1pT2q – Z2, so π1 does at least partly detect the removal of X0 from X . But
since XzX0 is homotopy equivalent to a surface, there is also an intrinsically 2-dimensional phe-
nonomenon going on in this picture, and it seems natural to ask: does XzX0 contain any surface
detecting the fact that X0 has been removed from X? We can almost immediately give the fol-
lowing answer: if such a surface exists, it is not a sphere, in fact π2pXq “ π2pXzX0q “ 0. To see
this, we can use the homotopy invariance of π2: the spaces X and XzX0 are homotopy equivalent
to S1 and T2 respectively, so it suffices to prove π2pS1q “ π2pT2q “ 0. Now observe that both
S1 and T2 are spaces whose universal covers (R and R2 respectively) happen to be contractible.
In general, suppose p : rY Ñ Y denotes the universal cover of some reasonable space Y , and rY is
contractible. Since S2 is simply connected, any map f : S2 Ñ Y can be lifted to f̃ : S2 Ñ rY ,
but the contractibility of rY then implies that f̃ is homotopic to a constant map. Composing that
homotopy with p : rY Ñ Y gives a corresponding homotopy of f “ p ˝ f̃ : S2 Ñ Y to a constant
map, proving π2pY q “ 0.

The preceding example is meant to provide motivation for a new invariant that might be able
to detect holes that are not “sphere-shaped”. The idea is to forget about the special roll played by
spheres in the definition of πk, but remember the fact that Sk is a closed k-dimensional manifold.
Similarly, if M is a k-manifold, the homotopy relation for maps defined on M is defined in terms
of maps on I ˆ M , which gives a special status to a very particular class of pk ` 1q-manifolds
with boundary. Since we are now allowing arbitrary closed k-manifolds in place of spheres, it also
seems natural to allow arbitrary compact pk`1q-manifolds with boundary for defining equivalence,
instead of just manifolds of the form IˆM . Following this train of thought to its logical conclusion
leads to bordism theory.24

24In the older literature, “bordism theory” was usually called “cobordism theory,” and it is still common in
most subfields of geometry and topology to refer to manifolds whose boundaries are disjoint unions of a given pair
of closed manifolds as “cobordisms” instead of “bordisms”. The elimination of the “co-” in “cobordism” is presumably
motivated by the fact that bordism groups define a covariant functor instead of a contravariant functor, which
makes it more analogous to homology than to cohomology. I promise you this footnote will make more sense after
Topologie II.
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Remedy 2: Bordism groups. For any space X and each integer k ě 0, let

ΩkpXq :“ tpM, fqu
L

„,

where M is any closed (but not necessarily connected or nonempty)25 k-manifold, f :M Ñ X is a
continuous map, and we write pM`, f`q „ pM´, f´q if and only if there exists a compact pk ` 1q-
manifold W with BW – M´ >M` and a map F :W Ñ X such that F |M˘

“ f˘. You should take
a moment to think about why „ defines an equivalence relation. Any two pairs that are equivalent
in this sense are said to be bordant, and the pair pW,F q is called a bordism between them.

Example 21.2. pM, fq „ pM, gq whenever f and g are homotopic maps M Ñ X , as the
homotopy H : I ˆM Ñ X defines a bordism pI ˆM,Hq.

Example 21.3. Recall from Example 20.17 the loop γ : S1 Ñ Σ2 whose image separates Σ2

into two pieces both homeomorphic to Σ1,1. Either of the two inclusions Σ1,1 ãÑ Σ2 in this picture
can be viewed as a bordism between pS1, γq and pH, ¨q, where ¨ denotes the unique map H Ñ X .
Hence rpS1, γqs “ rpH, ¨qs P Ω1pΣ2q.

Since the manifolds representing elements of ΩkpXq need not be connected, the disjoint union
provides an obvious definition for a group operation on ΩkpXq. This operation is necessarily
commutative since X >Y has a natural identification with Y >X for any two spaces X and Y . Now
would be a good moment to mention the following notational convention: whenever a group G is
known a priori to be abelian, we shall from now on denote the group operation in G as addition
(with a “`” sign) rather than multiplication.

Definition 21.4. We give ΩkpXq the structure of an abelian group by defining

rpM1, f1qs ` rpM2, f2qs :“ rpM1 > M2, f1 > f2qs,

where f1 > f2 :M1 >M2 Ñ X denotes the unique map whose restriction to Mi Ă M1 >M2 is fi for
i “ 1, 2. The identity element is

0 :“ rpH, ¨qs,
with ¨ : H Ñ X denoting the unique map. The group ΩkpXq is called the k-dimensional unori-
ented bordism group of X . We say that a pair pM, fq is null-bordant whenever rpM, fqs “ 0,
meaning there exists a compact pk ` 1q-manifold W with BW – M and a map F : W Ñ X with
F |M “ f .

Referring back to Example 21.1, one can now show that the bordism class represented by the
inclusion T2 “ B sX0 ãÑ XzX0 is nontrivial in Ω2pXzX0q. One way to prove this uses the mod 2

mapping degree (cf. Exercise 19.14) for maps f : T2 Ñ T2: by an argument similar to the proof
that deg2pfq depends only on the homotopy class of f , one can show that degpfq “ 0 whenever
pT2, fq is null-bordant. It follows that rpT2, Idqs ‰ 0 P Ω2pT2q since deg2pIdq “ 1, and this element
of Ω2pT2q can be identified with the aforementioned inclusion using the homotopy equivalence
between T2 and XzX0. In summary, Ω2 does indeed detect “T2-shaped” holes.

The algebraic structure of ΩkpXq is also extremely simple, one might even say too simple, in
light of the following result saying that all elements in ΩkpXq are “2-torsion”:

Proposition 21.5. For every rpM, fqs P ΩkpXq, rpM, fqs ` rpM, fqs “ 0.

25Note that the empty set is a k-manifold for every k P Z. Look again at the definition of manifolds, and you
will see that this is true.
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Proof. Let W “ I ˆ M and F : W Ñ X : ps, xq ÞÑ fpxq. Then BW – H > pM > Mq and
F |M>M “ f > f , hence pW,F q is a bordism between pM >M, f > fq and pH, ¨q.26 �

One obtains a slightly more interesting algebraic structure by restricting to orientable manifolds
and keeping track of orientations. Recall from the previous lecture that a manifold endowed with
the extra structure of an orientation is called an oriented manifold ; we will continue to denote
such objects by single letters such as M , but you should keep in mind that they include slightly
more data than just a set with its topology. If M is an oriented manifold, we shall denote by
´M the same manifold with its orientation reversed: this can always be defined by replacing each
of the oriented charts on M by their compositions with an orientation-reversing homeomorphism
Hn Ñ Hn such as px1, . . . , xn´1, xnq ÞÑ px1, . . . , xn´1,´xnq. Recall also from Remark 20.6 that any
oriented manifold W with boundary determines a natural boundary orientation on BW . Whenever
we write expressions like BW – M in the context of oriented manifolds, we will always mean
there is a homeomorphism BW Ñ M that matches the given orientation of M to the boundary
orientation of BW induced by the given orientation of W .

Definition 21.6. The k-dimensional oriented bordism group of X is27

ΩSO
k pXq :“ tpM, fqu

L
„,

where M is a closed (but not necessarily connected or nonempty) oriented k-manifold, f :M Ñ X

is continuous, and the oriented bordism relation pM`, f`q „ pM´, f´q means that there exists a
compact oriented pk ` 1q-manifold W and a map F :W Ñ X such that

BW – ´M´ > M`

and F |M˘
“ f˘. The group operation on ΩSO

k pXq is defined via disjoint union as with ΩkpXq.
Proposition 21.5 is not true for oriented bordism groups: its proof fails due to the fact that

the oriented boundary of I ˆM is ´M >M , not M > M .
Let us compare both groups in the case k “ 0. We claim that

Ω0pXq –
à

π0pXq

Z2,

while
ΩSO

0 pXq –
à

π0pXq

Z,

where π0pXq is an abbreviation for the set of path-components of X . For concreteness, consider a
case where X has exactly three path-components X1, X2, X3 Ă X , so the claim is that Ω0pXq – Z3

2

and ΩSO
0 pXq – Z3. An element of Ω0pXq is an equivalence class of pairs pM, fq, where M is a

closed 0-manifold, i.e. a finite discrete set, and f : M Ñ X . Let us number the elements of
M as x1, . . . , xN , and suppose there are two elements that are mapped by f to the same path-
component, say fpx1q, fpx2q P X1. Then there exists a path γ : I12 Ñ X , where I12 :“ I, satisfying
γp0q “ fpx1q and γp1q “ fpx2q. Now define W :“ I12 > I3 > . . . > IN where each Ij for j “ 3, . . . , N

is another copy of I, and decompose the boundary BW “ M´ > M` so that M` contains BI12
and 1 P BIj for every j “ 3, . . . , N , while M´ contains 0 P BIj for every j “ 3, . . . , N . Defining

26One of the slightly confusing things about ΩkpXq is that there is always some ambiguity about how to split
up the open and closed subsets of BW into M´ and M`. For the bordism in the proof of Prop. 21.5, one can
equally well view it as a bordism between pM, fq and pM, fq, but we are ignoring this because it does not give us
any information beyond the fact that the bordism relation is reflexive.

27The “SO” in the notation ΩSO

k
pXq stands for the group SOpkq, the special orthogonal group. This has to

do with the fact that SOpkq is precisely the subgroup of Opkq consisting of orthogonal transformations that are
orientation preserving.
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F : W Ñ X such that F |I12 :“ γ and F sends Ij to the constant fpxjq for each j “ 3, . . . , N , we
now have a bordism between pM, fq and pM 1, f 1q where M 1 :“ Mztx1, x2u and f 1 is the restriction
of f . One can do this for any pair of points in M that are mapped to the same path-component,
so that whenever pM, fq and pN, gq have the same number of points (mod 2) mapped into each
path-component, there exists a bordism between them. Conversely, any bordism between two
pairs pM, fq and pN, gq is of the form pW,F q where W is a compact 1-manifold with boundary,
and by the classification of 1-manifolds, this can only mean a finite disjoint union of circles and
compact intervals. Since each of these components individually can only be mapped into one of
the path-components X1, X2, X3 and each has either zero or two boundary points, it follows that
for each i “ 1, 2, 3, the number of points of M or N that are mapped into Xi can only differ by an
even number. We have just proved the following: given rpM, fqs P Ω0pXq, let fi P Z2 for i “ 1, 2, 3

denote the number (mod 2) of points in M that f maps into Xi. Then

Ω0pXq Ñ Z3
2 : rpM, fqs ÞÑ pf1, f2, f3q

is an isomorphism.
To understand ΩSO

0 pXq, we need to keep in mind that an oriented 0-manifold M is not just a
finite set of points, but it also comes with a map ǫ :M Ñ t1,´1u telling us which points are to be
regarded as “positively oriented” as opposed to “negatively oriented” (cf. Definition 20.5). It is now
no longer possible to cancel arbitrary pairs as in the unoriented case, but supposeM “ tx1, . . . , xN u
and f sends both x1 and x2 into X1, and also that ǫpx1q “ ´1 while ǫpx2q “ `1. We can again
choose a path γ : I12 Ñ X1 with γp0q “ fpx1q and γp1q “ fpx2q, and define W “ I12 > I3 > . . .> IN
and F : W Ñ X as before. Before we can call pW,F q an oriented bordism, we need to specify
the orientation of W . Let us assume I12 is oriented so that ǫp1q “ `1 and ǫp0q “ ´1, while for
j “ 3, . . . , N , orient Ij such that ǫp1q “ ǫpxjq and ǫp0q “ ´ǫpxjq. We now have BW “ ´M 1 > M
where M 1 “ Mztx1, x2u with the same orientations on the points x3, . . . , xN , hence pW,F q is
an oriented bordism between pM, fq and pM 1, f 1q. It is possible to construct such a bordism to
eliminate any pair of points in M that have opposite signs and are mapped to the same path-
component of X . Thus if we define fi P Z for each i “ 1, 2, 3 by

fi :“
ÿ

xPf´1pXiq

ǫpxq,

it follows that any two pairs pM, fq and pN, gq for which fi “ gi for every i must admit an oriented
bordism. Conversely, the classification of 1-manifolds again implies that an arbitrary oriented
bordism pW,F q between two pairs pM, fq and pN, gq is a map defined on a finite disjoint union
of oriented intervals and circles, and since the two boundary points of an oriented interval I are
always oriented with opposite signs, any component of W whose boundary lies entirely in one of
M or ´N contributes zero to the counts defining the numbers fi and gi, while components that
have one boundary point in M and one in ´N make the same contribution ˘1 to fi and gi. This
proves that the map

ΩSO
0 pXq Ñ Z3 : rpM, fqs ÞÑ pf1, f2, f3q

is well defined and is also an isomorphism.
While computing the 0-dimensional bordism groups is not hard, we run into a serious (though

interesting!) difficulty with the higher-dimensional bordism groups: they can be nontrivial even if
X is only a one-point space. When X “ tptu, we abbreviate

Ωk :“ Ωkptptuq, ΩSO
k :“ ΩSO

k ptptuq,
and notice that since there is only one map from each manifold to tptu, the elements of ΩSO

k

are equivalence classes of oriented closed manifolds M where M „ N whenever BW – ´M > N
for some compact oriented manifold W ; elements of Ωk can be described in the same way after
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deleting the word “oriented” everywhere. In particular, we have rM s “ 0 P Ωk if and only if M
is homeomorphic to the boundary of some compact pk ` 1q-manifold. The question of whether a
given manifold can be the boundary of another compact manifold is interesting, and the answer
is often not obvious. For k “ 1 it is not so hard: the classification of 1-manifolds implies that
every bordism class rM s in Ω1 or ΩSO

1 is represented by a finite disjoint union of circles, and since
S1 “ BD2, all of these are (oriented) boundaries, hence

Ω1 “ ΩSO
1 “ 0.

It is similarly easy to see that all closed oriented surfaces are boundaries of compact oriented 3-
manifolds: just take your favorite embedding of Σg into R3 and consider the region bounded by that
embedded surface. For the oriented 3-dimensional case, we do not have any simple classification
result to rely upon, but one can instead appeal to a standard (though not so trivial) result from low-
dimensional topology known as the Dehn-Lickorish theorem, which can be interpreted as presenting
arbitrary closed oriented 3-manifolds as boundaries of compact oriented 4-manifolds obtained by
attaching “2-handles” to D4. We can therefore say

ΩSO
2 “ ΩSO

3 “ 0.

However, in the unoriented case there is already trouble in dimension two: it is known that there
does not exist any compact 3-manifold whose boundary is homeomorphic to RP

2. This can be
proved using methods that we will cover in Topologie II, notably the Poincaré duality isomorphism
between the homology and cohomology groups of closed manifolds. A similar argument implies that
the complex counterpart of RP2, the complex projective space CP

2, is a closed oriented 4-manifold
that never occurs as the boundary of any compact oriented 5-manifold. This implies

rRP2s ‰ 0 P Ω2, and rCP2s ‰ 0 P ΩSO
4 .

This reveals that in general, the k-dimensional bordism groups of a one-point space contain a lot
more information than one might expect: instead of just telling us something about the rather
boring space tptu, they tell us something about the classification of closed k-manifolds, namely
which ones can appear as boundaries of other compact manifolds and which ones cannot. That is
an interesting question, and one that is very much worth studying at some point, but as with the
higher homotopy groups, we will need to have a much wider range of simpler techniques at our
disposal before we are equipped to tackle it.

Remedy 3: Simplicial homology (AKA “triangulated bordism”). The first version of
homology theory that we will now discuss can be regarded as an attempt to capture much of the
same information about X that is seen by the bordism groups ΩnpXq and ΩSO

n pXq, but without
requiring us to know anything about the (generally quite hard) problem of classifying closed n-
manifolds. The first idea is that instead of allowing arbitrary closed manifolds as domains, we
consider manifolds with triangulations, so that all the data can be expressed in terms of simplices.
The followup idea is that now that everything is expressed in terms of simplices, there is no need
to mention manifolds at all.

Consider a simplicial complex K “ pV, Sq with associated polyhedron X :“ |K|, and for each
integer n ě 0, let Sn Ă S denote the set of n-simplices. As auxiliary data, we also fix an abelian
group G, which in principle can be arbitrary, but for reasons related to the distinction between
oriented and unoriented bordism, we will typically want to choose G to be either Z or Z2.

Definition 21.7. The group of n-chains in K (with coefficients in G) is the abelian group

CnpK;Gq :“
à
σPSn

G,
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whose elements can be written as finite sums
ř
i aiσi with ai P G and σi P Sn, with the group

operation defined by ÿ

i

aiσi `
ÿ

i

biσi “
ÿ

i

pai ` biqσi.

An n-chain is in some sense an abstract algebraic object, but if we chooseG “ Z and consider an
n-chain

ř
i aiσi whose coefficients are all ai “ ˘1, then you can picture the chain geometrically as

the union of the n-simplices in X corresponding to each σi in the sum, with orientations determined
by the signs ai. These subsets are always compact, and if the particular set of n-simplices is chosen
appropriately, then they will sometimes look like n-dimensional manifolds embedded in X . Our
goal is now to single out a special class of n-chains that are analogous to closed n-dimensional
manifolds embedded in X , i.e. the n-chains that have “empty boundary”. This can be done by
writing down an algebraic operation that describes the boundary of each individual simplex. To
define this properly, we need to choose an orientation for every simplex in S; note that this has
nothing intrinsically to do with oriented triangulations, as it is a completely arbitrary choice with
no compatibility conditions required, so it can always be done. With this choice in place, for each
σ “ tv0, . . . , vnu P Sn, set

Bσ :“
nÿ

k“0

ǫkBpkqσ P Cn´1pK;Zq,

where as usual Bpkqσ “ tv0, . . . , vk´1, vk`1, . . . , vnu denotes the kth boundary face of σ, and ǫk P
t1,´1u is defined to be `1 if the chosen orientation of the pn ´ 1q-simplex Bpkqσ matches the
boundary orientation it inherits from σ (see Definition 20.8), and ´1 if these two orientations are
opposite. There is now a uniquely determined group homomorphism

Bn : CnpK;Gq Ñ Cn´1pK;Gq :
ÿ

i

aiσi ÞÑ
ÿ

i

aipBσiq,

where the multiplication of each coefficient ai P G by a sign ǫk “ ˘1 is defined in the obvious way
as an element of G. (Notice that if G “ Z2, the signs ǫk become irrelevant because every coefficient
ai then satisfies ai “ ´ai.) Strictly speaking, the definition above only makes sense for n ě 1 since
there are no p´1q-simplices; in light of this, we set

B0 :“ 0.

We call the subgroup ker Bn Ă CnpK;Gq the group of n-cycles, or equivalently, the closed
n-chains. The elements of the subgroup im Bn`1 Ă CnpK;Gq are called boundaries.

Lemma 21.8. Bn´1 ˝ Bn “ 0 for all n P N.

Proof. You should think of this as an algebraic or combinatorial expression of the geometric
fact that the boundary of any n-manifold with boundary is always an pn´ 1q-manifold with empty
boundary. On a more mundane level, the result holds due to cancelations, e.g. suppose A is an
oriented 2-simplex whose oriented 1-dimensional boundary faces are denoted by a, b, c, giving

B2A “ a ` b` c.

Suppose further that the vertices of A are denoted by α, β, γ, all oriented with positive signs, but
the arrow determined by the orientation of a points toward α and away from γ, while b points
toward β and away from α, and c points toward γ but away from β. This gives the three relations

B1a “ α ´ γ, B1b “ β ´ α, B1c “ γ ´ β,

thus B1 ˝ B2A “ B1pa` b` cq “ pα´ γq ` pβ´αq ` pγ´βq “ 0. Similar cancelations occur in every
dimension. �
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Lemma 21.8 is often abbreviated with the formula

B2 “ 0,

and we will sometimes abbreviate B :“ Bn when there is no chance of confusion. The formula
implies in particular that im Bn`1 is a subgroup of Bn for every n ě 0. Since all these groups are
abelian and subgroups are therefore normal, we can now consider quotients:

Definition 21.9. The nth simplicial homology group of the complex K (with coefficients
in G) is

H∆
n pK;Gq :“ ker Bn

L
im Bn`1.

It is worth comparing this definition to the bordism groups ΩnpXq and ΩSO
n pXq, as the extra

layer of algebra involved in the definition of homology obscures a fairly direct analogy. Instead of
closed n-manifolds M with maps f :M Ñ X , homology considers n-cycles, meaning formal linear
combinations of n-simplices c :“ ř

i aiσi with Bc “ 0. The bordism relation pM`, f`q „ pM´, f´q
is now replaced by the conditition that two cycles c, c1 P ker Bn represent the same homology class
rcs “ rc1s P H∆

n pK;Gq if c ´ c1 P im Bn`1, i.e. their difference is the boundary of an pn ` 1q-chain
(analogous to a map defined on a compact pn` 1q-manifold with boundary). When this holds, we
say that the cycles c and c1 are homologous. Finally, we will see that the distinction between
ΩSO
n pXq and ΩnpXq now corresponds to the distinction between H∆

n pK;Zq and H∆
n pK;Z2q.

Let’s compute an example. Figure 13 shows an oriented triangulation of T2 with eight 2-
simplices, twelve 1-simplices and four vertices labeled as follows:

S2 “ tA,B,C,D,E, F,G,Hu,
S1 “ ta, b, c, d, e, f, g, h, i, j, k, ℓu,
S0 “ tα, β, γ, δu.

In addition to the orientations of the 2-simplices that come from this being an oriented trian-
gulation, the figure shows (via arrows) an arbitrary choice of orientations for all 1-simplices, and
we shall assume all the 0-simplices are oriented with a positive sign. One can now begin writing
down relations such as

BA “ a ´ h´ c, BB “ i´ k ` h, Ba “ β ´ α

and so forth, but writing down all such relations would be rather tedious, so let us instead try to
reason more geometrically. The computation of H∆

0 pK;Zq is not hard in any case: all 0-chains
are cycles since B0 “ 0, including the four generators α, β, γ and δ, but all four of them are
also homologous to each other since any pair of them can be connected by an oriented 1-simplex
pointing from one to the other, e.g. Ba “ β´α implies rαs “ rβs, and Bi “ δ´ β implies rβs “ rδs.
The result is

H∆
0 pK;Zq – Z,

with a canonical generator represented by any of the vertices in the complex. Notice that this
matches the oriented bordism group ΩSO

0 pT2q since T2 is path-connected.
Let’s look at the 1-cycles. There is a 1-cycle for every continuous loop we can find that follows

a path through 1-simplices—we just have to insert minus signs wherever there is an arrow pointing
the wrong way in order to ensure the necessary cancelation of 0-simplices. For example, traversing
the boundary of the lower-right square gives

Bpi` ℓ´ c´ bq “ 0,

so i` ℓ´ c´ b is a 1-cycle, but not a very interesting one since it is also the boundary of the region
filled by the 2-simplices C and D: in particular,

Bp´C ´Dq “ i` ℓ´ c´ b,
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Figure 13. A simplicial complex with |K| “ T2.

hence ri ` ℓ ´ c ´ bs “ 0 P H∆
1 pK;Zq. To find more interesting 1-cycles, it helps to remember

what we already know about π1pT2q – Z2. We can easily find two loops through 1-simplices that
represent the two distinct generators of this fundamental group: one of them is i` j, and we easily
see that

Bpi` jq “ pδ ´ βq ` pβ ´ δq “ 0.

Another is c`d, but notice that the loops corresponding to these two 1-cycles are homotopic in T2,
and relatedly, they form the boundary of the region filled by the 2-simplices C, D, G and H , so

BpC `D `G`Hq “ c ` d´ pi ` jq,

implying rc ` ds “ ri ` js P H∆
1 pK;Zq. One can show however that this homology class really is

nontrivial, and it is not the only one: the other generator of π1pT2q corresponds to either of the
two homologous 1-cycles a ` b or k ` ℓ. The end result is

H∆
1 pK;Zq – Z2,

the same as the fundamental group.
As observed at the beginning of this lecture, the fact that T2 has a contractible universal

cover implies that π2pT2q “ 0, so if there are any interesting 2-cycles in T2, they will not look like
spheres. But if you think that H2pK;Zq should have something to do with the oriented bordism
group ΩSO

2 pT2q, then there is a fairly obvious candidate for a 2-cycle in this picture: T2 itself is a
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closed oriented manifold, and the oriented triangulation we have chosen turns it into a 2-cycle:

BpA`B ` C `D ` E ` F `G `Hq “ 0.

The point is that since the triangulation is oriented, writing down each individual term in this
sum would produce a linear combination of 1-simplicies in which every 1-simplex in the complex
appears exactly twice, but with opposite signs, thus adding up to 0. It should be easy to convince
yourself that no nontrivial 2-chain that does not include all eight of the 2-simplices can ever be a
cycle, as its boundary will have to include some 1-simplices that have nothing to cancel with. It
follows easily that all 2-cycles in this complex are integer multiples of the one found above, and
none of them are boundaries since there are no 3-simplices, thus

H∆
2 pK;Zq – Z.

I can now state a theorem that is really rather amazing, though I’m sorry to say that we will
not be able to prove it until next semester:

Theorem 21.10. For any simplicial complex K, the simplicial homology groups H∆
n pK;Gq

depend (up to isomorphism) on the polyhedron X “ |K|, but not on the complex itself.

This theorem seems to have been known for quite a while before the reasons behind it were
properly understood. At the dawn of homology theory, the subject had a very combinatorial flavor,
and the use of triangulations as a tool for understanding manifolds proved to be very successful. A
fairly natural strategy for proving Theorem 21.10 was formulated near the beginning of the 20th
century and was based on a conjecture called the Hauptvermutung: it claims essentially that
any two triangulations of the same topological space can be turned into the same triangulation by
a process of subdivision. Subdivision replaces each individual simplex σ with a triangulation by
smaller simplices, so it makes the chain groups CnpK;Gq much larger, but it is not too hard to show
that the homology resulting from these enlarged chain groups is isomorphic to the original, hence if
the Hauptvermutung is true, Theorem 21.10 follows. The only trouble is that the Hauptvermutung
is false, as was discovered in the 1960’s; moreover, we now also know examples of closed topological
manifolds that cannot be triangulated at all, so that simplicial complexes do not provide the ideal
framework for understanding manifolds in general. But in the mean time, the mathematical
community discovered much better ways of proving Theorem 21.10, namely by defining another
invariant for arbitrary topological spaces X that manifestly only depends on the topology of X
without any auxiliary structure, but also can be shown to match simplicial homology whenever X
is a polyhedron. That invariant is singular homology, and it will be our topic for the rest of this
course.

22. Singular homology

So here’s the challenge: how do we define a topological invariant that captures the same
information as simplicial homology, but without ever referring to a simplicial complex? The answer
to this turns out to be fairly simple, but speaking for myself, the first time I heard it, I thought
it sounded crazy. There seemed to be no way that one could ever compute such a thing, or if one
could, then it was hard to imagine what geometric insight would be gained from the computation.
I’ve been leading up to this definition gradually over the last few lectures in order to give you some
intuition about what kind of invariant we are looking for and why. The hope is that, equipped
with this intuition, your first reaction to seeing the definition of singular homology might be that
it has a fighting chance of answering some question you actually care about.

It will be convenient to first establish some basic principles of the subject known as homological
algebra. We have already seen an example of the first definition in our discussion of simplicial
homology.
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Definition 22.1. A (Z-graded) chain complex (Kettenkomplex) of abelian groups pC˚, Bq
consists of a sequence tCnunPZ of abelian groups together with homomorphisms Bn : Cn Ñ Cn´1

for each n P Z such that Bn´1 ˝ Bn : Cn Ñ Cn´2 is the trivial homomorphism for every n.

We sometimes denote the direct sum of all the chain groups Cn in a chain complex by

C˚ :“
à
nPZ

Cn,

whose elements can all be written as finite sums
ř
i ai with ai P Cni

for some integers ni P Z.
An element x P C˚ is said to have degree (Grad) n if x P Cn. The individual homomorphisms
Bn : Cn Ñ Cn´1 extend uniquely to a homomorphism B : C˚ Ñ C˚ which has degree ´1, meaning
it maps elements of any given degree to elements of one degree less. We sometimes indicate this
by abusing notation and writing

B : C˚ Ñ C˚´1.

The collection of relations Bn´1 ˝ Bn “ 0 for all n can now be abbreviated by the single relation

B2 “ 0,

which is equivalent to the condition that im Bn`1 Ă ker Bn for every n. We call B the boundary
map (Randoperator) in the complex. Elements in ker B Ă C˚ are called cycles (Zykel), while
elements in im B Ă C˚ are called boundaries (Ränder).

Definition 22.2. The homology (Homologie) of a chain complex pC˚, Bq is the sequence of
abelian groups

HnpC˚, Bq :“ ker Bn
L
im Bn`1

for n P Z. We sometimes denote

H˚pC˚, Bq :“
à
nPZ

HnpC˚, Bq,

which makes H˚pC˚, Bq a Z-graded abelian group.

Every element ofHnpC˚, Bq can be written as an equivalence class rcs for some n-cycle c P ker Bn,
and we call rcs the homology class (Homologieklasse) represented by c. Two cycles a, b P ker Bn
are called homologous (homolog) if ras “ rbs P HnpC˚, Bq, meaning a´ b P im Bn`1.

Remark 22.3. For the examples of chain complexes pC˚, Bq we consider in this course, Cn is
always the trivial group for n ă 0, mainly because the degree n typically corresponds to a geometric
dimension and dimensions cannot be negative. But there is no need to assume this in the general
algebraic definitions. In other settings, there are plenty of interesting examples of chain complexes
that have nontrivial elements of negative degree.

The next definition will be needed when we want to show that continuous maps between
topological spaces induce homomorphisms of their singular homology groups.

Definition 22.4. Given two chain complexes pA˚, BAq and pB˚, BBq, a chain map (Ketten-
abbildung) from pA˚, BAq to pB˚, BBq is a sequence of homomorphisms fn : An Ñ Bn for n P Z

such that the following diagram commutes:

(22.1)

. . . An`1 An An´1 . . .

. . . Bn`1 Bn Bn´1 . . .

BA
n`1

fn`1

BA
n

fn

BA
n´1

fn´1

BB
n`1 BB

n
BB
n´1

In other words, a chain map is a homomorphism f : A˚ Ñ B˚ of degree zero satisfying BB ˝ f “
f ˝ BA.
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Proposition 22.5. Any chain map f : pA˚, BAq Ñ pB˚, BBq determines homomorphisms
f˚ : HnpA˚, BAq Ñ HnpB˚, BBq for every n P Z via the formula

f˚ras :“ rfpaqs.
Proof. There are two things to prove: first, that whenever a P An is a cycle, so is fpaq P Bn.

This is clear since BAa “ 0 implies BBpfpaqq “ fpBAaq “ 0 by the chain map condition. Second,
we need to know that f maps boundaries to boundaries, so that it descends to a well-defined
homomorphism ker BAn { im BAn`1 Ñ ker BBn { im BBn`1. This is equally clear, since a “ BAx implies
fpaq “ fpBAxq “ BBfpxq. �

We will also want to prove that the homomorphism induced on homology by a continuous
map f : X Ñ Y depends only on the homotopy class of f . It would be too much to ask that
all homotopic maps induce exactly the same chain map, but a more plausible goal is to establish
some algebraic condition on two chain maps that forces them to induce the same homomorphism
on homology. This condition is called chain homotopy.

Definition 22.6. A chain homotopy (Kettenhomotopie) between two chain maps f, g :

pA˚, BAq Ñ pB˚, BBq is a sequence of homomorphisms hn : An Ñ Bn`1 such that for every n P Z,

fn ´ gn “ BBn`1 ˝ hn ` hn´1 ˝ BAn .
In other words, a chain homotopy between f and g is a homomorphism h : A˚ Ñ B˚ of degree `1

such that f ´ g “ BB ˝ h` h ˝ BA. We sometimes abuse notation and write

h : A˚ Ñ B˚`1

to emphasize that a chain homotopy is a homomorphism of degree 1.

Two chain maps that admit a chain homotopy between them are called chain homotopic
(kettenhomotop), and it is not hard to show that this defines an equivalence relation on chain maps.
You can picture a chain homotopy as a sequence of down-left diagonal arrows in the diagram (22.1),
though you need to be a little careful with that diagram since a chain homotopy does not make it
commute. The main importance of chain homotopies comes from the following result.

Proposition 22.7. If there exists a chain homotopy between two chain maps f and g from
pA˚, BAq to pB˚, BBq, then they induce the same sequence of homomorphisms

f˚ “ g˚ : HnpA˚, BAq Ñ HnpB˚, BBq
for all n P Z.

Proof. If h : A˚ Ñ B˚`1 is a chain homotopy, then given any ras P HnpA˚, BAq, we have
BAa “ 0 and thus

fpaq ´ gpaq “ BBhpaq ` hpBAaq “ BB phpaqq ,
hence fpaq and gpaq are homologous cycles. �

Remark 22.8. We will not need it, but since the notions of chain maps and chain homotopies
did not appear in our discussion of simplicial homology, you might wonder if they nonetheless
have some role to play in that context. Chain maps arise for instance from simplicial maps:
given two simplicial complexes K “ pV, Sq and K 1 “ pV 1, S1q, a map f : V Ñ V 1 is called a
simplicial map if for every simplex σ of K, the images under f of the vertices of σ form the
vertices (possibly with repetition) of a simplex of K 1. A simplicial map naturally determines a
continuous map of the associated polyhedra |K| Ñ |K 1| which maps each n-simplex in |K| linearly
to a k-simplex in |K 1| for some k ď n. It is not hard to show that f also naturally induces a
chain map f˚ : C˚pK;Gq Ñ C˚pK 1;Gq, defined by sending each n-simplex σ in K to its image
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k-simplex in K 1 if k “ n and otherwise sending σ to 0. In light of this, Proposition 22.5 implies
(unsurprisingly) that any bijective simplicial map from K to K 1 induces an isomorphism of the
simplicial homology groups H∆

˚ pK;Gq Ñ H∆
˚ pK 1;Gq. Chain homotopies play an important role

when one considers subdivisions of a simplicial complex, e.g. one can naturally associate to any
simplicial complex K a larger complex K 1 with a homeomorphism of |K 1| to |K| such that the
simplices in K 1 triangulate the individual simplices of K into smaller pieces. This defines a chain
map S : C˚pK;Gq Ñ C˚pK 1;Gq sending each simplex of K to the linear combination of simplices of
K 1 that triangulate it, and importantly, S turns out to be a chain homotopy equivalence, meaning
there exists another chain map T : C˚pK 1;Gq Ñ C˚pK;Gq such that each of S˝T and T ˝S are chain
homotopic to the identity. It then follows from Proposition 22.7 that the induced homomorphism
S˚ : H∆

˚ pK;Gq Ñ H∆
˚ pK 1;Gq is an isomorphism. This was historically considered one of the major

motivations to believe that simplicial homology depends only on the underlying space |K| and not
on the simplicial complex itself (cf. Theorem 21.10). We will see an analogue of this in singular
homology when we need to prove the excision property next week. In the simplicial context, one
usually has to consult some of the older textbooks to find adequate discussions of such topics, but
e.g. [Spa95] is quite nice.

We now proceed to define the chain complex of singular homology. As in simplicial homology,
we fix an arbitrary abelian group G as auxiliary data, called the coefficient group; in practice
it will usually be either Z or Z2, occasionally Q. Recall that for integers n ě 0, the standard
n-simplex is the set

∆n “ tpt0, . . . , tnq P In`1 | t0 ` . . . ` tn “ 1u.
For each k “ 0, . . . , n, the kth boundary face of ∆n is the subset

Bpkq∆
n :“ ttk “ 0u Ă ∆n,

which is canonically homeomorphic to ∆n´1 via the map

(22.2) Bpkq∆
n Ñ ∆n´1 : pt0, . . . , tk´1, 0, tk`1, . . . , tnq ÞÑ pt0, . . . , tk´1, tk`1, . . . , tnq.

Definition 22.9. Given a topological space X , a singular n-simplex in X is a continuous
map σ : ∆n Ñ X .

Let KnpXq denote the set of all singular n-simplices in X , and define the singular n-chain
group with coefficients in G by

CnpX ;Gq “
à

σPKnpXq

G.

Note that this definition also makes sense for n ă 0 if we agree that KnpXq is then empty since
there is no such thing as a simplex of negative dimension, hence the groups CnpX ;Gq are trivial
in these case. In general, elements in CnpX ;Gq can be written as finite sums Σiaiσi where ai P G
and σi P KnpXq. This clearly looks similar to the simplicial chain groups, but if you’re paying
attention properly, you may at this point be feeling nervous about the fact that CnpX ;Gq is a
bloody enormous group: algebraically it is very simple, but the set KnpXq that generates it is
usually uncountably infinite. It’s probably even larger than you are imagining, because a singular
n-simplex is not just a “simplex-shaped” subset of X , but it is also the parametrization of that
subset, so any two distinct parametrizations σ : ∆n Ñ X , even if they have exactly the same image,
define different elements of KnpXq and thus different generators of CnpX ;Gq.28 If this makes you
nervous, then you are right to feel nervous: it is a minor miracle that we will eventually be able
to extract useful and computable information from groups as large as CnpX ;Gq. You will see.

28The word “singular” in this context refers to the fact that since there is no condition beyond continuity
required for the maps σ : ∆n Ñ X, their images might not look “simplex-shaped” at all, but could instead be full
of singularities.
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The next step is to define a boundary map CnpX ;Gq Ñ Cn´1pX ;Gq. As in simplicial ho-
mology, this is done by writing a formula for Bσ for each generator σ P KnpXq, and the formula
follows the same orientation convention that we saw in our discussion of oriented triangulations,
cf. Definition 20.8: set

Bσ :“
nÿ

k“0

p´1qk
`
σ|Bpkq∆

n

˘
P Cn´1pX ;Zq,

where each σ|Bpkq∆
n is regarded as a singular pn´1q-simplex using the identification Bpkq∆

n “ ∆n´1

from (22.2).derstood
This uniquely determines a homomorphism

B : CnpX ;Gq Ñ Cn´1pX ;Gq :
ÿ

i

aiσi ÞÑ
ÿ

i

ai Bσi,

and the usual cancelation phenomenon implies:

Lemma 22.10. B2 “ 0. �

The nth singular homology group (singuläre Homologiegruppe) with coefficients in G is
now defined by

HnpX ;Gq :“ Hn pC˚pX ;Gq, Bq .
In the case G “ Z, this is often abbreviated by

HnpXq :“ HnpX ;Zq.
The direct sum of these groups for all n is denoted by H˚pX ;Gq, though informally, this notation
is also sometimes used with the symbol “˚” acting as an integer-valued variable just like n.

I encourage you to compare the following result with our computation of the bordism groups
Ω0pXq and ΩSO

0 pXq in Lecture 21.

Proposition 22.11. For any space X and any coefficient group G, H0pX ;Gq – À
π0pXq G,

i.e. it is a direct sum of copies of G for every path-component of X.

Proof. Since ∆0 is a one-point space, the set K0pXq of singular 0-simplices σ : ∆0 Ñ X can
be identified naturally with X , and we shall write 0-chains accordingly as finite sums

ř
i aixi with

ai P G and xi P X . Similarly, ∆1 is homeomorphic to the unit interval I, so after fixing such a
homeomorphism, we can think of each σ P K1pXq as a path σ : I Ñ X and write

Bσ “ σp1q ´ σp0q P C0pX ;Zq.
Since there are no p´1q-chains, every a P G and x P X then define a 0-cycle ax P C0pX ;Gq, but
ax and ay are homologous whenever x and y belong to the same path-component since then any
path σ : I Ñ X from x to y gives Bpaσq “ ay ´ ax. Choosing a point xα in each path-component
Xα, we can now say that every 0-cycle is homologous to a unique 0-cycle of the form

ř
α cαxα,

where the sum ranges over all the path-components of X but only finitely many of the coefficients
cα P G are nonzero. If two cycles of this form are homologous, then they differ by the boundary of
a 1-chain, which is a finite linear combination of paths, and since each path is confined to a single
path-component and has two end points with opposite orientations, the conclusion is that both
0-cycles have the same coefficients. �

The next result is a straightforward exercise based on the definitions, and you should also
compare it with our previous discussion of the bordism groups of a point, if only to observe that
the result is very different: while bordism groups require some information about the classification
of manifolds which has nothing to do with the one-point space, the singular homology of tptu is
much simpler.
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Exercise 22.12. Show that for the 1-point space tptu and any coefficient group G, singular
homology satisfies

Hnptptu;Gq –
#
G for n “ 0,

0 for n ‰ 0.

Hint: For each integer n ě 0, there is exactly one singular n-simplex ∆n Ñ tptu, so the chain
groups Cnptptu;Gq are all naturally isomorphic to G. What is B : Cnptptu;Gq Ñ Cn´1ptptu;Gq?

Let us discuss the group H1pX ;Zq for an arbitrary space X . As noted above in our proof of
Proposition 22.11, ∆1 is homeomorphic to the interval I, thus there is a bijection

(22.3) tpaths I Ñ Xu Ø K1pXq
which identifies each path γ with a singular 1-simplex (denoted by the same symbol) such that,
under the canonical identification of K0pXq with X ,

Bγ “ γp1q ´ γp0q.
Notice in particular that if γ is a loop, then it also defines a 1-cycle. More generally, let us write
elements of C1pX ;Zq as finite sums

ř
imiγi where mi P Z and the γi are understood as singular

1-simplices via the above bijection, so

B
ÿ

i

miγi “
ÿ

i

mi pγip1q ´ γip0qq P C0pX ;Zq.

Now observe that since the coefficients mi are integers, we are free to assume they are all ˘1 at
the cost of allowing repeats in the finite list of paths γi. It will then be convenient to think of ´γi
as the reversed path γ´1

i , which makes sense if you look at the boundary formula since

Bp´γiq “ ´pγip1q ´ γip0qq “ γip0q ´ γip1q “ γ´1
i p1q ´ γ´1

i p0q “ Bpγ´1
i q.

Thinking in these terms and continuing to assume mi “ ˘1,
ř
imiγi will now be a cycle if and

only if the finite set of paths γmi

i can be arranged in some order so that they form a loop, i.e. each
can be concatenated with the next in the list, and the last can be concatenated with the first. This
is precisely what is needed in order to ensure that every 0-simplex in B řimiγi cancels out. This
suggests a relationship between H1pX ;Zq and π1pXq, but notice that there is some ambiguity in
the correspondence: in general there may be multiple ways that the paths γmi

i can be ordered to
produce a loop, and different loops produced in this way need not always be homotopic to each
other. In fact, one should not expect H1pX ;Zq and π1pXq to be the same, sinceH1pX ;Zq is abelian
by definition but π1pXq usually is not. It turns out that the next best thing is true.

Theorem 22.13. For any path-connected space X with base point x0 P X, the bijection (22.3)
determines a group homomorphism

h : π1pX, x0q Ñ H1pX ;Zq
which descends to an isomorphism of the abelianization π1pX, x0q{rπ1pX, x0q, π1pX, x0qs toH1pX ;Zq.

We say that a cycle c P C˚pX ;Gq is nullhomologous if rcs “ 0 P H˚pX ;Gq, or equivalently,
c is a boundary. According to the discussion above, every loop γ : I Ñ X with γp0q “ γp1q “ x0
can be viewed as a 1-cycle, and that cycle is nullhomologous if and only if rγs belongs to the
commutator subgroup of π1pX, x0q.

Example 22.14. Recall from Exercise 13.15 the embedded loop γ : S1 Ñ Σg for g ě 2 whose
image separates Σg into two surfaces of genus h ě 1 and k ě 1 respectively with one boundary
component each:
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γ

We computed in that exercise that rγs is a nontrivial element of the commutator subgroup of
π1pΣgq, thus by Theorem 22.13, γ represents the trivial class in H1pΣg;Zq. This should not be
surprising, since γ also parametrizes the boundary of a compact oriented submanifold of Σ2, e.g. for
this same reason, γ also represents the trivial bordism class in ΩSO

1 pΣ2q. One can find an explicit
2-chain whose boundary is γ by decomposing the surface Σh,1 into 2-simplices so as to reinterpret
the inclusion Σh,1 ãÑ Σ2 as a linear combination of singular 2-simplices in Σ2.

The proof of Theorem 22.13 is not trivial, but it is simple enough to leave as a guided homework
problem (see Exercise 22.15 below). The homomorphism h : π1pXq Ñ H1pX ;Zq is called the
Hurewicz map. There exists a similar Hurewicz homomorphism πkpXq Ñ HkpX ;Zq for every
k ě 1, which we will discuss near the end of Topologie II if time permits. Note that for k ě 2,
πkpXq is always abelian, so it is reasonable in those cases to hope that the Hurewicz map might
be an honest isomorphism. A result called Hurewicz’s theorem gives conditions under which this
turns out to hold, thus providing a nice way to compute higher homotopy groups in some cases
since, as we will see, computing homology is generally easier. But there are also simple examples
in which πkpXq and HkpX ;Zq are totally different. We saw for instance in the previous lecture
that π2pT2q “ 0 due to the lifting theorem, but one can use any oriented triangulation of T2 to
produce a singular 2-cycle that can be shown to be nontrivial in H2pT2;Zq. Homology classes in
the image of the Hurewicz map are sometimes called spherical homology classes. The example of
T2 shows that for n ě 2, one cannot generally expect all classes in HnpX ;Zq to be spherical.

Exercise 22.15. Let us prove Theorem 22.13. AssumeX is a path-connected space, fix x0 P X
and abbreviate π1pXq :“ π1pX, x0q, so elements of π1pXq are represented by paths γ : I Ñ X with
γp0q “ γp1q “ x0. Identifying the standard 1-simplex

∆1 :“
 

pt0, t1q P R2
ˇ̌
t0 ` t1 “ 1, t0, t1 ě 0

(

with I :“ r0, 1s via the homeomorphism ∆1 Ñ I : pt0, t1q ÞÑ t0, every path γ : I Ñ X corresponds
to a singular 1-simplex ∆1 Ñ X , which we shall denote by h̃pγq and regard as an element of the
singular 1-chain group C1pX ;Zq. Show that h̃ has each of the following properties:

(a) If γ : I Ñ X satisfies γp0q “ γp1q, then Bh̃pγq “ 0.
(b) For any constant path e : I Ñ X , h̃peq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
(c) For any paths α, β : I Ñ X with αp1q “ βp0q, the concatenated path α ¨ β : I Ñ X

satisfies h̃pαq ` h̃pβq ´ h̃pα ¨ βq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
Hint: Imagine a triangle whose three edges are mapped to X via the paths α, β and α ¨β.
Can you extend this map continuously over the rest of the triangle?

(d) If α, β : I Ñ X are two paths that are homotopic with fixed end points, then h̃pαq´h̃pβq “
Bf for some singular 2-chain f P C2pX ;Zq.
Hint: If you draw a square representing a homotopy between α and β, you can decompose
this square into two triangles.

(e) Applying h̃ to paths that begin and end at the base point x0, deduce that h̃ determines
a group homomorphism h : π1pXq Ñ H1pX ;Zq : rγs ÞÑ rh̃pγqs.

We call h : π1pXq Ñ H1pX ;Zq the Hurewicz homomorphism. Notice that since H1pX ;Zq
is abelian, kerh automatically contains the commutator subgroup rπ1pXq, π1pXqs Ă πpXq (see
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Exercise 12.20), thus h descends to a homomorphism on the abelianization of π1pXq,

Φ : π1pXq
M

rπ1pXq, π1pXqs Ñ H1pX ;Zq.

We will now show that this is an isomorphism by writing down its inverse. For each point p P X ,
choose arbitrarily a path ωp : I Ñ X from x0 to p, and choose ωx0

in particular to be the constant
path. Regarding singular 1-simplices σ : ∆1 Ñ X as paths σ : I Ñ X under the usual identification
of I with ∆1, we can then associate to every singular 1-simplex σ P C1pX ;Zq a concatenated path

rΨpσq :“ ωσp0q ¨ σ ¨ ω´1
σp1q : I Ñ X

which begins and ends at the base point x0, hence rΨpσq represents an element of π1pXq. Let Ψpσq
denote the equivalence class represented by rΨpσq in the abelianization π1pXq{rπ1pXq, π1pXqs. This
uniquely determines a homomorphism29

Ψ : C1pX ;Zq Ñ π1pXq
L

rπ1pXq, π1pXqs :
ÿ

i

miσi ÞÑ
ÿ

i

miΨpσiq.

(f) Show that ΨpBσq “ 0 for every singular 2-simplex σ : ∆2 Ñ X , and deduce that Ψ

descends to a homomorphism Ψ : H1pX ;Zq Ñ π1pXq{rπ1pXq, π1pXqs.
(g) Show that Ψ ˝ Φ and Φ ˝ Ψ are both the identity map.
(h) For a closed surface Σg of genus g ě 2, find an example of a nontrivial element in the

kernel of the Hurewicz homomorphism π1pΣgq Ñ H1pΣgq. Hint: See Exercise 13.15.

23. Relative homology and long exact sequences

The above results for H0pX ;Gq and H1pX ;Zq provide some evidence that in spite of being
defined as quotients of groups with uncountably many generators, the singular homology groups
HnpX ;Gq might turn out to be computable more often than we’d expect. In this lecture we’ll
introduce a powerful computational tool that is also a fundamental concept in homological algebra.
But before that, let us clarify in what sense singular homology is a topological invariant.

Lemma 23.1. Every continuous map f : X Ñ Y determines a chain map f˚ : C˚pX ;Gq Ñ
C˚pY ;Gq via the formula f˚σ :“ f ˝ σ for singular n-simplices σ : ∆n Ñ X.

Proof. It is straightforward to check that Bpf˚σq “ f˚pBσq P Cn´1pY ;Zq for all σ : ∆n Ñ X ,
thus the uniquely determined homomorphism

f˚ : CnpX ;Gq Ñ CnpY ;Gq :
ÿ

i

aiσi ÞÑ
ÿ

i

aipf ˝ σiq

defines a chain map. �

Notice that the chain maps in the above lemma also satisfy pf ˝gq˚ “ f˚ ˝g˚ whenever f and g
are composable continuous maps, and the chain map induced by the identity map onX is simply the
identity homomorphism on C˚pX ;Gq. Applying Proposition 22.5 thus gives the following result,
which implies that homeomorphic spaces always have isomorphic singular homology groups:

Corollary 23.2. Continuous maps f : X Ñ Y determine group homomorphisms f˚ :

HnpX ;Gq Ñ HnpY ;Gq for every n and G such that pf ˝ gq˚ “ f˚ ˝ g˚ whenever f and g can
be composed, and the identity map satisfies pIdq˚ “ 1. �

29Since π1pXq{rπ1pXq, π1pXqs is abelian, we are adopting the convention of writing its group operation as ad-
dition, so the multiplication of an integer m P Z by an element Ψpσq P π1pXq{rπ1pXq, π1pXqs is defined accordingly.
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We will show in the next lecture that the homomorphisms f˚ induced by continuous maps f
only depend on f up to homotopy, which has the easy consequence that H˚pX ;Gq only depends
on the homotopy type of X .

But first, let us generalize the discussion somewhat. Algebraic gadgets often have the feature
that they become easier to compute if you add more structure to them, sometimes at the cost of
making the basic definitions slightly more elaborate. We will now do that with singular homology
by introducing the relative homology groups of pairs. A pair of spaces pX,Aq, often abbreviated
as simply a “pair,” (topologisches Paar) consists of a topological space X and a subset A Ă X .
Given two pairs pX,Aq and pY,Bq, a map f : X Ñ Y is called a map of pairs if fpAq Ă B, and
in this case we write

f : pX,Aq Ñ pY,Bq.
This is an obvious generalization of the definition of a pointed map, where arbitrary subsets have
now replaced base points. Similarly, two maps of pairs f, g : pX,Aq Ñ pY,Bq are homotopic if
there exists a homotopy H : I ˆX Ñ Y between f and g such that Hps, ¨q : pX,Aq Ñ pY,Bq is a
map of pairs for every s P I, or equivalently,

HpI ˆAq Ă B.

Two pairs pX,Aq and pY,Bq are homeomorphic if there exist maps of pairs f : pX,Aq Ñ pY,Bq
and g : pY,Bq Ñ pX,Aq such that g ˝ f and f ˝ g are the identity maps on pX,Aq and pY,Bq
respectively, and f and g are in this case called homeomorphisms of pairs. If g ˝ f and f ˝ g
are not necessarily equal but are homotopic (as maps of pairs) to the respective identity maps,
then we call each of them a homotopy equivalence of pairs and say that pX,Aq and pY,Bq are
homotopy equivalent, written

pX,Aq »
h.e.

pY,Bq.

One can regard every individual space X as a pair by identifying it with pX,Hq, in which case the
above definitions reproduce the usual ones for maps between ordinary spaces.

The following example will play a major role in our computation of H˚pSn;Zq next week.

Example 23.3. Recall from Lecture 11 that the suspension (Einhängung) SX of a space X
is defined by gluing together two copies of its cone,

(23.1) SX “ C`X YX C´X,

where C`X :“ pr0, 1s ˆXq{pt1u ˆXq, C´X :“ pr´1, 0s ˆXq{pt´1u ˆXq, and we identify X with
the subset t0u ˆ X in each. Let p˘ P SX denote the points at the tips of the two cones, defined
by collapsing t˘1u ˆX . Then the inclusion

pC`X,Xq ãÑ pSXztp´u, C´Xztp´uq
is a homotopy equivalence of pairs. Indeed, one can define a deformation retraction H : I ˆ
pSXztp´uq Ñ SXztp´u by pushing points in C´Xztp´u continuously upward toward X while
leaving C`X fixed, so thatHp1, ¨q is the identity whileHp0, ¨q retracts SXztp´u to C`X andHps, ¨q
preserves C´Xztp´u for every s P I. The resulting retraction of pairs pSXztp´u, C´Xztp´uq Ñ
pC`X,Xq is a homotopy inverse for the inclusion. Let us spell this out more explicitly in the
special case where X “ Sn´1, so SX is then homeomorphic to Sn. The decomposition (23.1)
then becomes a splitting of Sn into two hemispheres Dn` – Dn – Dn´ glued along an “equator”
homeomorphic to Sn´1,

Sn – Dn` YSn´1 Dn´,

and our homotopy equivalence of pairs is now the resulting inclusion map

pDn`, Sn´1q ãÑ pSnztp´u,Dn´ztp´uq,
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where p´ is now the “south pole,” i.e. the center of Dn´.

The relative homology of a pair pX,Aq is based on the trivial observation that since every
singular simplex in A is also a singular simplex in X whose boundary faces are all contained in A,
CnpA;Gq is naturally a subgroup of CnpX ;Gq for each n, and the boundary map B : CnpX ;Gq Ñ
Cn´1pX ;Gq sends CnpA;Gq to Cn´1pA;Gq. It follows that B descends to a sequence of well-defined
homomorphisms on the quotients

CnpX,A;Gq :“ CnpX ;Gq
L
CnpA;Gq,

and since B2 is still zero, pC˚pX,A;Gq, Bq is a chain complex, called the relative singular chain
complex of the pair pX,Aq with coefficients in G. Its homology groups are the relative singular
homology (relative singuläre Homologie),

HnpX,A;Gq :“ Hn pC˚pX,A;Gq, Bq .
The case A “ H reproduces HnpX ;Gq as we defined it in the previous lecture, and these are
sometimes called the absolute homology groups of X so as to distinguish them from relative
homology groups. As in absolute homology, we may sometimes abbreviate the case of integer
coefficients by

HnpX,Aq :“ HnpX,A;Zq.
Lemma 23.1 extends in an obvious way to the relative chain complex: if f : pX,Aq Ñ pY,Bq

is a map of pairs, then the absolute chain map f˚ : C˚pX ;Gq Ñ C˚pY ;Gq sends the subgroup
C˚pA;Gq into C˚pB;Gq and thus descends to a chain map

f˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq,
implying the relative version of Corollary 23.2:

Theorem 23.4. Maps of pairs f : pX,Aq Ñ pY,Bq determine group homomorphisms f˚ :

HnpX,A;Gq Ñ HnpY,B;Gq for every n and G such that pf ˝gq˚ “ f˚ ˝g˚ whenever f and g can be
composed, and the identity map on pX,Aq induces the identity homomorphism on HnpX,A;Gq. �

Since CnpX,A;Gq is a quotient, its elements are technically equivalence classes, but in order
to avoid having too many equivalence relations floating around in the same discussion, let us
instead think of them as ordinary n-chains c P CnpX ;Gq, keeping in mind that two such n-chains
a, b P CnpX ;Gq define the same element of CnpX,A;Gq whenever a´ b P CnpA;Gq, meaning a and
b differ by a linear combination of simplices that are all contained in A. A chain c P CnpX ;Gq can
then be called a relative cycle if the element of CnpX,A;Gq it determines is a cycle, which means
Bc belongs to Cn´1pA;Gq. Notice that a relative cycle need not be an absolute cycle in general
(meaning Bc “ 0), though absolute cycles also define relative cycles. Relative cycles c P CnpX ;Gq
define relative homology classes rcs P CnpX,A;Gq, and two relative cycles b, c P CnpX ;Gq are
homologous (meaning rbs “ rcs P HnpX,A;Gq) if and only if

b ´ c “ a` Bx for some a P CnpA;Gq, x P Cn`1pX ;Gq.
In particular, a relative cycle is nullhomologous if and only if it is the sum of a boundary plus a
chain contained in A.

This is all abstract nonsense so far, but what do relative n-cycles actually look like? Actually,
that’s also a valid question when applied to absolute n-cycles, and we’ve only really addressed it so
far for n “ 0 and n “ 1. The best way I know for visualizing absolute cycles is via the analogy with
bordism theory. Recall that elements of ΩSO

n pXq are equivalence classes of maps f :M Ñ X where
M is a closed oriented n-manifold. If M admits an oriented triangulation, then after choosing an
ordering for all the vertices in this triangulation and assigning orientations accordingly to each
simplex in the triangulation, one can identify each k-simplex σ Ă M with a map ∆k Ñ M that
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parametrizes it, thus defining a singular k-simplex in M . For k “ n in particular, the condition
in Definition 20.9 relating the orientations of neighboring n-simplices implies that the sum

ř
i ǫiσi

of all the singular n-simplices in the triangulation—with appropriate signs ǫi “ ˘1 attached in
order to describe their orientations in the triangulation—is a cycle in CnpM ;Zq. This is true
because in B

ř
i ǫiσi, every pn ´ 1q-simplex of the triangulation appears exactly twice, but the

orientation condition requires these two instances to appear with opposite signs. The resulting
singular homology class is denoted by

rM s :“
«ÿ

i

ǫiσi

ff
P HnpM ;Zq

and called the fundamental class (Fundamentalklasse) of M . We cannot prove it right now,
but we will see in Topologie II that rM s does not depend on the choice of triangulation, and it
can even be defined for arbitrary closed and oriented topological manifolds, which need not admit
triangulations. The map f : M Ñ X then determines a corresponding cycle

ř
i ǫipf˝σiq P CnpX ;Zq

and an n-dimensional homology class f˚rM s P HnpX ;Zq.
How can we recognize when two n-cycles in X defined in this way are homologous, or equiva-

lently, when
ř
i ǫipf ˝ σiq is nullhomologous? A nice answer can again be extracted from bordism

theory. If rpM, fqs “ 0 P ΩSO
n pXq, it means there exists a compact oriented pn ` 1q-manifold W

with BW – M and a map F :W Ñ X with F |M “ f . Suppose W admits an oriented triangulation
that restricts to BW as an oriented triangulation of M . Identifying the pn` 1q-simplices τj in this
triangulation with singular pn ` 1q-simplices in W and then adding them up with suitable signs
ǫj “ ˘1 as in the previous paragraph produces an pn ` 1q-chain in X of the form

ř
j ǫjpF ˝ τjq,

whose boundary is the n-cycle representing f˚rM s. Thus if oriented triangulations can always
be assumed to exist, then f˚rM s “ 0 P HnpX ;Zq whenever pM, fq is nullbordant, and similarly,
f˚rM s “ g˚rN s P HnpX ;Zq will hold whenever pM, fq and pN, gq are related by an oriented
bordism. We will also see in Topologie II that these statements remain true without mentioning
triangulations.

You may be wondering how general this discussion really is, i.e. does every integral homology
class in X arise from a map of a closed manifold into X? The answer is in general no, but if X is
a nice enough space like the polyhedron of a finite simplicial complex, then something almost as
good is true. The proof of the following famous result of Thom would be far beyond the scope of
this course, and we will not make use of it, but it is nice to know that it exists.

Theorem 23.5 (R. Thom [Tho54]). If X is a compact polyhedron, then for every n ě 0 and
A P HnpX ;Zq, there exists a closed n-manifold M , a map f : M Ñ X and a number k P N such
that kA “ f˚rM s. �

To talk about relative homology classes, we could now allow M to be a compact oriented
n-manifold with boundary and assume that its oriented triangulation also defines an oriented
triangulation of BM . The chain

ř
i ǫiσi P CnpM ;Zq is then no longer a cycle, because pn ´ 1q-

simplices on BM are not canceled, they each appear exactly once. Instead, B
ř
i ǫiσi is an pn´ 1q-

cycle representing the fundamental class of BM , and
ř
i ǫiσi is therefore a relative cycle in pM, BMq,

defining a relative fundmental class

rM s P HnpM, BM ;Zq.
Given a pair pX,Aq, any map f : pM, BMq Ñ pX,Aq now determines a relative cycle

ř
i ǫipf ˝σiq P

CnpX,A;Zq and relative homology class f˚rM s P HnpX,A;Zq. For intuition, it is usually helpful
to assume that f is an embedding, so a relative n-cycle in pX,Aq then looks like an oriented and
triangulated compact n-dimensional submanifold in X whose boundary lies in A.
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Finally, note that one can drop the orientations from this entire discussion at the cost of
replacing Z coefficients with Z2. Indeed, if M is closed and has a triangulation but not one that
is orientable, then the n-chain defined by adding up the n-simplices may not be a cycle because
its boundary may include some pn ´ 1q-simplex that appears twice without canceling. But since
2 “ 0 P Z2, this sum still defines a cycle in CnpM ;Z2q and therefore also a fundamental class

rM s P HnpM ;Z2q.
This reveals that unoriented bordism classes in ΩnpXq determine homology classes in HnpX ;Z2q,
and the analogue of Theorem 23.5 remains true in this case without any need for the multiplicative
factor k P N.

There is an interesting relationship in general between the groups H˚pX ;Gq, H˚pA;Gq and
H˚pX,A;Gq for any pair pX,Aq. This begins with another trivial observation: let i : A ãÑ X and
j : X “ pX,Hq ãÑ pX,Aq denote the natural inclusions, and consider the sequence of chain maps

(23.2) 0 ÝÑ C˚pA;Gq i˚ÝÑ C˚pX ;Gq j˚ÝÑ C˚pX,A;Gq Ñ 0,

where the first and last maps are each trivial. The map j˚ is obviously surjective, as it is actually
just the quotient projection

C˚pX ;Gq Ñ C˚pX,Gq
L
C˚pA;Gq “ CnpX,A;Gq.

The map i˚ is similarly the inclusion C˚pA;Gq ãÑ C˚pX ;Gq and is thus injective, and its image is
precisely the kernel of j˚. This means that every term in this sequence has the property that the
image of the preceding map equals the kernel of the next one. In general, a sequence of abelian
groups with homomorphisms

. . . ÝÑ An´2
fn´2ÝÑ An´1

fn´1ÝÑ An
fnÝÑ An`1

fn`1ÝÑ An`2 ÝÑ . . .

is called exact (exakt) if ker fn “ im fn´1 for every n P Z. If all the groups except for three
neighboring groups in the sequence are trivial, then it suffices to look at a sequence of five groups

0 ÝÑ A1
f1ÝÑ A2

f2ÝÑ A3 ÝÑ 0,

which is called a short exact sequence (kurze exakte Sequenz) if it is exact. Being exact in
this case means three things: f1 is injective, f2 is surjective, and im f1 “ ker f2. The sequence in
(23.2) is what we call a short exact sequence of chain maps, because the abelian groups in
each term are also chain complexes and the homomorphisms between them are chain maps. One
can now wonder what happens if we replace these chain complexes with their homology groups
and the chain maps with the induced homomorphisms on homology: will the resulting sequence
be exact? The answer is no, but what is actually true is much better and more useful than this:

Theorem 23.6. Suppose pA˚, BAq, pB˚, BBq and pC˚, BCq are chain complexes and

0 ÝÑ A˚
fÝÑ B˚

gÝÑ C˚ ÝÑ 0

is a short exact sequence of chain complexes. Then there exists a natural homomorphism B˚ :

HnpC˚, BCq Ñ Hn´1pA˚, BAq for each n P Z such that the sequence

. . .
B˚ÝÑ Hn`1pA˚, BAq f˚ÝÑ Hn`1pB˚, BBq g˚ÝÑ Hn`1pC˚, BCq

B˚ÝÑ HnpA˚, BAq f˚ÝÑ HnpB˚, BBq g˚ÝÑ HnpC˚, BCq
B˚ÝÑ Hn´1pA˚, BAq f˚ÝÑ Hn´1pB˚, BBq g˚ÝÑ Hn´1pC˚, BCq B˚ÝÑ . . .

(23.3)

is exact.



150 FIRST SEMESTER (TOPOLOGIE I)

The sequence of homology groups in this theorem is called a long exact sequence (lange
exakte Sequenz), and the maps B : HnpC˚, BCq Ñ Hn´1pA˚, BAq are called the connecting ho-
momorphisms in this sequence. In particular, this result turns (23.2) into the so-called long
exact sequence of the pair pX,Aq,

(23.4) . . . Ñ Hn`1pX,A;Gq B˚Ñ HnpA;Gq i˚Ñ HnpX ;Gq j˚Ñ HnpX,A;Gq B˚Ñ Hn´1pA;Gq Ñ . . .

To see why this might be useful, consider the pair pX,Aq “ pDk, Sk´1q. We will prove in the next
lecture that H˚pX ;Gq only depends on the homotopy type of X , so since Dk is contractible, we
have

HnpDk;Zq – Hnptptu;Zq “ 0 for n ą 0

by Exercise 22.12. It follows that every third term in the long exact sequence of pDk, Sk´1q is
trivial, producing a whole collection of exact sequences

0 ÝÑ Hn`1pDk, Sk´1;Zq B˚ÝÑ HnpSk´1;Zq ÝÑ 0

for n ě 1. Since the first and third maps in this sequence are both trivial, the sequence can only
be exact if the map B˚ is an isomorphism, proving

Hn`1pDk, Sk´1;Zq – HnpSk´1;Zq

for every k, n P N. For example, since we already know H1pSk´1;Zq – π1pSk´1q, we have just
computedH2pDk, Sk´1;Zq for every k ě 1. Combining this with a few more tools in the next lecture
will lead to an isomorphism between HnpSk´1;Zq and Hn`1pSk;Zq, allowing us to compute all the
homology groups of spheres in arbitrary dimension by induction.

Theorem 23.6 is a purely algebraic statement, and it is proved by a straightforward but nonethe-
less slightly surprising procedure known as “diagram chasing”. I will not give the full argument
here, because that would bore you to tears, but I will explain the first couple of steps, and I highly
recommend that you work through the rest yourself the next time you are half-asleep and in need
of amusement on an airplane, or recovering from surgery on heavy pain medication, as the case
may be.30 The basic idea is to write down a great big commutative diagram, examine at each
step exactly what information you can deduce from exactness and commutativity, and then let the
diagram tell you what to do.

30I first learned about exact sequences around the same time that I had all four of my wisdom teeth removed
in a complicated procedure that left me drowsily dependent on prescription pain medication for about three weeks
afterward. It turns out that that was exactly the right frame of mind in which to work through diagram chasing
arguments without getting bored.
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Here is the diagram we need—it commutes because f and g are chain maps, and each of its
rows is an exact sequence of abelian groups:

...
...

...

0 An`1 Bn`1 Cn`1 0

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

BA BB BC

f

BA

g

BB BC

f

BA

g

BB BC

f

BA

g

BB BC

f

BA

g

BB BC

We start by writing down a reasonable candidate for the map B˚ : HnpC˚, BCq Ñ Hn´1pA˚, BAq.
Given rcs P HnpC˚, BCq, c P Cn is necessarily a cycle, and exactness tells us that g : Bn Ñ Cn is
surjective, hence c “ gpbq for some b P Bn. Then using commutativity,

0 “ BCc “ BCgpbq “ gpBBbq,
so BBb P ker g Ă Bn´1, and using exactness again, this implies BBb “ fpaq for some a P An´1.
Notice that a is uniquely determined by b since (using exactness again) f is injective. Applying
commutativity again, we now observe that

fpBAaq “ BBpfpaqq “ BBBBb “ 0

since pBBq2 “ 0, and the injectivity of f then implies BAa “ 0. So just by chasing the diagram
from Cn to An´1, we found a cycle a P An´1, and it seems reasonable to define

B˚rcs :“ ras P Hn´1pA, BAq.
We need to check that this is well defined, as two arbitrary choices were made in the procedure
going from rcs to ras. One was the choice of an element b P Bn with gpbq “ c, so we could get a
different cycle a1 P An´1 by choosing a different element b1 P g´1pcq and requiring fpa1q “ BBb1.
But then b1 ´ b belongs to ker g “ im f , hence we can write b1 ´ b “ fpxq for some x P An, implying

fpa1 ´ aq “ fpa1q ´ fpaq “ BBpb1 ´ bq “ BBpfpxqq “ fpBApxqq,
and since f is injective, a1 ´ a “ BAx, implying that a and a1 are homologous cycles. The other
choice we made was the cycle c P Cn, which in principle we are free to replace by any homologous
cycle c1 P Cn and then follow the same procedure to produce a different cycle a1 P An´1. If we do
this, then c1 ´ c “ BCz for some z P Cn`1, and since g is surjective, z “ gpyq for some y P Bn`1.
We then have

c1 ´ c “ BCpgpyqq “ gpBBpyqq,
and since we now know that we are free to choose any b P g´1pcq and b1 P g´1pc1q, we can set

b1 :“ b` BBpyq.
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This implies BBb1 “ BBb, thus the condition fpa1q “ BBb1 produces a1 “ a, and we have finished
the proof that B˚ is well defined.

It remains to prove that B˚ really is a homomorphism, and that the long exact sequence really
is exact, i.e. that ker B˚ “ im g˚, ker g˚ “ im f˚ and ker f˚ “ im B˚. This can all be done by the
same kinds of straightforward arguments as above, but I’m sure you can see now why I’m not going
to write down the complete details here.

I have one final remark however about the long exact sequence of a pair pX,Aq. If you redo
the diagram chase above for the particular short exact sequence (23.2), you end up with a precise
and very natural formula for the connecting homomorphisms

B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq.
The procedure starts with a relative n-cycle c P CnpX,A;Gq, from which we need to pick b P
j´1

˚ pcq Ă CnpX ;Gq, but if we apply the usual convention of regarding relative cycles in pX,Aq as
chains in X , then c is already in CnpX ;Gq and we can pick b to be exactly the same chain c. Next
we look at Bc P Cn´1pX ;Gq and find the unique cycle a P Cn´1pA;Gq that is sent to Bc under the
inclusion Cn´1pA;Gq ãÑ Cn´1pX ;Gq. In other words, a “ Bc, so the “obvious” formula is the right
one:

(23.5) B˚rcs “ rBcs.
This looks more trivial than it is, e.g. you might think that rBcs should automatically be 0 because
Bc is a boundary, but the point is that c is a chain in X , it might not be confined to A, so Bc is
certainly a cycle in A (as a consequence of the fact that c is a relative chain in pX,Aq) but it need
not be the boundary of any chain in A, and rBcs may very well be a nontrivial homology class in
Hn´1pA;Gq.

Exercise 23.7. Use the formula (23.5) to give a direct proof that the sequence (23.4) is exact.

Remark 23.8. Exercise 23.7 is straightforward and doable in a much shorter time than the
proof of Theorem 23.6, so we could have skipped the abstract homological algebra discussion
without losing anything that is essential for the current semester. However, I wanted to make the
point that the long exact sequence of a pair is not just an isolated topological phenomenon—it is a
special case of a much more general algebraic principle, and that principle reappears in many other
contexts in various branches of mathematics. We will see it again several times in Topologie II.

24. Homotopy invariance and excision

We need to prove two more theorems about singular homology before it becomes a truly useful
tool. Both will require a bit of work, but the almost immediate payoff will be that we can then
compute the homology of spheres in every dimension. This has several important applications,
including the general case of the Brouwer fixed point theorem, and the basic fact that open sets in
Rn are never homeomorphic to open sets in Rm unless n “ m. It is also the first step in developing
an algorithm to compute the singular homology of any CW-complex, a general class of “reasonable”
spaces that includes all smooth manifolds and all simplicial complexes.

Our first task for today is homotopy invariance.

Lemma 24.1. Homotopies between maps of pairs f, g : pX,Aq Ñ pY,Bq determine chain
homotopies between the induced chain maps f˚, g˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq.

Applying Proposition 22.7, this gives:

Corollary 24.2. The maps f˚ : HnpX,A;Gq Ñ HnpY,B;Gq induced by a map of pairs
f : pX,Aq Ñ pY,Bq depend only on the homotopy class of f (as a map of pairs). �
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The obvious corollary of this corollary is a result of tremendous theoretical importance, and
I would like to point out how much simpler its proof is than that of the corresponding statement
about fundamental groups (Theorem 10.22). The reason is that fundamental groups and the in-
duced homomorphisms between them require base points for their definition, whereas in homology,
base points are completely irrelevant.

Corollary 24.3. If f : pX,Aq Ñ pY,Bq is a homotopy equivalence of pairs, then the induced
maps f˚ : HnpX,A;Gq Ñ HnpY,B;Gq are isomorphisms.

Proof. Suppose f : pX,Aq Ñ pY,Bq is a homotopy equivalence, so it has a homotopy inverse
g : pY,Bq Ñ pX,Aq. Then f ˝ g and g ˝ f are homotopic to the identity maps on pY,Bq and pX,Aq
respectively, so that Corollary 24.2 gives f˚ ˝ g˚ “ 1 and g˚ ˝ f˚ “ 1 for the induced maps on
homology, implying that both are isomorphisms. �

You may have thought the definition of a chain homotopy in the algebraic introduction to
Lecture 22 seemed a little unnatural—it is not obvious for instance whether a chain homotopy as
we defined it is the only algebraic condition implying that two chain maps induce the same map
on homology. However, the following proof of Lemma 24.1 provides convincing evidence that this
definition is the right one. It shows that chain homotopies are the natural algebraic structure that
arises in the singular chain complex from a homotopy between continuous maps. We will see that
they arise naturally in many other contexts as well.

For notational simplicity, let us start under the assumption

A “ B “ H,

as the general case will only require a few extra remarks beyond this. Suppose H : I ˆX Ñ Y is a
homotopy between f “ Hp0, ¨q and g “ Hp1, ¨q. Associate to each singular n-simplex σ : ∆n Ñ X

the map
hσ : I ˆ ∆n Ñ Y : ps, tq ÞÑ Hps, σptqq,

so hσp0, ¨q “ f ˝ σ and hσp1, ¨q “ g ˝ σ. If we pretend for a moment that the maps in this picture
are all embeddings, then we can picture hσ as tracing out a “prism-shaped” region in Y whose
boundary consists of three pieces, two of which are the n-simplices traced about by f˚σ and g˚σ.
If we pay proper attention to orientations, then f˚σ will get a negative orientation because the
boundary orientation for BpI ˆ ∆nq induces opposite orientations on t0u ˆ ∆n and t1u ˆ ∆n. But
there is a third piece of BpI ˆ ∆nq that we haven’t mentioned yet, namely I ˆ B∆n. If we regard
I ˆ ∆n as a compact oriented pn ` 1q-manifold with boundary, then its oriented boundary turns
out to be31

(24.1) BpI ˆ ∆nq “ p´t0u ˆ ∆nq Y pt1u ˆ ∆nq Y p´I ˆ B∆nq .
This relation will be the geometric motivation behind the chain homotopy formula.

The idea now is to define a chain homotopy h : C˚pX ;Gq Ñ C˚`1pY ;Gq by associating to each
singular n-simplex σ : ∆n Ñ X a linear combination of singular pn` 1q-simplices in Y determined
by the prism map hσ : I ˆ∆n Ñ Y . Unfortunately, I ˆ∆n is not a simplex, but there are various
natural ways to decompose it into simplices, i.e. to triangulate it. In principle, the result should
not depend on how this is done so long as the triangulation has reasonable properties, thus we will
not explain the details here except to state what properties are needed:

31One can deduce the signs in (24.1) from things that were said in Lecture 20, though it’s a bit tedious, and
for now I would encourage you to just believe me that the signs are correct. There is an easier way to see it using
the notion of orientation for smooth manifolds and their tangent spaces, which we do not have space to talk about
here, but you’ll likely see things like this again in differential geometry at some point.
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Lemma 24.4. There exists a sequence of oriented triangulations of the sequence of spaces Iˆ∆n

for n “ 0, 1, 2, . . . satisfying the following properties:
(1) t0u ˆ ∆n and t1u ˆ ∆n are boundary faces of pn ` 1q-simplices in the triangulation of

I ˆ ∆n;
(2) Under the natural identification of each boundary face Bpkq∆

n with ∆n´1, the triangulation
of I ˆ ∆n restricts to I ˆ Bpkq∆

n as the triangulation of I ˆ ∆n´1.

A precise algorithm to produce such triangulations of I ˆ ∆n is described in [Hat02, p. 112].
I recommend taking a moment to draw pictures of how it might be done for n “ 1 and n “ 2.
In the following, we will assume that parametrizations τi : ∆n`1 Ñ I ˆ ∆n of the finite set of
pn ` 1q-simplices in these triangulations have also been chosen such that for a suitable choice of
signs ǫi “ ˘1 determined by their orientations,

ÿ

i

ǫiτi P Cn`1pI ˆ ∆n;Zq

defines a relative cycle in pIˆ∆n, BpIˆ∆nq; in other words, all interior n-simplices in the triangu-
lation of I ˆ ∆n appear twice with opposite signs in B ři ǫiτi, so that what remains is an n-chain
in the boundary. The stated conditions on the triangulation guarantee in fact that B ři ǫiτi will
consist of the following terms:

(1) A single term for the obvious parametrization ∆n Ñ t1uˆ∆n, whose attached coefficient
we can assume without loss of generality is `1;

(2) Another term for the obvious parametrization ∆n Ñ t0uˆ∆n, whose attached coefficient
must now be ´1 for orientation reasons;

(3) Linear combinations (with coefficients ˘1) of the n-simplices triangulating I ˆ Bpkq∆
n “

I ˆ ∆n´1 for each boundary face of ∆n.
With this in hand, there is a unique homomorphism h : CnpX ;Gq Ñ Cn`1pY ;Gq defined on

each singular n-simplex σ : ∆n Ñ X by the formula

hpσq :“
ÿ

i

ǫipσ ˝ τiq P Cn`1pY ;Zq,

where the sum is over all the parametrized pn`1q-simplices τi : ∆n`1 Ñ Iˆ∆n in our triangulation
from Lemma 24.4, and the ǫi “ ˘1 are determined by their orientations as outlined above. In light
of (24.1), we then have

Bhpσq “ g˚σ ´ f˚σ ´ hpBσq,
where the third term comes from the restriction of hσ to the triangulated subset ´I ˆ B∆n in the
oriented boundary of I ˆ ∆n. It follows that h : C˚pX ;Gq Ñ C˚`1pY ;Gq satisfies B ˝ h` h ˝ p “
g˚ ´ f˚, i.e. h is a chain homotopy.

This concludes the proof of Lemma 24.1 in the case A “ B “ H. In the general case, the given
homotopy satisfies the additional assumption

HpI ˆAq Ă B,

thus following through with the above construction, hσ has image contained in B whenever σ has
image in A. It follows that the chain homotopy we constructed sends CnpA;Gq into Cn`1pB;Gq
and thus descends to the quotients as a chain homotopy

h˚ : C˚pX,A;Gq Ñ C˚`1pY,B;Gq
between the relative chain maps f˚, g˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq. The proof of the lemma is
now complete, and with it, the proof of the homotopy invariance of singular homology.

Let us pick some low-hanging fruit from this result.
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Corollary 24.5 (via Exercise 22.12). For any contractible space X and any coefficient
group G, HnpX ;Gq is isomorphic to G for n “ 0 and vanishes for n ‰ 0. �

Corollary 24.6 (via Theorem 22.13). If X is homotopy equivalent to S1, then H1pX ;Zq –
Z. �

The second big theorem for today is called the excision property. It is based on the intuition
that since H˚pX,A;Gq is supposed to ignore anything that happens entirely inside the subset A,
removing smaller subsets B Ă A should not change the relative homology, i.e. we expect

H˚pXzB,AzB;Gq – H˚pX,A;Gq.
This works under a mild assumption on what it means for a subset B to be “smaller” than A.

Theorem 24.7 (excision). For any pair pX,Aq, if B Ă A is a subset with closure contained
in the interior of A, then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces isomorphisms

i˚ : HnpXzB,AzB;Gq –ÝÑ HnpX,A;Gq
for all n and G.

Before discussing the proof, here is an example to motivate why we might want such a theorem.

Example 24.8. Splitting the sphere Sn into two hemispheres gives a decomposition Sn –
Dn` YSn´1 Dn

´, where Dn˘ are copies of the disk Dn glued together along their common boundary
Sn´1, which forms the “equator” of Sn. In Example 23.3, we showed that if the south pole p´ P Dn´
is removed, the inclusion pDn`, Sn´1q ãÑ pSnztp´u,Dn´ztp´uq becomes a homotopy equivalence of
pairs. We claim that, in fact, the inclusion pDn`, Sn´1q ãÑ pSn,Dn´q still induces an isomorphism
on relative homology, without removing the point p´. This follows by writing it as a composition
of two inclusions

pDn`, Sn´1q ãÑ pSnztp´u,Dn´ztp´uq ãÑ pSn,Dn´q,
inducing a composition of induced homomorphisms

H˚pDn`, Sn´1;Gq Ñ H˚pSnztp´u,Dn´ztp´u;Gq Ñ H˚pSn,Dn´;Gq.
The first is an isomorphism by Corollary 24.3, and since tp´u is a set with closure contained in the
interior of Dn´, the second is also an isomorphism due to Theorem 24.7. Recall from the previous
lecture that each of the groups H˚pDn, Sn´1;Gq and H˚pSn,Dn´;Gq fit into long exact sequences
that also include the absolute homology groups of Sn, Sn´1 and Dn. We know the last one already
since Dn is contractible, so the result of combining all this information will be a precise relation
between the homology groups of Sn´1 and Sn, which we will use in the next lecture to compute
all of the groups H˚pSn;Zq.

The assumption B Ă sB Ă Å Ă A Ă X means essentially that the two open subsets Å
and Xz sB cover X . In this setting, let us say that a chain c P CnpX ;Gq is decomposable if c
can be written as a sum of a chain in A plus a chain in XzB, i.e. c belongs to the subspace
CnpA;Gq ` CnpXzB;Gq. The excision theorem is closely related to the observation that every
relative n-cycle in pX,Aq is homologous to one that is decomposable. Indeed, if this is true and
every rcs P HnpX,A;Gq can be written without loss of generality as c “ cA ` cXzB for some
cA P CnpA;Gq and CXzB P CnpXzB;Gq, then since c is a relative cycle, Bc P Cn´1pA;Gq, implying
BcXzB is also in Cn´1pA;Gq since BcA must be as well, thus BcXzB P Cn´1pAzB;Gq. This proves
that cXzB is a relative n-cycle for the pair pXzB,AzBq, so it represents a homology class in
HnpXzB,AzB;Gq, and obviously

i˚rcXzBs “ rcs
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since cA P CnpA;Gq represents the trivial element of CnpX,A;Gq. This proves surjectivity in The-
orem 24.7, modulo the detail about why we are allowed to restrict our attention to decomposable
chains. The latter is where most of the hard work is hidden.

Let us reframe the discussion slightly and suppose U ,V Ă X are two subsets whose interiors
from an open cover of X ,

X “ Ů Y V̊ .

We would like to develop a procedure for replacing any given chain c P CnpX ;Gq with one that is
in the subgroup CnpU ;Gq ` CnpV ;Gq but represents the same homology class in cases where c is
a (relative) cycle. You can imagine why this should be possible if you think of a homology class
f˚rM s P HnpX ;Zq represented by a triangulated oriented n-manifold M with a map f : M Ñ X ,
as outlined in the previous lecture (see the discussion surrounding Thom’s Theorem 23.5). In this
case, the definition of a cycle representing f˚rM s depends on a choice of oriented triangulation
for M , but we do not really expect the homology class f˚rM s to depend on this triangulation. In
particular, we should be free to replace the triangulation by a finer one, which has more simplices
but all of them are small enough to be contained in either U or V (or both). It is not hard
to imagine that one could achieve this simply by triangulating each individual simplex in M to
decompose it into strictly smaller simplices, and the process could then be repeated finitely many
times to make the simplices as small as we like. This process is called subdivision. We shall now
describe an inductive algorithm that makes the idea precise.

The barycentric subdivision of the standard n-simplex ∆n is an oriented triangulation of
∆n defined as follows. If n “ 0, then ∆0 is only a single point, so it cannot be subdivided any
further and our triangulation of ∆0 will consist only of that single 0-simplex. Now by induction,
assume the desired triangulation of ∆m has already been defined for all m ď n ´ 1. Under the
natural identification of each boundary face Bpkq∆

n with ∆n´1, this means in particular that a
triangulation of Bpkq∆

n has been chosen for each k “ 0, . . . , n. Now for each pn ´ 1q-simplex σ in
that triangulation, define σ1 to be the n-simplex in ∆n that is linearly spanned by the n vertices
of σ plus one extra vertex that is in the interior of ∆n, the so-called barycenter

bn :“
ˆ

1

n ` 1
, . . . ,

1

n` 1

˙
P ∆n.

It is straightforward to check that the collection of all n-simplices σ1 defined in this way from
pn´ 1q-simplices σ in boundary faces Bpkq∆

n forms a triangulation of ∆n, and one can also assign
it an orientation based on the orientations of the triangulations of Bpkq∆

n. Some pictures for
n “ 1, 2, 3 are shown in [Hat02, p. 120].

As usual with triangulations of manifolds, one can assign to each n-simplex in the barycentric
subdivision of ∆n a parametrization τ : ∆n Ñ ∆n such that the sum over all such parametrized
simplices τi with attached signs ǫi “ ˘1 determined by their orientations in the triangulation
produces a relative n-cycle in p∆n, B∆nq,

ÿ

i

ǫiτi P Cnp∆n;Zq, B
ÿ

i

ǫiτi P Cn´1pB∆n;Zq,

where pn´ 1q-simplices in the interior of ∆n do not appear in B ři ǫiτi because each is a boundary
face of two n-simplices whose induced boundary orientations cancel. We can then use this to define
a homomorphism

S : CnpX ;Gq Ñ CnpX ;Gq
via the formula

Spσq :“
ÿ

i

ǫipσ ˝ τiq
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for each n ě 0 and σ : ∆n Ñ X . Essentially, S replaces each singular n-simplex σ by a linear
combination (with coefficients ˘1) of the restrictions of σ to the subdivided pieces of its domain.

Lemma 24.9. S : C˚pX ;Gq Ñ C˚pX ;Gq is a chain map.

Proof. This follows from the relation BSpσq “ SpBσq for each σ : ∆n Ñ X , which is a
direct consequence of the inductive nature of the subdivision algorithm: boundary faces of the
smaller simplices in the subdivision are also the simplices in a subdivision of the original boundary
faces. �

Lemma 24.10. S : C˚pX ;Gq Ñ C˚pX ;Gq is chain homotopic to the identity map.

Proof. As in the proof of Lemma 24.1, the chain homotopy here comes from a particular
choice of oriented triangulation of the prism I ˆ ∆n. A picture of this triangulation and a precise
algorithm to construct it are given in [Hat02, p. 122]. We want it in particular to have the
following properties:

(1) Its restriction to t1u ˆ ∆n is the barycentric subdivision of ∆n;
(2) Its restriction to t0u ˆ ∆n consists only of that one n-simplex, with no subdivision;
(3) Its restriction to each I ˆ Bpkq∆

n matches the chosen triangulation of I ˆ ∆n´1.
The third property means that the construction is again inductive: we start with n “ 0 by choosing
the trivial triangulation of I ˆ ∆0 “ I, and then increase the dimension one at a time such that
the triangulation already defined for I ˆ ∆n´1 determines the triangulation of I ˆ ∆n. Since it is
an oriented triangulation, one can now define a relative pn` 1q-cycle in pI ˆ∆n, BpI ˆ∆nqq of the
form ÿ

i

ǫiτi P Cn`1pI ˆ ∆n;Zq,

where τi : ∆n`1 Ñ I ˆ∆n are parametrizations of the simplices in the triangulation and the signs
ǫi “ ˘1 are determined by their orientations. Let

π : I ˆ ∆n Ñ ∆n

denote the obvious projection map. The desired chain homotopy h : CnpX ;Gq Ñ Cn`1pX ;Gq is
then determined by the formula

hpσq “
ÿ

i

ǫi pσ ˝ π ˝ τiq .

In computing Bhpσq, n-simplices in the interior of I ˆ ∆n make no contribution due to the usual
cancelations, but there are contributions from the induced triangulation of BpI ˆ ∆nq, and the
chain homotopy relation again follows from the geometric formula (24.1) for the oriented boundary
of I ˆ ∆n. Namely, restricting to t1u ˆ ∆n gives the barycentric subdivision Spσq, restricting to
´t0u ˆ ∆n gives ´σ, and restricting to ´I ˆ B∆n gives the same operator applied to Bσ, hence

Bhpσq “ Spσq ´ σ ´ hpBσq,
proving S ´ 1 “ Bh` hB. �

The chain homotopy result implies that our subdivision map S : C˚pX ;Gq Ñ C˚pX ;Gq has
the main property we want, namely it induces the identity homomorphism H˚pX ;Gq Ñ H˚pX ;Gq,
and since S clearly also preserves C˚pA;Gq for any A Ă X , the same is also true for the relative
homology groups of pX,Aq. It then remains true if we replace S by any iteration Sm for integers
m ě 1, thus we can apply S repeatedly in order to make the individual simplices in a chain as
small as we like. In particular, for any c P C˚pX ;Gq, we will have Smc P C˚pU ;Gq ` C˚pV ;Gq
for m sufficiently large. This is enough information to prove the excision theorem, but it is worth
making a slight extra effort to prove something a bit better which will come in useful for the
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further development of homology and cohomology theory next semester. One thing you’ve probably
gathered by now is that a chain homotopy is always a useful thing to have, so when one exists,
we should take note of it. Theorem 24.7 can be seen as a consequence of the slightly stronger
result that the inclusion i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence
(Kettenhomotopieäquivalenz)

i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.
In case the meaning of this terminology is not obvious, this means there exists a chain map
ψ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq such that ψ ˝ i˚ and i˚ ˝ ψ are each chain homotopic to the
identity; we call ψ a chain homotopy inverse of i˚.

The following statement turns our previous discussion of subdivision into an actual chain ho-
motopy equivalence that has several applications in the further development of the theory, e.g. we
will use it again next semester when we discuss the homology analogue of the Seifert-van Kampen
theorem, known as the Mayer-Vietoris exact sequence. To understand the statement, it is impor-
tant to be aware that for any subsets U ,V Ă X , the subgroup C˚pU ;Gq `C˚pV ;Gq Ă C˚pX ;Gq is
also a chain complex in a natural way. Indeed, the boundary operator on C˚pX ;Gq maps each of
C˚pU ;Gq and C˚pV ;Gq to themselves, thus it also preserves their sum.

Lemma 24.11. For any subsets U ,V Ă X with X “ Ů Y V̊, the inclusion map

j : C˚pU ;Gq ` C˚pV ;Gq ãÑ C˚pX ;Gq
admits a chain homotopy inverse

ρ : C˚pX ;Gq Ñ C˚pU ;Gq ` C˚pV ;Gq
such that ρ ˝ j “ 1, and moreover, there is a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq of j ˝ ρ
to the identity such that h vanishes on C˚pU ;Gq ` C˚pV ;Gq.

Proof. Let me first point out how one would intuitively wish to prove this, and why it will
not work. As observed above, any chain c P C˚pX ;Gq can be mapped into C˚pU ;Gq ` C˚pV ;Gq
via Sm if the integer m is sufficiently large, so Sm seems like a good candidate for the chain
homotopy inverse ρ. The problem however is that we don’t know in general how large m needs
to be, and in fact the answer depends on the chain c: for any fixed integer m, one can always
find a singular n-simplex σ : ∆n Ñ X whose boundary is close enough to the boundary of U or V

so that the m-fold subdivision Smpσq includes some simplex that is not fully contained in either
one. This means that regardless of how large we make m, Sm can never map all of C˚pX ;Gq into
C˚pU ;Gq ` C˚pV ;Gq, and it will require a bit more cleverness to come up with a candidate for
a map ρ that does this. Our approach will be somewhat indirect: instead of writing down ρ, we
will first write down a (somewhat naive) candidate for the chain homotopy h in terms of the chain
homotopies between Sm and 1 for varying values of m. We will then be able to verify that h really
is a chain homotopy between 1 and something, and that something will be defined to be ρ, whose
further properties we can then verify.

Let h1 : C˚pX ;Gq Ñ C˚`1pX ;Gq denote the chain homotopy provided by Lemma 24.10 for
the barycentric subdivision chain map S : C˚pX ;Gq Ñ C˚pX ;Gq, i.e. it satisfies S´1 “ Bh1`h1B.
We claim that for all integers m ě 0, the map

hm :“ h1

m´1ÿ

k“0

Sk : C˚pX ;Gq Ñ C˚`1pX ;Gq

then satisfies

(24.2) Sm ´ 1 “ Bhm ` hmB,
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so hm is a chain homotopy between Sm and the identity. Note that the casem “ 0 is included here,
with S0 “ 1 and h0 “ 0, so the claim is trivial in that case, and the definition of h1 establishes
it for m “ 1. If we now use induction and assume that the claim holds for powers of S up to
m´ 1 ě 1, then since S commutes with B,

Sm ´ 1 “ pSm´1 ´ 1qS ` pS ´ 1q “ pBhm´1 ` hm´1BqS ` Bh1 ` h1B

“
˜

Bh1
m´2ÿ

k“0

Sk ` h1

m´2ÿ

k“0

SkB
¸
S ` Bh1 ` h1B “ Bh1

m´1ÿ

k“1

Sk ` h1

m´1ÿ

k“1

SkB ` Bh1 ` h1B

“ Bh1
m´1ÿ

k“0

Sk ` h1

m´1ÿ

k“0

SkB “ Bhm ` hmB.

The iterated subdivision maps Sm can be assumed to satisfy

(24.3) Smpσq P C˚pU ;Gq ` C˚pV ;Gq
for any given σ : ∆n Ñ X if m is large enough, so for each each n ě 0 and σ : ∆n Ñ X , let
mσ ě 0 denote the smallest integer for which (24.3) holds with m “ mσ. We can then define a
homomorphism h : CnpX ;Gq Ñ Cn`1pX ;Gq for each n ě 0 via

hpσq :“ hmσ
pσq.

Let us see whether this is a chain homotopy. We have

pBh` hBqpσq “ Bhmσ
pσq ` hmσ

pBσq ` ph ´ hmσ
qpBσq

“ pSmσ ´ 1qpσq ` ph´ hmσ
qpBσq “ prSmσ ` ph´ hmσ

qBs ´ 1q pσq.
Use this to define ρ : C˚pX ;Gq Ñ C˚pX ;Gq by

ρpσq :“ Smσ pσq ` ph ´ hmσ
qpBσq,

so the relation

(24.4) Bh` hB “ ρ ´ 1

is satisfied. The latter implies that ρ is a chain map since applying B from either the left or right
on the left hand side of (24.4) gives BhB, thus on the right hand side we obtain pρ´1qB “ Bpρ´1q.
To understand ρ better, we need to observe that each boundary face τ appearing in Bσ satisfies
mτ ď mσ since mσ is clearly enough (but need not be the minimal number of) iterations of S
to put σ (and therefore also τ) in C˚pU ;Gq ` C˚pV ;Gq. Now if σ P C˚pU ;Gq ` C˚pV ;Gq, then
Smσpσq “ σ since mσ “ 0, and the above remarks imply hpBσq “ h0pBσq “ 0 as well, thus ρpσq “ σ

and we conclude
ρ ˝ j “ 1.

It remains to show that for all σ : ∆n Ñ X , ρpσq is a linear combination of simplices that are
each contained in either U or V . We have Smσpσq P C˚pU ;Gq `C˚pV ;Gq by the definition of mσ,
so it suffices to inspect the other term ph ´ hmσ

qpBσq. Here again we observe that Bσ is a sum of
singular pn ´ 1q-simplices τ for which mτ ď mσ, and

ph´ hmσ
qτ “ phmτ

´ hmσ
qτ “ ´h1

mσ´1ÿ

k“mτ

Skpτq P CnpU ;Gq ` CnpV ;Gq.

This last conclusion requires you to recall how h1 was constructed in the proof of Lemma 24.10:
in particular, it maps any simplex that is contained in either U or V to a linear combination of
simplices that have this same property.
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One last detail: the chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq vanishes on C˚pU ;Gq `
C˚pV ;Gq since every singular n-simplex σ : ∆n Ñ X with image in either U or V satisfies mσ “ 0,
thus hpσq “ hmσ

pσq “ h0pσq “ 0. �

Now we can prove the “chain level” result that implies Theorem 24.7.

Lemma 24.12. If A,B Ă X are subsets with sB Ă Å, then the inclusion i : pXzB,AzBq ãÑ
pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.

Proof. Consider the quotient chain complex pC˚pXzB;Gq ` C˚pA;Gqq {C˚pA;Gq, which has
a natural identification with the group of all finite sums

ř
i aiσi with coefficients ai P G and

singular simplices σi : ∆n Ñ X that have image in XzB but not contained in A. The point here
is that while simplices with σp∆nq Ă A are also generators of C˚pXzB;Gq ` C˚pA;Gq, they are
all equivalent to zero in the quotient. As it happens, the quotient complex C˚pXzB,AzB;Gq “
C˚pXzB;Gq{C˚pAzB;Gq can be described in exactly the same way, with the same set of generators:
singular simplices that are contained in XzB but not contained in A. Since the obvious inclusion
C˚pXzB;Gq ãÑ C˚pXzB;Gq ` C˚pA;Gq sends C˚pAzB;Gq into C˚pA;Gq, it follows that this
inclusion descends to a chain map of quotient complexes

C˚pXzB,AzB;Gq Ñ pC˚pXzB;Gq ` C˚pA;Gqq
L
C˚pA;Gq

which is in fact an isomorphism of chain maps, i.e. it has an inverse, which is also a chain map.
This is a trivial observation, we have not done anything interesting yet.

But in light of this identification of two quotient chain complexes, it will suffice to prove that
the chain map

(24.5) pC˚pXzB;Gq ` C˚pA;Gqq
L
C˚pA;Gq jÝÑ C˚pX ;Gq{C˚pA;Gq “ C˚pX,A;Gq

induced on these quotients by the obvious inclusion

C˚pXzB;Gq ` C˚pA;Gq j
ãÑ C˚pX ;Gq

is a chain homotopy equivalence. SinceXz sB and Å form an open cover ofX , Lemma 24.11 provides
a chain homotopy inverse for j, namely the map ρ : C˚pX ;Gq Ñ C˚pXzB;Gq `C˚pA;Gq, defined
in terms of subdivision. That map satisfies ρ˝j “ 1, thus ρ restricts to the identity on the subgroup
C˚pA;Gq Ă C˚pX ;Gq and therefore descends to a map on quotients going the opposite direction
to j in (24.5). It also satisfies j ˝ρ´1 “ Bh`hB for a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq
that vanishes on C˚pA;Gq, thus h also descends to the quotient C˚pX ;Gq{C˚pA;Gq as a chain
homotopy h : C˚pX,A;Gq Ñ C˚`1pX,A;Gq satisfying j ˝ ρ ´ 1 “ Bh ` hB on the quotient
complexes. �

25. The homology of the spheres, and beyond

Topic 1: Computation of H˚pSn;Zq. Recall that Sn`1 is homeomorphic to the suspension
SSn of Sn. Let us consider the relationship in general between H˚pX ;Gq and H˚pSX ;Gq. We
write

SX “ C`X YX C´X,

where the two cones C˘X are contractible spaces that each contain a naturally embedded copy
of X . Letting p´ P C´X denote the tip of the bottom cone, we saw in Example 23.3 that the
natural inclusion

pC`X,Xq i
ãÑ pSXztp´u, C´Xztp´uq
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is a homotopy equivalence of pairs. Here is an interesting diagram to ponder:

(25.1)

HkpX ;Gq Hk`1pSX ;Gq

Hk`1pC`X,X ;Gq Hk`1pSXztp´u, C´Xztp´u;Gq Hk`1pSX,C´X ;Gq

ϕ˚B˚

i˚ j˚

Here B˚ denotes the connecting homomorphism from the long exact sequence of the pair pC`X,Xq,
while the maps j˚ and ϕ˚ are induced by the obvious inclusions of pairs

pSXztp´u, C´Xztp´uq j
ãÑ pSX,C´Xq,

pSX,Hq ϕ
ãÑ pSX,C´Xq.

Since tp´u Ă C´X is a closed subset in the interior of C´X , excision (Theorem 24.7) implies that
j˚ is an isomorphism. We claim that if k ě 1, then B˚ and ϕ˚ are both also isomorphisms. For
the first, consider the long exact sequence of pC`X,Xq:

. . . ÝÑ Hk`1pC`X ;Gq ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ HkpC`X ;Gq ÝÑ . . .

Since C`X is contractible, homotopy invariance implies that the first and last of these four terms
vanish, as Hnptptu;Gq “ 0 for all n ą 0. The sequence thus becomes

0 ÝÑ Hk`1pC`X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ 0

for each k ě 1, so exactness implies that B˚ is an isomorphism. For ϕ˚, we instead take an exerpt
from the long exact sequence of pSX,C´Xq:

. . . ÝÑ Hk`1pC´X ;Gq ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ HkpC´X ;Gq ÝÑ . . .

The contractibility of C´X again makes the first and last terms vanish if k ě 1, leaving

0 ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ 0,

so that ϕ˚ is also an isomorphism. We have proved:

Theorem 25.1. For all spaces X, abelian groups G and integers k ě 1, the diagram (25.1)
defines an isomorphism

S˚ “ ϕ´1
˚ ˝ j˚ ˝ i˚ ˝ B´1

˚ : HkpX ;Gq Ñ Hk`1pSX ;Gq.
�

Exercise 25.2. Show that for any k-cycle b P CkpX ;Gq Ă CkpSX ;Gq, there exists a pair of
pk ` 1q-chains c˘ P Ck`1pC˘X ;Gq Ă Ck`1pSX ;Gq satisfying

(25.2) Bc` “ ´Bc´ “ b

and

(25.3) S˚rbs “ rc` ` c´s.
Note that c` ` c´ P Cn`1pSX ;Gq is automatically a cycle since Bc` “ ´Bc´. Show moreover that
(25.3) is satisfied for any pair of chains c˘ satisfying (25.2).

For the spheres Sn with n ě 1, we already know H0pSn;Gq and H1pSn;Zq; the former is G
because Sn is path-connected (Proposition 22.11), and the latter is the abelianization of π1pSnq by
Theorem 22.13. Since SSn – Sn`1, we can now compute H˚pSn;Zq inductively for every n ě 1:
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Theorem 25.3. For every n P N,

HkpSn;Zq –
#
Z for k “ 0, n,

0 for all other k.

Proof. Proposition 22.11 gives H0pSn;Zq – Z. For k “ n, HnpSn;Zq – Z follows by an
inductive argument starting from H1pS1;Zq – π1pS1q – Z and applying Theorem 25.1. For any
k “ 1, . . . , n ´ 1, a similar inductive argument starting from H1pSn´k`1;Zq “ π1pSn´k`1q “ 0

gives HkpSn;Zq “ 0. For k ą n, repeatedly applying Theorem 25.1 identifies HkpSn;Zq with
Hk´npS0;Zq, where k ´ n ą 0 and S0 is a discrete space of two points. But one can easily adapt
Exercise 22.12 to prove by direct computation that HmpX ;Gq “ 0 for any m ą 0 whenever X is a
discrete space. �

We can now extend our proof of the Brouwer fixed point theorem to all dimensions. The basic
ingredients are the same as before: first, if a map f : Dn Ñ Dn has no fixed point, then we can
use it to define a retraction g : Dn Ñ Sn´1 “ BDn. In Lecture 10, we used the fundamental group
to prove that no such retraction exists when n “ 2. The argument for this did not require many
specific properties of the fundamental group: the key point was just the fact that continuous maps
X Ñ Y induce homomorphisms π1pXq Ñ π1pY q in a way that is compatible with composition of
maps, and the homology groups have this same property. In particular:

Exercise 25.4. Show that if f : X Ñ A is a retraction to a subset A Ă X with inclusion
i : A ãÑ X , then for all n P Z and abelian groups G, f˚ : HnpX ;Gq Ñ HnpA;Gq is surjective,
while i˚ : HnpA;Gq Ñ HnpX ;Gq is injective.

Proof of the Brouwer fixed point theorem. Arguing by contradiction, assume a map
f : Dn Ñ Dn without fixed points exists, and therefore also a retraction g : Dn Ñ Sn´1. We may
assume n ě 2 since the case n “ 1 follows already from the intermediate value theorem for
continuous functions on r´1, 1s. By Exercise 25.4, g induces a surjective homomorphism

g˚ : Hn´1pDn;Zq Ñ Hn´1pSn´1;Zq.

But this is impossible since Hn´1pDn;Zq – Hn´1ptptu;Zq “ 0 and Hn´1pSn´1;Zq – Z. �

Here is another easy application.

Theorem 25.5. A topological manifold of dimension n is not also a topological manifold of
dimension m ‰ n.

Proof. Let us assume m and n are both at least 2, as the result can otherwise be proved via
easier methods. (Hint: removing a point from R makes it disconnected.) We argue by contradiction
and assume M is a manifold with an interior point admitting a neighborhood homeomorphic to Rn

and also a neighborhood homeomorphic to Rm for m ‰ n. By choosing a suitable pair of charts
and writing down their transition maps, we can produce from this a pair of open neighborhoods
of the origin Ωn Ă Rn and Ωm Ă Rm admitting a homeomorphism f : Ωn Ñ Ωm with fp0q “ 0.
Choose ǫ ą 0 small enough so that f maps the ǫ-ball Bnǫ p0q Ă Ωn about the origin into the δ-ball
Bmδ p0q Ă Rm for some δ ą 0, where the latter is also small enough so that Bmδ p0q Ă Ωm. Now pick
a generator

A P Hn´1pBnǫ p0qzt0u;Zq – Hn´1pSn´1;Zq – Z.

Since m ‰ n,
Hn´1pBmδ p0qzt0u;Zq – Hn´1pSm´1;Zq “ 0,
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so restricting f to a map Bnǫ p0qzt0u Ñ Bmδ p0qzt0u gives f˚A “ 0 P Hn´1pBmδ p0qzt0u;Zq. But f´1

is also defined on Bmδ p0q, and restricting both f and f´1 to maps on punctured neighborhoods
with the origin removed, we deduce

A “ pf´1 ˝ fq˚A “ f´1
˚ f˚A “ 0,

which is a contradiction since A was assumed to generate Hn´1pBnǫ p0qzt0u;Zq ‰ 0. �

Topic 2: Preview of cellular homology. At this point, I believe I’ve proved everything
that I promised to prove in earlier lectures, so the course Topologie I is officially over. For the rest
of this lecture, I want to talk about some related topics that will be discussed more at length in
Topologie II.

First a bit of good news: while the proofs of homotopy invariance and excision in the previous
lecture may have seemed somewhat unpleasant, we will hardly ever need to engage in such hands-
on constructions via subdivision of simplices in the future. That is because almost everything
one actually needs to know in order to use homology in applications follows from a small set of
results that we’ve spent the last few lectures proving. These results form an axiomatic description
of general “homology theories,” which was first codified by Eilenberg-Steenrod [ES52] and Milnor
[Mil62] around the middle of the 20th century. Roughly speaking, an axiomatic homology theory
h˚ with coefficient group G is anything32 that associates to every pair pX,Aq a sequence of abelian
groups hnpX,Aq, together with homomorphisms f˚ : hnpX,Aq Ñ hnpY,Bq induced by continuous
maps f : pX,Aq Ñ pY,Bq and connecting homomorphisms B˚ : hnpX,Aq Ñ hn´1pAq, such that
the following conditions are satisfied:

‚ (homotopy) f˚ : h˚pX,Aq Ñ h˚pY,Bq depends only on the homotopy class of f :

pX,Aq Ñ pY,Bq.
‚ (exactness) For the inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq, the sequence

. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (excision) If B Ă sB Ă Å Ă A Ă X , then the inclusion pXzB,AzBq ãÑ pX,Aq induces

an isomorphism h˚pXzB,AzBq Ñ h˚pX,Aq.
‚ (dimension) h0ptptuq “ G and hnptptuq “ 0 for all n ‰ 0.
‚ (additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš

βPJ Xβ , the homomorphisms iα˚ : h˚pXαq Ñ h˚pšβ Xβq determine an isomorphism
à
αPJ

h˚pXαq Ñ h˚

´ž

αPJ

Xα

¯
.

We have proved that singular homologyH˚p¨;Gq with coefficient group G satisfies the first four
of these axioms, and the proof of the fifth is an easy exercise. If you look again at our computation
of H˚pSn;Zq, you’ll see that it mostly only used these properties—I say “mostly” because we did
cheat slightly in using the isomorphism H1pSn;Zq – π1pSnq, the proof of which is a fairly hands-
on argument with singular simplices and does not follow from the axioms. But actually, we could
have gotten around this with a little more effort, and it is even possible to compute H1pSn;Gq
for arbitrary coefficients without knowing anything about the fundamental group. The reason we
had to appeal to the fundamental group was that Theorem 25.1 is not true for k “ 0, and it fails
for a very specific reason: since H0 of a contractible space does not vanish, the exact sequences
do not always give isomorphisms when this term appears. But there is a formal trick to avoid

32There is some technical terminology from category theory that will be convenient to adopt going forward:
we call h˚ a functor from the category of pairs of spaces to the category of abelian groups. The existence of the
induced homomorphisms f˚ associated to maps of pairs f is implicit in the use of the word functor.
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this problem, called reduced homology: it is a variant rH˚ of the usual singular homology H˚

that fits into all the same exact sequences, but is defined in a slightly more elaborate way so that
rHnptptuq “ 0 for all n, not just for n ‰ 0. If we had used this, we could have done an inductive
argument reducing the homology of every sphere Sn to the homology of S0, which is the disjoint
union of two one-point spaces, so the dimension and additivity axioms then provide the answer.
This version of the argument eliminates any need for specifying the coefficients G “ Z, and it also
works for any axiomatic homology theory, thus giving:

Theorem. For every n P N and any theory h˚ satisfying the Eilenberg-Steenrod axioms with
coefficient group G,

hkpSnq –
#
G for k “ 0, n,

0 for all other k.

Singular homology is not the only theory that satisfies the Eilenberg-Steenrod axioms, though it
has been the standard one that people use for over half a century. While the alternatives have gone
out of fashion, a few of them do still occasionally resurface in research articles, and we will briefly
discuss some of these in Topologie II. In the closely related subject of cohomology, at least one of the
alternative theories (Čech cohomology) is still frequently used, especially in algebraic geometry.
Another variant arises frequently in differential geometry: de Rham cohomology is defined on
smooth manifolds in terms of differential forms, and strictly speaking it is not a cohomology theory
in the sense of Eilenberg-Steenrod because it requires a smooth structure, but it satisfies smooth
versions of a similar set of axioms. One of the big results we will prove next semester implies
that for most spaces that arise in practice, the choice of which axiomatic (co-)homology theory to
use will not matter—the results will all be isomorphic. A corollary of the same theorem is that
the simplicial homology of a triangulated space does not depend on the choice of triangulation,
because it is isomorphic to every axiomatic homology theory on that space, in particular singular
homology.

I want to quickly sketch the statement of the latter theorem and mention one of its more
impressive corollaries: the invariance of the Euler characteristic.

One class of “reasonable” spaces we have encountered before are polyhedra: the topological
spaces associated to abstract simplicial complexes. But there is a larger class of spaces called cell
complexes (or the fancier term “CW-complexes”) which are actually easier to work with—roughly
speaking, they are the class of topological spaces for which the standard invariants in algebraic
topology are computable. It is known that all smooth manifolds or simplicial complexes are also
cell complexes, and all topological manifolds are at least homotopy equivalent to cell complexes.
We saw one concrete example in Lecture 14: when we proved that every finitely presented group
occurs as the fundamental group of some compact Hausdorff space (Theorem 14.7), the space we
constructed was a wedge of circles with a finite set of disks attached. The general idea of a cell
complex is to build up a space inductively as a nested sequence of “skeleta” of various dimensions,
where the n-skeleton is always constructed by attaching n-disks to the pn ´ 1q-skeleton. In this
language, the construction in Theorem 14.7 was a 2-dimensional cell complex, because it had a
1-skeleton (the wedge of circles) and a 2-skeleton (the attached disks). Here is the general definition
in the case where there are only finitely many cells.

Definition 25.6. A space X is called a (finite) cell complex (Zellenkomplex) of dimension
n if it contains a nested sequence of subspaces X0 Ă X1 Ă . . . Ă Xn´1 Ă Xn “ X such that:

(1) X0 is a finite set;
(2) For each m “ 1, . . . , n, Xm is homeomorphic to a space constructed by attaching finitely

many m-disks Dm to Xm´1 along maps BDm Ñ Xm´1.
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We call Xm Ă X the m-skeleton of X . The definition implies that for each m “ 1, . . . , n,
there is a finite set KmpXq and a so-called attaching map ϕα : Sm´1 Ñ Xm´1 associated to each
α P KmpXq such that

Xm –

¨
˝ ž

αPKmpXq

Dm

˛
‚Yϕm

Xm´1,

where ϕm :
š
αPKmpXq BDm Ñ Xm´1 denotes the disjoint union of the maps ϕα : Sm´1 Ñ Xm´1,

each defined on the boundary of the disk indexed by α. As a set, Xm is the union of Xm´1 with
a disjoint union of open disks

emα – D̊m for each α P KmpXq,
called the m-cells of the complex. For m “ 0, we call the discrete points of the 0-skeleton X0 the
0-cells and denote this set by K0pXq.

Since ∆n – Dn, it is easy to see that polyhedra are also cell complexes: the n-cells are the
interiors of the n-simplices, while the n-skeleton is the union of all simplices of dimension at most
n and the attaching maps are all embeddings. In general, the attaching maps in a cell complex
do not need to be embeddings, they only must be continuous, so while the m-cells emα look like
open m-disks, their closures might not be homeomorphic to closed disks. For instance, here is an
example with an n-cell whose boundary is collapsed to a point, so its closure is not a disk, but a
sphere:

Example 25.7. Consider a cell complex that has one 0-cell and no cells of dimensions 1, . . . , n´
1, so its m-skeleton for every m ă n is a one-point space, but there is one n-cell enα attached via
the unique map ϕα : Sn´1 Ñ tptu. The resulting space X “ Xn is homeomorphic to Sn.

The cellular homology of a cell complex X “ Ť
ně0X

n is now defined as follows. Given an
abelian coefficient group G, let

CCW
n pX ;Gq :“

à

αPKnpXq

G “
#

finite sums
ÿ

i

cie
n
αi

ˇ̌
ˇ ci P G, αi P KnpXq

+
,

denote the abelian group of finite linear combinations of generators enα corresponding to the n-
cells in the complex, with coefficients in G. A boundary map B : CCW

n pX ;Gq Ñ CCW
n´1pX ;Gq is

determined by the formula

Benα “
ÿ

βPKn´1pXq

ren´1
β : enαsen´1

β ,

where the incidence numbers ren´1
β : enαs P Z are determined as follows. For each α P KnpXq

and β P Kn´1pXq, let
Xβ :“ Xn´1

L
pXn´1zen´1

β q,
i.e. it is a space obtained by collapsing everything in the pn´ 1q-skeleton except for the individual
cell en´1

β to a point. Since en´1
β is an open pn´ 1q-disk with a canonical homeomorphism to D̊n´1,

there is a canonical homeomorphism

Xβ “ Dn´1{BDn´1 – Sn´1.

There is also a quotient projection q : Xn´1 Ñ Xβ , so composing this with the attaching map
ϕα : Sn´1 Ñ Xn´1 gives a map between two pn ´ 1q-dimensional spheres

q ˝ ϕα : Sn´1 Ñ Xβ – Sn´1.
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This induces a homomorphism

Z – Hn´1pSn´1;Zq pq˝ϕαq˚ÝÑ Hn´1pXβ ;Zq – Z,

and all homomorphisms Z Ñ Z are of the form x ÞÑ dx for some d P Z. The integer d appearing
here is called the degree of q ˝ ϕα, and that is how we define the incidence number:

ren´1
β : enαs :“ degpq ˝ ϕαq.

Strictly speaking, this definition only makes sense for n ě 2 since our computation of the homology
of spheres does not apply to S0, but this is a minor headache that can easily be fixed with an extra
definition, as in simplicial homology.

It would take a lot more time than we have right now to explain why this definition of B is the
right one, and why it implies B2 “ 0 in particular. But if you are willing to accept that for now,
then we can define the cellular homology (zelluläre Homologie) groups

HCW
n pX ;Gq :“ Hn

`
CCW

˚ pX ;Gq, B
˘
,

and we can almost immediately carry out a surprisingly easy computation:

Example 25.8. The cell decomposition of Sn in Example 25.7 gives

HCW
k pSn;Gq –

#
G for k “ 0, n,

0 for all other k.

Indeed, for n ě 2 we can see this without doing any work, because CCW
0 pSn;Gq – G and

CCW
n pSn;Gq are the only nontrivial chain groups, so B simply vanishes and the homology groups

are the chain groups. For n “ 1 you need a little bit more information that I haven’t given you,
but one can show also in this case that B “ 0, so the result is the same.

In reality, cellular homology is not a new homology theory as such, it is just an extremely
efficient way of computing any axiomatic homology theory for spaces that are nice enough to have
cell decompositions. The following result has been the main tool used for computations of singular
homology for most of its history, and it implies in particular the fact that simplicial homology is a
topological invariant (cf. Theorem 21.10). We will work through a complete proof next semester.
The first step in that proof will be the computation of H˚pSnq that began this lecture.

Theorem. For any cell complex X and any axiomatic homology theory h˚ with coefficient
group G, HCW

˚ pX ;Gq – h˚pXq.
Here is a remarkable application. To make our lives algebraically a bit easier, let’s choose

the coefficient group G to be a field K, e.g. Q or R will do. This has the advantage of making
our chain complexes naturally into vector spaces over K, and the boundary maps are K-linear, so
the homology groups are also K-vector spaces. Whenever H˚pX ;Kq is finite dimensional, we then
define the Euler characteristic of X as the integer

χpXq :“
8ÿ

n“0

p´1qn dimKHnpX ;Kq P Z.

Although each individual term dimKHnpX ;Kq may in general depend on the choice of field K, one
can show that their alternating sum does not.33 This fact admits a purely algebraic proof, but if X
is a finite cell complex, then it also follows from the following much more surprising observation.
It is not difficult to prove that whenever pC˚, Bq is a finite-dimensional chain complex of K-vector

33One can also define χpXq using integer coefficients in terms of the ranks of the abelian groups HnpX;Zq.
This is one of the algebraic details I wanted to avoid by using field coefficients.
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spaces, the alternating sum of the dimensions of its homology groups can be computed without
computing the homology at all: in fact,

(25.4)
ÿ

nPZ

p´1qn dimKHnpC˚, Bq “
ÿ

nPZ

p´1qn dimK Cn.

This follows essentially from the fact that for each n P Z, writing Zn :“ ker Bn Ă Cn and Bn :“
im Bn`1 Ă Cn, the map Bn : Cn Ñ Cn´1 descends to an isomorphism Cn{Zn Ñ Bn´1, implying

dimK Cn ´ dimK Zn “ dimKBn´1.

Since HnpC˚, Bq “ Zn{Bn, we also have dimKHnpC˚, Bq “ dimK Zn´dimKBn, so combining these
two relations and adding things up with alternating signs produces lots of cancelations leading to
(25.4). Now apply this to the cellular chain complex, in which each CCW

n pX ;Kq is a K-vector space
whose dimension is the number of n-cells in the complex. What we learn is that we don’t need to
know anything about homology in order to compute χpXq—all we have to do is count cells and
add up the counts with signs. The remarkable fact is that the result of this counting game only
depends on the space, and not on our choice of how to decompose it into cells:

Theorem. For any finite cell complex X,

χpXq “
8ÿ

n“0

p´1qn pthe number of n-cellsq .

In particular this applies to simplicial complexes, e.g. if you build a 2-sphere by gluing together
triangles along common edges, then no matter how you do it or how many triangles are involved,
the number of triangles minus the number of glued edges plus the number of glued vertices will
always be

χpS2q “ dimRH0pS2;Rq ´ dimRH1pS2;Rq ` dimRH2pS2;Rq “ 1 ´ 0 ` 1 “ 2.

Go ahead. Try it.





Second semester (Topologie II)

26. Categories and functors

The general approach of algebraic topology is to associate to each topological space some
algebraic object that can be used to tell “different” spaces apart. We saw two important examples
of this last semester: the fundamental group (π1), and the singular homology groups (H˚, with
various choices of coefficient group). It is reasonable to think of these in some sense as “functions”
with domains consisting of the collection of all topological spaces (possibly with base point), and
targets consisting of the collection of all groups (or in the case of homology, all abelian groups).
We have not yet developed the right language to make this notion of a “function” precise, so it is
time to do so now.

One reason why π1 and H˚ cannot actually be called “functions” is that their domains, strictly
speaking, are not sets (Mengen). I encourage you to skip the rest of this paragraph if you are
not interested in the finer points of axiomatic set theory or the classic set-theoretic paradoxes. . .
but for those who are still reading, let us agree that there is no such thing as the “set of all
topological spaces”. Indeed, every set can be made into a topological space by assigning it the
discrete topology, so if one can talk about the set of all topological spaces, then one must also be
able to talk about the set of all sets, and it is a short step from there to the “set of all sets that
do not contain themselves”—at which point we find ourselves jumping off the nearest bridge. The
architects of abstract set theory solved this dilema by coming up with a set of axioms that tell
you how to construct new sets from old ones, and insisting that only collections of objects that
arise from these axioms should be called sets. Of course, we do sometimes also need to discuss
collections of objects that do not arise from the axioms of set theory, and the collection of all
topological spaces is an example. Such collections are generally called (proper) classes (Klassen),
but since I do not wish to go any further into the subtleties of set theory in this course, I shall
continue to refer to them via the informal word collections. You should just keep in mind that
while such things can be defined, they are not considered equivalent to sets and cannot be used
for all the same purposes that sets can—in particular, an arbitrary “collection” cannot serve as the
domain of a function according to the traditional definitions.

Leaving set theory aside, it also must be observed that π1 and H˚ are not just arbitrary
“functions” that associate algebraic objects to topological spaces, but they do so in ways that make
the algebraic objects into topological invariants. In both cases, this results mainly from the fact that
continuous maps of spaces induce homomorphisms between the corresponding fundamental groups
or homology groups, implying in particular that homeomorphisms induce group isomorphisms.
The notion of a functor is meant as a form of abstract packaging for this idea.

Definition 26.1. A category (Kategorie) C consists of the following data:

‚ A collection (i.e. class) ObC , whose elements are called the objects (Objekte) of C ;
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‚ For eachX,Y P ObC a set MorpX,Y q, whose elements are called the morphisms from X

to Y (Morphismen von X nach Y ), such that for each X P ObC there is a distinguished34

element IdX P MorpX,Xq;
‚ For each X,Y, Z P ObC , a function

(26.1) MorpX,Y q ˆ MorpY, Zq Ñ MorpX,Zq : pf, gq ÞÑ g ˝ f
such that pf ˝ gq ˝ h “ f ˝ pg ˝ hq, and whenever two of the objects match and Id denotes
the corresponding distinguished morphism, f ˝ Id “ f “ Id ˝f .

Example 26.2. The category Top has ObTop “ ttopological spacesu and MorpX,Y q “ tf :

X Ñ Y | f a continuous mapu, with IdX defined for each space X as the identity map and the
function (26.1) defined as the usual composition of maps. (Note that this defines a category
since the identity map is always continuous and the composition of two continuous maps is also
continuous.)

Example 26.3. The category Set has ObSet “ tsetsu and MorpX,Y q “ tf : X Ñ Y u, with no
requirement on continuity of maps since there is no topology.

Example 26.4. The objects of Diff are the smooth finite dimensional manifolds, and its mor-
phisms are smooth maps. (As in Example 26.2, the identity is always smooth and the composition
of two smooth maps is smooth.)

Example 26.5. The category Grp has ObGrp “ tgroupsu and MorpG,Hq “ thomomorphisms G Ñ
Hu for G,H P ObGrp.

Example 26.6. There is a subcategory (Unterkategorie) Ab of Grp whose objects consist of
all abelian groups, with morphisms defined the same way as in Grp.

The examples above might give you the impression that in every category, a morphism is just
a map that may be required to satisfy some specific properties. But nothing in Definition 26.1 says
either that an object must be a kind of set or that a morphism is a map. Here is an example in
which the objects are still sets, but the morphisms are equivalence classes of maps.

Example 26.7. Let Toph denote the category whose objects are the same as in Top, but with
MorpX,Y q defined as the set of homotopy classes of continuous maps X Ñ Y and IdX P MorpX,Xq
as the homotopy class of the identity map. The function (26.1) is defined in terms of the usual
composition of continuous maps f : X Ñ Y and g : Y Ñ Z by

rgs ˝ rf s :“ rg ˝ f s.
(Exercise: check that this is well defined!)

For an interesting example in which objects are not sets and the function (26.1) has nothing
to do with composition of maps, see Exercise 26.17(b).

Definition 26.8. In any category, a morphism f P MorpX,Y q is called an isomorphism
(Isomorphismus) if there exists a morphism f´1 P MorpY,Xq such that f´1˝f “ IdX and f ˝f´1 “
IdY . If an isomorphism exists in MorpX,Y q, we say that the objects X and Y are isomorphic
(isomorph).

34The word “distinguished” appears here because part of the structure of the category C is the knowledge of
which morphism should be called “IdX ” for each object X. If we simply required the existence of a morphism that
satisfies the conditions stated in the third bullet point, then there might be more than one such element and we
would not know which one to call IdX . But the structure of C requires each set MorpX,Xq to contain a specific
element that carries that name; there might in theory exist additional morphisms that have the same properties,
but only one is called IdX .
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According to this definition, the word “isomorphism” no longer has a strictly algebraic meaning,
but will mean whatever is considered to be the notion of “equivalence” in whichever category we
are working with. Let’s run through the list: an isomorphism in Top is a homeomorphism, in Set

it is simply a bijection, in Diff a diffeomorphism, and in Grp or Ab it is the usual notion of group
isomorphism. The most interesting case so far is Toph: two objects in Toph are isomorphic if and
only if they are homotopy equivalent!

Definition 26.9. Given two categories C and D , a functor (Funktor) F : C Ñ D assigns
to each X P ObC an object FpXq P ObD and to each f P MorpX,Y q for X,Y P ObC a morphism
Fpfq P MorpFpXq,FpY qq such that:

(1) FpIdXq “ IdFpXq for all X P ObC ;
(2) Fpf ˝ gq “ Fpfq ˝ Fpgq for all g P MorpX,Y q and f P MorpY, Zq, X,Y, Z P ObC .

Example 26.10. Denote by Top˚ the category whose objects are the pointed spaces pX, pq,
i.e. a topological space X together with a point p P X , and

MorppX, pq, pY, qqq :“
 
f : X Ñ Y

ˇ̌
f continuous and fppq “ q

(
.

Then the fundamental group defines a functor π1 : Top˚ Ñ Grp; indeed, it associates to each
pointed space pX, pq the group π1pX, pq and to each pointed map f : pX, pq Ñ pY, qq the group
homomorphism

π1pfq :“ f˚ : π1pX, pq Ñ π1pY, qq
such that Id˚ is the identity homomorphism and pf ˝ gq˚ “ f˚ ˝ g˚.

Example 26.11. The fundamental group also defines a functor π1 : Toph˚ Ñ Grp where Toph˚ is
defined to have the same objects as Top˚, but with MorppX, pq, pY, qqq defined as the set of pointed
homotopy classes of maps pX, pq Ñ pY, qq. (See Theorem 9.12 in Lecture 9 from last semester.)

Example 26.12. As we will review within the next few lectures, the singular homology group
HnpX ;Gq for each integer n ě 0 and any fixed (abelian) coefficient group G defines functors

Hnp¨;Gq : Top Ñ Ab and Toph Ñ Ab.

The latter makes sense due to the fact that the homomorphism f˚ : HnpX ;Gq Ñ HnpY ;Gq induced
by a continuous map f : X Ñ Y depends only on the homotopy class of f .

We will later encounter several algebraic constructions and related topological invariants that
satisfy most of the conditions of a functor but differ in one crucial respect: the morphisms they
induce go the other way. In practice, this phenomenon often arises from the algebraic notion of
dualization, and we’ll give an example of this kind immediately after the definition.

Definition 26.13. Given two categories C and D , a contravariant functor (kontravarianter
Funktor) F : C Ñ D assigns to each X P ObC some FpXq P ObD and to each f P MorpX,Y q for
X,Y P ObC a morphism Fpfq P MorpFpY q,FpXqq such that

(1) FpIdXq “ IdFpXq for all X P ObC ;
(2) Fpf ˝ gq “ Fpgq ˝ Fpfq for all g P MorpX,Y q and f P MorpY, Zq, X,Y, Z P ObC .

A functor that satisfies the original Definition 26.9 instead of Definition 26.13 can be called
covariant (kovariant) when we want to emphasize that it is not contravariant.

Example 26.14. Let VecK denote the category of vector spaces over a fixed field K, so
MorpV,W q :“ HomKpV,W q is the space of K-linear maps V Ñ W . There is a contravariant
functor VecK Ñ VecK which sends each vector space V to its dual space V ˚ :“ HomKpV,Kq and
sends each morphism A : V Ñ W to its transpose A˚ :W˚ Ñ V ˚, defined by A˚pλqv “ λpAvq for
λ P W˚ and v P V . It satisfies the conditions of a functor since pABq˚ “ B˚A˚ and the transpose
of the identity V Ñ V is the identity V ˚ Ñ V ˚.



172 SECOND SEMESTER (TOPOLOGIE II)

Exercise 26.15. One can speak of “functors of multiple variables” in much the same way as
with functions. Show for instance that on the category Ab of abelian groups and homomorphisms,

Hom : Ab ˆ Ab Ñ Ab

defines a functor that is contravariant in the first variable and covariant in the second, assigning
to each pair of abelian groups pG,Hq the group HompG,Hq of homomorphisms G Ñ H .

Exercise 26.16. Suppose A is a category whose objects form a set X , such that for each pair
x, y P X , the set of morphisms Morpx, yq contains either exactly one element or none. We can turn
this into a binary relation by writing x ’ y for every pair such that Morpx, yq ‰ H.

(a) What properties does the relation ’ need to have in order for it to define a category in
the way indicated above?

(b) If B is another category whose objects form a set Y with morphisms determined by a
binary relation ’ as indicated above, what properties does a map f : X Ñ Y need to
have in order for it to define a functor from A to B?

Exercise 26.17. In any category C , each object X has an automorphism group (also
called isotropy group) AutpXq, consisting of all the isomorphisms in MorpX,Xq. A groupoid is
a category in which all morphisms are also isomorphisms.

(a) Show that if G is a groupoid and Grp denotes the usual category of groups with ho-
momorphisms, there exists a contravariant functor from G to Grp that assigns to each
object X of G its automorphism group AutpXq. How does this functor act on morphisms
X Ñ Y ? Could you alternatively define it as a covariant functor? Conclude either way
that wheneverX and Y are isomorphic objects in G (meaning there exists an isomorphism
in MorpX,Y q), the groups AutpXq and AutpY q are isomorphic.

(b) Given a topological space X and two points x, y, let Morpx, yq denote the set of homotopy
classes (with fixed end points) of paths r0, 1s Ñ X from x to y, and define a composition
function Morpx, yq ˆ Morpy, zq Ñ Morpx, zq : pα, βq ÞÑ α ¨ β by the usual notion of
concatenation of paths. Show that this notion of morphisms defines a groupoid whose
objects are the points in X .35 In this case, what are the automorphism groups Autpxq
and the isomorphisms Autpyq Ñ Autpxq given by the functor in part (a)?

We have one more piece of abstract language to add to this story before we can get back to
studying topology. You’ve often seen the words “natural” or “naturally” appearing in statements
of theorems in order to emphasize that something does not depend on any arbitrary choices. In
category theory, these words can be given a precise definition.

Definition 26.18. Given two covariant functors F ,G : C Ñ D , a natural transforma-
tion (natürliche Transformation) T from F to G associates to each X P ObC a morphism
TX P MorpFpXq,GpXqq such that for all X,Y P ObC and f P MorpX,Y q, the following diagram
commutes:

FpXq GpXq

FpY q GpY q

TX

Fpfq Gpfq

TY

A natural transformation of contravariant functors can be defined analogously.

A nice topological example of a natural transformation arises from the Hurewicz homomor-
phism, reviewed in Exercise 26.32 at the end of this lecture. Here is an algebraic example.

35It is called the fundamental groupoid of X.
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Exercise 26.19. Consider again the category VecK of vector spaces over a fixed field K as in
Example 26.14.

(a) Show that there is a covariant functor ∆2 from VecK to itself, assigning to each V P VecK
the dual of its dual space pV ˚q˚. Describe how this functor acts on morphisms.

(b) Let Id denote the identity functor on VecK, which sends each object and morphism to
itself. Construct a natural transformation from Id to ∆2 that assigns to every V P VecK
a vector space isomorphism V Ñ pV ˚q˚.

Remark 26.20. Whenever a vector space V is finite dimensional, the map V Ñ pV ˚q˚ given by
the natural transformation in Exercise 26.19(b) is an isomorphism, and a large part of the reason
why it turns out to define a natural transformation is that the definition of this map does not
depend on any choices. Contrast this with Example 26.14: restricting again to finite-dimensional
spaces, V and V ˚ are always isomorphic since they have the same dimension, but writing down
such an isomorphism requires a choice—it is not canonical. One can show in fact that there does
not exist any natural transformation from the identity functor (regarded now as a contravariant
functor) to the dualization functor of Example 26.14. While this statement sounds purely algebraic,
the easiest proof I can think of is topological: it uses vector bundles. (Ignore the rest of this remark
if you’ve never seen vector bundles before). Indeed, if such a natural transformation existed, it
would imply that every finite-dimensional vector bundle is isomorphic to its dual bundle. But
e.g. for K “ C, there are simple examples of complex vector bundles that are not isomorphic to
their dual bundles—one can prove it using Chern classes.

Let us now review the definition of singular homology in this category-theoretic context. For
now we will consider only homology with integer coefficients and thus leave the coefficient group out
of the notation, writing e.g. H˚pXq instead of H˚pX ;Zq. It is natural to view singular homology
as the composition of two covariant functors: one that transforms topological information into
algebra (in the form of a chain complex), and another that performs the purely algebraic step of
replacing a chain complex with its homology groups. Let us define the algebraic functor first.

Definition 26.21. A Z-graded abelian group (Z-graduierte abelsche Gruppe) G˚ is an
abelian group that is equipped with a direct sum splitting G˚ “ À

nPZGn, i.e. Gn for each n P Z

is a subgroup, Gn X Gm “ t0u whenever n ‰ m, and every element of G˚ can be written as a
finite sum of elements that each belong to the various subgroups Gn. An element g P G˚ such that
g P Gn for some n P Z is called a homogeneous (homogen) element of degree (Grad) n. Let
AbZ denote the category whose objects are Z-graded abelian groups, with morphisms from G˚ to
H˚ defined as group homomorphisms that send Gn into Hn for every n P Z.

Definition 26.22. A chain complex (Kettenkomplex) of abelian groups is a Z-graded
abelian group C˚ equipped with the additional structure of a homormophism B : C˚ Ñ C˚ that
satisfies BpCnq Ă Cn´1 for every n P Z and B2 “ 0. Given two chain complexes pA˚, BAq and
pB˚, BBq, a chain map (Kettenabbildung) from pA˚, BAq to pB˚, BBq is a morphism Φ : A˚ Ñ B˚

in the sense of Definition 26.21 such that Φ ˝ BA “ BB ˝Φ. Let Chain denote the category that has
chain complexes as objects and chain maps as morphisms. (Notice in particular that the identity
map is always a chain map, and the composition of two chain maps is also a chain map.)

Definition 26.23. The homology (Homologie) of a chain complex pC˚, Bq is the graded
abelian group H˚pC˚, Bq “

À
nPZHnpC˚, Bq where

HnpC˚, Bq :“ ker Bn
L
im Bn`1,

with Bn denoting the restriction of B : C˚ Ñ C˚ to Cn Ñ Cn´1.
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Proposition 26.24. There is a functor H˚ : Chain Ñ AbZ that assigns to each chain com-
plex pC˚, Bq its homology H˚pC˚, Bq and assigns to each chain map Φ : pA˚, BAq Ñ pB˚, BBq the
homomorphism

H˚pA˚, BAq Ñ H˚pB˚, BBq : ras ÞÑ rΦpaqs.
Proof. A straightforward exercise. �

Recall that a chain homotopy (Kettenhomotopie) between two chain maps Φ,Ψ : pA˚, BAq Ñ
pB˚, BBq is a homomorphism h : A˚ Ñ B˚ such that hpAnq Ă Bn`1 for each n P Z and

BB ˝ h` h ˝ BA “ Φ ´ Ψ,

and we say that Φ and Ψ are chain homotopic (kettenhomotop) whenever a chain map exists. It
is not too hard to show that chain homotopy defines an equivalence relation for chain maps, and
the notion of composition for chain maps descends to a well-defined composition of chain homotopy
classes of chain maps, which is why the following definition makes sense:

Definition 26.25. Let Chainh denote the category whose objects are chain complexes and
whose morphisms are chain homotopy classes of chain maps.

It is an easy algebraic exercise to show that whenever two chain maps Φ,Ψ : pA˚, BAq Ñ
pB˚, BBq are chain homotopic, the homomorphisms H˚pA˚, BAq Ñ H˚pB˚, BBq that they induce
are the same. Proposition 26.24 thus extends as follows:

Proposition 26.26. The prescription of Proposition 26.24 also defines a functor Chainh Ñ
AbZ. �

So much for algebra; now back to topology.

Definition 26.27. A pair of spaces (topologisches Paar) pX,Aq consists of a topological
space X together with a subset A Ă X . A map of pairs (Abbildung von Paaren) f : pX,Aq Ñ
pY,Bq is a continuous map f : X Ñ Y such that fpAq Ă B. Two such maps f, g : pX,Aq Ñ pY,Bq
are homotopic (homotop) if there exists a continuous map h : I ˆ X Ñ Y such that hp0, ¨q “ f ,
hp1, ¨q “ g, and hpI ˆ Aq Ă B. Let Toprel denote the category whose objects are pairs of spaces
and whose morphisms are maps of pairs. Similarly, Tophrel will denote the category with the same
objects, but whose morphisms are homotopy classes of maps of pairs.

Definition 26.28. For any integer n ě 0, define the standard n-simplex (Standard n-
Simplex) as the set

∆n “
#

pt0, . . . , tnq P In`1

ˇ̌
ˇ̌ ÿ

j

tj “ 1

+
.

For k “ 0, . . . , n, the kth boundary face (k-te Seitenfläche) of ∆n is the subset

Bpkq∆
n “ ttk “ 0u Ă ∆n,

which we will sometimes identify with ∆n´1 via the obvious bijection

(26.2) Bpkq∆
n Ñ ∆n´1 : pt0, . . . , tk´1, 0, tk`1, . . . , tnq ÞÑ pt0, . . . , tk´1, tk`1, . . . , tnq.

A singular n-simplex (singulärer n-Simplex) in a space X is defined to be a continuous map
σ : ∆n Ñ X . Let KnpXq denote the set of all singular n-simplices in X .

We can now state the prescription for turning a pair of spaces pX,Aq into its singular chain
complex (singulärer Kettenkomplex) C˚pX,Aq. First define CnpXq “ 0 for all n ă 0, while for
n ě 0, define CnpXq to be the free abelian group generated by the set KnpXq, i.e.

CnpXq “
à

σPKnpXq

Z.
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Elements of CnpXq can be written as finite sums
ř
jmjσj where mj P Z and σj P KnpXq. Since

the group is freely generated, one can define a homomorphism B : CnpXq Ñ Cn´1pXq by specifying
what it does to each of the generators σ P KnpXq: the prescription is

Bσ “
nÿ

k“0

p´1qk
`
σ|Bpkq∆

n

˘
,

where the identification (26.2) is used in order to view this as an element of Cn´1pXq. Defining B
in this way on CnpXq for every n ą 0 and B “ 0 on C0pXq, it is now straightforward to verify that
B2 “ 0, so B equips the graded abelian group C˚pXq “ À

nPZ CnpXq with the structure of a chain
complex.

Finally, for any pair pX,Aq, one can assign the subspace topology to A and define C˚pAq as
above, with the consequence that C˚pAq becomes a subgroup of C˚pXq that is preserved by B,
hence the latter descends to the quotients

CnpX,Aq :“ CnpXq
L
CnpAq

and thus endows C˚pX,Aq :“
À

nPZ CnpX,Aq with the structure of a chain complex. Algebraically,
CnpX,Aq is still quite simple: one can identify it with the free abelian group generated by the set
of all singular n-simplices in X that are not fully contained in A.

Remark 26.29. If A “ H, then C˚pX,Aq is the same thing as C˚pXq. It is often convenient
to think of Top as the subcategory of Toprel whose objects are all of the form pX,Hq.

In order to view C˚ as a functor from Toprel to Chain, we need to explain what it does to
morphisms. The answer is again straightforward: for any continuous map f : X Ñ Y , there is a
chain map f˚ : C˚pXq Ñ C˚pY q whose action on the generators σ P KnpXq is

f˚σ :“ f ˝ σ P KnpY q.
If f is also a map of pairs pX,Aq Ñ pY,Bq, then the chain map C˚pXq Ñ C˚pY q sends C˚pAq into
C˚pBq and thus descends to a relative chain map f˚ : C˚pX,Aq Ñ C˚pY,Bq. The subtler part
of the story involves homotopies: as we will review in the next lecture, any homotopy h between
maps of pairs f, g : pX,Aq Ñ pY,Bq induces a chain homotopy h˚ between the corresponding chain
maps f˚, g˚ : C˚pX,Aq Ñ C˚pY,Bq. Putting all of this together gives the following:

Proposition 26.30. There exist functors Toprel Ñ Chain and Tophrel Ñ Chainh that assign to
each pair pX,Aq its relative singular chain complex C˚pX,Aq and associate to each map of pairs f :

pX,Aq Ñ pY,Bq (or the homotopy class thereof) the induced chain map f˚ : C˚pX,Aq Ñ C˚pY,Bq
(or the chain homotopy class thereof).

The relative singular homology (relative singuläre Homologie) of the pair pX,Aq is defined
as the homology of the chain complex C˚pX,Aq and is denoted by

H˚pX,Aq “
à
nPZ

HnpX,Aq.

If A “ H as in Remark 26.29, then we abbreviate it as H˚pXq and call it the absolute singular
homology (absolute singuläre Homologie) of X . Composing the functors of Propositions 26.24
or 26.26 with those in Proposition 26.30 now gives:

Theorem 26.31. H˚ defines functors Toprel Ñ AbZ and Tophrel Ñ AbZ. �

Exercise 26.32. For a pointed space pX, pq, recall that the Hurewicz homomorphism36

h : π1pX, pq Ñ H1pXq
36See Exercise 22.15 from last semester’s Topologie I class.
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sends each element rγs P π1pX, pq represented by a path γ : r0, 1s Ñ X with γp0q “ γp1q “ p to
the homology class represented by the singular 1-cycle γ : ∆1 Ñ X , defined by identifying r0, 1s
with the standard 1-simplex ∆1 “ tpt0, t1q P r0, 1s2 | t0 ` t1 “ 1u. Let Top˚ denote the category of
pointed spaces with base-point preserving continuous maps, so that we can regard both π1 and H1

as functors from Top˚ to the category Grp of groups with homomorphisms. (Note that the base
point is irrelevant for the definition of H1, which actually takes values in the smaller subcategory
of abelian groups, but these details are unimportant for now.) In this context, show that the
Hurewicz homomorphism defines a natural transformation from π1 to H1.

27. Properties of singular homology

In this lecture we shall begin a review of the main properties of singular homology that were
established in the last few lectures of Topologie I. Let us start by bringing more general coefficient
groups back into the picture.

First an algebraic remark: every abelian group G is, in a canonical way, also a module over Z.
Indeed, the obvious multiplication operation Z ˆG Ñ G can be defined for positive integers m by

mg :“ g ` . . . ` glooooomooooon
m

.

Combining this with 0g :“ 0 and p´1qg :“ ´g gives a definition of mg that makes sense for every
m P Z.

The chain groups CnpX,Aq defined in the previous lecture consist of finite sums
ř
imiσi where

eachmi is an integer and each σi P KnpXq is a singular n-simplex inX whose image is not contained
in A. For any abelian group G, one can generalize this to

CnpX,A;Gq “ CnpX ;Gq
L
CnpA;Gq, where CnpX ;Gq “

à

σPKnpXq

G.

Elements of CnpX,A;Gq can thus be written as finite sums
ř
imiσi where the coefficients mi

now belong to the group G, and addition in CnpX,A;Gq is defined via the obvious relation kσ `
mσ :“ pk ` mqσ. The natural generalization of B : CnpXq Ñ Cn´1pXq to a map CnpX,A;Gq Ñ
Cn´1pX,A;Gq is determined by the formula

Bpgσq :“
nÿ

k“0

p´1qkg
`
σ|Bpkq∆

n

˘
P Cn´1pX,A;Gq, for g P G, σ P KnpXq,

which must be understood with the caveat that any term for which σ|Bpkq∆
n has image contained in

A gets dropped from the sum, as it vanishes in the quotient Cn´1pX ;Gq{Cn´1pA;Gq. For G “ Z,
we recover the original chain complex C˚pX,A;Zq “ C˚pX,Aq.

Example 27.1. Since every element of Z2 is its own inverse, the formula for Bσ on CnpX ;Z2q
simplifies to Bσ “ řn

k“0 σ|Bpkq∆
n .

The transformation of C˚pX,Aq into C˚pX,A;Gq can be reframed in terms of another purely
algebraic functor, and this will be a useful perspective going forward. We first need to recall a few
standard notions from the theory of abelian groups.

Given a set S, the free abelian group (freie abelsche Gruppe) on S is defined as a direct
sum of copies of Z, one for each element of S:

F abpSq :“
à
sPS

Z.

We can write elements of F abpSq as finite sums
ř
imisi for mi P Z and the generators (Erzeuger)

si P S, with the addition operation determined by ks`ms :“ pk`mqs for any k,m P Z and s P S.
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Exercise 27.2.

(a) Show that for any abelian group H , set S, and map f : S Ñ H , there exists a unique
homomorphism Φ : F abpSq Ñ H such that Φpsq “ fpsq for each of the generators s P S.

(b) Show that there is a natural isomorphism between F abpSq and the abelianization of the
free (non-abelian) group F pSq.

Given abelian groups G,H,K, a map Φ : G ‘ H Ñ K is called bilinear if for every fixed
g0 P G and h0 P H , the maps G Ñ K : g ÞÑ Φpg, h0q and H Ñ K : h ÞÑ Φpg0, hq are both
homomorphisms.

The tensor product (Tensorprodukt) of two abelian groups G and H can be defined as the
abelian group

G bH :“ F abpG ˆHq
L
N

where N Ă F abpG ˆHq is the smallest subgroup containing all elements of the form pg ` g1, hq ´
pg, hq´pg1, hq and pg, h`h1q´pg, hq´pg, h1q for g, g1 P G and h, h1 P H . We denote the equivalence
class represented by pg, hq P F abpG ˆHq in the quotient by

g b h P G bH.

Exercise 27.3.

(a) Show that the map G ‘ H Ñ G b H : pg, hq ÞÑ g b h is bilinear, and deduce from this
that for any g P G and h P H , 0 b h “ g b 0 “ 0 P GbH .

(b) Show that for any bilinear map Φ : G‘ H Ñ K of abelian groups, there exists a unique
homomorphism Ψ : GbH Ñ K such that Φpg, hq “ Ψpg b hq for all pg, hq P G‘H .

(c) Show that for any abelian group G, the map G Ñ G b Z : g ÞÑ g b 1 is a group
isomorphism. Write down its inverse.
Hint: Use part (b) to write down homomorphisms in terms of bilinear maps.

(d) Find a natural isomorphism from pG ‘Hq bK to pG bKq ‘ pH bKq.
(e) Given two sets S and T , find a natural isomorphism from F abpSqbF abpT q to F abpSˆT q.
(f) Let K be a field, regarded as an abelian group with respect to its addition operation.

Show that the abelian group GbK naturally admits the structure of a vector space over
K such that scalar multiplication takes the form

λpg b kq “ g b pλkq
for every λ, k P K and g P G, and every group homomorphism Φ : G Ñ H determines a
unique K-linear map Ψ : GbK Ñ H bK such that Ψpgbkq “ Φpgq bk for g P G, k P K.

(g) For any abelian groups A,B,C,D and homomorphisms f : A Ñ B, g : C Ñ D, show
that there exists a homomorphism

f b g : A b C Ñ B bD

defined uniquely by the condition pf b gqpab cq “ fpaq b gpcq for all a P A and c P C.
(h) An element a P G is said to be torsion if ma “ 0 for some m P Z. Show that if every

element of G is torsion and K is a field (regarded as an abelian group with respect to
addition), then G b K “ 0.

The proof of the following result should now be an easy exercise.

Proposition 27.4. For any fixed abelian group G, there is a covariant functor

bG : Ab Ñ Ab
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that sends each abelian group A to A b G and sends each group homomorphism Φ : A Ñ B to
Φ b 1 : A bG Ñ B bG.

Similarly, bG defines functors

AbZ Ñ AbZ, Chain Ñ Chain, and Chainh Ñ Chainh

which send Z-graded abelian groups C˚ “
À

nPZCn to C˚ b G “
À

nPZ Cn b G and morphisms
Φ : C˚ Ñ C˚ to Φ b 1 : C˚ b G Ñ C˚ b G. For a chain complex pC˚, Bq, the boundary map on
C˚ bG is defined as B b 1.

Exercise 27.5. Fill in the details of the proof of Proposition 27.4. In particular, check that
for any chain map Φ : pA˚, BAq Ñ pB˚, BBq, the chain homotopy class of Φ b 1 : pA˚ b G, BA b
1q Ñ pB˚ b G, BB b 1q depends only on the chain homotopy class of Φ, so that the functor
bG : Chainh Ñ Chainh is well defined.
Hint: If h˚ : A˚ Ñ B˚ is a chain homotopy, what can you say about h˚ b 1 : A˚ bG Ñ B˚ bG?

Exercise 27.6. Show that there is a canonical identification between C˚pX,A;Gq as defined
above and the tensor product chain complex C˚pX,Aq bG arising from Proposition 27.4.

In light of this discussion, the singular homology with coefficients in G

H˚pX,A;Gq :“ H˚pC˚pX,A;Gqq

can now be understood as a composition of three covariant functors: first from Toprel to Chain to
construct the singular chain complex with Z-coefficients, then bG : Chain Ñ Chain to introduce the
coefficient group G, and finally the homology functor H˚ : Chain Ñ AbZ. If we prefer to emphasize
homotopy invariance, we can also view this as a composition of three functors Tophrel Ñ Chainh Ñ
Chainh Ñ AbZ. The case A “ H will be abbreviated as usual by

H˚pX ;Gq :“ H˚pX,H;Gq,

and we will sometimes also drop the coefficient group G from the notation if it is assumed to be
Z or is otherwise clear from context or plays no significant role in the discussion. We will usually
continue to denote elements of C˚pX,A;Gq by

ř
imiσi instead of

ř
i σi bmi P C˚pX,Aq bG, but

the tensor product perspective will also serve us well, as it can often be used to turn results about
homology with integer coefficients into results for general coefficient groups with almost no extra
effort.

Let’s now run through the list of properties of H˚pX,A;Gq that were already proved at the
end of Topologie I.

Path-components and H0 (cf. Proposition 22.11). For any space X , there is a canonical
isomorphism

H0pX ;Gq “
à

π0pXq

G,

where π0pXq is an abbreviation for the set of path-components of X . The isomorphism comes
from the obvious identification between singular 0-simplices (all of which are cycles, i.e. they
satisfy Bσ “ 0) and points in X . Cycles of the form gx and gy for g P G and x, y P X represent
the same homology class if and only if x and y are in the same path-component, since paths
γ : I Ñ X from x to y can be regarded as singular 1-simplices by identifying I “ r0, 1s with ∆1,
giving Bpgγq “ gx´ gy.
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The fundamental group and H1 (cf. Theorem 22.13). As mentioned in Exercise 26.32,
the identification I “ ∆1 also gives rise to a natural homomorphism

h : π1pX, pq Ñ H1pX ;Zq
sending the homotopy class of the loop γ : I Ñ X to the homology class represented by the
singular 1-cycle γ : ∆1 Ñ X . This map vanishes on the commutator subgroup of π1pX, pq since
H1pX ;Zq is abelian, so it descends to a map of the abelianization of π1pX, pq to H1pX ;Zq. If X is
path-connected, then the latter is an isomorphism, hence

H1pX ;Zq – π1pXq
L

rπ1pXq, π1pXqs.
The map h is called the Hurewicz homomorphism.

I put those two properties first in the list because they are somewhat special: their proofs
depend heavily on the precise definition of singular homology in terms of singular simplices. We
will later discuss some other functors that are defined very differently but for various reasons
deserve to be called “homology theories”: in general they do not have the two properties just
mentioned, but they will have the rest of the properties on this list.

The homology of a one-point space (cf. Exercise 22.12). For a space tptu consisting of
only one point, we have

Hnptptu;Gq –
#
G if n “ 0,
0 if n ‰ 0.

This is a straightforward consequence of the definition, using the observation that for each n ě 0,
the set KnpXq of singular n-simplices in tptu has only one element, hence CnpX ;Gq is naturally
isomorphic to G.

Disjoint unions. We didn’t prove this last semester, but it’s a straightforward exercise using
the definitions: for any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑ š

βPJ Xβ, the
induced homomorphisms

iα˚ : H˚pXα;Gq Ñ H˚

˜ž

αPJ

Xβ;G

¸

determine an isomorphism

à
αPJ

iα˚ :
à
αPJ

H˚pXα;Gq Ñ H˚

˜ž

αPJ

Xβ;G

¸
.

The long exact sequence of a pair (cf. Lecture 23). Recall that a sequence of abelian
groups and homomorphisms

. . . ÝÑ Gn´1
fn´1ÝÑ Gn

fnÝÑ Gn`1 ÝÑ . . .

is called exact if im fn´1 “ ker fn for every n. An exact sequence of the form

0 ÝÑ G1 ÝÑ G2 ÝÑ G3 ÝÑ 0

is called a short exact sequence (kurze exakte Sequenz), and one can equally well consider an
exact sequence of chain complexes, in which the homomorphisms are all assumed to be chain maps.
An obvious example is

(27.1) 0 ÝÑ C˚pA;Gq i˚ÝÑ C˚pX ;Gq j˚ÝÑ C˚pX,A;Gq ÝÑ 0

for any pair of spaces pX,Aq, where i˚ and j˚ are the chain maps induced by the natural inclusions
i : A ãÑ X and j : pX,Hq ãÑ pX,Aq. Notice that, in purely algebraic terms, i˚ is also the
inclusion of the subgroup C˚pA;Gq ãÑ C˚pX ;Gq, and j˚ is the quotient projection C˚pX ;Gq Ñ
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C˚pX,A;Gq “ C˚pX ;Gq{C˚pA;Gq. This short exact sequence can then be plugged into the
following purely algebraic lemma:

Proposition 27.7 (cf. Theorem 23.6). Suppose 0 Ñ A˚
fÑ B˚

gÑ C˚ Ñ 0 is a short exact
sequence of chain complexes. Then for each n P Z there exists a so-called connecting homomor-

phism B˚ : HnpC˚q Ñ Hn´1pA˚q such that the sequence

. . .
B˚ÝÑ Hn`1pA˚q f˚ÝÑ Hn`1pB˚q g˚ÝÑ Hn`1pC˚q

B˚ÝÑ HnpA˚q f˚ÝÑ HnpB˚q g˚ÝÑ HnpC˚q
B˚ÝÑ Hn´1pA˚q f˚ÝÑ Hn´1pB˚q g˚ÝÑ Hn´1pC˚q B˚ÝÑ . . .

is exact. Moreover, this result is functorial in the following sense: suppose we are given another
triple of chain complexes A1

˚, B1
˚ and C 1

˚, with a commuting diagram

0 A˚ B˚ C˚ 0

0 A1
˚ B1

˚ C 1
˚ 0

f

α

g

β γ

f 1 g1

in which all maps are chain maps and the bottom row is also exact, and we denote the resulting
connecting homomorphisms by B1

˚ : HnpC 1
˚q Ñ Hn´1pA1

˚q. Then the diagram

. . . Hn`1pC˚q HnpA˚q HnpB˚q HnpC˚q Hn´1pA˚q . . .

. . . Hn`1pC 1
˚q HnpA1

˚q HnpB1
˚q HnpC 1

˚q Hn´1pA1
˚q . . .

B˚

γ˚

f˚

α˚

g˚

β˚

B˚

γ˚ α˚

B1
˚ f 1

˚ g1
˚ B1

˚

also commutes.

The proof of this result uses the standard method known as “diagram chasing”. Let’s do the
first step, which is to write down a reasonable candidate for the map B˚ : HnpC˚q Ñ Hn´1pA˚q.
We are given a commuting diagram of the form

...
...

...

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

f

B

g

B B

f

B

g

B B

f

B

g

B B

in which every column is a chain complex and every row is exact. Given rcs P HnpC˚q, choose
a representative c P Cn, which necessarily satisfies Bc “ 0. We would like to find some element
a P An´1 that satisfies Ba “ 0 so that we can set B˚rcs :“ ras. The idea is to use whatever
information the diagram gives us to forge a path from Cn to An´1. To start with, the exactness
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of the top row implies that g is surjective, so choose b P Bn with gpbq “ c. Since Bc “ 0 and the
diagram commutes, we also know Bgpbq “ gpBbq “ 0, and exactness of the middle row then implies
Bb “ fpaq for some a P An´1. To see that a is a cycle, we use commutativity again and observe
fpBaq “ Bfpaq “ BBb “ 0, and since the bottom row is exact, f is injective, so this implies Ba “ 0.
We can therefore sensibly set B˚rcs “ ras, and step 1 of the proof is complete.

There are still several things to check: steps 2 through 4000 consist of first verifying that the
definition of B˚ : HnpC˚q Ñ Hn´1pA˚q we just proposed does not depend on any of the choices we
made (e.g. of the representative c P Cn and the element b P g´1pcq), and after that, we still need
to show that the sequence of homology groups really is exact. All of this follows by the same style
of diagram chasing—it becomes a bit tedious at some point, but it is not fundamentally difficult.
If you haven’t done it before, I recommend finding a quiet evening to do so once so that you never
have to do it again.

We did not mention the “functoriality” aspect of the above statement last semester, but once
you’ve worked out how to define B˚, it will not be hard to see why it is true. This amounts to the
statement that there exist natural definitions of categories whose objects are short exact sequences
of chain maps or long exact sequences of Z-graded abelian groups, with morphisms defined in each
case via commutative diagrams, such that Proposition 27.7 produces a functor from the former
category to the latter. See Exercise 27.10 at the end of this lecture for a precise formulation in
these terms.

Applying Proposition 27.7 to the short exact sequence (27.1) yields:

Theorem 27.8. For every pair of spaces pX,Aq, abelian group G and n P Z, there exists
a natural transformation B˚ from the functor pX,Aq ÞÑ HnpX,A;Gq to the functor pX,Aq ÞÑ
Hn´1pA;Gq, both regarded as functors Toprel Ñ Ab, such that the sequence

. . . ÝÑ Hn`1pX,A;Gq B˚ÝÑ HnpA;Gq i˚ÝÑ HnpX ;Gq j˚ÝÑ HnpX,A;Gq B˚ÝÑ Hn´1pA;Gq ÝÑ . . .

is exact, where i˚ and j˚ are induced by the inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq. �

The fact that B˚ is a natural transformation concretely means the following: if f : pX,Aq Ñ
pY,Bq is any map of pairs, then the connecting homomorphisms for both pairs fit into the com-
mutative diagram

HnpX,A;Gq Hn´1pA;Gq

HnpY,B;Gq Hn´1pB;Gq

B˚

f˚ f˚

B˚

This follows from the functoriality in Proposition 27.7, as f˚ also induces a commutative diagram
of chain maps

0 C˚pA;Gq C˚pX ;Gq C˚pX,A;Gq 0

0 C˚pB;Gq C˚pY ;Gq C˚pY,B;Gq 0

i˚

f˚

j˚

f˚ f˚

i˚ j˚

where the rows are simply the short exact sequences of pX,Aq and pY,Bq respectively.
One last comment about the connecting homomorphisms B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq.

In the above discussion we deduced their existence from an algebraic result, but it is also not
hard to write them down with an explicit formula. To express it properly, recall that any relative
homology class rcs P HnpX,A;Gq can be represented by some singular n-chain c “ ř

imiσi P
CnpX ;Gq, i.e. this is a choice of representative for some element of the quotient CnpX,A;Gq “
CnpX ;Gq{CnpA;Gq, and the fact that that element is a cycle (i.e. is in ker B) translates into the
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condition that Bc must be an pn ´ 1q-chain contained in A, i.e. Bc P Cn´1pA;Gq. Any n-chain c

with this property is called a relative n-cycle in pX,Aq. But Bc is manifestly also a cycle in A

since B2 “ 0, so it represents a homology class, and in this way we obtain the simplest possible
formula for B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq, namely

(27.2) Brcs “ rBcs.
If you rederive B˚ from the diagram chase in Proposition 27.7 for the short exact sequence of the
pair pX,Aq, you’ll find that this is what it produces. The simplicity of the formula is deceptive:
it looks like the right hand side should be trivial since it is the homology class of a boundary, but
you need to keep in mind that while this is understood as a homology class in Hn´1pA;Gq, c is
not a chain in A, but in the larger space X .

Homotopy invariance (cf. Lemma 24.1 and Corollary 24.2). It was already mentioned
in the last lecture that the homomorphism f˚ : H˚pX,A;Gq Ñ H˚pY,B;Gq induced by any map
of pairs f : pX,Aq Ñ pY,Bq depends only on the homotopy class of f (as a map of pairs), with
the important consequence that H˚pX,A;Gq up to isomorphism depends only on the homotopy
type of pX,Aq. In light of the functor H˚ : Chainh Ñ AbZ, the main reason for this is the following
result.

Proposition 27.9. Any homotopy h : pI ˆ X, I ˆ Aq Ñ pY,Bq between two maps of pairs
f, g : pX,Aq Ñ pY,Bq induces a chain homotopy h˚ : C˚pX,A;Gq Ñ C˚`1pY,B;Gq between the
two chain maps f˚, g˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq.

In this statement we are using a popular abuse of notation and writing h˚ : C˚pX,A;Gq Ñ
C˚`1pY,B;Gq to emphasize the fact that h˚ is a map of degree 1 between Z-graded abelian groups,
i.e. it satisfies h˚pCnpX,A;Gqq Ă Cn`1pY,B;Gq. Let us recall briefly how h˚ arises from h, focusing
first on the case where A “ H and G “ Z. It suffices then to say how h˚ is defined on each generator
of CnpXq, i.e. for each singular n-simplex σ : ∆n Ñ X , we need to specify h˚σ P Cn`1pY q. The
key is to look at the map

(27.3) I ˆ ∆n Ñ Y : ps, tq ÞÑ hps, σptqq.
This is not a singular simplex since I ˆ∆n is not generally a simplex, but if we triangulate I ˆ∆n

in a reasonable way by pn`1q-simplices and identify each one suitably with ∆n`1, then restricting
this map to each simplex in the triangulation produces a linear combination (with coefficients ˘1

depending on choices of orientations) of singular pn`1q-simplices in Y , which we define to be h˚σ.
The chain homotopy relation

B ˝ h˚ “ ´f˚ ` g˚ ´ h˚ ˝ B
can then be understood as the algebraic translation of the geometric observation that the boundary
of I ˆ ∆n (with suitable orientations) can be written as

BpI ˆ ∆nq “ p´t0u ˆ ∆nq Y pt1u ˆ ∆nq Y p´I ˆ B∆nq.
Indeed, restricting the map (27.3) to t0u ˆ ∆n and t1u ˆ ∆n produces f˚σ and g˚σ respectively,
while restricting it to I ˆ B∆n or BpI ˆ ∆nq produces h˚pBσq or Bph˚σq respectively.

Extending the above discussion to the case A ‰ H only requires the observation that if
hpI ˆ Aq Ă B, then the chain homotopy h˚ we constructed maps CnpAq into Cn`1pBq, thus it
descends to a chain homotopy on the quotient complexes C˚pX,Aq and C˚pY,Bq. Finally, the
extension to general coefficient groups G comes for free in light of Exercises 27.5 and 27.6: the
existence of the chain homotopy h˚ : C˚pX,Aq Ñ C˚`1pY,Bq gives rise to a chain homotopy
h˚ b 1 : C˚pX,Aq bG Ñ C˚`1pY,Bq bG.
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Exercise 27.10. In this exercise we will prove the functoriality statement in Proposition 27.7
and flesh out its consequence for singular homology as a topological invariant. Consider the
categories Short and Long, defined as follows. Objects in Short are short exact sequences of chain
complexes 0 Ñ A˚

fÑ B˚
gÑ C˚ Ñ 0, with a morphism from this object to another object

0 Ñ A1
˚
f 1

Ñ B1
˚

g1

Ñ C 1
˚ Ñ 0 defined as a triple of chain maps A˚

αÑ A1
˚, B˚

βÑ B1
˚ and C˚

γÑ C 1
˚

such that the following diagram commutes:

0 A˚ B˚ C˚ 0

0 A1
˚ B1

˚ C˚ 0

f

α

g

β γ

f 1 g1

The objects in Long are long exact sequences of Z-graded abelian groups . . . Ñ Cn`1
δÑ An

FÑ
Bn

GÑ Cn
δÑ An´1 Ñ . . ., with morphisms from this to another object . . . Ñ C 1

n`1

δ1

Ñ A1
n
F 1

Ñ B1
n
G1

Ñ
C 1
n

δ1

Ñ A1
n´1 Ñ . . . defined as triples of homomorphisms A˚

αÑ A1
˚, B˚

βÑ B1
˚ and C˚

γÑ C 1
˚ that

preserve the Z-gradings and make the following diagram commute:

. . . Cn`1 An Bn Cn An´1 . . .

. . . C 1
n`1 A1

n B1
n C 1

n A1
n´1 . . .

δ

γ

F

α

G

β

δ

γ α

δ1 F 1 G1 δ1

(a) Show that there is a covariant functor Toprel Ñ Short assigning to each pair pX,Aq its
short exact sequence of singular chain complexes.

(b) Show that there is also a covariant functor Short Ñ Long assigning to each short exact
sequence of chain complexes the corresponding long exact sequence of their homology
groups. (Note that this can be composed with the functor in part (a) to define a functor
Toprel Ñ Long.)

(c) Let Shorth denote a category with the same objects as in Short, but with morphisms
consisting of triples of chain homotopy classes of chain maps. Show that the functors in
parts (a) and (b) also define functors Tophrel Ñ Shorth and Shorth Ñ Long, which then
compose to define a functor Tophrel Ñ Long.

28. Excision, suspensions and reduced homology

Topic 1: The excision axiom. We were not quite done surveying the properties of singular
homology. Here is the last one in the canonical list:

Excision (cf. Theorem 24.7). The excision property (Ausschneidungssatz) amounts to
the statement that the group H˚pX,A;Gq does not change if we remove from both A and X a
subset with closure in the interior of A. Intuitively this is clear since the definition of H˚pX,A;Gq
is designed to ignore anything that happens completely inside of A. The proof is nonetheless a
bit subtle, and there is a more general phenomenon in the background that we need to review, as
it will be useful for a few other things later. Informally, the principle is that singular homology
classes can always be represented by cycles whose constituent singular simplices are in some sense
“arbitrarily small,” e.g. we lose no generality if we choose an open covering of X and pay attention
only to singular simplices that each live entirely in one of the open sets of our covering. The
reason this works is that there is a natural algorithm for subdividing simplices, called barycentric
subdivision (baryzentrische Zerlegung), which breaks up each simplex σ into a linear combination
of smaller ones whose boundaries add up to a corresponding subdivision of Bσ. We will not review
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the details of barycentric subdivision here, but merely restate the most important lemma that is
derived from it. The result concerns the subgroup

C˚pU ;Gq ` C˚pV ;Gq Ă C˚pX ;Gq
determined by any covering of X by subsets X “ U Y V . Observe that since B preserves both
C˚pU ;Gq and C˚pV ;Gq, it also preserves their sum, so that pC˚pU ;Gq ` C˚pV ;Gq, Bq defines a
subcomplex of pC˚pX ;Gq, Bq.

Lemma 28.1 (cf. Lemma 24.11). For any subsets U ,V Ă X with X “ Ů Y V̊, the inclusion
map

j : C˚pU ;Gq ` C˚pV ;Gq ãÑ C˚pX ;Gq
admits a chain homotopy inverse

ρ : C˚pX ;Gq Ñ C˚pU ;Gq ` C˚pV ;Gq
such that ρ ˝ j “ 1, and moreover, there is a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq of j ˝ ρ
to the identity such that h vanishes on C˚pU ;Gq ` C˚pV ;Gq.

With this result in hand, we can consider a pair of spaces pX,Aq with a subset

B Ă sB Ă Å Ă A Ă X.

The point of this condition is that the sets Xz sB and Å are both open and cover X , so they can
be fed into Lemma 28.1. This leads to the following “chain level” version of the excision theorem.

Theorem 28.2 (cf. Lemma 24.12). If A,B Ă X are subsets with sB Ă Å, then the inclu-
sion i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzB;Gq Ñ
C˚pX,A;Gq.

Sketch of the proof. We start with the observation that the inclusion C˚pXzB;Gq ãÑ
C˚pXzB;Gq ` C˚pA;Gq descends to a chain map

C˚pXzB,AzB;Gq Ñ pC˚pXzB;Gq ` C˚pA;Gqq
L
C˚pA;Gq

which is an isomorphism of chain complexes, as the quotient complexes on the left and right
hand side can each be described as free abelian groups with the same set of generators, namely the
singular simplices in XzB that are not fully contained in AzB. With this identification understood,
it suffices to prove that the chain map

(28.1) pC˚pXzB;Gq ` C˚pA;Gqq
L
C˚pA;Gq jÝÑ C˚pX ;Gq{C˚pA;Gq “ C˚pX,A;Gq

induced on the quotients by the inclusion

C˚pXzB;Gq ` C˚pA;Gq j
ãÑ C˚pX ;Gq

is a chain homotopy equivalence. Lemma 28.1 provides a chain homotopy inverse ρ : C˚pX ;Gq Ñ
C˚pXzB;Gq `C˚pA;Gq for j, which can be assumed to satisfy ρ ˝ j “ 1, so that ρ restricts to the
identity on C˚pA;Gq Ă C˚pX ;Gq and thus descends to the quotient, producing the desired chain
homotopy inverse of (28.1). �

Corollary 28.3 (excision). In the setting of Theorem 28.2, the induced map

i˚ : H˚pXzB,AzB;Gq Ñ H˚pX,A;Gq
is an isomorphism. �
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Topic 2: Suspensions and reduced homology. We have now assembled enough properties
of singular homology to compute H˚pSn;Gq for all n P N and all coefficient groups G. We carried
out this computation at the end of last semester for the case G “ Z, and we would like to redo that
computation now without making any assumptions about the coefficient group. The main idea is
to prove a relation between the homology of an arbitrary space X and the homology one dimension
higher of its suspension SX , then appealing to the fact that SSn – Sn`1 to compute H˚pSn;Gq
by an inductive argument. The question is then how to begin the induction: in Topologie I, we
at this point used the fact that H1pSn;Zq is isomorphic to the abelianization of π1pSnq, which
forced us to set G “ Z. Aside from placing a limitation on the coefficient group, there is a more
theoretical drawback to this approach: as mentioned in the previous lecture, the relation between
H1pX ;Zq and π1pXq is a property distinctive to singular homology that is not shared by other
invariants that we will later want to also call “homology theories,” thus the argument in this form
would not be valid for those alternative theories. At the end of this lecture, we will introduce a
clever trick that avoids the need to specify the coefficient group or to use any knowledge of π1pSnq.

Recall that for any space X , its cone (Kegel) is the space

C`X :“ CX :“ pX ˆ r0, 1sq
L

pX ˆ t1uq,
and we call the point p` P C`X represented by the collapsed subset Xˆ t1u the summit or node
of the cone. We will use the notation C`X to distinguish the so-called “positive” cone from the
negative cone

C´X :“ pX ˆ r´1, 0sq
L

pX ˆ t´1uq,
which has node p´ P C´X represented by the collapsed subset X ˆ t´1u. These two spaces are
obviously homeomorphic, and they each admit deformation retractions to their respective nodes,
thus they are contractible. We will often think of X as a subset of C˘X by identifying it with
X ˆ t0u. The suspension (Einhängung) of X is then the space obtained by gluing the positive
and negative cones together along X ,

SX :“ C`X YX C´X.

For the example of the sphere Sn´1, we have CSn´1 – Dn and SSn´1 – Sn.
Consider now the following diagram:

(28.2)

HkpX ;Gq Hk`1pSX ;Gq

Hk`1pC`X,X ;Gq Hk`1pSXztp´u, C´Xztp´u;Gq Hk`1pSX,C´X ;Gq
k˚B˚

i˚ j˚

Three of the maps here are determined by the obvious inclusions of pairs,

pC`X,Xq i
ãÑ pSXztp´u, C´Xztp´uq,

pSXztp´u, C´Xztp´uq j
ãÑ pSX,C´Xq,

pSX,Hq k
ãÑ pSX,C´Xq.

The first of these is a homotopy equivalence, as there exists a deformation retraction of the pair
pSXztp´u, C´Xztp´uq to pC`X,Xq, thus i˚ is an isomorphism (cf. Example 23.3). Since tp´u is
a closed set contained in the interior of C´X , excision implies that j˚ is also an isomorphism. For
the other two maps, we consider the long exact sequences of the pairs pSX,C´Xq and pC`X,Xq,
that is

. . . ÝÑ Hk`1pC´X ;Gq ÝÑ Hk`1pSX ;Gq k˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ HkpC´X ;Gq ÝÑ . . .
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and

. . . ÝÑ Hk`1pC`X ;Gq ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ HkpC`X ;Gq ÝÑ . . .

If k ě 1, then the contractibility of C˘X implies via homotopy invariance that

HkpC˘X ;Gq – Hkptptu;Gq “ 0, and Hk`1pC˘X ;Gq – Hk`1ptptu;Gq “ 0,

thus the exactness of these two sequences implies that k˚ and B˚ are both isomorphisms. We’ve
proved:

Theorem 28.4. For every space X, abelian group G and integer k ě 1, the diagram (28.2)
gives rise to an isomorphism

S˚ :“ k´1
˚ ˝ j˚ ˝ i˚ ˝ B´1

˚ : HkpX ;Gq Ñ Hk`1pSX ;Gq.

�

To apply this in computing H˚pSn;Gq, note first that the problem is easy for n “ 0: since S0 is
just the disjoint union of two one-point spaces, the computation of H˚pS0;Gq follows immediately
from that of H˚ptptu;Gq together with the disjoint union property. In particular, HkpS0;Gq “ 0

for all k ą 0, so if k ą n ě 1, we can apply Theorem 28.4 repeatedly to prove

HkpSn;Gq “ Hk´npS0;Gq “ 0 for k ą n.

We have a problem however if k ď n, because before the repeated applications of Theorem 28.4
give us S0, we will reach H1pSn´k`1;Gq and not be able to go any further, as the theorem does
not give any relation between H0pX ;Gq and H1pSX ;Gq. The reason why not is that even though
C˘X are contractible, the groups H0pC˘X ;Gq are not trivial, so that the two exact sequences we
considered above fail to prove that k˚ and B˚ are isomorphisms. The problem is thus caused by the
fact that H˚pX ;Gq for a contractible space does not completely vanish—it only mostly vanishes.

There is a clever remedy for this problem: one can define a variant of H˚pX ;Gq that fits into
all the same exact sequences but does completely vanish in the case where X is contractible. A
brief algebraic digression is in order before we continue.

Exercise 28.5. Given a short exact sequence of abelian groups 0 Ñ A
fÑ B

gÑ C Ñ 0, show
that the following conditions are equivalent:

(i) There exists a homomorphism π : B Ñ A such that π ˝ f “ 1A;
(ii) There exists a homomorphism i : C Ñ B such that g ˝ i “ 1C ;
(iii) There exists an isomorphism Φ : B Ñ A‘C such that Φ˝fpaq “ pa, 0q and g˝Φ´1pa, cq “

c.

B

0 A C 0

A ‘ C

g

Φ

f

Definition 28.6. We say that a short exact sequence splits whenever it satisfies any of the
three equivalent properties listed in Exercise 28.5.

Exercise 28.7. Show that if the groups in Exercise 28.5 are all finite-dimensional vector spaces
and the homomorphisms are linear maps, then the sequence always splits. Show also that this is
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true for any sequence of abelian groups 0 Ñ A Ñ B Ñ C Ñ 0 if C is free.37

Hint: Use a basis of C to write down a right-inverse for g : B Ñ C.

Example 28.8. The sequence 0 Ñ 2Z Ñ Z Ñ Z2 Ñ 0, with the first and last nontrivial
maps defined as the natural inclusion and quotient projection respectively, is exact but does not
split. Indeed, a splitting in this case would imply via Exercise 28.5 that Z is isomorphic to
2Z ‘ Z2 – Z ‘ Z2, which it clearly is not. (In light of Exercise 28.7, we notice of course that Z2 is
not free.)

End of digression; now we can explain the clever trick. Fix a one-point space tptu, and let

ǫ : X Ñ tptu
denote the unique map, which is (trivially) continuous.

Definition 28.9. The reduced singular homology (reduzierte singuläre Homologie) groups
of X are defined for each n P Z as the subgroup

rHnpX ;Gq “ ker ǫ˚ Ă HnpX ;Gq,
where ǫ˚ : HnpX ;Gq Ñ Hnptptu;Gq is the homomorphism induced by the unique map ǫ : X Ñ
tptu.

Proposition 28.10. If X is contractible, then rH˚pX ;Gq “ 0.

Proof. Contractibility means that the map ǫ : X Ñ tptu is a homotopy equivalence, thus
ǫ˚ : H˚pX ;Gq Ñ H˚ptptu;Gq is an isomorphism, and its kernel rH˚pX ;Gq is therefore trivial. �

Proposition 28.11. For all spaces X, the map ǫ˚ : H˚pX ;Gq Ñ H˚ptptu;Gq is surjective,
and the resulting short exact sequence

0 Ñ rH˚pX ;Gq ãÑ H˚pX ;Gq ǫ˚Ñ H˚ptptu;Gq Ñ 0

splits. In particular, H˚pX ;Gq is isomorphic to rH˚pX ;Gq ‘H˚ptptu;Gq, thus

HnpX ;Gq –
#
rHnpX ;Gq ‘G if n “ 0,

rHnpX ;Gq if n ‰ 0.

Proof. Choose any map i : tptu ãÑ X and notice that this is also trivially continuous, though
usually not unique. Then ǫ˝i is the identity map on tptu, hence ǫ˚˝i˚ “ 1 onH˚ptptu;Gq, implying
that ǫ˚ is surjective and (via Exercise 28.5) that the sequence splits. �

Proposition 28.12. The homomorphism f˚ : H˚pX ;Gq Ñ H˚pY ;Gq induced by any contin-
uous map f : X Ñ Y sends rH˚pX ;Gq into rH˚pY ;Gq. In particular, rH˚p¨;Gq defines functors
Top Ñ AbZ and Toph Ñ AbZ in the obvious way.

Proof. Denote ǫX : X Ñ tptu and ǫY : Y Ñ tptu for the unique maps, and notice that
ǫY ˝ f “ Id ˝ǫX , thus the following diagram commutes.

H˚pX ;Gq H˚pY ;Gq

H˚ptptu;Gq H˚ptptu;Gq

f˚

ǫX˚ ǫY˚

1

37An abelian group G is called free whenever it is isomorphic to the free abelian group F abpSq on some
set S. Equivalently, this means that G admits a basis, meaning a subset S Ă G such that every element of G is
uniquely representable as a linear combination

ř
sPS mss for some coefficients ms P Z, only finitely many of which

are nonzero.
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This implies that f˚pker ǫX˚ q Ă ker ǫY˚ . �

The relative version of reduced homology is defined in a trivial way: we set

rH˚pX,A;Gq :“ H˚pX,A;Gq whenever A ‰ H.

This seemingly naive definition is justified by the following considerations. Note first that the
functor rH˚p¨;Gq : Top Ñ AbZ now extends to pairs as a functor Toprel Ñ AbZ; here there is
nothing to check since the existence of a map of pairs pX,Aq Ñ pY,Bq with A ‰ H implies
B ‰ H, so that both reduced relative homology groups match the unreduced case. Next, observe
that for any space X , the relative homology groups H˚pX,X ;Gq all vanish; one can prove this
either directly from the definition of relative singular homology or indirectly via the long exact
sequence of the pair. It follows that rH˚pX,A;Gq for A ‰ H is in fact the kernel of the map

H˚pX,A;Gq ǫ˚ÝÑ H˚ptptu, tptu;Gq “ 0

induced by the unique map of pairs ǫ : pX,Aq Ñ ptptu, tptuq. Moreover, the naturality of connect-
ing homomorphisms gives a commutative diagram

Hn`1pX,A;Gq HnpA;Gq

Hn`1ptptu, tptu;Gq Hnptptu;Gq

B˚

ǫ˚ ǫ˚

B˚

Since the termHn`1ptptu, tptu;Gq is trivial, this diagram proves that the image of B˚ : Hn`1pX,A;Gq Ñ
HnpA;Gq is always in the subgroup rHnpA;Gq. We can therefore write down a well-defined sequence
of homomorphisms

. . . Ñ rHn`1pX,A;Gq B˚Ñ rHnpA;Gq i˚Ñ rHnpX ;Gq j˚Ñ rHnpX,A;Gq B˚Ñ rHn´1pA;Gq Ñ . . .

using the usual inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq. It is not immediately obvious,
however, whether this sequence is exact. This is where the magic of diagram chasing again comes
into play. Consider the commutative diagram

0 0 0 0

. . . rHnpA;Gq rHnpX ;Gq rHnpX,A;Gq rHn´1pA;Gq . . .

. . . HnpA;Gq HnpX ;Gq HnpX,A;Gq Hn´1pA;Gq . . .

. . . Hnptptu;Gq Hnptptu;Gq 0 Hn´1ptptu;Gq . . .

0 0 0 0

i˚ j˚ B˚

i˚

ǫ˚

j˚

ǫ˚

B˚

ǫ˚ ǫ˚

Here the bottom two nontrivial rows are the long exact sequences of the pairs pX,Aq and ptptu, tptuq,
and all columns in the diagram are short exact sequences by construction. The rest is algebra:

Proposition 28.13. Assume the following diagram of abelian groups with homomorphisms
commutes, all its columns are exact sequences, and the bottom two nontrivial rows are also exact
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sequences:

0 0 0 0 0

. . . An`2 An`1 An An´1 An´2 . . .

. . . Bn`2 Bn`1 Bn Bn´1 Bn´2 . . .

. . . Cn`2 Cn`1 Cn Cn´1 Cn´2 . . .

0 0 0 0 0

ιn`2 ιn`1 ιn ιn´1 ιn´2

gn`2

ǫn`2

gn`1

ǫn`1

gn

ǫn

gn´1

ǫn´1 ǫn´2

hn`2 hn`1 hn hn´1

Then the top nontrivial row can be endowed uniquely with maps fn : An Ñ An´1 such that the
diagram still commutes, and these make that row into an exact sequence.

Proof. If fn : An Ñ An´1 can be defined so that the diagram commutes, then for a P An
we need fnpaq P ι´1

n´1pgnιnpaqq, and this condition will fully determine fnpaq P An´1 since ιn´1 is
injective due to the exactness of columns. To see that the condition can be achieved, notice

ǫn´1gnιn “ hnǫnιn “ 0,

thus gnιnpaq P ker ǫn´1 “ im ιn´1. This gives an element x P An´1 such that ιn´1pxq “ gnιnpaq,
so we can set fnpaq “ x.

The goal is now to show that . . . An`1
fn`1Ñ An

fnÑ An´1 Ñ . . . is an exact sequence. For each
n, commutativity of the diagram gives

ιn´2fn´1fn “ gn´1gnιn “ 0

since the middle row is exact, and the exactness of the columns implies in turn that ιn´2 is injective,
thus fn´1fn “ 0. To finish, we need to prove that every a P An satisfying fnpaq “ 0 also satisfies
a “ fn`1pxq for some x P An`1. Using commutativity, we have

0 “ ιn´1fnpaq “ gnιnpaq,
thus the exactness of the middle row gives an element b P Bn`1 such that gn`1pbq “ ιnpaq. If we
knew ǫn`1pbq “ 0, then we could at this point appeal to the exactness of the columns and write
b “ ιn`1pxq for some x P An`1, which would then satisfy ιnfn`1pxq “ gn`1ιn`1pxq “ gn`1pbq “
ιnpaq and therefore fn`1pxq “ a since ιn is injective. But ǫn`1pbq might not be 0, so to finish the
proof, we claim instead that b can be replaced by another element b1 P Bn`1 that satisfies both
gn`1pb1q “ ιnpaq and ǫn`1pb1q “ 0.

To find b1, observe that by commutativity and the exactness of the columns,

hn`1ǫn`1pbq “ ǫngn`1pbq “ ǫnιnpaq “ 0,

thus by the exactness of the bottom row, ǫn`1pbq “ hn`2pcq for some c P Cn`2. Appealing again
to the exactness of the columns, ǫn`2 is surjective, so we have c “ ǫn`2pyq for some y P Bn`2. Set

b1 :“ b´ gn`2pyq.
This satisfies gn`1pb1q “ gn`1pbq ´ gn`1gn`2pyq “ gn`1pbq “ ιnpaq, and using commutativitiy
again,

ǫn`1pb1q “ ǫn`1pbq ´ ǫn`1gn`2pyq “ ǫn`1pbq ´ hn`2ǫn`2pyq “ ǫn`1pbq ´ hn`2pcq “ 0.
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�

We have proved:

Theorem 28.14. For any pair of spaces pX,Aq, there is a long exact sequence of reduced
homology groups

. . . Ñ rHn`1pX,A;Gq B˚Ñ rHnpA;Gq i˚Ñ rHnpX ;Gq j˚Ñ rHnpX,A;Gq B˚Ñ rHn´1pA;Gq Ñ . . . ,

where i : A ãÑ X and j : pX,Hq ãÑ pX,Aq are the obvious inclusions and B˚ : rHnpX,A;Gq Ñ
rHn´1pA;Gq is the same map as the usual connecting homomorphism HnpX,A;Gq Ñ Hn´1pA;Gq.

�

Here’s the upshot: if we now redo the argument behind Theorem 28.4 but replacing H˚ with
rH˚ at every step, then it still works, and it also works for k “ 0 and k “ ´1 since rH0pC˘X ;Gq
also vanishes. We conclude:

Theorem 28.15. For every space X, abelian group G and integer k P Z, there is a natural
isomorphism

S˚ : rHkpX ;Gq Ñ rHk`1pSX ;Gq.
�

Exercise 28.16. Let us clarify the meaning of the word “natural” in Theorem 28.15.

(a) Show that for any continuous map f : X Ñ Y , the map Sf : SX Ñ SY : rpx, tqs ÞÑ
rpfpxq, tqs is well defined and continuous, and moreover, that SpIdXq “ IdSX and Spf ˝
gq “ Sf˝Sg whenever f and g can be composed. In other words, show that the suspension
defines a functor S : Top Ñ Top.

(b) Denote by rHS
n`1 : Top Ñ Ab the composition of the functor S : Top Ñ Top in part (a)

with the functor rHn`1p¨;Gq : Top Ñ Ab which sends X to rHn`1pX ;Gq. Show that there
exists a natural transformation from rHnp¨;Gq to rHS

n`1 which associates to each space X
the isomorphism S˚ : rHnpX ;Gq Ñ rHn`1pSX ;Gq.

Now apply Theorem 28.15 to the spheres: when n ą k, repeating the isomorphism k` 1 times
gives

rHkpSn;Gq – rH´1pSn´k´1;Gq “ 0,

so in light of Proposition 28.11, we obtain HkpSn;Gq “ rHkpSn;Gq “ 0 for 0 ă k ă n and
H0pSn;Gq – rH0pSn;Gq ‘ G “ G. In the case k “ n, we can instead repeat the isomorphism n

times and obtain
rHnpSn;Gq – rH0pS0;Gq.

The latter is related to H0pS0;Gq by Proposition 28.11, and we already know H0pS0;Gq – G‘G

since S0 – tptu > tptu, thus

(28.3) G ‘G – H0pS0;Gq – rH0pS0;Gq ‘G,

and if G is finitely generated, then the classification of finitely generated abelian groups now implies
rH0pS0;Gq – G. Without any assumption on G, one can instead prove the same result as outlined
in the following exercise.

Exercise 28.17. For any two spaces X and Y with maps ǫX : X Ñ tptu and ǫY : Y Ñ tptu,
show that the natural isomorphism H˚pX >Y ;Gq – H˚pX ;Gq ‘H˚pY ;Gq identifies rH˚pX >Y ;Gq
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with kerpǫX˚ ‘ ǫY˚ q Ă H˚pX ;Gq ‘H˚pY ;Gq. Then apply this in the case X “ Y “ tptu to identify
rH0ptptu > tptu;Gq with the kernel of the map

1 ‘ 1 : G ‘G Ñ G : pg, hq ÞÑ g ` h,

which is isomorphic to G.

Since HnpSn;Gq “ rHnpSn;Gq for all n ą 0, we’ve proved:

Theorem 28.18. For every n P N,

HkpSn;Gq –
#
G for k “ 0, n,

0 for all other k.

�

Remark 28.19. It is sometimes useful to know that rH˚pX ;Gq is also the homology of a
chain complex. To see this, note that every element in C0pX ;Gq is a cycle, thus H0pX ;Gq “
C0pX ;Gq{ im B1 for the restriction B1 : C1pX ;Gq Ñ C0pX ;Gq of B. Thus for the unique map
ǫ : X Ñ tptu, the surjective homomorphism ǫ˚ : H0pX ;Gq Ñ H0ptptu;Gq “ G can be composed
with the quotient projection C0pX ;Gq Ñ C0pX ;Gq{ im B1 “ H0pX ;Gq to define a homomorphism
ǫ˚ : C0pX ;Gq Ñ G such that ǫ˚ ˝ B1 “ 0. This is equivalent to saying that ǫ˚ defines a chain map
ǫ˚ : C˚pX ;Gq Ñ G˚, where G˚ is the chain complex with G0 :“ G and Gn :“ 0 for all n ‰ 0, so
that its boundary map is necessarily trivial.

In general, if C˚ is any chain complex with Cn “ 0 for all n ă 0 and G˚ is the trivial complex
described above, a surjective chain map

ǫ : C˚ Ñ G˚

is called an augmentation (Augmentationsabbildung) of C˚ over G. This is equivalent to a
surjective homomorphism ǫ : C0 Ñ G satisfying ǫ ˝ B1 “ 0 for the boundary map B1 : C1 Ñ C0.
One can therefore define an augmented chain complex rC˚ in the form

. . . ÝÑ C2
B2ÝÑ C1

B1ÝÑ C0
ǫÝÑ G ÝÑ 0 ÝÑ 0 ÝÑ . . .

in other words, rCn :“ Cn for all n ‰ ´1 but rC´1 :“ G, with the new boundary map rC0 Ñ
rC´1 defined as ǫ : C0 Ñ G. The homology of this new complex is precisely the kernel of the
homomorphism ǫ˚ : H˚pC˚q Ñ G˚ induced by the chain map ǫ : C˚ Ñ G˚, thus we can sensibly
call it the reduced homology of the complex C˚,

rH˚pC˚q :“ H˚p rC˚q.
Exercise 28.20. Show that the augmentation ǫ˚ : C0pX ;Gq Ñ G described in Remark 28.19

is given by the formula

ǫ˚

˜ÿ

i

giσi

¸
“
ÿ

i

gi

for finite sums with gi P G and σi : ∆0 Ñ X .

29. Simplicial complexes in singular homology

Before further developing the theory of singular homology, I would like to pause and address
a question that is important for intuition: how can we visualize a singular homology class? While
this question is not always answerable, there is a standard answer that suffices in most situations:
elements of HnpXq can often be viewed as triangulated closed n-dimensional submanifolds of X ,
where two such submanifolds represent the same homology class whenever their disjoint union (with
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appropriate orientations) bounds some triangulated compact pn`1q-dimensional submanifold with
boundary. To explain in precise terms what this means, I need to digress a little bit into the subject
of simplicial complexes and simplicial homology, which will also come in useful for other purposes
later. Much of what I will say in this lecture repeats things that I said or hinted at last semester
(see especially Lecture 21), but I am now in a position to say those things more precisely.

You will recall that an n-dimensional (topological) manifold with boundary is a second
countable Hausdorff space M in which every point has a neighborhood homeomorphic to an open
subset of the n-dimensional half-space

Hn :“ r0,8q ˆ Rn´1.

The boundary BM Ă M is defined as the set of points that are sent to BHn :“ t0u ˆ Rn´1 Ă Hn

under these homeomorphisms, hence BM itself is an pn´1q-dimensional topological manifold (with
empty boundary: BpBMq “ H). A manifold M is called closed (geschlossen)38 if it is compact
and BM “ H. All manifolds in this lecture will be compact, so we need not worry about second
countability, and we will usually also omit the word “topological”. (The word is often included in
order to distinguish topological manifolds from smooth manifolds, but smooth structures will not
have any role to play in our discussion.) We will usually also omit the words “with boundary” and
keep in mind that all manifolds in principle have boundary, but the boundary may be empty.

We usually picture a simplicial complex as a space decomposed into a union of simplices.
Strictly speaking, a simplicial complex is a purely combinatorial object, and the topological space
that we build out of it is called its polyhedron. Here are the precise definitions.

Definition 29.1. A simplicial complex (Simplizialkomplex) K consists of two sets V and
S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where S is a
subset of the set of all finite subsets of V , and σ P S is called an n-simplex of K if it has n ` 1

elements. We require the following conditions:

(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.

For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its faces also belong to the
complex. With this condition in place, the first condition is then equivalent to the requirement
that every vertex in the set V belongs to at least one simplex.

The complexK is said to be finite if V (and therefore also S) is finite, and it is n-dimensional
if

sup
σPS

|σ| “ n` 1,

i.e. n is the largest number for which K contains an n-simplex.

The polyhedron (Polyeder) of a simplicial complex K “ pV, Sq is a topological space |K|
defined as follows. We denote by IV the set of all functions V Ñ I :“ r0, 1s, i.e. each element
t P IV is determined by a set of real numbers tv P r0, 1s associated to the vertices v P V , which we
can think of as the coordinates of t. For each n-simplex σ “ tv0, . . . , vnu in K, we define the set

|σ| :“
#
t P IV

ˇ̌
ˇ̌
ˇ
ÿ

vPσ

tv “ 1 and tv “ 0 for all v R σ
+
.

38Not to be confused with “abgeschlossen,” which is what we call a closed subset of a topological space. These
two meanings of the English word “closed” are defined in different contexts and are not equivalent.
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This set is a copy of the standard n-simplex living in the finite-dimensional vector space Rσ – Rn`1,
and we shall assign it the topology that it inherits naturally from this finite-dimensional vector
space. As a set, the polyhedron |K| is then defined by

|K| “
ď

σPS

|σ| Ă IV .

If K is finite then |K| lives inside the finite-dimensional vector space RV and therefore has an
obvious topology for which the topology we already defined on each of the subsets |σ| Ă |K|
matches the subspace topology. A bit more thought is required at this step if K is infinite. One
possible choice would be to endow IV with the product topology (via its obvious identification
with

ś
vPV I) and then take the subspace topology on |K| Ă IV , but the product topology is not

the most natural choice here. We will instead let the topology of |K| be determined by that of the
individual simplices: define a subset U Ă |K| to be open if and only if for every σ P S, U X |σ| Ă |σ|
is open for the topology on |σ| defined above. In other words, |K| carries the strongest39 topology
for which the inclusions |σ| ãÑ |K| are continuous for all σ. You should take a moment to convince
yourself that this matches what was already said for the case where K is finite.

Exercise 29.2. Show that for any simplicial complex K “ pV, Sq and any space X , a map
f : |K| Ñ X is continuous if and only if f ||σ| : |σ| Ñ X is continuous for every simplex σ P S.

Definition 29.3. For each integer n ě 0, the n-skeleton (n-Skelett or n-Gerüst) of a poly-
hedron X “ |K| is the subspace Xn Ă X consisting of the union of all |σ| Ă X for k-simplices σ
in K with k ď n.

By this definition, a polyhedron is n-dimensional (i.e. corresponds to an n-dimensional simpli-
cial complex) if and only if it is equal to its n-skeleton. The 0-skeleton of any polyhedron is just
the union of all its vertices—one can show that this is always a discrete set.

While |K| was defined above as a subset of a vector space whose dimension may in general be
quite large (or infinite), visualizing |K| in concrete examples is often easier than one might expect.

Example 29.4. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u and
B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the triangle
∆2, and they intersect each other along a single common edge connecting the vertices labeled
v1 and v2. The complex is 2-dimensional, and its 1-skeleton is the union of all the edges of the
triangles.

Example 29.5. If V has n` 1 elements and S consists of all subsets of V except for V itself,
then |K| is homeomorphic to B∆n, i.e. the union of all the boundary faces of ∆n. In particular,
this is homeomorphic to Sn´1.

Example 29.6. Suppose V “ tv0, . . . , vnu and S is defined to consist of all the one-element
subsets tviu plus the 1-simplices tvi, vi`1u for i “ 0, . . . , n ´ 1 and tvn, v0u. Then |K| is a 1-
dimensional polyhedron homeomorphic to S1.

Example 29.7. Taking V “ Z with S as the set of all 0-simplices tnu plus 1-simplices of the
form tn, n`1u for n P Z gives an infinite (but 1-dimensional) simplicial complex whose polyhedron
is homeomorphic to R.

39For some unfathomable reason, the topology on |K| has traditionally been referred to in the literature as
the “weak” topology, and the same strange choice of nomenclature plagues the theory of CW-complexes, which we
will discuss in a few weeks. It is a question of perspective: since |K| has a lot of open sets, it is fairly difficult for
sequences in |K| to converge or for maps into |K| to be continuous, but on the flip side, it is relatively easy for
functions defined on |K| to be continuous; see Exercise 29.2.
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Example 29.8. If V “ N and S is the set of all finite subsets of N, then K is an infinite-
dimensional simplicial complex. Every simplex in this complex is a face of t1, . . . , nu for n suffi-
ciently large, thus you can try to picture |K| as the union of an infinite nested sequence of simplices
∆0 Ă ∆1 Ă ∆2 Ă . . ., where each ∆k is a boundary face of ∆k`1.

A subcomplex (Unterkomplex or Teilkomplex) of a simplicial complex K “ pV, Sq is a
simplicial complex K 1 “ pV 1, S1q such that V 1 Ă V and S1 Ă S. We then call pK,K 1q a simplicial
pair (simpliziales Paar). The polyhedron |K 1| can be regarded naturally as a subspace of |K| via
the obvious inclusion IV

1

ãÑ IV that sets all coordinates tv for v P V zV 1 to zero. In this way,
every simplicial pair pK,K 1q gives rise to a pair of spaces p|K|, |K 1|q. Note that the empty set also
defines a simplicial complex (whose polyhedron is empty), thus every complex K can be identified
with the simplicial pair pK,Hq.

Definition 29.9. Given two simplicial complexes K1 “ pV1, S1q and K2 “ pV2, S2q, a simpli-
cial map (simpliziale Abbildung) from K1 to K2 is a function f : V1 Ñ V2 such that fpσq P S2 for
every σ P S1. A map of simplicial pairs pK1,K

1
1q Ñ pK2,K

1
2q is then a simplicial map K1 Ñ K2

that restricts to a simplicial map K 1
1 Ñ K 1

2.

Note that a simplicial map K1 Ñ K2 need not be injective on any given simplex, i.e. it can
send an n-simplex of K1 to a k-simplex of K2 for any k ď n. There is a natural way to turn any
simplicial map into a continuous map of the polyhedra |K1| Ñ |K2|. Indeed, denote by tevuvPV the
natural basis vectors of RV so that every element t P RV can be written uniquely as a formal40 sumř
vPV tvev with coordinates tv P R. Then since every element t P |K1| is of the form

ř
vPV1

tvev
where only finitely many of the coordinates are nonzero and they all add up to 1, we can define

f : |K1| Ñ |K2| :
ÿ

vPV1

tvev ÞÑ
ÿ

vPV1

tvefpvq P IV2 .

In other words, for each simplex σ P S1, f maps |σ| onto |fpσq| via the restriction of the obvious
linear map Rσ Ñ Rfpσq that sends basis vectors ev to efpvq for v P σ. If f : pK1,K

1
1q Ñ pK2,K

1
2q

is a map of simplicial pairs, then it induces in this way a continuous map of pairs p|K1|, |K 1
1|q Ñ

p|K2|, |K 1
2|q. We have thus defined a functor

Simprel Ñ Toprel : pK,K 1q ÞÑ p|K|, |K 1|q,
where Simprel is the category of simplicial pairs with morphisms defined to be maps of simplicial
pairs. Notice that f : |K1| Ñ |K2| always maps the n-skeleton of |K1| into the n-skeleton of |K2|
for every n ě 0.

Since we will mainly be concerned with compact manifolds, the following result enables us to
restrict attention to finite simplicial complexes:

Proposition 29.10. A simplicial complex K “ pV, Sq is finite if and only if its polyhedron
|K| is compact.

This will follow from a more general theorem about CW-complexes that we shall prove in a
few weeks, so for now we’ll settle for proving a special case which happens to cover most of the
interesting examples, and is quite easy:

Proof of Proposition 29.10 for finite-dimensional complexes. IfK is finite than |K|
is a closed and bounded subset of the finite-dimensional vector space RV and is therefore compact.

40The word “formal” means in this context that we do not require the sum to converge in any sense, as it is a
purely algebraic object. In practice, we are only going to consider points t P RV that have finitely many nonzero
coordinates, thus the sums converge trivially.
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Conversely, ifK is infinite but dimK ă 8, there exists an infinite sequence of distinct simplices
σ1, σ2, . . . P S with the property that each σi is not a face of any other simplex in K. Now for
each i P N, pick a point xi P |σi| along with an open neighborhood Ui Ă |σi| of xi that is contained
in the interior of |σi|. Since σi is not a face of any other simplex, we have Ui X |σ| “ H for all
simplices σ ‰ σi, thus Ui defines an open subset of |K| that contains xi but none of the other
points in the sequence x1, x2, . . .. This proves that the infinite subset tx1, x2, . . .u Ă |K| is discrete,
hence |K| cannot be compact. �

An orientation (Orientierung) of a simplex σ P S in a complex K “ pV, Sq is an equivalence
class of orderings of the vertices of σ, where two orderings are considered equivalent if they differ
by an even permutation. This means that every n-simplex for n ě 1 admits exactly two choices of
orientation, whereas only one orientation is possible for a 0-simplex. The term oriented simplex
(orientiertes Simplex) means a simplex together with a choice of orientation. If σ “ tv0, . . . , vnu,
the oriented simplex defined by choosing the ordering v0, . . . , vn will be denoted by rv0, v1, . . . , vns,
and one can change this to the opposite orientation by writing it as rv1, v0, . . . , vns.

The simplicial chain complex (simplizialer Kettenkomplex) C∆
˚ pKq “ À

nPZC
∆
n pKq of a

simplicial complex K “ pV, Sq is now defined as follows. For n ě 0, let pC∆
n pKq denote the free

abelian group generated by the set of all oriented simplices rv0, . . . , vns with tv0, . . . , vnu P S. Then
define

C∆
n pKq “ pC∆

n pKq
L
Z

where Z Ă pC∆
n pXq is the subgroup generated by all elements of the form rv0, v1, . . . , vns `

rv1, v0, . . . , vns. In other words, if σ denotes an oriented n-simplex and sσ is the same simplex
with the opposite orientation, then both can be regarded as generators of C∆

n pKq subject to the
relation sσ “ ´σ. With this understood, we define the boundary map B : C∆

n pKq Ñ C∆
n´1pKq for

each n ě 1 by

(29.1) Brv0, . . . , vns “
nÿ

k“0

p´1qkrv0, . . . , vk´1, vk`1, . . . , vns.

Exercise 29.11. Show that B : C∆
n pKq Ñ C∆

n´1pKq given by the above formula is well defined.
In particular, prove that if v0, . . . , vn on the left hand side of (29.1) is changed by a permutation,
then the right hand side is multiplied by ˘1, with sign determined by the parity of the permutation.
Hint: Notice that in C∆

n pKq, rv0, . . . , vns “ p´1qkrvk, v0, . . . , vk´1, vk`1, . . . , vns.
The chain complex is extended to all n P Z by setting C∆

n pKq “ 0 for n ă 0, and the
formula B2 “ 0 is now a straightforward consequence of sign cancelations, the same as in sin-
gular homology. We can then also define a relative complex for any simplicial pair pK,K 1q by
C∆

˚ pK,K 1q :“ C∆
˚ pKq

L
C∆

˚ pK 1q, and extend the definition to an arbitrary abelian coefficient group
G by C∆

˚ pK,K 1;Gq :“ C∆
˚ pK,Kq b G. The homologies of these chain complexes define the sim-

plicial homology groups (simpliziale Homologiegruppen)

H∆
˚ pKq, H∆

˚ pK,K 1;Gq, etc.

A simplicial map f : K1 Ñ K2 now defines an obvious chain map f˚ : C∆
˚ pK1q Ñ C∆

˚ pK2q which
acts on the generators of C∆

n pK1q by

f˚rv0, . . . , vns “ rfpv0q, . . . , fpvnqs,
where some abuse of notation is necessary since f may in general map an n-simplex to a k-simplex
for k ă n: that is what happens if two of the vertices fpviq match, and we can accommodate this
by extending the notation so that

rv0, . . . , vns :“ 0 whenever vi “ vj for some i ‰ j.
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Figure 14. The picture shows a simplicial complex K with |K| – T2, and
choices of orientations on each simplex indicated via arrows (defining cyclic order-
ings of three vertices in the case of each 2-simplex). With these orientations fixed,
plugging in the definition of B : C∆

n pKq Ñ C∆
n´1pKq gives e.g. BA “ a ´ h ´ c,

BB “ h` i´k, Ba “ β´α, Bb “ α´β and so forth. The complete computation of
H∆

˚ pK;Zq was carried out near the end of Lecture 21; needless to say, the result
matches H˚pT2;Zq.

With this understood, simplicial maps induce homomorphisms on the simplicial homology groups,
so that H∆

˚ p¨;Gq defines a functor Simprel Ñ AbZ.
Notice that while C∆

n pK,K 1q was defined above as a quotient, it is also a free abelian group,
as one can always just choose an orientation for each simplex σ that is in K but not K 1, and then
write all elements of CnpK,K 1q uniquely as finite linear combinations (with integer coefficients)
of these chosen oriented simplices. This is essentially the definition of C∆

˚ pKq that I gave last
semester in Lecture 21: it required making an arbitrary choice of orientation for each individual
simplex, which is what one has to do in practice to compute H∆

˚ pKq (see e.g. Figure 14), but
the definition in this lecture reveals why the result is not in any way dependent on that arbitrary
choice.

We are not yet in a position to prove the most important theorem about simplicial homology,
but we can state it. It will follow from a more general theorem about the homology of CW-
complexes, which tells us that simplicial and cell complexes provide a practical combinatorial
algorithm for computing the singular homology of “reasonable” spaces.
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Theorem 29.12. For every simplicial pair pK,K 1q and every coefficient group G,

H∆
˚ pK,K 1;Gq – H˚p|K|, |K 1|;Gq.

It is not hard to guess how a natural map H∆
˚ pK,K 1;Gq Ñ H˚p|K|, |K 1|;Gq might be defined.

One obvious procedure is to start by fixing an ordering of the set of all vertices in K “ pV, Sq, so
that each n-simplex σ P S now inherits an ordering and thus an orientation. This also determines
an identification of |σ| Ă Iσ with the standard n-simplex ∆n Ă In`1 by restricting the linear map
that identifies the canonical basis vectors of Rn`1 with those of Rσ in the chosen order. Under this
identification, the inclusion |σ| ãÑ |K| becomes a singular n-simplex in |K|, thus defining a map

C∆
˚ pKq Ñ C˚p|K|q,

which is easily seen to be a chain map. It also clearly descends to the quotients C∆
˚ pK,K 1q Ñ

C˚p|K|, |K 1|q since each simplex in K 1 becomes a singular simplex in |K 1|, and it extends to general
coefficient groupsC∆

˚ pK,K 1;Gq Ñ C˚p|K|, |K 1|;Gq in the standard way to induce a homomorphism
of the homology groups H∆

˚ pK,K 1;Gq Ñ H˚p|K|, |K 1|;Gq.
With this picture in place, we would now like to discuss a special class of singular homology

classes that arise in this way from simplicial complexes.

Definition 29.13. A triangulation (Triangulierung) of a pair of spaces pX,Aq is a homeo-
morphism of pX,Aq to p|K|, |K 1|q for some simplicial pair pK,K 1q. If M is a manifold with bound-
ary, then a triangulation of M will be understood to mean a triangulation of the pair pM, BMq.

Given a triangulated space X , we shall often identify X with the associated polyhedron and
refer accordingly to the various skeleta of X and its constituent simplices. If X is an n-manifold,
then its local structure produces the following important observation:

Proposition 29.14. If M is a triangulated n-dimensional manifold with boundary, then the
associated simplicial complex is n-dimensional, and every pn ´ 1q-simplex σ in the complex is a
boundary face of exactly either one or two n-simplices, where the former is the case if and only if
σ belongs to the subcomplex triangulating BM . �

In general it is a subtle question whether a given manifold admits a triangulation. It is known
to be true for all smooth manifolds, and also for topological manifolds of dimension at most three
(see [Moi77]), but not in general for dimensions four and above (see [Man14]). We will not
concern ourselves with such questions here, as for our purposes it is already helpful to consider
explicit examples of manifolds with triangulations, such as the picture of T2 in Figure 14.

To get the most mileage out of this, we need to add a condition involving orientations. Given
an oriented n-simplex rv0, . . . , vns with n ě 2 in a complex, let us call the oriented pn´ 1q-simplex
rv1, . . . , vns an oriented boundary face of rv0, . . . , vns. Notice that for each k “ 0, . . . , n, we
can use an even permutation of v0, . . . , vn to move vk into the initial position and thus produce an
oriented boundary face containing all vertices other than vk. This definition therefore assigns an
orientation to every boundary face of an oriented n-simplex for n ě 2. For the case n “ 1, it is
useful at this point to abuse terminology and redefine the words oriented 0-simplex to mean a
0-simplex with an attached sign, i.e. such objects can be written as ˘tvu for a vertex v. We then
define the oriented boundary faces of an oriented 1-simplex rv0, v1s to be the oriented 0-simplices
tv1u and ´tv0u.

Definition 29.15. For an n-dimensional manifoldM , an oriented triangulation (orientierte
Triangulierung) of M is a triangulation in which every n-simplex is endowed with an orientation
such that for every pn ´ 1q-simplex σ not in BM , the two orientations it inherits as an oriented
boundary face of two distinct oriented n-simplices (cf. Prop. 29.14) are opposite.
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Figure 15. A triangulation of the Klein bottle that fails to be oriented.

I recommend now taking another look at Figure 14 to verify that the orientations of 2-simplices
depicted in this picture define an oriented triangulation of T2. Then, contrast it with Figure 15,
which shows a triangulation of the Klein bottle in which orientations of the 2-simplices have been
chosen but they fail to satisfy the conditions of Definition 29.15. (The trouble is with the 1-simplices
labeled c and d.) The problem with the Klein bottle is of course that it is a non-orientable manifold,
and it turns out that only orientable manifolds can admit oriented triangulations—we sketched a
proof of this for surfaces last semester in Lecture 20, and we will be able to prove it for all manifolds
later in this course using homology.

Example 29.16. The triangulation of Sn´1 described in Example 29.5 can be oriented by
choosing an ordering of the vertex set V , regarding this as an oriented n-simplex σ and then
viewing each pn´1q-simplex of the triangulation as an oriented boundary face of σ. The cancelation
condition on pn´2q-simplices in this case is roughly equivalent to the fact that B2 “ 0 in the singular
and simplicial chain complexes.

Theorem 29.17. For any compact n-manifold M with an oriented triangulation given by a
simplicial pair pK,K 1q,41 there is a distinguished nontrivial simplicial homology class

rM s P H∆
n pK,K 1;Zq

represented by the sum of all the oriented n-simplices in the triangulation. If the triangulation is not
assumed oriented, then summing the n-simplices with arbitrary orientations defines a distinguished

41It is a pair because M may have boundary, so K 1 in this case defines a triangulation of BM .
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nontrivial class
rM s P H∆

n pK,K 1;Z2q.
Proof. Let us denote the sum of the oriented n-simplices of K by

ř
i σi P C∆

n pKq, where the
orientations are either determined by the oriented triangulation or are arbitrary. In the latter case,
Proposition 29.14 implies that every pn´1q-simplex not in BM will appear with an even coefficient
in B

ř
i σi, thus it vanishes after taking the tensor product with Z2. This leaves only terms that

are in the subcomplex K 1 triangulating BM , thus
ř
i σi defines a relative cycle in C∆

n pK,K 1;Z2q.
The resulting homology class r

ř
i σis P H∆

n pK,K 1;Z2q is obviously nontrivial since the simplicial
complex is n-dimensional, implying C∆

n`1pK,K 1;Z2q “ 0. We can say more if the triangulation is
oriented, because the condition on pn´ 1q-simplices in Definition 29.15 then implies that each one
not in BM appears in two terms of B ři σi that cancel each other out. Thus there is no longer any
need to take a tensor product with Z2, as

ř
i σi is already a relative cycle in C∆

n pK,K 1;Zq, and
again represents a nontrivial class in H∆

n pK,K 1;Zq since C∆
n`1pK,K 1;Zq “ 0. �

Remark 29.18. The above theorem also reveals that if the triangulation is oriented, then for
any coefficient group G, the sum g

ř
i σi P C∆

n pK,K 1;Gq over the oriented n-simplices σi defines a
relative cycle and thus a class in H∆

n pK,K 1;Gq. The same is true without orientations if G has the
property that all of its nontrivial elements have order 2, e.g. one could take G “ Z2 ‘ Z2 instead
of just Z2. In either case, it is not too hard to prove that H∆

n pK,K 1;Gq – G if M is connected,
and if G is Z or Z2, then the distinguished class rM s generates the group.

In light of the map H∆
˚ pK,K 1;Gq Ñ H˚pM, BM ;Gq discussed previously, Theorem 29.17 gives

us distinguished singular homology classes

rM s P HnpM, BM ;Zq or rM s P HnpM, BM ;Z2q,
where the latter is defined for any compact triangulated n-manifold, and the former if the triangu-
lation is oriented. We call rM s in either case a fundamental class (Fundamentalklasse) for M .
We will typically be most interested in the case where M is a closed manifold, so that rM s is an
absolute homology class in HnpM ;Gq for G “ Z or Z2. Near the end of this semester we will
be able to show that rM s does not actually depend on the choice of triangulation except (in the
case with Z coefficients) for its orientation, and in fact, all compact topological n-manifolds have
distinguished n-dimensional homology classes that can be called fundamental classes—this is true
even for manifolds that do not admit triangulations. We are very far at this point from being able
to prove that, but there is in any case a large intuitive advantage to thinking about fundamental
classes in terms of triangulations: it is not that hard to visualize them.

In fact, if pX,Aq is any pair of spaces (not necessarily manifolds), we can now picture fairly
general42 homology classes in HkpX,Aq in terms of continuous maps f : pM, BMq Ñ pX,Aq where
M is a compact k-manifold with an oriented triangulation: any such map defines a class

rf s :“ f˚rM s P HkpX,A;Zq.
Moreover, we can allow a wider class of (not necessarily orientable) manifolds if we are only
interested in Z2 coefficients: given any triangulation (oriented or not) of a compact k-manifold M ,
any continuous map f : pM, BMq Ñ pX,Aq defines a class

rf s :“ f˚rM s P HkpX,A;Z2q.

42Even if X is a compact smooth manifold, it is not quite true that every class in HkpX;Zq is of the form
f˚rMs for some map f : M Ñ X defined on a closed oriented k-manifold. A famous theorem of Thom [Tho54]
asserts however that it is almost true: given any A P HkpX;Zq, there exists a closed oriented k-manifold M , a map
f : M Ñ X and a number m P N such that mA “ f˚rMs. This implies in particular that every class in HkpX;Qq

can be described via a map from a closed oriented k-manifold into X.
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In the most interesting applications, X is typically a smooth n-manifold and we are mainly inter-
ested in absolute homology classes in HkpXq. An important special case of the above construction
is then whenM Ă X is a submanifold ofX and we take f :M ãÑ X to be the inclusion: in this way,
triangulated submanifolds M Ă X define homology classes rM s P HkpX ;Z2q, or rM s P HkpX ;Zq
whenever the triangulation is oriented.

It is now natural to ask: under what circumstances can we say that two maps f : M Ñ X

and g : N Ñ X defined on triangulated k-manifolds determine the same homology class? The
natural answer to this question makes singular homology look a lot like the bordism theory that
we sketched last semester in Lecture 21. The details are worked out in the following exercise.

Exercise 29.19. In each of the following, pX,Aq is a pair of spaces, W is a compact trian-
gulated pk ` 1q-manifold with boundary, M , M0 and M1 are closed triangulated k-manifolds, all
maps are continuous and all triangulations are assumed oriented (except in part (e)).

(a) Show that if M “ BW and f “ F |M : M Ñ X for some map F : W Ñ X , then
rf s “ 0 P HkpX ;Zq.
Hint: As in the proof of Theorem 29.17, consider B řN

i“1 σi P CkpW q where σ1, . . . , σN is
the finite set of oriented pk ` 1q-simplices in the triangulation of W . Many terms cancel,
but some do not.

(b) Generalizing part (a), suppose f “ F |M : M Ñ X for some map F : W Ñ X , but M
is a compact subset of BW that is both a subcomplex and a k-dimensional submanifold
with boundary, such that F pBW zMq Ă A, so in particular fpBMq Ă A. (See Figure 16.)
Show that rf s “ 0 P HkpX,A;Zq.

(c) Given maps f0 : M0 Ñ X and f1 : M1 Ñ X , let f : M0 > M1 Ñ X denote the map that
restricts to Mi as fi for i “ 0, 1. Show that rf s “ rf0s ` rf1s P HkpX ;Zq.

(d) Show that for any map f : M Ñ X , reversing the orientations of all n-simplices in an
oriented triangulation of M reverses the sign of rf s P HkpX ;Zq.

(e) Show that parts (a), (b) and (c) remain valid with Z2 coefficients if all orientation hy-
potheses are dropped.

Exercise 29.20. Let Σ1,2 denote the 2-torus with two holes cut out, and suppose α, β :

S1 ãÑ BΣ1,2 are loops parametrizing its two boundary components, with α following the boundary
orientation of BΣ1,2 and β following the opposite orientation (see Figure 17). Show that if we
choose an oriented triangulation of Σ1,2 so that α and β inherit oriented triangulations (with the
orientation on β reversed), then α and β represent the same class in H1pΣ1,2;Zq. (One says in this
case that α and β are homologous (homolog). One can show that they are not homotopic.)

There is one major loose end in this discussion: while it is obvious that the fundamental classes
rM s we have defined for triangulated n-manifolds are nontrivial elements in simplicial homology,
we have not yet proved that the latter is isomorphic to H˚pMq, thus we have to entertain the
possibility that rM s “ 0 P HnpMq, i.e. there could be a singular pn ` 1q-chain in M whose
boundary gives rM s. Actually, it is not too hard to prove using only our present knowledge of
singular homology that rM s is always not only nontrivial but is a primitive element in HnpMq,
meaning it is not a nontrivial integer multiple of any other element. We will return to this subject
in a few lectures when we discuss local orientations and the degrees of maps between manifolds.

30. The Eilenberg-Steenrod axioms, triples and good pairs

In the computation of H˚pSn;Gq in Lecture 28, we never had to make any specific reference to
singular simplices or any other aspects of the definition of singular homology. We did need to know
that singular homology has a particular set of properties, e.g. functoriality, homotopy invariance,
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M

BM

BM

W

X

A

BW zM

Figure 16. The picture shows a scenario as in Exercise 29.19 part (b), where
M and W are triangulated submanifolds of X , both with nonempty boundary,
and the maps f and F are defined as inclusions. The consequence is that f :

pM, BMq Ñ pX,Aq represents the trivial relative homology class in HkpX,A;Zq.

αβ

Figure 17. The surface in Exercise 29.20

long exact sequences and excision, and we needed to understand a variant of the theory known as
reduced homology, which was defined in terms of the unique map from any space to the one-point
space. It will turn out that almost all computations ofH˚pX ;Gq we can carry out for a “reasonable”
class of spaces depend on exactly this same list of properties. This realization motivated Eilenberg
and Steenrod in the 1950’s to codify a set of axioms for so-called “homology theories”. In the early
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days of homology, there were in fact several competing homology theories that differed substantially
in their definitions but nonetheless seemed mostly to be measuring the same information about
topological spaces. The Eilenberg-Steenrod axioms provided an explanation for this similarity.
While singular homology is now easily the most popular of the original homology theories, the
others did not completely die out—I have seen some of the others used from time to time in
research papers on subjects I cared about, and there are still authors who argue that other theories
are preferable from certain points of view. We will sketch some examples of alternative homology
theories later in this course.

Definition 30.1. An axiomatic homology theory h˚ is a covariant functor

Toprel Ñ AbZ : pX,Aq ÞÑ h˚pX,Aq “
à
nPZ

hnpX,Aq,

together with a natural transformation B˚ from the functor Toprel Ñ Ab : pX,Aq ÞÑ hnpX,Aq to
the functor Toprel Ñ Ab : pX,Aq ÞÑ hn´1pAq for each n P Z such that the following axioms are
satisfied:

‚ (Exactness) For all pairs pX,Aq with inclusion maps i : A ãÑ X and j : pX,Hq ãÑ
pX,Aq, the sequence

. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (Homotopy) For any two homotopic maps f, g : pX,Aq Ñ pY,Bq, the induced mor-

phisms f˚, g˚ : h˚pX,Aq Ñ h˚pY,Bq are identical.
‚ (Excision) For any pair pX,Aq and any subset B Ă X with closure in the interior of A,

the inclusion pXzB,AzBq ãÑ pX,Aq induces an isomorphism

h˚pXzB,AzBq –ÝÑ h˚pX,Aq.
‚ (Dimension) For any space tptu containing only one point, hnptptuq “ 0 for all n ‰ 0.
‚ (Additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš

βPJ Xβ , the induced homomorphisms iα˚ : h˚pXαq Ñ h˚

´š
βPJ Xβ

¯
determine an

isomorphism
à
αPJ

iα˚ :
à
αPJ

h˚pXαq –ÝÑ h˚

˜ž

βPJ

Xβ

¸
.

A few comments are in order.

Remark 30.2. The original list in [ES52] includes three other axioms before exactness, but
the first two of these are equivalent to the statement that h˚ : Toprel Ñ AbZ is a functor, and the
third simply requires B˚ to be a natural transformation. We could equally well have chosen to hide
the homotopy axiom by calling h˚ a functor Tophrel Ñ AbZ instead of Toprel Ñ AbZ.

Remark 30.3. The additivity axiom did not appear in [ES52] but was added later by Milnor
[Mil62]. One can show in fact that for finite disjoint unions, additivity follows as a consequence
of the other axioms (see Exercise 30.6), thus Eilenberg and Steenrod did not need it because
they were mainly concerned with computations for compact polyhedra—these come from finite
simplicial complexes, so no infinite disjoint unions are allowed.

Remark 30.4. I am cheating slightly by stating a stronger variant of the excision axiom than
appeared in the original list by Eilenberg and Steenrod. The version in [ES52] reads as follows:
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‚ (Excision1) For any pair pX,Aq and any open subset B Ă X with closure in the interior
of A, the inclusion pXzB,AzBq ãÑ pX,Aq induces an isomorphism

h˚pXzB,AzBq –ÝÑ h˚pX,Aq.
This means that there might in principle exist theories that satisfy the original Eilenberg-Steenrod
axioms but not ours, because h˚pXzB,AzBq Ñ h˚pX,Aq might fail to be an isomorphism in cases
where sB Ă Å but B is not open. Note that we already have applied this axiom in cases where B
is not open, e.g. in the argument of Lecture 28 to prove rHkpX ;Gq – rHk`1pSX ;Gq, we considered
the inclusion pSXztp´u, C´Xztp´uq ãÑ pSX,C´Xq. This is fine in singular homology because
H˚p¨;Gq satisfies the stronger axiom, but even for some hypothetical theory h˚ that satisfies
(Excision1) and not (Excision), one could prove that h˚pSXztp´u, C´Xztp´uq Ñ h˚pSX,C´Xq
is an isomorphism by relating it via homotopy invariance to the map

h˚pSXzBǫpp´q, C´XzBǫpp´qq Ñ h˚pSX,C´Xq
for some small open neighborhood Bǫpp´q Ă C´X of p´, and this map definitely is an isomorphism
since Bǫpp´q is open. In practice, some trick of this sort will be available in every important
situation where we need to apply excision, so that it will not really matter which version of the
axiom we adopt. We’ll opt for the stronger one in this course since several arguments would become
slightly longer without it.

Remark 30.5. It is sometimes useful to expand the definition and allow an axiomatic homology
theory to be a functor C Ñ AbZ defined on a suitable subcategory C of Toprel, so that we need
not define h˚pX,Aq for all pairs pX,Aq but only a subclass. One important example we will see
later is the category of compact pairs, which are simply pairs of spaces pX,Aq such that X is
compact Hausdorff and A Ă X is closed. (In reference to Remark 30.4, notice that the category
of compact pairs pX,Aq requires the weaker version of the excision axiom since pXzB,AzBq will
not be an object in the category unless B Ă X is open.) When allowing restrictions of this type,
one must take care so that all of the maps needed for expressing the axioms—e.g. the inclusions
A ãÑ X and pX,Hq ãÑ pX,Aq—are actually morphisms. In [ES52], this concern motivates the
definition of the notion of an admissible category of pairs.

Exercise 30.6. Assume h˚ : Toprel Ñ AbZ is a functor satisfying all of the Eilenberg-Steenrod
axioms for homology theories except possibly the additivity axiom. Given two spaces X and Y ,
use excision and the long exact sequences of the pairs pX > Y,Xq and pX > Y, Y q to prove that for
the natural inclusions iX : X ãÑ X > Y and iY : Y ãÑ X > Y , the map

iX˚ ‘ iY˚ : h˚pXq ‘ h˚pY q Ñ h˚pX > Y q : px, yq ÞÑ iX˚ x` iY˚ y

is an isomorphism. Deduce that h˚ does satisfy the additivity axiom for all finite disjoint unions.

You may notice that Definition 30.1 above makes no mention of any coefficient group. It’s
there, actually—it’s just hidden.

Definition 30.7. The coefficient group43 of an axiomatic homology theory is defined to be
the group h0ptptuq.

The properties of singular homology listed in Lectures 27 and 28 can now be summarized thus:

43There is a slightly awkward semantic issue in this definition: strictly speaking, what we are calling “tptu”
is not a unique space, but simply any choice of space that happens to contain only one element. It follows that
the coefficient group h0ptptuq is not a uniquely defined group, but is an isomorphism class of groups. Any two
choices of one-point spaces P0 and P1 are related by a unique homeomorphism P0 Ñ P1, which induces a canonical
isomorphism h0pP0q Ñ h0pP1q.
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Theorem 30.8. For any abelian group G, singular homology H˚p¨;Gq is an axiomatic homology
theory with coefficient group G. �

Remark 30.9. The axioms do not imply the first two properties of H˚p¨;Gq that we discussed
in Lecture 27: the relation of H0pX ;Gq and H1pX ;Zq to π0pXq and π1pXq respectively. We will
later see an example of a theory that satisfies all of the Eilenberg-Steenrod axioms, but not these
two properties. One has to look at fairly strange spaces in order to see this difference, e.g. spaces
that are connected but not path-connected.

Exercise 30.10. Show that if the dimension axiom is dropped from Definition 30.1, then for
any axiomatic homology theory h˚, the functor Top Ñ AbZ sending each pair pX,Aq to the graded
abelian group G˚ “

À
nPZGn with Gn :“ hn`1pX,Aq is also an axiomatic homology theory. (This

explains why the dimension axiom is called what it is: it guarantees that there is some connection
between the subscript n in the notation hnpX,Aq and our intuitive notion of “dimension,” i.e. tptu
is clearly a “zero-dimensional” space.)

Remark 30.11. One can define singular homology with a trivial coefficient group: it still
satisfies the axioms, but it is not very interesting, because H˚pX,A;Gq is then trivial for all pairs.
Weirdly, it is possible in general for an axiomatic homology theory to be nontrivial on some spaces
(though not on “nice” spaces like polyhedra) even if its coefficient group h0ptptuq is trivial. Look at
the axioms again: you’ll see that there is no obvious reason why this couldn’t be allowed. My first
instinct when I learned about these axioms was to try to prove as an exercise that h0ptptuq “ 0

implies h0pX,Aq “ 0 for all pX,Aq, but fortunately I did not spend much time on this exercise—it
turns out that someone else thought about it in 1957 and came up with counterexamples [JW58].

Definition 30.12. Any axiomatic homology theory h˚ has a corresponding reduced theory
rh˚, defined by rh˚pX,Aq :“ h˚pX,Aq whenever A ‰ H and

rh˚pXq :“ ker ǫ˚ Ă h˚pXq
for the unique map ǫ : X Ñ tptu.

The next result follows by exactly the same arguments as in the case of reduced singular
homology, cf. Propositions 28.10, 28.11 and 28.12, and Theorem 28.14.

Theorem 30.13. For any axiomatic homology theory h˚ with coefficient group G:

(1) rh˚pXq “ 0 for all contractible spaces X.
(2) There is a split exact sequence 0 Ñ rh˚pXq ãÑ h˚pXq ǫ˚Ñ h˚ptptuq Ñ 0 for all spaces X,

giving rise to isomorphisms

hnpXq –
#rhpXq ‘G for n “ 0,

rhpXq for n ‰ 0.

(3) Morphisms h˚pX,Aq Ñ h˚pY,Bq induced by maps of pairs pX,Aq Ñ pY,Bq restrict to
rh˚pX,Aq Ñ rh˚pY,Bq, so that rh˚ defines a functor Tophrel Ñ AbZ.

(4) All connecting homomorphisms B˚ : hnpX,Aq Ñ hn´1pAq have image in rhn´1pAq and the
resulting sequence

. . . ÝÑ rhn`1pX,Aq B˚ÝÑ rhnpAq i˚ÝÑ rhnpXq j˚ÝÑ rhnpX,Aq B˚ÝÑ rhn´1pAq ÝÑ . . .

is exact.
�

All together this is enough information to repeat nearly verbatim the computations of Lec-
ture 28 involving suspensions and spheres. We obtain:
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Theorem 30.14. For any axiomatic homology theory h˚ and any space X, there is a natural
isomorphism rhnpXq Ñ rhn`1pSXq for every n P Z. �

Theorem 30.15. For every n P N and every axiomatic homology theory h˚ with coefficient
group G,

hkpSnq –
#
G for k “ 0, n,

0 for all other k.
�

Exercise 30.16. Suppose the following diagram commutes and that both of its rows are exact,
meaning im f “ ker g, im g1 “ kerh1 and so forth:

A B C D E

A1 B1 C 1 D1 E1

f

α

g

β

h

γ

i

δ ε

f 1 g1
h1 i1

(a) Prove that if α, β, δ and ε are all isomorphisms, then so is γ.
This result is known as the five-lemma.

(b) Here is an application: given an axiomatic homology theory h˚ and a map of pairs

f : pX,Aq Ñ pY,Bq, show that if any two of the induced maps hkpXq f˚Ñ hkpY q, hkpAq f˚Ñ
hkpBq and hkpX,Aq f˚Ñ hkpY,Bq are isomorphisms for every k, then so is the third.

(c) Given a collection of pairs of spaces tpXα, AαquαPJ , consider the pair

ž

αPJ

pXα, Aαq :“
˜ž

αPJ

Xα,
ž

αPJ

Aα

¸

with the natural inclusion maps iα : pXα, Aαq ãÑ š
βPJpXβ , Aβq. Use the five-lemma

to prove that for any axiomatic homology theory h˚, the additivity axiom generalizes to
pairs, producing an isomorphism

à
αPJ

iα˚ :
à
αPJ

h˚pXα, Aαq –ÝÑ h˚

´ž

αPJ

pXα, Aαq
¯
.

A large portion of the theorems we prove about singular homology in this course will be based
only on the axioms, and will thus be valid for any axiomatic homology theory. Proofs based on the
axioms are traditionally considered more elegant than those that require explicit reference to the
definition of H˚pX,A;Gq. On the other hand, there are a few cases in which both types of proof
are possible but the one that doesn’t use the axioms is much easier. The exact sequence explained
below is certainly an example of this.

Suppose B Ă A Ă X , so pX,Aq, pX,Bq and pA,Bq are all pairs of spaces, with obvious
inclusion maps of pairs

i : pA,Bq ãÑ pX,Bq and j : pX,Bq ãÑ pX,Aq.
These then induce a short exact sequence of relative singular chain complexes

0 ÝÑ C˚pA,Bq i˚ÝÑ C˚pX,Bq j˚ÝÑ C˚pX,Aq ÝÑ 0.

The special case of this with B “ H reproduces the usual short exact sequence for the pair pX,Aq.
Taking the tensor product with an arbitrary coefficient group G and then applying Proposition 27.7
as before gives the so-called long exact sequence of the triple pX,A,Bq:
(30.1)

. . . Ñ Hn`1pX,A;Gq B˚Ñ HnpA,B;Gq i˚Ñ HnpX,B;Gq j˚Ñ HnpX,A;Gq B˚Ñ Hn´1pA,B;Gq Ñ . . . ,
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which directly generalizes the long exact sequence of pX,Aq. It is also not hard to show that
the connecting homomorphism B˚ : HnpX,A;Gq Ñ Hn´1pA,B;Gq satisfies a naturality property,
i.e. given any map of pairs f : pX,Aq Ñ pX 1, A1q and a subset B1 Ă A1 such that fpBq Ă B1, we
have commutative diagrams

HnpX,A;Gq Hn´1pA,B;Gq

HnpX 1, A1;Gq Hn´1pA1, B1;Gq

B˚

f˚ f˚

B˚

for all n P Z. Moreover, close inspection of the usual diagram chasing argument yields an explicit
formula for B˚ : HnpX,A;Gq Ñ Hn´1pA,B;Gq: if rcs P HnpX,A;Gq is represented by a relative
cycle c P CnpX ;Gq, then Bc P Cn´1pA;Gq is a cycle in A and therefore also a relative cycle for the
pair pA,Bq, so that it represents a class in Hn´1pA,B;Gq and the formula B˚rcs “ rBcs thus makes
sense. All of this is proved by nearly the same arguments as in the case B “ H, so I will spare
you the details.

We will use the exact sequence of the triple several times in our efforts to simplify compu-
tations of singular homology, and for this purpose the presentation above is certainly sufficient.
Nonetheless, you might now be wondering: is this sequence really a property distinctive to the
singular chain complex, or does it work for every axiomatic homology theory, and if so, how can
one derive a connecting homomorphism B˚ : hnpX,Aq Ñ hn´1pA,Bq from the axioms? The answer
to this question requires some cleverness, and I’m at a loss to conjecture how anyone might have
come up with it for the first time, but here it is: given an axiomatic homology theory h˚ and a
triple pX,A,Bq with B Ă A Ă X , we can consider the following “braid” diagram:

. . . hn`1pX,Aq hnpA,Bq hn´1pBq hn´1pXq . . .

hnpAq hnpX,Bq hn´1pAq

. . . hnpBq hnpXq hnpX,Aq hn´1pA,Bq . . .

B

B1

B3

i

i2

i3j3

i1

B2

j

i1

j3i3

i2

j2

j1

B1

B

The braid consists of four “strands,” three of which you may recognize as the long exact sequences
of the pairs pX,Aq, pX,Bq and pA,Bq. The fourth strand is the sequence

(30.2) . . . ÝÑ hn`1pX,Aq BÝÑ hnpA,Bq iÝÑ hnpX,Bq jÝÑ hnpX,Aq BÝÑ hn´1pA,Bq ÝÑ . . . ,

which we would like to prove is exact. Here the map B :“ j3 ˝ B1 is defined via the commutativity
of the diagram, while all other maps are either induced by the obvious inclusions or are connecting
homomorphisms from long exact sequences of pairs. The whole diagram commutes due to the
commutativity of the obvious inclusions plus the naturality of the connecting homomorphisms.

Exercise 30.17. Deduce via the following steps that the sequence (30.2) appearing as the
fourth strand in the braid diagram above is exact:

(a) Use the commutativity of the diagram to show that i ˝ B “ 0 and B ˝ j “ 0.
Hint: Each can be expressed as a different composition that includes two successive maps
in an exact sequence.

(b) Prove that j ˝ i “ 0 by factoring it through the group h˚pA,Aq, which is always zero.
(Why?)
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(c) Use a purely algebraic diagram-chasing argument to prove that the kernel of each map
in the sequence (30.2) is contained in the image of the previous one.

Here is a useful application of the long exact sequence of a triple. Since H˚pX,Aq is defined so
as to measure the topology of X while ignoring anything that happens entirely in A, it is natural
to expect some relationship between this and the absolute homology of the space X{A defined
by collapsing A Ă X to a point. Here we should restrict attention to the case where A Ă X is
closed, since X{A may otherwise be a horrible (e.g. non-Hausdorff) space. It turns out that under
a further assumption on the pair pX,Aq, the relative homology H˚pX,Aq is naturally isomorphic
to rH˚pX{Aq. To see this, we start by observing that there is a natural isomorphism between the
reduced homology of X{A and the relative homology of the pair pX{A,A{Aq, in which the subset
A{A Ă X{A is actually just a single point. Indeed:

Lemma 30.18. For any space X and a point x P X, the inclusion of pairs pX,Hq ãÑ pX, txuq
induces an isomorphism

rh˚pXq –ÝÑ rh˚pX, txuq “ h˚pX, txuq,
where h˚ is any axiomatic homology theory.

Proof. This is immediate from the long exact sequence of pX, txuq in reduced homology since
rh˚ptxuq “ 0. �

Now, observe that the quotient projection q : X Ñ X{A is also a map of pairs pX,Aq Ñ
pX{A,A{Aq and thus induces a morphism h˚pX,Aq Ñ h˚pX{A,A{Aq. Can we expect this map
to be an isomorphism? The intuition here is that if we were allowed to remove the subset A and
consider the restricted map

pXzA,AzAq qÝÑ ppX{AqzpA{Aq, pA{AqzpA{Aqq,
then it becomes a homeomorphism, and thus induces an isomorphism between two homology groups
that we expect should match h˚pX,Aq and h˚pX{A,A{Aq due to excision. But we aren’t quite
allowed to apply excision in this way: normally, the set we’re removing needs to have its closure
contained in the interior of the smaller set in the pair, which is usually not true if those two sets
are the same. Conclusion: we need to impose a condition on pX,Aq so that A lies strictly inside
of something else that will allow us to apply excision. The following bit of informal terminology is
borrowed from [Hat02].

Definition 30.19. A pair of spaces pX,Aq will be called good if A Ă X is a closed subset
and is a deformation retract of some neighborhood V Ă X of itself.

Example 30.20. pDn, BDnq is a good pair since BDn “ Sn´1 has a neighborhood homeomorphic
to p´1, 0s ˆ Sn´1 which deformation retracts to t0u ˆ Sn´1.

Example 30.21. The pair pX,Aq with X “ r0, 1s and A “ t1, 1{2, 1{3, 1{4, . . . , 0u is not good.
The easiest way to prove this is probably by showing that it does not satisfy Theorem 30.23 below,
due to the following exercise:

Exercise 30.22. Show that for the pair pX,Aq in Example 30.21, H1pX{Aq fl H1pX,Aq.
Hint: H1pX,Aq is not too hard to compute from the long exact sequence of pX,Aq, and in particular
it is an infinitely generated but countable group. To compute H1pX{Aq, you might notice that
X{A is homeomorphic to the so-called Hawaiian earring, which we examined in Exercise 13.2 last
semester as an example of an “unreasonable” space. Its fundamental group is also discussed in
[Hat02, Example 1.25]: as Hatcher explains, π1pX{Aq admits a surjective homomorphism onto
the uncountable abelian group

ś8
i“1 Z. Conclude that H1pX{Aq also admits such a surjection and

is therefore uncountable.
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As you might extrapolate from the two examples just mentioned, most pairs you will encounter
in nature are good; it takes some creativity to come up with examples that are not.

Theorem 30.23. If pX,Aq is a good pair, then for every axiomatic homology theory h˚, the
natural quotient map q : pX,Aq Ñ pX{A,A{Aq induces an isomorphism

q˚ : h˚pX,Aq –ÝÑ h˚pX{A,A{Aq,
implying via Lemma 30.18 that h˚pX,Aq – rh˚pX{Aq.

Proof. Fix a neighborhood V Ă X of A such that A is a deformation retract of V . Then the
inclusion pA,Aq ãÑ pV,Aq is a homotopy equivalence of pairs, thus

h˚pV,Aq – h˚pA,Aq “ 0,

where the latter vanishes due to the long exact sequence of pA,Aq. Writing down the long exact
sequence of the triple pX,V,Aq then gives

0 “ hkpV,Aq Ñ hkpX,Aq Ñ hkpX,V q Ñ hk´1pV,Aq “ 0,

so that the map h˚pX,Aq i˚ÝÑ h˚pX,V q induced by the inclusion i : pX,Aq ãÑ pX,V q is an
isomorphism.

One can carry out the same argument after taking the quotient of all spaces by A: the defor-
mation retraction of V to A implies that V {A is contractible and thus h˚pV {A,A{Aq – rh˚pV {Aq “
0, so the exact sequence of pX{A, V {A,A{Aq then implies that the map h˚pX{A,A{Aq j˚ÝÑ
h˚pX{A, V {Aq induced by the inclusion j : pX{A,A{Aq ãÑ pX{A, V {Aq is an isomorphism.

Now consider the commutative diagram

h˚pX,Aq h˚pX,V q h˚pXzA, V zAq

h˚pX{A,A{Aq h˚pX{A, V {Aq h˚

`
pX{AqzpA{Aq, pV {AqzpA{Aq

˘
,

i˚

q˚ q˚

k˚

q˚

j˚

ℓ˚

where i˚ and j˚ have already been shown to be isomorphisms, and k˚ and ℓ˚ are also induced by
the obvious inclusions. The excision axiom implies that both of the latter are isomorphisms; note
that this is where it is crucial for V to be a neighborhood of the closed subset A, as the interior
of V therefore contains the closure of A. The rightmost map labeled q˚ in this diagram is also an
isomorphism since it is induced by the map

pXzA, V zAq qÝÑ ppX{AqzpA{Aq, pV {AqzpA{Aqq,
which is a homeomorphism. We can now follow a path of isomorphisms from h˚pX,Aq all the way
to the right of the diagram, then down, then back all the way to h˚pX{A,A{Aq at the left, proving
that the leftmost map labeled q˚ is also an isomorphism. �

Remark 30.24. We used the strong version of the excision axiom in the above proof since the
interior subsets A or A{A being removed from the pairs pX,V q or pX{A, V {Aq respectively are
closed and typically not open. To make the argument work with the weaker version of excision
mentioned in Remark 30.4, one would need to impose an extra requirement on the pair pX,Aq
so that instead of removing A we could remove a homotopy equivalent open neighborhood of it
that lives inside the neighborhood V . This would make the conditions defining a good pair slightly
stricter, but they would still be satisfied by almost all pairs we will ever care about.

The following simple example will appear frequently when we compute the homology of CW-
complexes.
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Example 30.25. Since collapsing the boundary of the disk Dn produces a sphere Dn{BDn – Sn,
the theorem implies

hkpDn, BDnq – rhkpDn{BDnq – rhkpSnq –
#
G if k “ n,
0 otherwise,

where G :“ h0ptptuq is the coefficient group. (Of course it is also not hard to compute this more di-
rectly using the reduced long exact sequence of pDn, BDnq, in which the connecting homomorphism
hkpDn, BDnq Ñ rhk´1pSn´1q is an isomorphism.)

31. The Mayer-Vietoris sequence

It is time to discuss the analogue in homology of the Seifert-van Kampen theorem.
The problem is as follows: we are given a space X “ A Y B such that the interiors of A and

B cover X , and we would like to compute H˚pXq in terms of H˚pAq, H˚pBq and H˚pA X Bq.
Let us first consider this problem specifically for singular homology, and after that consider the
generalization to arbitrary axiomatic homology theories.

In singular homology, we already know from Lemma 28.1 that the inclusion of subgroups

C˚pA;Gq ` C˚pB;Gq ãÑ C˚pX ;Gq

is a chain homotopy equivalence, so it induces an isomorphism of homology groups

(31.1) H˚pC˚pA;Gq ` C˚pB;Gqq –ÝÑ H˚pX ;Gq.

The question is then how to relate the homology group on the left hand side of this isomorphism
to the homologies of the individual chain complexes C˚pA;Gq and C˚pB;Gq. By now, you will
perhaps not be surprised to learn that the answer involves an exact sequence. We can define a
short exact sequence of chain complexes

0 ÝÑ C˚pA XB;Gq piA˚ ,´i
B
˚ qÝÑ C˚pA;Gq ‘ C˚pB;Gq k

A‘kBÝÑ C˚pA;Gq ` C˚pB;Gq ÝÑ 0,

where iA : A X B ãÑ A and iB : A X B ãÑ B are the obvious inclusions of spaces, and kA :

C˚pA;Gq ãÑ C˚pA;Gq ` C˚pB;Gq and kB : C˚pB;Gq ãÑ C˚pA;Gq ` C˚pB;Gq are the inclusions
of subgroups of C˚pX ;Gq. It is trivial to verify that this sequence is exact; the crucial detail for
this is the sign reversal in the map C˚pAXB;Gq Ñ C˚pA;Gq ‘C˚pB;Gq, which sends chains c P
CnpAXB;Gq to pc,´cq P CnpA;Gq‘CnpB;Gq, where we have simplified the notation since singular
chains in AXB are naturally also singular chains in each of the spaces A and B. The short exact
sequence induces a long exact sequence of homology groups by Proposition 27.7, but we need to
take a moment to consider what the homology of each of these chain complexes actually is. The first
is straightforward: it is simply H˚pAXB;Gq. For the middle term, we are defining the boundary
map on the chain complex C˚pA;Gq ‘C˚pB;Gq in the obvious way that preserves the direct sum
splitting, so the homology of this complex is also a direct sum, namely H˚pA;Gq ‘H˚pB;Gq. The
last term has already been discussed: its homology is isomorphic via the obvious inclusion of chain
complexes to H˚pX ;Gq, and the resulting map H˚pA;Gq ‘H˚pB;Gq Ñ H˚pX ;Gq is then simply
pjA˚ , jB˚ q, induced by the continuous inclusion maps jA : A ãÑ X and jB : B ãÑ X . We’ve proved:

Theorem 31.1. If A,B Ă X are subsets such that X “ ÅY B̊ and

iA : AXB ãÑ A, iB : A XB ãÑ B, jA : A ãÑ X, jB : B ãÑ X,
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denote the obvious inclusions, then there exist connecting homomorphisms B˚ : HnpX ;Gq Ñ
Hn´1pA XB;Gq for every n P Z such that the sequence

. . . ÝÑ Hn`1pX ;Gq B˚ÝÑ HnpA XB;Gq piA˚ ,´i
B
˚ qÝÑ HnpA;Gq ‘HnpB;Gq

jA˚ ‘jB˚ÝÑ HnpX ;Gq B˚ÝÑ Hn´1pA XB;Gq Ñ . . .

is exact. Moreover, the connecting homomorphisms are natural in the sense that for any map
f : X Ñ X 1 such that X 1 “ Å1 Y B̊1 for subsets A1, B1 Ă X 1 with fpAq Ă A1 and fpBq Ă B1, the
diagram

HnpX ;Gq Hn´1pA XB;Gq

HnpX 1;Gq Hn´1pA1 XB1;Gq

B˚

f˚ f˚

B˚

commutes. �

The exact sequence in this theorem is known as the Mayer-Vietoris sequence for the ho-
mology of X “ ÅYB̊. Note that the naturality part of the statement follows from the functoriality
of the shortÑlong exact sequence construction, cf. Proposition 27.7 and Exercise 27.10.

Exercise 31.2. Prove that a formula for B˚ : HnpX ;Gq Ñ Hn´1pA X B;Gq can be written
as follows: every element of HnpX ;Gq can be written in the form ra` bs for singular n-chains a P
CnpA;Gq and b P CnpB;Gq, so the condition that a`b is a cycle implies Ba “ ´Bb P Cn´1pAXB;Gq,
and

B˚ra` bs “ rBas “ ´rBbs P Hn´1pA XB;Gq.
I promise to look at an example or two, but first we have a theoretical issue to deal with. The

construction above seems to depend heavily on the details of the singular chain complex rather
than just the axioms of a homology theory—but does it really? As with the exact sequence of
triples in the previous lecture, the answer is no, but a rather clever diagram-chase is required in
order to prove it. I will show you the diagram and let you work out the details as an exercise.

Assume h˚ is an arbitrary axiomatic homology theory and X “ Å Y B̊. Notice first that the
inclusion of pairs pB,A XBq ãÑ pX,Aq induces an excision isomorphism

h˚pB,A XBq –ÝÑ h˚pX,Aq.
Indeed, pB,AXBq is obtained from pX,Aq by removing the subset AzpAXBq “ AXpXzBq, whose
closure is in Å because there must otherwise exist a point x that is not in Å and therefore is in B̊,
while simultaneously x P AzpAXBq, meaning every neighborhood of x contains points that are
in A and not in B, contradicting x P B̊. We can now place the long exact sequences of the pairs
pB,A XBq and pX,Aq into the top and bottom rows of the diagram

. . . hn`1pBq hn`1pB,A XBq hnpA XBq hnpBq hnpB,A XBq . . .

. . . hn`1pXq hn`1pX,Aq hnpAq hnpXq hnpX,Aq . . .

jB˚ –

iB˚

iA˚ jB˚ –

jA˚

Here the rows are both exact, all maps in the diagram are either the connecting homomorphisms
from long exact sequences of pairs or are induced by obvious inclusion maps, and as usual the
diagram commutes due to the commutativity of those inclusion maps plus the naturality of con-
necting homomorphisms. The following diagram-chasing exercise transforms this diagram into a
Mayer-Vietoris sequence for h˚pXq:
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Exercise 31.3. Assume the following diagram commutes and that its top and bottom rows
(both including the A˚ terms) are exact.

¨ ¨ ¨ Cn`1 Bn Cn Bn´1 ¨ ¨ ¨

An An´1

¨ ¨ ¨ En`1 Dn En Dn´1 ¨ ¨ ¨

f

ℓ

j

m

f

ℓ m

h

i

h

ig

k

g

Prove that

¨ ¨ ¨ En`1 Bn Dn ‘ Cn En Bn´1 ¨ ¨ ¨h˝g pm,´jq k‘ℓ h˝g

is then an exact sequence.

The exercise produces not only an axiomatic version of Theorem 31.1, but also a formula
for B˚ : hnpXq Ñ hn´1pA X Bq. In the abstract diagram of the exercise it is the composition
h ˝ g : En Ñ Bn´1. In our situation, g : En Ñ An´1 is just the map hnpXq Ñ hnpX,Aq induced
by the inclusion pX,Hq ãÑ pX,Aq. We then need to replace hnpX,Aq by hnpB,A X Bq using the
inverse of the excision map hnpB,A X Bq –Ñ hnpX,Aq, so that h : An´1 Ñ Bn´1 becomes the
connecting homomorphism hnpB,A XBq Ñ hn´1pA XBq from the exact sequence of pB,A XBq.
To summarize:

Theorem 31.4. In the setting of Theorem 31.1, any axiomatic homology theory h˚ also admits
a Mayer-Vietoris exact sequence

. . . ÝÑ hnpA XBq piA˚ ,´i
B
˚ qÝÑ hnpAq ‘ hnpBq j

A
˚ ‘jB˚ÝÑ hnpXq B˚ÝÑ hn´1pA XBq Ñ . . . ,

with natural connecting homomorphisms B˚ : hnpXq Ñ hn´1pA XBq determined by the diagram

(31.2)

hnpXq hn´1pA XBq

hnpX,Aq hnpB,A XBq

B˚

–

which is formed out of the obvious inclusions pB,AXBq ãÑ pX,Aq and pX,Hq ÞÑ pX,Aq together
with the connecting homomorphism from the long exact sequence of the pair pB,A XBq. �

Remark 31.5. The naturality of the connecting homomorphism B˚ : hnpXq Ñ hn´1pA X Bq
can be deduced directly from the diagram (31.2).

There is also an analogue for reduced homology, which follows from a similar argument to
the one we used for the long exact sequence of the pair. Indeed, we can put the Mayer-Vietoris
sequence for X “ Å Y B̊ into a commutative diagram together with the Mayer-Vietoris sequence
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for tptu “ tptu Y tptu as follows:

0 0 0 0

. . . rhnpA XBq rhnpAq ‘ rhnpBq rhnpXq rhn´1pA XBq . . .

. . . hnpA XBq hnpAq ‘ hnpBq hnpXq hn´1pA XBq . . .

. . . hnptptu X tptuq hnptptuq ‘ hnptptuq hnptptuq hn´1ptptu X tptuq . . .

0 0 0 0

ǫ˚ ǫ˚‘ǫ˚ ǫ˚ ǫ˚

Since all columns of this diagram are exact and so are the bottom two nontrivial rows, Proposi-
tion 28.13 provides uniquely determined maps on the top row that preserve the commumativity of
the diagram and make the top row exact:

Theorem 31.6. In the setting of Theorem 31.4, all maps can be restricted to the respective
reduced homology groups to produce an exact sequence

. . . ÝÑ rhnpA XBq piA˚ ,´i
B
˚ qÝÑ rhnpAq ‘ rhnpBq j

A
˚ ‘jB˚ÝÑ rhnpXq B˚ÝÑ rhn´1pA XBq Ñ . . . ,

�

Remark 31.7. If one prefers to assume only the weaker version of the excision axiom as
mentioned in Remark 30.4, then some additional condition must be imposed on the subsets A,B Ă
X in Theorem 31.4 to make sure that pB,AXBq ãÑ pX,Aq is a valid excision map, or equivalently,
that AzpA X Bq “ A X pXzBq is open. It suffices for instance to assume that B is closed, so in
particular, everything is fine in the category of compact pairs, where only closed subsets A,B Ă X

are allowed.

Now let’s see the Mayer-Vietoris sequence in action.

Example 31.8. Here’s the easy way to see the isomorphism rhnpXq – rhn`1pSXq. Write SX “
C`XYXC´X as usual where C`X “ pXˆr0, 1sq{pXˆt1uq and C´X “ pXˆr´1, 0sq{pXˆt´1uq,
pick ǫ ą 0 small and define two new subsets of SX by

A “ pX ˆ r´ǫ, 1sq{pX ˆ t1uq, B “ pX ˆ r´1, ǫsq{pX ˆ t´1uq.
In other words, A Ă SX is a neighborhood of C`X that also deformation retracts to C`X , and
B is similarly a neighborhood of C´X , so that the interiors of A and B cover SX . Notice also
that the intersection AXB “ X ˆ r´ǫ, ǫs deformation retracts to X . We can then write down the
Mayer-Vietoris sequence

. . . Ñ rhn`1pAq ‘ rhn`1pBq Ñ rhn`1pSXq Ñ rhnpA XBq Ñ rhnpAq ‘ rhnpBq Ñ . . .

By homotopy invariance, rh˚pAq – rh˚pC`Xq “ 0 and rh˚pBq – rh˚pC´Xq “ 0, while rh˚pA XBq –
rh˚pXq, so we obtain from this an exact sequence 0 Ñ hn`1pSXq Ñ hnpXq Ñ 0 and thus an
isomorphism hn`1pSXq Ñ hnpXq.

Example 31.9. Let’s compute the singular homology H˚pT2q of the 2-torus, with integer
coefficients. We can decompose T2 “ S1 ˆ S1 as the union of two overlapping annuli: simply
write S1 as the union of two intervals I`, I´ Ă S1 whose interiors cover the whole circle, then set
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A “ I` ˆ S1 and B “ I´ ˆ S1. This makes both A and B homotopy equivalent to S1, and since
the intersection I` X I´ necessarily contains two disjoint intervals, AXB is homotopy equivalent
to S1 > S1. We thus have

HkpAq – HkpBq – HkpS1q – Z, and HkpA XBq – HkpS1q ‘HkpS1q “ Z ‘ Z for k “ 0, 1,

where the two factors in HkpA X Bq correspond to the two connected components of the overlap
A X B. For k ě 2, we have HkpAq “ HkpBq “ HkpA X Bq “ 0, so the Mayer-Vietoris sequence
contains a segment of the form

0 “ HkpAq ‘HkpBq Ñ HkpT2q Ñ Hk´1pA XBq “ 0 for k ě 3,

implying HkpT2q “ 0 for all k ě 3.
To understand HkpT2q for k ď 2, we need to know more about the actual maps in the Mayer-

Vietoris sequence. A crucial observation here is that the inclusions iA : A X B ãÑ A and iB :

AXB ãÑ B restrict to each of the connected components of AXB as homotopy equivalences, thus
they induce isomorphisms

Z
–ÝÑ Z – HkpAq or HkpBq

when restricted to each of the factors inHkpAXBq – Z‘Z. We are free to choose the isomorphisms
of HkpAq and HkpBq with Z so that each of these maps Z Ñ Z is the identity, and we can therefore
write the map Φk :“ piA˚ ,´iB˚ q : HkpA XBq Ñ HkpAq ‘HkpBq for k “ 0, 1 in the form

(31.3) Φk : Z ‘ Z Ñ Z ‘ Z : pm,nq ÞÑ pm ` n,´m´ nq.
Since H2pAq “ H2pBq “ H2pS1q “ 0, let us use this term to begin the sequence and write it as

0 “ H2pAq ‘H2pBq ÝÑ H2pT2q B2ÝÑ H1pA XBq Φ1ÝÑ H1pAq ‘H1pBq ÝÑ H1pT2q
B1ÝÑ H0pA XBq Φ0ÝÑ H0pAq ‘H0pBq ÝÑ H0pT2q ÝÑ 0.

The first thing we can deduce from this is that the map labeled B2 is injective, and its image is
kerΦ1, which by the formula in (31.3), is

kerΦ1 – tpm,nq P Z ‘ Z | m` n “ 0u – Z.

This proves H2pT2q – Z.
To compute H1pT2q, we can use a convenient trick for turning long exact sequences into short

ones: observe first that while the map H1pAq ‘H1pBq Ñ H1pT2q cannot be assumed injective, it
will become injective if we quotient its domain by its kernel, which is precisely the image of Φ1.
Similarly, B1 : H1pT2q Ñ H0pA X Bq may fail to be surjective, but it trivially becomes surjective
if we replace its target space with im B1, which equals kerΦ0. We therefore have a short exact
sequence

0 Ñ cokerΦ1 Ñ H1pT2q Ñ kerΦ0 Ñ 0,

where the cokernel of Φ1 is defined as the quotient of its target by its image, i.e.

cokerΦ1 :“ pH1pAq ‘H1pBqq
L
imΦ1.

Using (31.3) again, cokerΦ1 is then the quotient of Z ‘ Z by the subgroup tpm,´mq | m P Zu,
and this quotient is isomorphic to Z. As luck would have it, the same subgroup is also kerΦ0, and
it is also isomorphic to Z, so our short exact sequence now looks like

(31.4) 0 Ñ Z Ñ H1pT2q Ñ Z Ñ 0.

At this point there is a cheap trick available to finish the job: Z is a free group, thus the sequence
splits by Exercise 28.7, and Exercise 28.5 then provides an isomorphism H1pT2q – Z ‘ Z.
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+

a

b

A

A

B

B

S`

S`

S`

S´

S´

S´

S´

T2
`

T2
´

Figure 18. The square at the left (with opposite edges identified) represents T2,
which is split by two parallel circles S`, S´ Ă T2 into a pair of annuli T2

` and T2
´

such that A Ă T2 is a neighborhood of T2
` and B Ă T2 is a neighborhood of T2

´.
The chosen triangulation of T2 respects this splitting and produces a 2-cycle of the
form a`b P C2pT2q where a P C2pAq and b P C2pBq, such that ra`bs P H2pT2q – Z

is a generator.

Finally, the sequence also gives us a surjective map H0pAq ‘H0pBq Ñ H0pT2q whose kernel is
imΦ0, so it descends to an isomorphism cokerΦ0 Ñ H0pT2q. Here (31.3) implies once again that
cokerΦ0 – Z.

The end result is:

HkpT2q –

$
’&
’%

Z for k “ 0, 2,

Z ‘ Z for k “ 1,

0 for all other k P Z.

It’s worth noting that we did not use any properties of singular homology in the above com-
putation beyond the axioms, so the result is equally valid for any axiomatic homology theory with
coefficient group Z. We did use a specific property of the coefficient group at one step: we assumed
it was free in order to conclude that the sequence (31.4) splits. More generally, if h˚ is any homol-
ogy theory with a free coefficient group G, then since h0pS1q – h1pS1q – G, the same argument
gives the result h0pT2q – h2pT2q – G and h1pT2q – G‘G. Actually, this is true for all coefficient
groups, but we cannot see it so easily from this argument—we will see a much easier proof of this
once we’ve learned how to compute cellular homology, and for singular homology it will also follow
by combining the above computation with the universal coefficient theorem.

One drawback of the above method for computingH˚pT2q is that Mayer-Vietoris does not make
it very easy to say e.g. what the two generators of H1pT2q – Z ‘ Z look like geometrically. Of
course you already know the answer to this question for other reasons: its generators are the same
as those of π1pT2q, i.e. they can be represented by loops of the form S1 ˆ tconstu and tconstu ˆS1

in T2. It is not impossible but by no means straightforward to find both of those loops hiding in
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the exact sequence argument we used above. The situation is slightly better for H2pT2q. Choose
a pair of parallel circles S`, S´ Ă A XB such that each connected component of A XB admits a
deformation retraction onto one of them. Since H1pS˘q – π1pS˘q, any loop parametrizing S˘ then
represents a generator of one of the factors in H1pA X Bq – Z ‘ Z; more generally, any oriented
triangulation of S˘ does the same thing, since a triangulation in this case just means a string of
1-simplices that can be concatenated to form a loop parametrizing the whole circle. Let us denote
the generators defined in this way by rS`s, rS´s P H1pA X Bq. The Mayer-Vietoris sequence told
us that the connecting homomorphism

B2 : H2pT2q Ñ H1pA XBq
maps H2pT2q – Z isomorphically to the kernel of Φ1 : H1pAXBq Ñ H1pAq‘H1pBq, which we can
deduce from (31.3) is generated by rS`s ´ rS´s. According to Exercise 31.2, a generator of H2pT2q
can thus be represented by any singular 2-cycle of the form a` b where a P C2pAq, b P C2pBq, and
Ba “ ´Bb is a 1-cycle in A XB representing rS`s ´ rS´s. To find such a 2-cycle, observe that T2

is the union of a pair of annuli T2
`,T

2
´ Ă T2 that each have boundary S` > S´ and intersect each

other only along that boundary. Choose an oriented triangulation of T2 in which every 2-simplex
is in either T2

` or T2
´; an example is shown in Figure 18. As explained in Lecture 29, the sum

of these oriented simplices defines a singular 2-cycle after choosing an ordering of all the vertices;
that cycle represents a so-called fundamental class rT2s P H2pT2q. That cycle clearly also has the
property that (up to a sign) B2rT2s “ rS`s ´ rS´s, so we’ve proved:

Proposition 31.10. There exists an oriented triangulation of T2 such that the resulting fun-
damental class rT2s as defined in Lecture 29 generates H2pT2;Zq – Z. �

Exercise 31.11. Use Mayer-Vietoris sequences to compute H˚pX ;Zq and H˚pX ;Z2q, where
X is

(a) The projective plane RP
2.

(b) The Klein bottle.

Hint: RP2 is the union of a disk with a Möbius band, and the latter admits a deformation retraction
to S1. The Klein bottle, in turn, is the union of two Möbius bands, also known as RP2#RP2.

Exercise 31.12. Recall that given two connected topological n-manifolds X and Y , their
connected sum X#Y is defined by deleting an open n-disk D̊n from each of X and Y and then
gluing XzD̊n and Y zD̊n together along an identification of their boundary spheres:

–#

More precisely, we can choose topological embeddings ιX : Dn ãÑ X , ιY : Dn ãÑ Y of the closed
unit n-disk Dn Ă Rn and then define

X#Y :“
´
XzιXpD̊nq

¯
YSn´1

´
Y zιY pD̊nq

¯
,

where the gluing identifies the boundaries of both pieces in the obvious way with Sn´1 “ BDn.
There are one or two subtle issues about the extent to which X#Y is (up to homeomorphism)
independent of choices, e.g. in general this need not be true without an extra condition involving
orientations, but don’t worry about this for now. Last semester (see Exercise 13.14) we used the
Seifert-van Kampen theorem to show that π1pX#Y q – π1pXq ˚ π1pY q whenever n ě 3. We can
now use the Mayer-Vietoris sequence to derive a similar formula for the homology of a connected
sum.
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(a) Prove that for any k “ 1, . . . , n ´ 2 and any coefficient group G, HkpX#Y ;Gq –
HkpX ;Gq ‘HkpY ;Gq.
Hint: There are two steps, as you first need to derive a relation between HkpX ;Gq and
HkpXzD̊n;Gq, and then see what happens when you glue XzD̊n and Y zD̊n together.

(b) It turns out that the formula Hn´1pX#Y ;Zq – Hn´1pX ;Zq ‘ Hn´1pY ;Zq also holds if
X and Y are both closed orientable n-manifolds with n ě 2, and without orientability we
still have Hn´1pX#Y ;Z2q – Hn´1pX ;Z2q‘Hn´1pY ;Z2q. Prove this under the following
additional assumption: XzD̊n and Y zD̊n both admit (possibly oriented) triangulations for
which the induced triangulations of BpXzD̊nq “ BpY zD̊nq “ Sn´1 each define generators
of Hn´1pSn´1;Z2q or (in the oriented case) Hn´1pSn´1;Zq.

(c) Find a counterexample to the formula H1pX#Y ;Zq – H1pX ;Zq‘H1pY ;Zq where X and
Y are both closed (but not necessarily orientable) 2-manifolds.

32. Mapping tori and the degree of maps

Topic 1: The relative Mayer-Vietoris sequence. We have a few things to discuss in this
lecture, but before moving on from the Mayer-Vietoris sequence, I should mention that there is
also a relative version. We will not need it until much later in this course, and we will only need
it for singular homology in particular, so let us sketch where it comes from in this case. Assume
pX,Y q, pA,Cq and pB,Dq are pairs of spaces such that X “ Å Y B̊ and Y “ C̊ Y D̊. To simplify
notation, let us omit the coefficient group G and also abbreviate the chain complexes

C˚pA `Bq :“ C˚pAq ` C˚pBq Ă C˚pXq, C˚pC `Dq :“ C˚pCq ` C˚pDq Ă C˚pY q,
C˚pA `B,C `Dq :“ C˚pA `Bq{C˚pC `Dq.

We can then write down a commutative diagram of chain complexes and chain maps in the form
(32.1)

0 0 0

0 C˚pC XDq C˚pCq ‘ C˚pDq C˚pC `Dq 0

0 C˚pA XBq C˚pAq ‘ C˚pBq C˚pA `Bq 0

0 C˚pA XB,C XDq C˚pA,Cq ‘ C˚pB,Dq C˚pA `B,C `Dq 0

0 0 0

The horizontal maps in this diagram are assumed to be the same ones that appear in the Mayer-
Vietoris sequence, so the top two rows are just the short exact sequences that underlie the Mayer-
Vietoris sequences for Y “ C̊ Y D̊ and X “ Å Y B̊ respectively. All three columns are exact for
the usual reasons: the top vertical maps are actually just inclusions, and the bottom vertical maps
are quotient projections (or direct sums of two such maps, in the case of the middle column). To
understand the quotient complex at the lower right, we need to consider the obvious chain map

C˚pA `B,C `Dq Ñ C˚pX,Y q
that is induced by the inclusion C˚pA`Bq ãÑ C˚pXq. The latter is a chain homotopy equivalence,
and so is its restriction to the subgroup C˚pC ` Dq ãÑ C˚pY q. Moreover, there is a short exact
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sequence of chain complexes

0 Ñ C˚pC `Dq ãÑ C˚pA `Bq Ñ C˚pA `B,C `Dq Ñ 0,

which produces a long exact sequence of their corresponding homology groups. These form the
top row of the following commutative diagram,

HnpC˚pC `Dqq HnpC˚pA `Bqq HnpC˚pA `B,C `Dqq Hn´1pC˚pC `Dqq Hn´1pC˚pA `Bqq

HnpY q HnpXq HnpX,Y q Hn´1pY q Hn´1pXq
– – – –

in which the bottom row is the long exact sequence of pX,Y q. Since both rows are exact and four
out of the five vertical maps are isomorphisms, the five-lemma (see Exercise 30.16) implies that
the remaining vertical map is also an isomorphism, i.e.

H˚pC˚pA `B,C `Dqq – H˚pX,Y q.
Returning to the large diagram (32.1), it is obvious that the top two nontrivial rows are exact

sequences, as are all three of the columns, and it is straightforward to deduce from this that the
third row is also a chain complex, though it is not immediately obvious whether it is exact. If you
recall Proposition 28.13 however, it should not surprise you to learn that the exactness of two of
the rows implies the exactness of the third. Here is the clever way to see this: think of each row
in the diagram as a chain complex, so that the vertical chain maps from top to bottom define a
short exact sequence of chain complexes. (We normally draw exact sequences of chain complexes
with the maps oriented horizontally and not vertically, but there’s no law against doing it this
way instead.) From this perspective, the short exact sequence induces a long exact sequence of
homology groups, but here’s the point: since the top two rows are exact, the homology groups they
induce are all trivial, which means that two out of every three groups in our long exact sequence
will be trivial. Exactness then forces all the other homology groups to be trivial as well, which is
equivalent to the statement that the third row in the diagram is exact. Cute, no?

Putting all this together, since we can now recognize the third row in (32.1) as a short exact
sequence of chain complexes, and we can identify the homology of the last term in it withH˚pX,Y q,
the induced long exact sequence is what we will call the relative Mayer-Vietoris sequence

. . . Ñ Hn`1pX,Y ;Gq Ñ HnpA XB,C XD;Gq Ñ HnpA,C;Gq ‘HnpB,D;Gq
Ñ HnpX,Y ;Gq Ñ Hn´1pA XB,C XD;Gq Ñ . . .

We’ll need this in the proof of Poincaré duality, but until then you are free to forget about it.

Topic 2: Mapping tori. I’d next like to explain another way to compute the homology of T2

(and many other things), by viewing it as an example of a mapping torus.
Given a space X and a map f : X Ñ X , the mapping torus (Abbildungstorus) of f is defined

to be the quotient space

Xf :“ pX ˆ Iq
L

„, where px, 0q „ pfpxq, 1q for all x P X.

We can regard X itself as a subspace of Xf via the inclusion map44

i : X ãÑ Xf : x ÞÑ rpx, 1qs.

44Of course there are also natural maps X Ñ Xf : x ÞÑ rpx, tqs for every t P I, and for our purposes it will not
matter which one we pick since they are all obviously homotopic. The case t “ 0 is a little bit awkward however
since it might not be injective—we have rpx, 0qs “ rpy, 0qs P Xf whenever fpxq “ fpyq.



218 SECOND SEMESTER (TOPOLOGIE II)

Theorem 32.1. For any map f : X Ñ X and its mapping torus Xf , every axiomatic homology
theory h˚ admits a long exact sequence

. . . ÝÑ hk`1pXf q ÝÑ hkpXq 1´f˚ÝÑ hkpXq i˚ÝÑ hkpXf q ÝÑ hk´1pXq ÝÑ . . .

Let’s do an example before talking about the proof.

Example 32.2. For each n P N, the n-torus Tn “ S1 ˆ . . . ˆ S1 is the mapping torus of the
identity map Id : Tn´1 Ñ Tn´1, so the exact sequence of the mapping torus includes segments of
the form

. . . ÝÑ hkpTn´1q 0ÝÑ hkpTn´1q i˚ÝÑ hkpTnq ΦÝÑ hk´1pTn´1q 0ÝÑ hk´1pTn´1q ÝÑ . . .

The triviality of the two maps 1´ Id˚ “ 0 here means that we actually have a short exact sequence

(32.2) 0 ÝÑ hkpTn´1q i˚ÝÑ hkpTnq ΦÝÑ hk´1pTn´1q ÝÑ 0.

Let us apply this sequence for singular homology with integer coefficients in the case n “ 2, so
Tn´1 “ S1, and since Hk´1pS1;Zq is free for every k, the sequence splits, giving an isomorphism

HkpT2;Zq – HkpS1;Zq ‘Hk´1pS1;Zq
for every k. By induction on n P N, we can now prove that all homology groups of the torus Tn

for every n are free, so the sequence (32.2) again splits and gives

HkpTn;Zq – HkpTn´1;Zq ‘Hk´1pTn´1;Zq.
This means that each HkpTn;Zq is isomorphic to Zr for some integer r ě 0, the rank (Rang) of
the group, and these ranks satisfy rankHkpTn;Zq “ rankHkpTn´1;Zq ` rankHk´1pTn´1;Zq, so
they are precisely the numbers in Pascal’s triangle, i.e. the familiar binomial coefficients:

rankHkpTn;Zq “
ˆ
n

k

˙
for 0 ď k ď n, HkpTn;Zq “ 0 for k ą n.

Exercise 32.3. The mapping torus of f : S1 Ñ S1 : eiθ ÞÑ e´iθ is homeomorphic to the Klein
bottle K2. Use Theorem 32.1 to compute H˚pK2;Zq and H˚pK2;Z2q.

To prove the theorem, we shall first state a more general result that implies it. Given two
spaces X,Y and maps f, g : X Ñ Y , define the space

Z :“ ppX ˆ Iq > Y q
L

„ where px, 0q „ fpxq and px, 1q „ gpxq for all x P X.
This space comes with a natural inclusion

i : Y ãÑ Z,

and the special case with X “ Y and g “ Id reproduces the mapping torus Xf of f : X Ñ X .
Theorem 32.1 follows immediately from the next statement:

Theorem 32.4. Given f, g : X Ñ Y and the space Z described above, there exists a long exact
sequence

. . . ÝÑ hk`1pZq ÝÑ hkpXq g˚´f˚ÝÑ hkpY q i˚ÝÑ hkpZq ÝÑ hk´1pXq ÝÑ . . .

for every axiomatic homology theory h˚.

Remark 32.5. It is not too hard to see intuitively why the composition i˚ ˝ pg˚ ´ f˚q in this
sequence is trivial. Imagine for instance a homology class of the form a “ j˚rM s P HnpX ;Zq
defined via a closed n-manifold M with an oriented triangulation and a map j : M Ñ X . This
gives rise to a map r : M ˆ I Ñ X ˆ I : px, tq ÞÑ pjpxq, tq, so that any choice of oriented
triangulation on M ˆ I turns this into a singular pn ` 1q-chain c P Cn`1pX ˆ I;Zq. Composing
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r with the quotient projection sending X ˆ I to Z then produces a chain c1 P Cn`1pZ;Zq with
Bc1 “ ˘pg˚a´f˚aq, thus proving that g˚a´f˚a P HnpY ;Zq becomes trivial after acting on it with
the map i˚ : HnpY ;Zq Ñ HnpZ;Zq.

Proof of Theorem 32.1. Consider the map of pairs q : pX ˆ I,X ˆ BIq Ñ pZ, Y q defined
as the composition of the two maps

pX ˆ I,X ˆ BIq ãÑ ppX ˆ Iq > Y,X ˆ BIq Ñ pZ, Y q,

where the first is the inclusion and the second is the quotient projection. Using the naturality
of connecting homomorphisms in long exact sequences of pairs, this gives rise to a commuting
diagram
(32.3)

. . . hk`1pX ˆ Iq hk`1pX ˆ I,X ˆ BIq hkpX ˆ BIq hkpX ˆ Iq . . .

. . . hk`1pZq hk`1pZ, Y q hkpY q hkpZq . . .

β˚

q˚

B˚

q˚

α˚

q˚

β˚

q˚

B´
˚ i˚

where the two rows are the exact sequences of the pairs pX ˆ I,X ˆ BIq and pZ, Y q, and the maps
α : X ˆ BI ãÑ X ˆ I and β : pX ˆ I,Hq ãÑ pX ˆ I,X ˆ BIq are the obvious inclusions. Since
X ˆ BI “ X ˆ t0, 1u – X > X , the additivity axiom gives an isomorphism

(32.4) j0˚ ‘ j1˚ : hkpXq ‘ hkpXq –ÝÑ hkpX ˆ BIq,

defined in terms of the inclusions ji : X ãÑ X ˆ t0, 1u : x ÞÑ px, iq for i “ 0, 1. Composing this
with the inclusion α : X ˆ BI ãÑ X ˆ I, we notice that each of the maps α ˝ ji : X ãÑ X ˆ I for
i “ 0, 1 is a homotopy equivalence, and they are also homotopic to each other, so by the homotopy
axiom, the two maps pα ˝ jiq˚ : hkpXq Ñ hkpX ˆ Iq for i “ 0, 1 are both the same isomorphism.
It follows that

α˚ ˝ pj0˚ ‘ j1˚q “ pα˚ ˝ j0˚q ‘ pα˚ ˝ j1˚q : hkpXq ‘ hkpXq Ñ hkpX ˆ Iq

is surjective, its kernel being the group of all pairs pc,´cq for c P hkpXq. In particular, α˚ itself is
surjective, and we have an isomorphism

(32.5) Ψ : hkpXq –ÝÑ kerα˚ : c ÞÑ pj0˚ ‘ j1˚qp´c, cq “ j1˚c´ j0˚c.

Exactness of the top row now implies β˚ “ 0, and the connecting homomorphism B˚ : HkpX ˆ
I,Xˆ BIq Ñ Hk´1pXˆ BIq is thus injective. This makes B˚ an isomorphism onto its image, which
is kerα˚.

Now observe that for the map q : X ˆ BI Ñ Y , the compositions q ˝ ji : X Ñ Y for i “ 0, 1

are the maps f and g respectively, thus we have

(32.6) q˚ ˝ Ψ : hkpXq Ñ hkpY q : c ÞÑ g˚c´ f˚c “ pg˚ ´ f˚qc.

On the other hand, the map

pX ˆ Iq
L

pX ˆ BIq qÝÑ Z{Y
determined by q : pXˆ I,Xˆ BIq Ñ pZ, Y q is a homeomorphism and thus induces an isomorphism

q˚ : rh˚

`
pX ˆ Iq

L
pX ˆ BIq

˘ –ÝÑ rh˚pZ{Y q,

and since both pairs are good in the sense of Definition 30.19, Theorem 30.23 implies that the map
q˚ : h˚pX ˆ I,X ˆ BIq Ñ h˚pZ, Y q is also an isomorphism. We can put all of this information



220 SECOND SEMESTER (TOPOLOGIE II)

together to produce a commatative diagram

hk`1pZ, Y q hk`1pX ˆ I,X ˆ BIq kerα˚ hkpXq

hkpY q

q´1

˚

B´
˚

B˚ Ψ´1

q˚

g˚´f˚

in which all the horizontal maps on the top row are isomorphisms. The composition of these maps
therefore gives an isomorphism hk`1pZ, Y q Ñ hkpXq that we can use to replace hk`1pZ, Y q by
hkpXq in the bottom row of (32.3); the original connecting homomorphism B´

˚ : hk`1pZ, Y q Ñ
hkpY q then gets replaced by the map g˚ ´ f˚ : hkpXq Ñ hkpY q, producing an exact sequence as
in the statement of the theorem. �

Exercise 32.6. The goal of this exercise is to gain a more concrete picture of the connecting
homomorphism Φ : H1pXf ;Zq Ñ H0pX ;Zq that appears in the long exact sequence of the mapping
torus of a homeomorphism f : X Ñ X ,

. . . ÝÑ Hk`1pXf ;Zq ΦÝÑ HkpX ;Zq 1˚´f˚ÝÑ HkpX ;Zq i˚ÝÑ HkpXf ;Zq ΦÝÑ Hk´1pX ;Zq ÝÑ . . .

in singular homology with integer coefficients. It will be useful to observe first that if f : X Ñ X

is a homeomorphism, then its mapping torus admits an alternative description as the quotient

Xf “ pX ˆ Rq
M

px, tq „ pfpxq, t ` 1q,

where the equivalence is defined for every t P R. Take a moment to convince yourself that this
quotient is homeomorphic to the slightly different definition of Xf given above. The new per-
spective has the advantage that one can view rX :“ X ˆ R as a covering space for Xf , with the
quotient projection defining a covering map rX Ñ Xf of infinite degree. Writing S1 :“ R{Z, we
also see a natural continuous surjective map π : Xf Ñ S1 : rpx, tqs ÞÑ rts, whose fibers π´1ptq
are homeomorphic to X for all t P S1. We shall denote by i : X ãÑ Xf the inclusion of the fiber
π´1pr0sq.

Assume X is path-connected, so there is a natural isomorphism H0pX ;Zq “ Z, and notice that
Xf is then also path-connected. Since H1pXf ;Zq is isomorphic to the abelianization of π1pXf , xq
for any choice of base point x P Xf , we can identify X with π´1pr0sq Ă Xf , fix a base point
x P X Ă Xf and represent any class in H1pXf ;Zq by a loop γ : r0, 1s Ñ Xf with γp0q “ γp1q “ x.
Now let γ̃ : r0, 1s Ñ rX denote the unique lift of γ to the cover rX “ X ˆR such that γ̃p0q “ px, 0q.
Since γ is a loop, it follows that γ̃p1q “ pfmpxq,mq for some m P Z.

(a) Prove that under the natural identification of H0pX ;Zq with Z, the connecting homo-
morphism Φ : H1pXf ;Zq Ñ Z can be chosen45 such that

Φprγsq “ m,

so in particular, rγs P kerΦ if and only if the lift of γ to the cover rX is a loop.
(b) Prove directly from the characterization in part (a) that Φ : H1pXf ;Zq Ñ H0pX ;Zq is

surjective.
Remark: Of course this can also be deduced less directly from the exact sequence.

One last comment about mapping tori: the usefulness of the exact sequence in Theorem 32.1
depends heavily on how easy it is to compute the homomorphism f˚ : h˚pXq Ñ h˚pXq. This is
not always easy, but sometimes it is, particularly in cases where h˚pXq is relatively simple.

45There is a bit of freedom allowed in the definition of Φ, e.g. we could replace it with ´Φ and the sequence
would still be exact since kerΦ and imΦ would not change.
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Topic 3: The mapping degree. For a final topic today, let’s talk about the homomorphism
f˚ : HnpSn;Zq Ñ HnpSn;Zq, a case in which the homology groups are indeed especially simple
yet still nontrivial. We’ll have a lot more to say about this in the next lecture, but we’ll start with
a straightforward definition based on the algebraic fact that every group homomorphism Z Ñ Z is
defined via multiplication with some integer.

Definition 32.7. The mapping degree (Abbildungsgrad) of a map f : Sn Ñ Sn for n P N

is the unique integer degpfq “ k P Z such that46

f˚ : HnpSn;Zq Ñ HnpSn;Zq : c ÞÑ kc.

The basic properties of singular homology already imply a few quite nontrivial results about
this definition.

Proposition 32.8. The degree for maps Sn Ñ Sn has the following properties.
(1) If f, g : Sn Ñ Sn are homotopic, then degpfq “ degpgq.
(2) For any f, g : Sn Ñ Sn, degpf ˝ gq “ degpfq ¨ degpgq.
(3) The identity map Sn Ñ Sn has degpIdq “ 1.
(4) If f is constant, then degpfq “ 0.
(5) The degree of any map f : S1 Ñ S1 matches its winding number (Windungszahl),

i.e. it is the unique k P Z such that any continuous function θ : r0, 1s Ñ R with fpe2πitq “
e2πiθptq satisfies θp1q ´ θp0q “ k.

Proof. The first three properties are immediate from the homotopy invariance of H˚p¨;Zq
and the fact that it is a functor. For the fourth, observe that any constant map f : Sn Ñ Sn can
be factored as i ˝ ǫ for the unique map ǫ : Sn Ñ tptu and a suitable inclusion i : tptu ãÑ Sn, thus
f˚ : HnpSn;Zq Ñ HnpSn;Zq factors through Hnptptu;Zq “ 0. Finally, the fifth property follows
from standard facts about π1pS1q and the natural isomorphism H1pS1;Zq – π1pS1q. �

Recall from Exercise 28.16 that the suspension SX “ C`X YX C´X of a space X can be
regarded as a functor Top Ñ Top sending objects X to SX , where maps f : X Ñ Y are transformed
to maps

Sf : SX Ñ SY : rpx, tqs ÞÑ rpfpxq, tqs.
In particular, any map f : Sn Ñ Sn gives rise to a map Sf : Sn`1 Ñ Sn`1 using the identification
SSn – Sn`1.

Proposition 32.9. For any f : Sn Ñ Sn, degpfq “ degpSfq.
Proof. Recall from Example 31.8 that the isomorphism Hn`1pSX ;Zq Ñ HnpX ;Zq can al-

ways be constructed as the connecting homomorphism in a Mayer-Vietoris exact sequence for SX .
Given a map f : Sn Ñ Sn, the naturality of this connecting homomorphism produces a commuting
diagram

Hn`1pSn`1;Zq HnpSn;Zq

Hn`1pSn`1;Zq HnpSn;Zq

B˚

pSfq˚ f˚

B˚

where the two maps labeled B˚ are the same isomorphism. Now if pSfq˚c “ kc for some nontrivial
c P Hn`1pSn`1;Zq, it follows that B˚pSfq˚c “ kB˚c “ f˚B˚c, where B˚c P HnpSn;Zq is also
nontrivial, hence degpSfq “ k “ degpfq. �

46We will give a more general definition in the next lecture that also applies for n “ 0; see Definition 33.1.
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Proposition 32.10. If f : Sn Ñ Sn is the restriction to the unit sphere Sn Ă Rn`1 of an
orthogonal linear transformation A P Opn` 1q, then degpfq “ detpAq “ ˘1.

Proof. Recall that Opn`1q has exactly two path-components, which can be labeled according
to whether their elements have determinant `1 or ´1. A given A P Opn ` 1q thus admits a
continuous path in Opn ` 1q to the identity matrix 1 if and only if detpAq “ 1, whereas if
detpAq “ ´1, then it admits a path to the reflection matrix

Rn`1 “

¨
˚̊
˚̋

´1

1

. . .
1

˛
‹‹‹‚

It follows that f : Sn Ñ Sn is homotopic to the identity and thus has degree 1 if detpAq “ 1,
and otherwise f is homotopic to a reflection map. What remains to be shown is that reflection
maps always have degree ´1. We prove it by induction on the dimension: for n “ 1, reflection
produces a map S1 Ñ S1 with winding number ´1, so the claim follows from Proposition 32.8.
Now if we assume the claim is true for reflections f : Sn Ñ Sn, it suffices to observe that Sf :

SSn Ñ SSn is also a reflection under a suitable identification SSn – Sn`1, so the result follows
from Proposition 32.9. �

33. Local mapping degree on manifolds

The degree of a map Sn Ñ Sn was defined in the previous lecture for each n ě 1 using the
fact that HnpSn;Zq – Z. That definition does not make sense for n “ 0, since H0pS0;Zq – Z‘Z,
but we can rectify this by using the reduced homology rH0pS0;Zq – Z. It will take a little while to
see why this is a reasonable thing to do and what it means geometrically, but we can in any case
now state a more general definition:

Definition 33.1. The mapping degree (Abbildungsgrad) of a map f : Sn Ñ Sn for integers
n ě 0 is the unique integer degpfq “ k P Z such that

f˚ : rHnpSn;Zq Ñ rHnpSn;Zq : c ÞÑ kc.

One further variation on this definition will be useful:

Definition 33.2. The mod 2 degree of a map f : Sn Ñ Sn for n ě 0 is the number
deg2pfq “ k P Z2 such that

f˚ : rHnpSn;Z2q Ñ rHnpSn;Z2q : c ÞÑ kc.

Since rHnpSn;Z2q – Z2, the mod 2 degree is algebraically much simpler than the integer-valued
degree: its value is 0 if f˚ : rHnpSn;Z2q Ñ rHnpSn;Z2q is the trivial map, and 1 if f˚ is the identity,
which is the only other possibility. It is easy to see that deg2pfq satisfies the obvious analogues
of the first four properties of degpfq listed in Proposition 32.8, as these depend only on the fact
that H˚p¨;Z2q is a functor and satisfies the homotopy axiom. In this lecture we will focus mainly
on the integer-valued degree, but most of what we say will have simpler analogues for the mod 2

degree, and will sometimes also work in greater generality for deg2pfq P Z2 than for degpfq P Z.
The facts established in the previous lecture about degpfq already have some quite nontrivial

consequences about the topology of spheres. Here are two such results.

Theorem 33.3. Every map f : Sn Ñ Sn with degpfq ‰ p´1qn`1 has a fixed point.
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Proof. If f : Sn Ñ Sn has no fixed point, then fpxq and ´x are never antipodal points for
any x P Sn, thus the line connecting them does not pass through the origin. We can parametrize
this line by

gtpxq “ p1 ´ tqfpxq ´ tx for t P r0, 1s,
thus defining a continuous 1-parameter family of maps gt : Sn Ñ Rn`1zt0u with g0 “ f and
g1pxq “ ´x. Since gtpxq is never zero, we can then define a homotopy h : I ˆ Sn Ñ Sn in Sn from
f to the antipodal map g1 by

hpt, xq “ gtpxq
|gtpxq| ,

and it follows that degpfq must match the degree of the antipodal map. The latter is the restric-
tion to Sn of an orthogonal transformation on Rn`1 given by minus the identity matrix, so its
determinant is p´1qn`1, and this is then degpg1q by Proposition 32.10. �

Theorem 33.4 (the “hairy sphere” theorem). If n P N is even, then there does not exist any
continuous nowhere zero vector field on Sn, i.e. there is no map V : Sn Ñ Rn`1zt0u such that
V pxq is orthogonal to x for all x P Sn Ă Rn`1.

Proof. If such a map V exists, then we can normalize it so that without loss of generality
|V pxq| “ 1 for all x, making V a map Sn Ñ Sn that satisfies V pxq K x for all x. Now for each
x P Sn, let Px Ă Rn`1 denote the 2-dimensional plane spanned by x and V pxq, so Px X Sn is a
circle in Sn, and we can imagine following a path along this circle from x through V pxq and ending
at ´x. Concretely, such a path is given by the formula

t ÞÑ ftpxq :“ pcosπtqx` psin πtqV pxq P Sn for t P r0, 1s,
which defines a homotopy from f0 “ Id to the antipodal map f1pxq “ ´x. The degree of the latter
was observed in the previous theorem to be p´1qn`1, so we conclude 1 “ degpf0q “ degpf1q “
p´1qn`1, implying n must be odd. �

We would now like to generalize the mapping degree beyond spheres, while also giving it a
more concrete geometric interpretation. The degree of a map f : X Ñ Y in general is meant to be
an answer to the following question: for each y P Y , how many points are there in f´1pyq? For
arbitrary spaces, the answer of course depends on our choice of the point y P Y , e.g. any bounded
function f : R Ñ R has the property that f´1pyq is empty for some points y P R and not for
others. It is perhaps surprising that if we are somewhat more restrictive about the class of spaces
we consider, and we interpret the question “how many?” in the right way, then the answer no
longer depends on y, and in fact, it depends on f only up to homotopy. We are already familiar
with one situation where at least the first statement is true: if f : X Ñ Y is a finite covering map
and Y is connected, then every fiber f´1pyq Ă X contains the same finite number of points, called
the degree of the cover (see Theorem 14.15). We will eventually be able to show that a reasonable
generalization of this statement is true whenever X and Y are both closed connected and oriented
topological manifolds of the same dimension.

Suppose M is a topological manifold of dimension n P N with BM “ H. For each x P M ,
we can then find an open neighborhood U Ă M of x with a homeomorphism ϕ : U Ñ Rn, and
by adding a shift we can assume without loss of generality that ϕpxq “ 0, so ϕ also restricts to
a homeomorphism Uztxu Ñ Rnzt0u. Choose an axiomatic homology theory h˚ and consider the
following string of maps:

(33.1) hnpM,Mztxuq i˚ÐÝ hnpU ,Uztxuq ϕ˚ÝÑ hnpRn,Rnzt0uq j˚ÐÝ hnpDn, Sn´1q B˚ÝÑ rhn´1pSn´1q,
where i : pU ,Uztxuq ãÑ pM,Mztxuq and j : pDn, BSn´1q ãÑ pRn,Rnzt0uq are the obvious inclusions,
and B˚ denotes the connecting homomorphism in the reduced long exact sequence of the pair
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pDn, Sn´1q. We claim that all of these maps are isomorphisms. For ϕ˚ this is immediate since ϕ is
a homeomorphism, and for i˚ it follows from excision since MzU is a closed subset contained in the
open subset Mztxu.47 For j˚, you hopefully have some intuition telling you that the reason involves
homotopy invariance, though we have to be a bit careful: there is no deformation retraction of
pairs from pRn,Rnzt0uq to pDn, Sn´1q, even though there are deformation retractions individually
from Rn to Dn and Rnzt0u to Sn´1. What is true however is that since the inclusion j defines
homotopy equivalences Dn ãÑ Rn and Sn´1 ãÑ Rnzt0u, we can put the long exact sequences of
pDn, Sn´1q and pRn,Rnzt0uq together in a commutative diagram

. . . hnpSn´1q hnpDnq hnpDn, Sn´1q hn´1pSn´1q hn´1pDnq . . .

. . . hnpRnzt0uq hnpRnq hnpRn,Rnzt0uq hn´1pRnzt0uq hn´1pRnq . . .

j˚ j˚ j˚ j˚ j˚

where both rows are exact and all of the five vertical maps except the middle one are already known
to be isomorphisms, thus the five-lemma (Exercise 30.16) implies that so is j˚ : hnpDn, Sn´1q Ñ
hnpRn,Rnzt0uq. Finally, the reduced exact sequence

0 “ rhnpDnq ÝÑ hnpDn, Sn´1q B˚ÝÑ rhn´1pSn´1q ÝÑ rhn´1pDnq “ 0

implies that B˚ is also an isomorphism. We’ve proved:

Proposition 33.5. For any manifold M of dimension n P N with empty boundary, any point
x P M and any axiomatic homology theory h˚ with coefficient group G, hnpM,Mztxuq – G. �

The relative homology group hnpM,Mztxuq is sometimes called the local homology of M
at the point x. Specializing to singular homology with integer coefficients, we can now use this to
define an n-dimensional notion of orientations for manifolds, without mentioning triangulations.

Definition 33.6. A local orientation of an n-manifold M without boundary at a point
x P M is a choice of generator rM sx for the group HnpM,Mztxu;Zq – Z.

Note that in light of the excision isomorphism

HnpU ,Uztxu;Zq –ÝÑ HnpM,Mztxu;Zq
defined for any open neighborhood U Ă M of x that is homeomorphic to Rn, a local orientation
can equivalently be regarded as a generator of HnpU ,Uztxu;Zq – Z.

Example 33.7. If M is a surface without boundary and x P M , then a specific relative 2-
cycle generating H2pM,Mztxu;Zq can be defined via a single singular 2-simplex σ : ∆2 Ñ M

that embeds the triangle ∆2 onto a neighborhood of x. Indeed, σ P C2pMq is clearly a relative
cycle in pM,Mztxuq since σ maps B∆2 to Mztxu, and to see that it generates H2pM,Mztxu;Zq,
one can follow the string of isomorphisms (33.1): they map rσs to the homology class of a 1-
cycle in S1 – B∆2 consisting of the three edges of the triangle, a loop that clearly generates
π1pB∆2q – H1pB∆;Zq. In this picture, we can think of a local orientation at x as a choice (up to
homotopy) of a small embedded loop in M about x: since there are two directions that such a loop
can wind around x, there are two choices of local orientation.

Definition 33.8. Suppose M and N are manifolds of dimension n P N without boundary,
f : M Ñ N is a map and x P M and y “ fpxq P N are points such that x is an isolated point in
the set f´1pyq, i.e. there exists an open neighborhood U Ă M of x such that f´1pyq X U “ txu.

47Notice how we just used the assumption that manifolds are Hausdorff?
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Assume without loss of generality that this neighborhood U is homeomorphic to Rn. Given local
orientations rM sx P HnpU ,Uztxu;Zq and rN sy P HnpN,Nztyu;Zq, the local degree

degpf ;xq P Z

of f and x is then defined as the unique integer k P Z such that the map HnpU ,Uztxu;Zq Ñ
HnpN,Nztyu;Zq induced by f : pU ,Uztxuq Ñ pN,Nztyuq sends rM sx to krN sy.

Under the same assumptions, the mod 2 local degree

deg2pf ;xq P Z2

is similarly defined to be the unique k P Z2 such that f˚ : HnpU ,Uztxu;Z2q Ñ HnpN,Nztyu;Z2q
sends rM sx to krN sy, where rM sx and rN sy are now taken to be the unique nontrivial elements of
HnpU ,Uztxu;Z2q – Z2 and HnpN,Nztyu;Z2q – Z2 respectively.

Notice that there are no choices involved in the definition of deg2pf ;xq, whereas degpf ;xq will
change sign whenever we change the choice of one of the local orientations.

As explained in (33.1), any choice of local coordinates on a Euclidean neighborhood U Ă M of
x gives rise to an isomorphism of HnpU ,Uztxu;Gq with rHn´1pSn´1;Gq – G, and we can use this
isomorphism to transform the above definition into a condition about maps between spheres:

Proposition 33.9. In the setting of Definition 33.8, fix a generator rSn´1s P Hn´1pSn´1;Zq
and local coordinates on neighborhoods x P U Ă M and y P V Ă N that identify both points with 0 P
Rn such that the resulting isomorphisms of HnpU ,Uztxu;Zq and HnpV ,Vztyu;Zq to Hn´1pSn´1;Zq
send rM sx and rN sy to rSn´1s. Then if pf denotes the map f written in these coordinates as a map
between neighborhoods of 0 in Rn, we have

degpf ;xq “ deg

¨
˝ pf

| pf |

ˇ̌
ˇ̌
ˇ
BDn

ǫ

: BDnǫ Ñ Sn´1

˛
‚

for all ǫ ą 0 sufficiently small, where Dnǫ denotes the closed ǫ-disk and its boundary is identified
in the obvious way with Sn´1, so that the right hand side is the degree of a map Sn´1 Ñ Sn´1.
Similarly, deg2pf ;xq is related in the same say to the mod 2 degree of the same map BDnǫ Ñ
Sn´1. �

Corollary 33.10. Suppose tft : M Ñ NutPr0,1s is a continuous family of maps between two
manifolds of dimension n P N, with points x P M and y P N such that x is an isolated point
of f´1

t pyq for every t. Then for any fixed choice of local orientations at x and y, degpf0;xq “
degpf1;xq, and similarly, deg2pf0;xq “ deg2pf1;xq.

Proof. We can interpret both local degrees via Proposition 33.9 as degrees of maps Sn´1 Ñ
Sn´1, and the assumption about the family ft implies that these two maps between spheres are
homotopic. �

Example 33.11. Continuing the discussion of Example 33.7, suppose f : M Ñ N is a
map between surfaces such that x is an isolated point in f´1pyq and local orientations rM sx P
H2pM,Mztxu;Zq and rN sy P H2pN,Nztyu;Zq are fixed. Choose small Euclidean neighborhoods
U Ă M of x and V Ă N of y such that fpUq Ă V and f´1pyq X U “ txu. Then rM sx de-
termines a homotopy class of embedded loops α : S1 ãÑ Uztxu winding once around x, so that
f ˝ α : S1 Ñ Vztyu is also uniquely determined up to homotopy. The winding number of f ˝ γ
is then the local degree degpf ;xq; its definition requires a local orientation at y in order to de-
cide which winding numbers are positive and which are negative, i.e. those that wind in the same
direction as the loops S1 ãÑ Vztyu determined by rN sy are considered positive.
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Let us discuss more concretely how local degrees of maps from Rn to itself can be computed.
There is a natural way to choose local orientations rRnsx P HnpRn,Rnztxu;Zq at every point
x P Rn: if Dnx Ă Rn denotes the closed unit disk about x and we identify its boundary in the
obvious way with Sn´1, then we obtain as in (33.1) a string of natural isomorphisms

HnpRn,Rnztxu;Zq – HnpDnx , BDnx ;Zq – Hn´1pSn´1;Zq,
so that any choice of generator rSn´1s P Hn´1pSn´1;Zq determines local orientations rRnsx P
HnpRn,Rnztxu;Zq for all x P Rn simultaneously. With this choice in place, any continuous map
f : U Ñ Rn defined on an open subset U Ă Rn has a well-defined local degree at any point
x P U that is isolated in f´1pfpxqq, and we notice that degpf ;xq does not depend on our arbitrary
choice of generator rSn´1s since reversing this would reverse both of the local orientations rRnsx
and rRnsfpxq. We can now prove:

Proposition 33.12. Suppose local orientations rRnsx for points x P Rn are fixed according to
the prescription above, U Ă Rn is an open subset and f : U Ñ Rn is a map that is differentiable at
a point x P U such that its derivative dfpxq : Rn Ñ Rn is an isomorphism. Then x is an isolated
point of f´1pfpxqq, and degpf ;xq “ ˘1, with sign matching the sign of det dfpxq.

Proof. We can write f : U Ñ Rn near x as

fpx` hq “ y ` dfpxqh ` |h|ηphq
for sufficiently small h P Rn, where y :“ fpxq and ηphq is an Rn-valued function satisfying
limhÑ0 ηphq “ 0. If dfpxq : Rn Ñ Rn is invertible, then there exists a constant c ą 0 such
that |dfpxqh| ě c|h| for all h P Rn, so

|fpx` hq ´ y| “ |dfpxqh ` |h|ηphq| ě |dfpxqh| ´ |h||ηphq ě pc´ |ηphq|q |h|,
and the right hand side is positive for all |h| sufficiently small since ηphq Ñ 0. This proves that x
is isolated in f´1pyq. Now modify f near x by

ftpx` hq “ y ` dfpxqh ` ρtphq|h|ηphq,
where ρtphq P r0, 1s is a family of cutoff functions that equal 1 away from h “ 0 such that ρ0 ” 1

and ρ1 vanishes on a smaller neighborhood of h “ 0. This changes f by a homotopy through maps
in which x remains an isolated point of f´1

t pyq, so in light of Corollary 33.10, we can now assume
without loss of generality that the remainder term vanishes completely, i.e. fpx` hq “ y ` dfpxq.
Now observe that if we modify f by a further homotopy of the form

ftpx` hq “ y `Ath,

where At : Rn Ñ Rn is a family of invertible linear transformations, then the local degree still
will not change due to Corollary 33.10, thus we are free to assume without loss of generality that
dfpxq is an orthogonal transformation. The corresponding map Sn´1 Ñ Sn´1 is then of the type
considered in Proposition 32.10, so its degree is the determinant of the orthogonal transformation,
which is `1 if the original derivative dfpxq had positive determinant and ´1 otherwise. �

Many applications of the local degree are based on the following exercise, as it provides a
criterion for existence of solutions to equations of the form fpxq “ y that are stable under small
perturbations of f :

Exercise 33.13. Prove that if U Ă Rn is open and f : U Ñ Rn is a continuous map with
fpxq “ y and either degpf ;xq or deg2pf ;xq is nonzero for some x P U , then for any neighborhood
Ux Ă U of x, there exists an ǫ ą 0 such that every continuous map pf : U Ñ Rn satisfying | pf´f | ă ǫ

maps some point in Ux to y.
Hint: Consider the restriction of pf to the boundary of a small ball about x, and normalize it so



33. LOCAL MAPPING DEGREE ON MANIFOLDS 227

that it maps to the sphere surrounding a small ball about y. What can you say about the degree
of this map between spheres if pf maps the ball about x to Rnztyu?

Exercise 33.14. Find an example of a smooth map f : R2 Ñ R2 that has an isolated zero at
the origin with degpf ; 0q “ 0 and admits arbitrarily small perturbations that are nowhere zero.

In order to define the global degree of maps f : M Ñ N in general, we will need to impose a
condition on the manifolds that we consider. It will later turn out that this condition is satisfied
for all closed and connected manifolds that are also orientable,48 though it will be a while before
we are in a position to prove this.

Definition 33.15. Given an axiomatic homology theory h˚, a topological manifold M of
dimension n P N will be called h˚-admissible49 if M is closed and the obvious inclusion ix :

pM,Hq ãÑ pM,Mztxuq induces an isomorphism

ix˚ : hnpMq –ÝÑ hnpM,Mztxuq
for every point x P M . For the case h˚ “ H˚p¨;Gq, we shall abbreviate the terminology and say
that M is G-admissible.

Clearly an h˚-admissible n-manifold must have hnpMq isomorphic to the coefficient group, so
there are in general some nontrivial computations of homology to be done before we can prove
that any given manifold is admissible. We have already done a few such computations, so let us
say what can immediately be said:

Proposition 33.16. For any axiomatic homology theory h˚, the spheres Sn are h˚-admissible
for all n P N.

Proof. For any x P Sn, Snztxu – Rn is contractible, thus the reduced long exact sequence
of pSn, Snztxuq takes the form

0 “ rhnpSnztxuq ÝÑ rhnpSnq ix˚ÝÑ hnpSn, Snztxuq ÝÑ rhn´1pSnztxuq “ 0,

implying that ix˚ : hnpSnq “ rhnpSnq Ñ hnpSn, Snztxuq is an isomorphism. �

We also proved in the last lecture that HnpTn;Zq – Z for every n P N, so it seems reasonable to
expect that Tn is Z-admissible. The projective plane RP

2 and Klein bottle K2 are definitely not Z-
admissible, as one can use Mayer-Vietoris sequences (see Exercise 31.11) to show thatH2pRP2;Zq “
H2pK2;Zq “ 0, but one also obtains H2pRP2;Z2q – H2pK2;Z2q – Z2, so that both may plausibly
be Z2-admissible. We will prove all of these plausible claims in the next lecture using triangulations,
and near the end of this course we will also see that every closed and connected manifold M is
Z2-admissible, and Z-admissibility additionally holds if and only if M is orientable. For now I will
ask you to take these facts on faith so that you can imagine a wide range of applicability for the
following definition.

Definition 33.17. Assume M and N are Z-admissible manifolds of dimension n P N, and
choose generators rM s P HnpM ;Zq and rN s P HnpN ;Zq. We then define the degree (Grad) of
any map f :M Ñ N to be the unique integer degpfq “ k P Z such that

f˚rM s “ krN s.

48We will define later what it means in general for a topological n-manifold to be orientable; a definition for
the case n “ 2 was given last semester in Lecture 20.

49This is not a universally standard term, but it is convenient for our purposes at the moment.
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If M and N are Z2-admissible (but not necessarily Z-admissible), one can similarly define the
mod 2 degree of f as the unique k P Z2 such that f˚rM s “ krN s where rM s P HnpM ;Z2q – Z2

and rN s P HnpN ;Z2q – Z2 are the unique nontrivial elements.

Note that the sign of degpfq depends in general on the choices of generators rM s and rN s, but
if M “ N , then it is natural to choose rM s “ rN s, and degpfq is then independent of choices since
reversing the signs of rM s and rN s simultaneously changes nothing in the relation f˚rM s “ krN s.
In this way, our new definition recovers the old one for maps Sn Ñ Sn. The mod 2 degree
is in any case defined with no need for choices since the generators rM s and rN s are unique in
homology with Z2-coefficients. It is again easy to check that the obvious analogues of items (1)–(4)
in Proposition 32.8 are satisfied for this new definition.

We can now state the main result relating global and local degrees.

Theorem 33.18. Suppose M and N are Z-admissible manifolds of dimension n P N, fix
generators rM s P HnpM ;Zq and rN s P HnpN ;Zq and use these to determine local orientations
rM sx :“ ix˚rM s and rN sy :“ i

y
˚rN s at all points x P M and y P N . Then for any map f : M Ñ N

and any point y P N such that f´1pyq is finite,

(33.2) degpfq “
ÿ

xPf´1pyq

degpf ;xq.

Similarly, if M and N are Z2-admissible and f :M Ñ N is any map with a point y P N such that
f´1pyq is finite, we have

deg2pfq “
ÿ

xPf´1pyq

deg2pf ;xq.

We sometimes refer to the expression on the right hand side of (33.2) as the algebraic count of
points in f´1pyq. One can check that if f :M Ñ N happens to be a covering map, then for suitable
choices of the generators rM s and rN s, the local degrees degpf ;xq are all 1 and the algebraic count
is thus the actual count of points. In more general situations, the points must be counted with
signs and “weights” determined by the local degree, but the advantage is that the result does not
depend on the point y P N , and it only depends on f up to homotopy.

Theorem 33.18 has a wide range of applications, but it also establishes an important theoretical
connection between algebraic and differential topology. In the setting of closed differentiable
manifolds and smooth maps f :M Ñ N , there is a natural way to define degpfq using transversality
results for smooth maps, e.g. one can always perturb f or the point y P N so that dfpxq is invertible
for all x P f´1pyq, in which case Proposition 33.12 tells us that degpf ;xq is always ˘1. One then
defines degpfq essentially as the right hand side of (33.2) and interprets it as “counting f´1pyq with
signs”; the interesting part is then to prove that the result does not depend on y or on f beyond
its homotopy class. The latter can also be proven as a consequence of transversality results,
without any knowledge of homology—the main point is that if f0 and f1 are homotopic, then
the homotopy can be used to construct a compact oriented 1-manifold with boundary such that
#f´1

0 pyq ´ #f´1
1 pyq is interpreted as a count (with suitable signs) of the number of points in the

boundary of this 1-manifold. But the classification of 1-manifolds implies that every component of a
compact oriented 1-manifold with nonempty boundary has exactly one boundary point that counts
positively and one that counts negatively, hence the total count is always zero. This perspective
on the degree is explained beautifully in the classic book by Milnor [Mil97].50 It is by no means
easy however to see from the differentiable viewpoint what the mapping degree has to do with the
homology of manifolds, i.e. why the right hand side of (33.2) matches the left hand side. We will
prove this in the next lecture.

50The differentiable approach to the mapping degree was also sketched in Exercise 19.14.
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34. Degrees, triangulations, and coefficients

The previous lecture left several issues unresolved: most notably, I need to convince you that
the condition we called “admissibility” in Definition 33.15 is actually satisfied by a large number of
manifolds beyond spheres, and I also need to prove Theorem 33.18 on the relation between global
and local degrees. Let’s first observe the easiest corollary of that theorem:

Corollary 34.1. If M and N are Z-admissible n-manifolds with n ě 1 and f : M Ñ N

is not surjective, then degpfq “ 0. Similarly, if both manifolds are Z2-admissible and f is not
surjective, then deg2pfq “ 0.

Proof. Apply Theorem 33.18 to identify degpfq or deg2pfq with a suitable count of points in
f´1pyq where y R fpMq. �

Remark 34.2. For maps f : Sn Ñ Sn, Corollary 34.1 follows more easily from the observation
that Snztyu is contractible, so if y R fpSnq then f is homotopic to a constant.

Before proving Theorem 33.18, let us discuss the abundance of manifolds that are admissible in
the sense of Definition 33.15. We saw that Sn for each n P N is h˚-admissible for every axiomatic
homology theory. For more general topological n-manifolds it is less easy to see whether this is
true, so we will focus specifically on singular homology with coefficients in Z or Z2.

Lemma 34.3. Suppose M is a closed topological manifold of dimension n P N with a trian-
gulation, and rM s P HnpM ;Z2q denotes the resulting fundamental class, represented by the sum
of the n-simplices in the triangulation (see Lecture 29). Then for every x P M and the natural
inclusion of pairs ix : pM,Hq ãÑ pM,Mztxuq, ix˚rM s ‰ 0 P HnpM,Mztxu;Z2q. Moreover, if the
triangulation is oriented and rM s denotes the resulting fundamental class in HnpM ;Zq, then ix˚rM s
is a generator of HnpM,Mztxu;Zq.

Proof. In the following, G may denote either Z2 or (only if the triangulation is oriented) Z.
Given x P M , we claim first that the triangulation can always be adjusted without changing the
fundamental class rM s so that its pn´ 1q-skeleton does not contain x. Indeed, the complement of
the pn´1q-skeleton in M is dense, so if x lies in the pn´1q-skeleton, then we can choose coordinates
in some neighborhood of x and a smooth vector field51 supported in this neighborhood so that
flowing a small distance along the vector field produces a family of homeomorphisms Φt :M Ñ M

that push the pn ´ 1q-skeleton away from x. This changes the triangulation and thus changes the
fundamental class rM s to Φt˚rM s, but the latter matches rM s since Φt is homotopic to the identity.

Now assuming x is in the interior of an n-simplex σ1 of the triangulation, we have

ix˚rM s “ rσ1s P HnpM,Mztxu;Gq
since all the other n-simplices of the triangulation lie inMztxu. Just as in Example 33.7, we can now
identify σ1pB∆nq with Sn´1 so that the natural isomorphism HnpM,Mztxu;Gq Ñ rHn´1pSn´1;Gq
sends rσ1s to the fundamental class rSn´1s represented by the obvious oriented triangulation of
B∆n (cf. Example 29.5). In the case n “ 1, the triangulation of S0 just consists of the obvious two
0-simplices (i.e. points), with opposite signs in the oriented case, and one can check explicitly in
this case that rS0s is a generator of rH0pS0;Gq. Now argue by indunction on the dimension: if the
lemma is already proved for manifolds of dimension at most n´ 1, then in particular it is true for
Sn´1, implying that rSn´1s maps to generators of the local homology rHn´1pSn´1, Sn´1ztyu;Gq
for every y P Sn´1 and is therefore a primitive element, i.e. it is not a nontrivial integer multiple of

51It is natural to object at this point that choosing a smooth vector field requires having a smooth structure,
and M might not have one. But we are only doing this in a small ball and using a single coordinate chart—it may
happen that our vector field does not look smooth in different coordinate charts, but this does not matter.
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another element. Since rHn´1pSn´1;Gq – G, this proves that rSn´1s is a generator, and therefore
so is ix˚rM s. �

The lemma implies a result that I promised you at the end of Lecture 29: the fundamental
class rM s P HnpM ;Gq defined via a triangulation is always a primitive element—indeed, if it were
a nontrivial multiple of some other element, then the same would necessarily be true of ix˚rM s. In
cases where we also know HnpM ;Gq – G for G “ Z or Z2, this implies that rM s generates it.
At this point we have a slowly growing list of examples for which this result has been established,
e.g. we can prove via Mayer-Vietoris sequences that HnpTn;Zq – Z, H2pRP2;Z2q – Z2 and
H2pK2;Z2q – Z2, where K2 denotes the Klein bottle. We have thus proved:

Proposition 34.4. The torus Tn is Z-admissible for every n P N, and RP
2 and the Klein

bottle are Z2-admissible. �

Remark 34.5. The projective plane and the Klein bottle are not Z-admissible sinceH2pRP2;Zq “
H2pK2;Zq “ 0. We will eventually see that this has to do with the fact that they are not orientable.
We will also eventually see that Tn is Z2-admissible, but we have not proved it yet.

It’s worth stating one more result on this subject that we cannot quite prove yet, but the
proof will present itself once we have understood cellular homology over the next few lectures.
In the setting of Lemma 34.3, suppose M is connected, and let K denote the simplicial complex
corresponding to its triangulation. It is then fairly easy to compute the simplicial homology of this
complex in dimension n: the answer for Z2 and Z coefficients is

H∆
n pK;Z2q – Z2, H∆

n pK;Zq –
#
Z if the triangulation is orientable,
0 otherwise.

Indeed, the pn` 1q-chain group is trivial, so the homology in dimension n is the same as the group
of n-cycles. In the oriented case, suppose the oriented n-simplices are denoted by σ1, . . . , σN and
we write down an arbitrary simplicial n-chain

ř
imiσi. Then B

ř
imiσi contains exactly two terms

involving each individual pn ´ 1q-simplex, and these two will cancel each other out if and only if
the two coefficients in front of the corresponding n-simplices match, thus proving that

ř
imiσi can

only be a cycle if the coefficients in front of every pair of neighboring n-simplices match. Since
M is connected, this can only hold if all the coefficients match, implying

ř
imiσi must be an

integer multiple of
ř
i σi, so the n-cycle group is Z. If the triangulation is not orientable, then

the cancelation must always fail at some pn´ 1q-simplex and one instead deduces that the n-cycle
group with integer coefficients is trivial. But with Z2 coefficients, every n-chain can be written
as

ř
imiσi with mi P t0, 1u, and since 2 “ 0 P Z2, cancelation will happen without any need for

orientations for any pn ´ 1q-simplex whose two neighboring n-simplices have the same coefficient.
The conclusion is that Σiσi is a cycle in C∆

n pK;Z2q, and it is the only nontrivial one. If you are
already willing to believe the theorem that simplicial homology is isomorphic to singular homology,
this implies that HnpM ;Z2q – Z2, and HnpM ;Zq – Z whenever the triangulation is oriented, while
HnpM ;Zq “ 0 otherwise. The conclusion is:

Proposition 34.6. Every closed and connected n-dimensional manifold with a triangulation
is Z2-admissible, and it is also Z-admissible if and only if the triangulation is orientable. �

We now proceed to prove the theorem about local and global degrees. Here’s the statement
again.

Theorem 34.7. Suppose M and N are Z-admissible manifolds of dimension n P N, fix
generators rM s P HnpM ;Zq and rN s P HnpN ;Zq and use these to determine local orientations
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rM sx :“ ix˚rM s and rN sy :“ i
y
˚rN s at all points x P M and y P N . Then for any map f : M Ñ N

and any point y P N such that f´1pyq is finite,

(34.1) degpfq “
ÿ

xPf´1pyq

degpf ;xq.

Similarly, if M and N are Z2-admissible and f :M Ñ N is any map with a point y P N such that
f´1pyq is finite, we have

deg2pfq “
ÿ

xPf´1pyq

deg2pf ;xq.

Proof. For later convenience, we shall carry out most of the proof in the framework of an
arbitrary axiomatic homology theory h˚, assuming M and N to be h˚-admissible. Write

f´1pyq “ tx1, . . . , xℓu,
fix a Euclidean neighborhood V Ă N of y, along with Euclidean neighborhoods Uk Ă M of the
individual points xk for k “ 1, . . . , ℓ such that

fpUkq Ă V and Uk X Uj “ H for j ‰ k.

These assumptions guarantee that fpUkztxkuq Ă Vztyu, hence f also defines a map of pairs
pUk,Ukztxkuq Ñ pV ,Vztyuq for every k “ 1, . . . , ℓ. Now consider the diagram

(34.2)

hnpUk,Ukztxkuq hnpV ,Vztyuq

hnpM,Mztxkuq hnpM,Mzf´1pyqq hnpN,Nztyuq

hnpMq hnpNq

αk
˚

γk
˚

f˚

β

pk˚

f˚

i
xk
˚

j˚

f˚

i
y
˚

where the maps αk, pk, γk, j and β are all inclusions. By the admissibility assumption, ixk
˚ and iy˚

are isomorphisms, and αk˚ and β˚ are also isomorphisms by excision. To understand the maps pk˚
for k “ 1, . . . , ℓ, observe that these can all be combined to define a product map

p :“ pp1˚, . . . , pℓ˚q : hnpM,Mzf´1pyqq Ñ
ℓà

k“1

hnpM,Mztxkuq,

which fits into the following diagram:

hnpM,Mzf´1pyqq Àℓ
k“1 hnpM,Mztxkuq

hn

´šℓ
k“1pUk,Ukztxkuq

¯ Àℓ
k“1 hnpUk,Ukztxkuq

p

– –

–

Here the maps are all induced by obvious inclusions, the two vertical maps are isomorphisms by
excision, and the bottom horizontal map is an isomorphism due to a combination of the additivity
axiom with the five-lemma (see Exercise 30.16), thus p is also an isomorphism. If we use this to
replace hnpM,Mzf´1pyqq in (34.2) by

Àℓ
k“1 hnpM,Mztxkuq, then the map pk˚ becomes simply

the projection of
Àℓ

k“1 hnpM,Mztxkuq to the factor hnpM,Mztxkuq. With this replacement
understood, we have

j˚ “ pix1

˚ , . . . , ixℓ
˚ q : hnpMq Ñ

ℓà
k“1

hnpM,Mztxuq,
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and the commutativity of the bottom right square in (34.2) then gives the formula

(34.3) f˚j˚ “
ℓÿ

k“1

f˚i
xk
˚ “ i

y
˚f˚ : hnpMq Ñ hnpN,Nztyuq.

If h˚ is H˚p¨;Zq and we apply this formula to the chosen generator rM s P HnpM ;Zq with ixk
˚ rM s “

rM sxk
, the result is

ℓÿ

k“1

f˚rM sxk
“

ℓÿ

k“1

degpf ;xkqrN sy “ i
y
˚f˚rM s “ degpfqiy˚rN s “ degpfqrN sy,

from which the formula for the integer degree follows. The formula for the mod 2 degree follows
in the same way using h˚ “ H˚p¨;Z2q. �

The following result can also be extracted from this proof. We will mainly care about this
result in the case M “ N “ Sn, but it can be proved somewhat more generally:

Theorem 34.8. Suppose M and N are smooth manifolds52 of dimension n P N that are
both Z-admissible and h˚-admissible for some axiomatic homology theory h˚. Then for any map
f :M Ñ N of degree k P Z, the homomorphism f˚ : hnpMq Ñ hnpNq takes the form f˚c “ kc.

Proof. One can verify explicitly that the corresponding statement about reduced homology
holds for all maps f : S0 Ñ S0; this is easy to check because there exist only four distinct maps
from S0 to itself and the reduced homology of S0 can be derived directly from the additivity and
dimension axioms (see Exercise 28.17). We now argue by induction on the dimension, assuming for
a given n that homomorphisms f˚ : rhn´1pSn´1q Ñ rhn´1pSn´1q are always given by multiplication
with the integer-valued degree of f . Since M and N are smooth manifolds, one can use standard
results from differential topology as in [Hir94] to perturb f : M Ñ N to a smooth map without
changing its homotopy class, and Sard’s theorem then implies that almost every point y P N is
a regular value, meaning the derivative of f at every x P f´1pyq is an isomorphism. The latter
implies that each x P f´1pyq is isolated in f´1pyq, hence f´1pyq Ă M is a discrete set and therefore
(since M is compact) also finite. Now write f´1pyq “ tx1, . . . , xℓu and, given c P hnpMq, use (34.3)
to write

i
y
˚f˚c “

ℓÿ

k“1

f˚i
xk
˚ c,

where the individual terms on the right hand side involve the homomorphisms

f˚ : hnpM,Mztxkuq Ñ hnpN,Nztyuq.

Using excision and connecting homomorphisms as in Proposition 33.9, one can identify both the
domain and target of this map with rhn´1pSn´1q so that f˚ is equivalent to the homomorphism
rhn´1pSn´1q Ñ rhn´1pSn´1q induced by a map Sn´1 Ñ Sn´1 whose degree is precisely degpf ;xkq.
The inductive hypothesis thus expresses the homomorphism as multiplication by degpf ;xkq, giving

52I am assuming smoothness here because my proof uses Sard’s theorem, but I am slightly unhappy about this
and think there should be another way. The argument basically works whenever one can prove that f : M Ñ N

is homotopic to a map for which some point y P N has a finite preimage. Even for continuous maps Sn Ñ Sn,
it is hard to see why this should be true in general, but appealing to a couple of standard results from differential
topology makes it obvious.



35. CW-COMPLEXES 233

a commutative diagram

hnpM,Mztxkuq hnpN,Nztyuq

hn´1pSn´1q hn´1pSn´1q

f˚

– –

¨ degpf ;xkq

Adding up these contributions for every xk P f´1pyq produces multiplication by degpfq according
to Theorem 34.7. �

One consequence of this result is that the definition of degpfq does not actually depend on the
choice to use singular homology in particular—we could have replaced H˚p¨;Zq in Definition 33.17
with any other axiomtaic homology theory with coefficient group Z and would thus obtain an
equivalent definition. We also can now state a straightforward relationship between degpfq and
deg2pfq:

Corollary 34.9. If M and N are both Z-admissible and Z2-admissible, then for every map
f :M Ñ N , deg2pfq is the image of degpfq under the natural projection Z Ñ Z2. �

The more important consequence of Theorem 34.8 will be the role it plays in computing
arbitrary axiomatic homology theories h˚pXq on spaces X endowed with cell decompositions.
The next major theorem we need to prove is that if h˚ has coefficient group G and X is a so-
called CW-complex, then h˚pXq is always isomorphic to an object that is typically much easier
to compute: the homology of the cellular chain complex with coefficients in G. The definition of
the boundary map in this chain complex requires a good understanding of the homomorphisms
rh˚pSnq Ñ rh˚pSnq induced by certain continuous maps that form part of the structure of the
CW-complex. Theorem 34.8 then allows us to express this data purely in terms of the mapping
degree, at which point it no longer matters which axiomatic homology theory we are trying to
compute—the only detail that makes any difference is the coefficient group. The theorem thus
provides a large portion of the underlying reason why all axiomatic homology theories turn out to
be isomorphic if we choose to compute them only on relatively “reasonable” spaces. We will start
the discussion of CW-complexes in earnest in the next lecture.

35. CW-complexes

Let’s clear up one thing straightaway: the “CW” in “CW-complex” does not stand for my name.
If you must know, the “C” stands for “closure-finite,” and the “W” for “weak topology”. Both

of these terms refer to slightly subtle issues involving the definition and properties of the topology
on a CW-complex. We’ll get to that.

But first, I should tell you what they are. The informal answer is that CW-complexes are spaces
that we can construct by gluing disks (of various dimensions) to things along their boundaries.
It turns out that almost all spaces of importance in geometric settings can be constructed in this
way, so understanding the algebraic topology of CW-complexes opens the way toward an enormous
range of applications. The motivation to focus on CW-complexes rather than more general spaces
is practical: in essence, CW-complexes are the class of topological spaces for which the subject of
algebraic topology is doable.

Definition 35.1. A CW-complex (CW-Komplex) or cell complex (Zellkomplex) is a topo-
logical space X that is the union of a sequence of nested subspaces

X0 Ă X1 Ă X2 Ă . . . Ă X

constructed by the following inductive procedure:
‚ X0 is a space with the discrete topology;
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‚ For each n P N, there exists a set Kn and a collection of maps tϕα : Sn´1 Ñ Xn´1uαPKn

such that Xn is the result of attaching n-disks Dn along their boundaries to Xn´1 via
the maps ϕα for every α P Kn, i.e.

(35.1) Xn “ Xn´1 Yϕn

ž

αPKn

Dn, where ϕn :“
ž

αPKn

ϕα :
ž

αPKn

BDn Ñ Xn´1.

We call Xn the n-skeleton (n-Skelett or n-Gerüst) of X . We call the individual points of X0 the
0-cells (0-Zellen) of the complex, and it will be convenient to also denote K0 :“ X0. For each
n P N and α P Kn, the interior of the copy of Dn associated to α in the disjoint union defines an
open subset

enα Ă Xn,

which is called an n-cell (n-Zelle) of the complex, and the associated map ϕα : Sn´1 Ñ Xn´1 is
called its attaching map (Anklebeabbildung). The map

Φnα : Dn Ñ X

that satisfies Φnα|BDn “ ϕα and restricts to the interior of the disk as the inclusion enα ãÑ Xn is
called the characteristic map (charakteristische Abbildung) of the cell enα. The complex is called
n-dimensional if n is the largest number for which it contains an n-cell, i.e. Km “ H for all m ą n

but Kn ‰ H.

Let us recall quickly what the notation in (35.1) means: we are defining Xn as a quotient of
a disjoint union,

Xn “ Xn´1 >
˜ ž

αPKn

Dn

¸O
„,

where x „ ϕnpxq for every x P
š
αPKn BDn. The topology of Xn is implicit in this definition: if we

know the topology of Xn´1, then the topology of Xn is determined via the quotient topology and
the disjoint union topology, so in this way one can start from the discrete space X0 and deduce
the topology of every individual skeleton Xn one by one. Now, I’m not sure if you noticed this,
but nothing we’ve said so far specifies the topology of X itself, at least not in the most general
cases—it may well happen that X “ Xn for some n ě 0 because the complex is finite-dimensional,
so then the topology of Xn defines the topology of X , but more needs to be said if the complex is
infinite dimensional.

Definition 35.2. The topology of a CW-complex X “ X0 YX1 YX2 Y . . . is defined by the
condition that a subset U Ă X is open if and only if U X Xn is an open subset of Xn for every
n ě 0.

Exercise 35.3. Show that a subset U Ă X in a CW-complex is open if and only if for every
n ě 0 and every n-cell enα, Φ´1

α pUq is an open subset of Dn. In other words, the topology of a
CW-complex is the strongest possible topology for which all characteristic maps are continuous.

Exercise 35.4. Show that for any CW-complex X and any space Y , a map f : X Ñ Y is
continuous if and only if its restriction to the n-skeleton of X is continuous for every n ě 0, or
equivalently, if f ˝ Φα : Dn Ñ Y is continuous for every n ě 0 and α P Kn.

Remark 35.5. You may by now have noticed an awkward problem with our terminology: the
“W” in “CW” supposedly stands for “weak topology,” yet the topology described in Definition 35.2
is not weak at all, but is the strongest with a given property. This discrepancy is apparently the
fault of J.H.C. Whitehead, whose influence on the subject was so substantial that many authors
still refer to the topology of CW-complexes as “the weak topology” in the literature. Exercise 35.4
at least provides an argument for this term, as a CW-complex X is “weak” in the sense that it is
fairly easy for functions defined on X to be continuous.
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Definition 35.6. A cell decomposition (Zellenzerlegung) of a space X is a choice of home-
omorphism from X to a CW-complex.

Example 35.7. Recall that Sn – Dn{BDn for n ě 1. This picture of the sphere defines
a cell decomposition of Sn with one 0-cell and one n-cell: the 0-cell is the point e0 P Dn{BDn
represented by any point in BDn, and the characteristic map of the n-cell en is the quotient map
Φ : Dn Ñ Dn{BDn. This identifies Sn with an n-dimensional CW-complex whose k-skeleton for
each k ă n is a single point.

Note that in the above example, the attaching map of the n-cell is very far from being injective,
thus its characteristic map is also not injective at BDn, though the restriction of a characteristic
map to the interior is always injective.

Example 35.8. There is another favorite cell decomposition of Sn in which the k-skeleton for
each k “ 0, . . . , n is homeomorphic to Sk. The idea is to start with two points X0 :“ S0, and then
inductively define Xk for each k “ 1, . . . , n by regarding Xk´1 “ Sk´1 as an equator and gluing
two cells to it to form the “northern” and “southern” hemispheres of Sk:

Sk “ Sk´1 Yϕk pDk` > Dk´q.
In this case there are exactly two k-cells for each k “ 0, . . . , n, all attaching maps Sk´1 Ñ Xk´1

are homeomorphisms and all characteristic maps are injective.

Example 35.9. It is natural to define the decomposition Sn “ Dn` YSn´1 Dn´ used in the
previous example such that the antipodal map Sn Ñ Sn sends Dn˘ to Dn¯ and restricts to the
equator Sn´1 as the antipodal map, which we can then assume satisfies the same condition with
respect to the decomposition Sn´1 “ Dn´1

` YSn´2 Dn´1
´ and so forth. In this way, Example 35.8

also gives rise to a cell decomposition of RPn “ Sn{Z2 with exactly one k-cell for each k “ 0, . . . , n.
The k-skeleton of RPn is then a submanifold of the form

Xk “
 

rpx0, . . . , xnqs P RP
n “ Sn{Z2

ˇ̌
xk`1 “ . . . “ xn “ 0

(
– RP

k.

In contrast to Example 35.8, the characteristic maps Dk Ñ RPn for this cell decomposition are
not injective: indeed, the k-cells in Example 35.8 are attached to the pk ´ 1q-skeleton Sk´1 via
a homeomorphism Sk´1 Ñ Sk´1, but in RP

n this must be understood as a map to Xk´1 “
RP

k´1 “ Sk{Z2, thus the homeomorphism Sk´1 Ñ Sk´1 from Example 35.8 gets composed with
the quotient projection Sk´1 Ñ RP

k´1 and thus becomes a covering map of degree 2.

Example 35.10. This will be harder to picture, but one can adjust Example 35.8 by following
the same procedure of attaching two k-cells along homeomorphisms Sk´1 Ñ Xk´1 for every k P N,
without stopping when k “ n. The result is an infinite-dimensional CW-complex called S8. The
best way to picture it is probably as a subset of the infinite-dimensional vector space R8 :“À8

k“1 R, consisting of all sequences of real numbers px1, x2, x3, . . .q that have only finitely many
nonzero terms. Here we can identify Rn for each n ě 1 with the subspace tpx1, . . . , xn, 0, 0, . . .q P
R8u, so that Sk Ă Rk`1 becomes a subset of R8 that also happens to be contained in Sk`1, and
S8 is the union of the nested sequence of spaces

S0 Ă S1 Ă S2 Ă S3 Ă . . . Ă S8.

More concretely, S8 is just the subset of R8 defined by the condition
ř8
i“1 x

2
i “ 1, where there is

no question about convergence since only finitely many terms can be nonzero. As the next exercise
shows, there is something a bit subtle about the topology of S8.

Exercise 35.11. Show that if xk P S8 is a convergent sequence, then there exists n P N such
that xk P Sn for every k.
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Hint: Given x P Sn Ă S8 and a sequence xk P S8 such that xk R Sk for all k, construct a
neighborhood U Ă S8 of x such that xk R U for all k.

Remark 35.12. The exercise reveals that S8 is in some sense fundamentally different from
any “infinite-dimensional sphere” that one would be likely to study in functional analysis. For
instance, if S is the set of unit vectors in the infinite-dimensional Hilbert space

ℓ2 :“
#
x “ px1, x2, . . .q P

8ź

i“1

R

ˇ̌
ˇ̌
ˇ

8ÿ

i“1

x2i ă 8
+

with inner product xx,yy :“
ř
i xiyi, then there is no reason for the terms in a convergent sequence

in S to belong to any particular finite-dimensional subspace. One can show however that S and
S8 are nonetheless homotopy equivalent—in fact, both are contractible! (A proof of this for S8

can be found in [Hat02, p. 88].)

Remark 35.13. Combining Examples 35.9 and 35.10 in the obvious way produces another
infinite-dimensional CW-complex called RP

8, which has exactly one k-cell for every k ě 0. This
space is of great theoretical importance, as it arises e.g. as the so-called classifying space of the
group Z2, meaning that classification questions for certain classes of vector bundles over reasonable
spaces X can be reduced to computations of the set of homotopy classes of maps X Ñ RP

8. The
theory of characteristic classes is founded in large part on understanding the homotopy types of
certain infinite-dimensional CW-complexes such as this one; see e.g. [MS74].

Example 35.14. Recall that the closed oriented surface Σg of genus g ě 0 can be pre-
sented as a polygon with 4g sides, with certain pairs of sides identified as dictated by the word
a1, b1, a

´1
1 , b´1

1 , a2, b2, a
´1
2 , b´1

2 , . . . , ag, bg, a
´1
g , b´1

g (see Definition 13.8 in last semester’s Lecture 13).
This defines a CW-complex in which there is one 0-cell (the vertices of the polygon are all iden-
tified with the same point), 2g one-cells which can be labeled a1, b1, . . . , ag, bg and are attached
along the unique map S0 Ñ X0, and a single 2-cell attached via a map S1 Ñ X1 that defines the
concatenation of loops indicated by the above word.

Example 35.15. Since the standard n-simplex ∆n is homeomorphic to Dn, the polyhedron of
any simplicial complex is also a CW-complex whose n-cells are precisely the n-simplicies, and the
characteristic maps are all inclusions. The use of the term “n-skeleton” in this context coincides
with our usage in Lecture 29.

Definition 35.16. A subcomplex of a CW-complex X is a subset A Ă X that is also a
CW-complex with n-skeleton An “ AXXn for all n ě 0, such that every cell in A is also a cell in
X with the same characteristic map.

Our goal in this lecture is to get as quickly as possible to the definition of cellular homology so
that we can compute some examples. For this definition to make sense in full generality, we need
an observation about the point-set topology of CW-complexes that is vacuous in the case of finite
complexes but nontrivial for infinite complexes. We will postpone its proof until the next lecture,
and since most of the interesting examples we consider will be finite complexes anyway, you are
safe in ignoring it most of the time.

Proposition 35.17. For any CW-complex X, any compact subspace K Ă X is contained in
a finite subcomplex of X, i.e. in a subcomplex with only finitely many cells.

The following consequence is the reason for the term “closure-finite”:

Corollary 35.18. The closure of each cell in a CW-complex intersects only finitely many
other cells. �
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Remark 35.19. Notice that Proposition 35.17 immediately implies the result of Exercise 35.11.
It is worth trying to do the exercise independently of this in order to develop some intuition as to
why Proposition 35.17 is true.

We can now define the cellular chain complex (zellulärer Kettenkomplex) associated to a
CW-complex X . For n P Z, define CCW

n pXq to be the trivial group if n ă 0 and otherwise

CCW
n pXq :“

à
αPKn

Z,

i.e. CCW
n pXq is the free abelian group generated by the set of n-cells enα in our given cell decom-

position of X . We shall denote the generators of this group as cells enα, thus writing elements of
CCW
n pXq as finite sums ÿ

i

mie
n
αi

P CCW
n pXq

for coefficients mi P Z and indices αi P Kn. The direct sum of all these groups produces a Z-graded
abelian group

CCW
˚ pXq “

à
nPZ

CCW
n pXq,

which we shall now turn into a chain complex by defining a suitable boundary operator B :

CCW
˚ pXq Ñ CCW

˚´1pXq. There is a geometric motivation for the definition: for each generator
enα of CCW

n pXq, we want Benα to be a linear combination of pn´ 1q-cells determined by the attach-
ing map ϕα, which tells us how the closure of enα is glued to the pn ´ 1q-skeleton of X . For this
purpose, associate to each α P Kn with n ě 1 the map pα : Xn Ñ Sn determined by the following
diagram:

(35.2)

Xn Dn{BDn Sn

Xn
L

pXnzenαq

pα

pr
Φα

Here pr denotes the quotient projection, and the fact that ϕα maps BDn into Xn´1 Ă Xnzenα
implies that the characteristic map Φα : Dn Ñ Xn descends to a map of the quotients Dn{BDn Ñ
Xn{pXnzenαq. The key point is that the latter is a homeomorphism, thus we can invert it to define
pα “ Φ´1

α ˝ pr as a map from Xn Ñ Sn after identifying Sn with Dn{BDn. This doesn’t quite
make sense if n “ 0 since we cannot write “D0{BD0 “ S0,” nonetheless there is in most cases a
natural bijection of X0{pX0ze0αq with S0 “ t1,´1u sending the cell e0α to 1 and the equivalence
class represented by every other 0-cell to ´1. The only case that still requires special consideration
is when X0 – tptu, so there is only one 0-cell e0α and thus X0ze0α “ H. As a convention for this
case we shall define pα : X0 Ñ S0 so that it sends e0α to 1 P S0, and with this in place, we now
have a definition of pα : Xn Ñ Sn for every n.

Definition 35.20. Given an n-cell enα and an pn´1q-cell en´1
β in a CW-complex X , we define

the incidence number
ren´1
β : enαs P Z

as the degree of the map

Sn´1 pβ˝ϕαÝÑ Sn´1

defined by composing the attaching map ϕα : Sn´1 Ñ Xn´1 for enα with the map pβ : Xn´1 Ñ Sn´1

defined by replacing enα with en´1
β in the diagram (35.2). We may sometimes abbreviate the

incidence number by rβ : αs.
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Observe that whenever Ďenα X en´1
β “ H, it follows that the image of ϕα : Sn´1 Ñ Xn´1 is

disjoint from en´1
β and is thus mapped to a constant by pβ : Xn´1 Ñ Sn´1, hence pβ ˝ ϕα is a

constant map and ren´1
β : enαs “ 0. In light of Corollary 35.18, this implies that the sum in the

following definition makes sense, because it can only have finitely-many nonzero terms.

Definition 35.21. For each n P N, the boundary map on the cellular chain complex CCW
˚ pXq

is defined at degree n as the unique homomorphism B : CCW
n pXq Ñ CCW

n´1pXq satisfying

Benα “
ÿ

βPKn´1

ren´1
β : enαsen´1

β

for each α P Kn.

Implicit in this definition is that B : CCW
n pXq Ñ CCW

n´1pXq is the trivial map for every n ď 0,
as it must be since its target is then the trivial group. We shall now state two important theorems
whose proofs will be postponed: the first states simply that pCCW

˚ pXq, Bq is a chain complex.

Theorem 35.22. The map B : CCW
˚ pXq Ñ CCW

˚ pXq satisfies B2 “ 0.

The cellular homology (zelluläre Homologie) of the CW-complex X can now be defined as

HCW
˚ pXq :“ H˚

`
CCW

˚ pXq, B
˘
.

Similarly, we can introduce any abelian coefficient group G and define

HCW
˚ pX ;Gq :“ H˚

`
CCW

˚ pXq bG, B b 1
˘
,

with the case G “ Z reproducing the previous definition. The notation HCW
˚ pX ;Gq is in some

sense slightly non-ideal, as it hides the fact that the definition of HCW
˚ pX ;Gq depends on more

than just a space X and coefficient group G, but also on a cell decomposition of X . The next
theorem reveals why this is not a big deal.

Theorem 35.23. For any CW-complex X and any axiomatic homology theory h˚ with coeffi-
cient group G, there is an isomorphism HCW

˚ pX ;Gq – h˚pXq.
We will improve this statement slightly in the next lecture by talking about CW-pairs and

morphisms of CW-pairs, so that the isomorphism between HCW
˚ p¨;Gq and h˚ can be regarded

as a natural transformation. Theorem 35.23 has several remarkable consequences that can be
recognized immediately: one is that HCW

˚ pX ;Gq depends (up to isomorphism) only on the topology
of X and not on its cell decomposition, and another is that all axiomatic homology theories are
isomorphic if we restrict them to spaces that are nice enough to have cell decompositions. In light
of Example 35.15, this also tells us why the simplicial homology of a polyhedron depends only on
its topology and not on its simplicial decomposition—simplicial homology is just the special case
of cellular homology for CW-complexes that take the form of simplicial complexes.

Before trying to explain why all this is true, let’s look at a couple of examples that will make
Theorem 35.23 looks more plausible.

Example 35.24. We saw in Example 35.7 that Sn for each n P N has a cell decomposition
with one 0-cell e0 and one n-cell en, so X0 “ X1 “ . . . “ Xn´1 – tptu and Xn “ Sn. These two
cells are thus the only generators of CCW

˚ pSn;Gq, giving

CCW
k pSn;Gq “

#
G if k “ 0, n,

0 otherwise.

We claim that on this chain complex, B “ 0, hence HCW
˚ pSn;Gq “ CCW

˚ pSn;Gq, which matches
our previous computation of h˚pSnq for any axiomatic homology theory. If n ě 2, then the
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claim holds trivially because for every k P Z, either the domain or the target of the map B :

CCW
k pSn;Gq Ñ CCW

k´1pSn;Gq is trivial. When n “ 1 there is still something to check: B :

CCW
1 pSn;Gq Ñ CCW

0 pSn;Gq might theoretically be nontrivial since its domain and target are
both G. The map will be trivial for every choice of coefficient group if and only if

Be1 “ re0 : e1se0

is trivial, i.e. if the incidence number re0 : e1s is 0. This is the degree of a map p ˝ ϕ : S0 Ñ S0,
where ϕ : S0 Ñ X0 – tptu is the attaching map for e1 and p : X0 Ñ S0 sends e0 to 1 P S0. Since
both of these maps are constant, re0 : e1s “ degpp ˝ ϕq “ 0.

Example 35.25. We consider S2 with the alternative cell decomposition described in Exam-
ple 35.8, which has two k-cells ek˘ for each k “ 0, 1, 2, hence S2 “ e0` Ye0´ Ye1` Ye1´ Ye2` Ye2´, and
the k-skeleton is Xk “ Sk Ă S2 for k “ 0, 1, 2. We now have CCW

k pSn;Gq “ 0 for k ă 0 or k ą 2,
while CCW

k pSn;Gq “ G‘G for each k “ 0, 1, 2, with the two factors of G corresponding to the two
generators ek`, e

k
´ P CCW

k pSn;Zq. Denote the attaching map for ek˘ by ϕk˘ : Sk´1 Ñ Xk´1, and de-
note the projection map as defined in (35.2) by pk˘ : Xk Ñ Sk, so B : CCW

k pSn;Gq Ñ CCW
k´1pSn;Gq

is now determined by

Bek` “ degppk´1
` ˝ ϕk`qek´1

` ` degppk´1
´ ˝ ϕk`qek´1

´ ,

Bek´ “ degppk´1
` ˝ ϕk´qek´1

` ` degppk´1
´ ˝ ϕk´qek´1

´ .
(35.3)

To compute these degrees, we will need a slightly more concrete description of the maps involved.
Let us regard S2 as the unit sphere in the xyz-plane, with its 1-skeleton formed by the unit circle
in the xy-plane, and the 0-skeleton consisting of the two points p˘1, 0, 0q. It is then natural to
parametrize the characteristic maps Φ1

˘ : D1 Ñ S2 of the two 1-cells e1˘ via the x coordinate,
giving

Φ1
˘ : D1 Ñ S2 : x ÞÑ px,˘

a
1 ´ x2, 0q,

so the attaching maps ϕ1
˘ : S0 Ñ S0 are the restrictions of these to BD1 and are thus both the

identity map S0 Ñ S0. Each of the maps p0˘ : X0 Ñ S0 is likewise a bijection in this example,
sending its “favorite” 0-cell e0˘ to 1 P S0 and the other one to ´1 P S0, so in fact, p0` is the identity
map S0 Ñ S0 and p0´ is the bijection sending ˘1 to ¯1. The latter has degree ´1, so we can now
fill in the coefficients for k “ 1 in (35.3) and write

Be1` “ Be1´ “ e0` ´ e0´.

For the 2-cells e2˘, the most obvious parametrization is defined by inverting the projection px, y, zq ÞÑ
px, yq, so we can define the characteristic maps by

Φ2
˘ : D2 Ñ S2 : px, yq ÞÑ px, y,˘

a
1 ´ x2 ´ y2q,

and the attaching maps ϕ2
˘ : S1 Ñ X1 thus become once again the identity map S1 Ñ S1. To

understand the maps p1˘ : X1 Ñ S1, let us first agree that the identification of D1{BD1 with S1

should be defined via path γ : D1 Ñ S1 that sends ˘1 ÞÑ 1 and traverses a loop γptq P S1 with
winding number `1 as t goes from ´1 to 1. Now, p1` : S1 Ñ D1{BD1 sends the top half of the
circle S1 “ X1 to D1 via the inverse of our chosen characteristic map Φ1

` and sends the bottom
half of the circle to a constant: the resulting winding number is degpp1` ˝ ϕ2

˘q “ ´1. Meanwhile,
p2´ : S1 Ñ D1{BD1 sends the top half of the circle to a constant but maps the bottom half to D1

as the inverse of Φ1
´, producing degpp1´ ˝ ϕ2

˘q “ 1. We thus have

Be2` “ Be2´ “ ´e1` ` e1´.
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With these formulas in place, we can compute the homology of CCW
˚ pS2;Gq explicitly: acting with

B on an arbitrary 2-chain ge2` ` he2´ for g, h P G gives

Bpge2` ` he2´q “ ´pg ` hqe1` ` pg ` hqe1´ “ pg ` hqp´e1` ` e1´q,

which vanishes if and only if g “ ´h, so in terms of the obvious identification of CCW
2 pS2;Gq with

G ‘G, the group of 2-cycles takes the form

ker B2 “ tpg,´gq P G ‘G | g P Gu Ă CCW
2 pS2;Gq,

which is isomorphic to G. Since CCW
3 pS2;Gq “ 0, we conclude HCW

2 pS2;Gq – G. To find the
1-cycles, we similarly compute

Bpge1` ` he1´q “ pg ` hqe0` ´ pg ` hqe0´ “ pg ` hqpe0` ´ e0´q,

and this again vanishes if and only if g “ ´h, so the 1-cycles consist of all elements of the form
gpe1` ´ e1´q. But these are also boundaries since Bp´ge2`q “ gpe1` ´ e1´q, thus HCW

1 pS2;Gq “ 0.
Finally, all 0-chains ge0``he0´ are cycles since CCW

´1 pS2;Gq “ 0, but under the obvious isomorphism
CCW

0 pS2;Gq “ G ‘G we have

im B1 “ tpg,´gq P G‘G | g P Gu Ă CCW
0 pS2;Gq,

so HCW
0 pS2;Gq is isomorphic to the quotient of G ‘ G by this subgroup, which is again G. The

end result therefore matches the n “ 2 case of Example 35.24.

It is not too hard to extend Example 35.25 to a computation of HCW
˚ pSn;Gq for every n P N

in terms of the cell decomposition Sn “ e0` Y e0´ Y . . . Y en` Y en´. Getting all the signs right is
a bit of a pain, but all coefficients will again work out to ˘1 in such a way that all nontrivial
k-cycles are also boundaries for k “ 1, . . . , n´ 1, but the groups ker Bn and CCW

0 pSn;Gq{ im B1 are
again both G. The fact that getting all the signs right is a bit tricky is an argument for doing
the computation via the simpler cell decomposition Sn “ e0 Y en instead, as in Example 35.24, so
we will invest considerable effort over the next couple of lectures into proving that this is allowed,
because the isomorphism class of HCW

˚ pX ;Gq depends in general only on the topology of X and
not on its cell decomposition.

Exercise 35.26. Figure 19 shows two spaces that you may recall from Topologie I are both
homeomorphic to the Klein bottle. Each also defines a cell complex X “ X0 YX1 YX2 consisting
of one 0-cell, two 1-cells (labeled a and b) and one 2-cell.

(a) Compute HCW
˚ pX ;Zq, HCW

˚ pX ;Z2q and HCW
˚ pX ;Qq for both complexes. (You’ll know

you’ve done something wrong if the answers you get from the two complexes are not
isomorphic!)

(b) Recall that the rank (Rang) of a finitely generated abelian group G is the unique integer
k ě 0 such that G – Zk ‘ T for some finite group T . Verify for both cell decompositions
of the Klein bottle above that

ÿ

k

p´1qk rankHCW
k pX ;Zq “

ÿ

k

p´1qk dimZ2
HCW
k pX ;Z2q “

ÿ

k

p´1qk dimQH
CW
k pX ;Qq “ 0.

(Congratulations, you’ve just computed the Euler characteristic of the Klein bottle! A
comprehensive discussion of this invariant is coming up in Lecture 39.)
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Figure 19. The two cell decompositions of the Klein bottle considered in Exercise 35.26.

36. Invariance of cellular homology, part 1

Having defined the cellular homologyHCW
˚ pX ;Gq for a CW-complex X in the previous lecture,

we would now like to begin working toward the proof that it is isomorphic to h˚pXq for any
axiomatic homology theory h˚ with coefficient group G. The proper statement of that result is
Theorem 36.9 below. But first, there was a more basic result about CW-complexes that we left
unproved in the previous lecture, without which the cellular chain complex is not generally well
defined.

Proposition 36.1. For any CW-complex X, any compact subspace K Ă X is contained in a
finite subcomplex of X, i.e. in a subcomplex with only finitely many cells.

Proof. Step 1: Suppose A Ă X is a subset with the property that for every pair of distinct
elements x, y P A, x and y belong to different cells of the complex. We claim then that A X Xn

is a closed subset of Xn for every integer n ě 0. The proof is by induction on n; for n “ 0

it is trivially true since X0 carries the discrete topology, so all of its subsets are closed. Now if
we assume A X Xn´1 Ă Xn´1 is closed, it follows that for every n-cell enα with attaching map
ϕα : Sn´1 Ñ Xn´1 and characteristic map Φα : Dn Ñ X , ϕ´1

α pAq is a closed subset of Sn´1. Since
at most one element of A can lie in enα, the set Φ´1

α pAq Ă Dn is then either ϕ´1
α pAq or the union of

this with a single point in the interior of the disk, so in either case it is closed. Viewing Xn itself
as a CW-complex in the obvious way and remembering that closed sets are complements of open
sets, Exercise 35.3 now implies that A X Xn Ă Xn is closed. By induction, this is true for every
n ě 0, and it follows via the definition of the topology of X that A is a closed subset of X .

Step 2: Given a compact subset K Ă X , we claim that K can intersect at most finitely many
distinct cells of X . Otherwise there exists an infinite subset A Ă K in which every element belongs
to a different cell. Step 1 implies that A Ă X is closed, and moreover, so is every subset of A, which
means that the induced subspace topology on A is the discrete topology. Since K is compact, this
makes A Ă K a compact discrete space, contradicting the assumption that A is infinite.

Step 3: We claim that for every n ě 0, every compact subset K Ă Xn is contained in a finite
subcomplex of Xn. For n “ 0 this is obvious since the compact subsets of X0 are finite. By
induction, if the claim is known for compact subsets of Xn´1, then it holds in particular for the
image of the attaching map ϕα : Sn´1 Ñ Xn´1 of any n-cell enα, providing a finite subcomplex
A Ă Xn´1 whose union with enα is a finite subcomplex of Xn containing enα. In light of step 2,
this proves the claim for all compact subsets of Xn, as finite unions of finite subcomplexes are also
finite subcomplexes.

To conclude, step 3 implies that for every cell enα of the complex, the compact subset Ďenα “
ΦαpDnq Ă X is contained in a finite subcomplex, and combining this with the claim in step 2
proves the result. �
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Let’s briefly recall how the cellular chain complex CCW
˚ pXq is defined. Each chain group

CCW
n pXq is freely generated by the set of n-cells enα in X , and B : CCW

n pXq Ñ CCW
n´1pXq is

determined by the formula
Benα “

ÿ

en´1

β

ren´1
β : enαsen´1

β ,

where the sum is over all the pn´1q-cells en´1
β in X , and Proposition 36.1 implies that only finitely

many terms are nonzero. The most important detail here is the incidence number ren´1
β : enαs P Z,

which is the degree of the composition of two maps

Sn´1 ϕαÝÑ Xn´1 pβÝÑ Sn´1,

where ϕα is the attaching map for enα, and pβ is defined by collapsing everything outside of en´1
β

to a point and using the characteristic map Φβ : Dn´1 Ñ Xn´1 to identify the resulting quotient
with Dn´1{BDn´1 “ Sn´1.

As mentioned in the previous lecture, this description of pβ doesn’t quite work when n “ 1,
so let us work out a more useful formula for B1 : CCW

1 pXq Ñ CCW
0 pXq. If X0 – tptu, then

pβ ˝ ϕα : S0 Ñ S0 always factors through a one-point space and is therefore a constant map,
implying re0β : e1αs “ 0 for all β P K0 and α P K1, so B1 “ 0. If there is more than one 0-cell, then
pβ : X0 Ñ S0 is the map that sends e0β to 1 P S1 and every other 0-cell to ´1 P S1, so composing
it with the attaching map ϕα : BD1 Ñ X0 produces the following possibilities:

‚ If ϕαp1q “ e0β and ϕαp´1q ‰ e0β , then pβ ˝ ϕα : S0 Ñ S0 is the identity map and thus
re0β : e1αs “ 1.

‚ If ϕαp1q ‰ e0β but ϕαp´1q “ e0β , then pβ ˝ ϕαp˘1q “ ¯1 and thus re0β : e1αs “ ´1.
‚ In all other cases, pβ ˝ ϕα is constant and thus re0β : e1αs “ 0.

Since each point of X0 is a 0-cell, we can identify it with a generator of CCW
0 pXq and thus deduce

from the remarks above the following:

Proposition 36.2. The map B : CCW
1 pXq Ñ CCW

0 pXq is determined by the formula

Be1α “ ϕαp1q ´ ϕαp´1q.
�

One immediately derives from this result a formula for B : CCW
1 pX ;Gq Ñ CCW

0 pX ;Gq with
any coefficient group G.

Let’s do another easy example.

Example 36.3. We saw in Example 35.14 that the closed oriented surface Σg of genus g ě 0

has a cell decomposition with one 0-cell e0, 2g cells of dimension one which we can label

e1a1 , e
1
b1
, . . . , e1ag , e

1
bg
,

and a single 2-cell e2, which is the interior of the usual polygon with 4g sides. In particular, the 0-
skeleton X0 is a single point, and the 1-skeleton X1 is a wedge of 2g circles labeled a1, b1, . . . , ag, bg
that all intersect only at X0. Since there is only one 0-cell, all of the 1-cells are cycles in CCW

1 pΣgq:
Be1aj “ Be1bj “ 0 for j “ 1, . . . , g.

The attaching map ϕ : S1 Ñ X1 of the 2-cell is a loop that traverses a1, then b1, then a1 again
backwards and b1 again backwards, then moves on to a2, b2 and so forth, ending with bg backwards.
Composing this with the projection pa1 : X1 Ñ S1 that collapses X1ze1a1 to a point, we obtain
a concatenation of the loop a1 with a constant path and then a´1

1 followed by another constant
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path, resulting in a map S1 Ñ S1 with degree 0. The same happens with all the other projections
paj , pbj , so that all of the incidence numbers in the computation of Be2 vanishe and we obtain

Be2 “ 0.

This proves that B “ 0 for the entire cellular chain complex with arbitrary coefficients, hence

HCW
k pΣg;Gq “ CCW

k pΣg;Gq –

$
’&
’%

G for k “ 0, 2,

G2g for k “ 1,

0 for k ă 0 and k ą 2.

There is also a relative version of cellular homology. A CW-pair (CW-Paar) is a pair of
CW-complexes pX,Aq such that A is a subcomplex of X . In this case CCW

˚ pA;Gq is a subcomplex
of CCW

˚ pX ;Gq, i.e. it is a subgroup preserved by the boundary map, giving rise to a quotient chain
complex

CCW
˚ pX,A;Gq :“ CCW

˚ pX ;Gq
L
CCW

˚ pA;Gq.
The homology of this complex is the relative cellular homology

HCW
˚ pX,A;Gq :“ H˚

`
CCW

˚ pX,A;Gq
˘
.

By this point you should not be surprised to learn that one can define a category CWrel whose
objects are CW-pairs, but I still need to tell you what its morphisms are.

Definition 36.4. A continuous map f : X Ñ Y between CW-complexes is called a cellular
map (zelluläre Abbildung) if fpXnq Ă Y n for every n ě 0. More generally, if pX,Aq and pY,Bq
are CW-pairs, a map of CW-pairs is a cellular map f : X Ñ Y such that fpAq Ă B. (Its
restriction f |A : A Ñ B is then automatically a cellular map.)

Example 36.5. If X and Y are polyhedra (and therefore also CW-complexes as explained in
Example 35.15), then any simplicial map f : X Ñ Y is also a cellular map.

Unlike simplicial maps, a cellular map f : X Ñ Y need not generally map cells of X to
cells of Y . Instead, the image of an individual cell enα Ă X may cover many n-cells enβ Ă Y ,
and it may cover some of them multiple times, which can be measured by an incidence number
analogous to the one appearing in the definition of B. The key point is that since fpXnq Ă Y n and
fpXn´1q Ă Y n´1, f descends to a map of quotients Xn{Xn´1 Ñ Y n{Y n´1 and we can therefore
consider the composition

(36.1) Sn “ Dn{BDn ΦαÝÑ Xn{Xn´1 fÝÑ Y n{Y n´1 prÝÑ Y n
L

pY nzenβq
Φ

´1

βÝÑ Dn{BDn “ Sn,

where the map labeled pr is the natural quotient projection, and the map Φβ on quotients is
invertible for the same reason as before. We shall denote the degree of this map by

renβ : enαs P Z,

a number that can be defined for any pair of n-cells enβ Ă Y and enα Ă X if f : X Ñ Y is a cellular
map. It vanishes whenever enβ X Ğfpenαq “ H since the map in (36.1) is in this case constant, so
Proposition 36.1 implies that for each individual enα Ă X , there are at most finitely many enβ Ă Y

with renβ : enαs ‰ 0. This allows us to define a homomorphism

f˚ : CCW
˚ pX ;Gq Ñ CCW

˚ pY ;Gq
acting on the generators enα P CCW

n pXq as

(36.2) f˚e
n
α “

ÿ

en
β

renβ : enαsenβ P CCW
n pY q,

where the sum ranges over all n-cells enβ Ă Y and has only finitely many nonzero terms.
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Exercise 36.6. Show that if X and Y are the same CW-complex and f : X Ñ Y is the
identity map, the incidence number renβ : enαs is 1 for α “ β and 0 otherwise, so in particular,
f˚ : CCW

˚ pX ;Gq Ñ CCW
˚ pY ;Gq is the identity homomorphism.

Exercise 36.7. Show that if f : X Ñ Y and g : Y Ñ Z are cellular maps then pg ˝ fq˚ “
g˚ ˝ f˚ : CCW

˚ pX ;Gq Ñ CCW
˚ pZ;Gq.

This discussion of induced maps extends in an obvious way to the relative case: if f : pX,Aq Ñ
pY,Bq is a map of CW-pairs, then f˚ maps CCW

˚ pA;Gq into CCW
˚ pB;Gq and thus descends to a

homomorphism
f˚ : CCW

˚ pX,A;Gq Ñ CCW
˚ pY,B;Gq.

The proof of the next theorem will arise naturally from the proof of the much bigger theorem that
follows it:

Theorem 36.8. For any map of CW-pairs f : pX,Aq Ñ pY,Bq, f˚ : CCW
˚ pX,A;Gq Ñ

CCW
˚ pY,B;Gq is a chain map and thus induces homomorphisms f˚ : HCW

n pX,A;Gq Ñ HCW
n pY,B;Gq

for every n. In particular, cellular homology with coefficients in G defines a functor

HCW
˚ p¨;Gq : CWrel Ñ AbZ,

where CWrel denotes the category of CW-pairs, with morphisms defined as maps of CW-pairs.

We can now state the complete version of the theorem about cellular homology and axiomatic
homology theories.

Theorem 36.9. Suppose h˚ is an axiomatic homology theory with coefficient group G. Then
one can associate to any CW-pair pX,Aq isomorphisms

ΨpX,Aq : H
CW
n pX,A;Gq –ÝÑ hnpX,Aq

for every n, which are natural in the sense that for any map of CW-pairs f : pX,Aq Ñ pY,Bq, the
following diagram commutes:

HCW
n pX,A;Gq hnpX,Aq

HCW
n pY,B;Gq hnpY,Bq

ΨpX,Aq

f˚ f˚

ΨpY,Bq

In the language of category theory, this theorem says the following. There is a functor CWrel Ñ
Toprel that sends each CW-pair to the underlying pair of spaces and each map of CW-pairs to the
underlying continuous map, and composing h˚ with this functor produces a functor CWrel Ñ AbZ.
The theorem defines a natural transformation from HCW

˚ p¨;Gq to the latter functor, associating to
every CW-pair pX,Aq the isomorphism ΨpX;Aq.

Let us begin setting up the proof of the theorem. We shall focus here on the case of absolute
homology, i.e. pairs pX,Aq with A “ H, leaving the relative case as a (worthwhile!) exercise. The
key idea is to establish a relationship between h˚pXq and the homology of a chain complex built
out of the long exact sequences of the pairs pXn, Xn´1q and pXn`1, Xnq, as it will turn out that
the latter chain complex can be naturally identified with CCW

˚ pX ;Gq.
Lemma 36.10. For all n P N, pXn, Xn´1q is a good pair in the sense of Definition 30.19,

i.e. Xn´1 is a deformation retract of some neighborhood V Ă Xn of Xn´1.

Proof. Since Xn “ Xn´1 Yϕn

š
αPKn Dn, it suffices to set V :“ Xn´1 Yϕn

š
αPKnpDnzt0uq.

�
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By Theorem 30.23, we now have a natural isomorphism h˚pXn, Xn´1q – rh˚pXn{Xn´1q.
Observe next that the disjoint union of the characteristic maps of n-cells defines a map of pairs

Φn :“
ž

αPKn

Φα :
ž

αPKn

pDn, BDnq Ñ pXn, Xn´1q.

We claim that this map descends to a homeomorphism between the quotients

Φn :
ž

αPKn

Dn

O ž

αPKn

BDn –ÝÑ Xn{Xn´1.

Indeed, under the usual identification Dn{BDn “ Sn that regards the collapsed boundary of Dn

as a base point in Sn, the quotient on the left hand side here becomes the wedge sum
Ž
αPKn S

n,
with all copies of Sn attached at this base point. By inspection, the right hand side is exactly the
same thing: XnzXn´1 is the union of all the n-cells, which Φn identifies with copies of D̊n, and
the quotient collapses the boundaries of all these disks to a point. With this understood, it follows
that the map Φn˚ at the bottom of the following diagram is an isomorphism, and so therefore is
the map at the top:

h˚

´š
αPKnpDn, BDnq

¯
h˚pXn, Xn´1q

rh˚

´š
αPKn Dn

Mš
αPKn BDn

¯
rh˚pXn{Xn´1q.

Φn
˚

– –

Φn
˚

Applying the additivity axiom (in conjunction with the five-lemma as in Exercise 30.16 to identify

h˚

´š
αPKnpDn, BDnq

¯
with

À
αPKn h˚pDn, BDnq, this proves:

Lemma 36.11. The characteristic maps Φα : pDn, BDnq Ñ pXn, Xn´1q determine isomor-
phisms à

αPKn

pΦαq˚ :
à
αPKn

h˚pDn, BDnq –ÝÑ h˚pXn, Xn´1q

for each n P N. �

The long exact sequence of pDn, BDnq in reduced homology implies that the connecting homo-
morphisms

hkpDn, BDnq B˚ÝÑ rhk´1pSn´1q –
#
G if k “ n,

0 if k ‰ n

are isomorphisms for all k and n, thus we’ve proved

(36.3) hkpXn, Xn´1q –
#
CCW
n pX ;Gq “ À

αPKn G if k “ n,

0 if k ‰ n.

We’ve been assuming n ě 1 so far, but it is not hard to incorporate n “ 0 into this discussion: if
we set

X´1 :“ H,

then hkpX0, X´1q “ hkpX0q is simply the homology of a discrete space, i.e. the disjoint union of
one-point spaces

X0 “
ž

αPK0

tptu,
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so that (36.3) is also correct in this case due to the dimension and additivity axioms. The group
hnpXn, Xn´1q can therefore serve as a stand-in for CCW

n pX ;Gq in our proof of Theorem 36.9. This
proof will be the main topic of the next lecture.

37. Invariance of cellular homology, part 2

Let’s quickly rephrase what we’ve done so far toward the proof of Theorem 36.9. We are
assuming h˚ is an axiomatic homology theory with coefficient group G. The latter means (via
the additivity axiom) that h0pS0q has a canonical isomorphism with G‘G, where the first factor
corresponds to the point 1 P S0 and the second to the other point ´1 P S0. Applying Exercise 28.17
to h˚ instead of singular homology gives

rh0pS0q “
 

pg,´gq P G ‘G
ˇ̌
g P G

(
,

which we can identify with G via the injection G ãÑ G ‘ G : g ÞÑ pg,´gq, and rhkpS0q “ 0 for
all k ‰ 0 due to the additivity and dimension axioms. Applying the suspension isomorphisms
S˚ : rhk´1pSn´1q –Ñ rhkpSnq repeatedly, we can then identify G with rhn´1pSn´1q for each n P N,
and the connecting homomorphism in the reduced long exact sequence of pDn, Sn´1q then identifies
G in turn with hnpDn, BDnq, while simultaneously proving hkpDn, BDnq “ 0 for all k ‰ n. Now if
X is a CW-complex, the argument at the end of the previous lecture showed that

(37.1)
à
αPKn

pΦαq˚ :
à
αPKn

hkpDn, BDnq Ñ hkpXn, Xn´1q

is an isomorphism for every n ě 1 and k P Z, which proves hkpXn, Xn´1q “ 0 for k ‰ n and
identifies hnpXn, Xn´1q via our isomorphism hnpDn, BDnq “ G with the cellular n-chain group
CCW
n pX ;Gq. The plan going forward is to use the Eilenberg-Steenrod axioms to construct a

boundary map on
À

nPZ hnpXn, Xn´1q and prove that the homology of the resulting chain com-
plex is isomorphic to h˚pXq. The last step will then be to show that our boundary map onÀ

nPZ hnpXn, Xn´1q matches the cellular boundary map B : CCW
˚ pX ;Gq Ñ CCW

˚´1pX ;Gq under our
identification.

Let us first derive some more consequences from the vanishing of hkpXn, Xn´1q for k ‰ n.
Observe that whenever either k ą n or k ă n´ 1, the long exact sequence of pXn, Xn´1q contains
a segment of the form

(37.2) 0 “ hk`1pXn, Xn´1q Ñ hkpXn´1q Ñ hkpXnq Ñ hkpXn, Xn´1q “ 0,

implying that the inclusion Xn´1 ãÑ Xn induces an isomorphism hkpXn´1q –ÝÑ hkpXnq. This has
two immediate consequences. For k ą n, we can apply these isomorphisms repeatedly to decrease
n to 0:

hkpXnq – hkpXn´1q – . . . – hkpX0q –
à

αPK0

hkptptuq “ 0,

where at the last step we have applied the additivity and dimension axioms, using the fact that X0

is a discrete space. This already proves a quite nontrivial fact that we did not yet know, though
you may have expected it: for any homology theory, the homology groups of an n-dimensional
CW-complex vanish in dimensions greater than n.

Lemma 37.1. For every k ą n, hkpXnq “ 0. �

Similarly, starting with k ă n and applying (37.2) repeatedly to increase n gives:

Lemma 37.2. For every k ă n, the inclusions Xn ãÑ Xn`1 ãÑ Xn`2 ãÑ . . . induce isomor-
phisms hkpXnq – hkpXn`1q – hkpXn`2q – . . .. �
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We can now proceed to the heart of the proof of Theorem 36.9. We define for each n ě 1 a
map

βn : hnpXn, Xn´1q Ñ hn´1pXn´1, Xn´2q
by combining the long exact sequences of the pairs pXn, Xn´1q and pXn`1, Xnq in the following
diagram:
(37.3)

0 hnpXn´1q 0

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q hnpXn`1, Xnq

hnpXn, Xn´1q 0

hn´1pXn´1q

jn`1 Bn`1

βn`1

in

jn

Bn

In other words, we define βn`1 :“ jn ˝ Bn`1 for each n ě 0, and of course β0 :“ 0. (We can use
the convention X´1 :“ H so that the diagram also makes sense in the case n “ 0.) The relation
β0 ˝ β1 is then trivially true, while for every n ě 1, we have

βn ˝ βn`1 “ jn´1 ˝ Bn ˝ jn ˝ Bn`1 “ 0

since Bn ˝ jn “ 0, thus we can now regard the sequence

(37.4) . . . Ñ hnpXn, Xn´1q βnÑ hn´1pXn´1, Xn´2q Ñ . . . . . . Ñ h1pX1, X0q β1Ñ h0pX0q β0Ñ 0 Ñ . . .

as a chain complex whose individual chain groups are canonically isomorphic to the chain groups
in CCW

˚ pX ;Gq. The exactness of the horizontal and vertical sequences in the diagram now give us
the following observations: first, in is surjective, and thus descends to an isomorphism

(37.5) hnpXnq{ ker in hnpXn`1q.in

–

Second, jn´1 is injective, thus

kerβn “ kerpjn´1 ˝ Bnq “ ker Bn “ im jn,

and since jn is also injective, it maps hnpXnq isomorphically to kerβn. Moreover, it maps the
subgroup ker in “ im Bn`1 isomorphically to imβn`1, implying that jn descends to an isomorphism

(37.6) hnpXnq{ ker in kerβn{ imβn`1.
jn

–

The latter is of course the nth homology group of the chain complex (37.4). Let us at this point
make a simplifying assumption and suppose the CW-complex X is finite-dimensional: then there
exists N P N such that X “ XN . For any given integer n ě 0 we can then take N ě n` 1 without
loss of generality, and use Lemma 37.2 to conclude via (37.5) and (37.6) that

kerβn{ imβn`1 – hnpXn`1q – hnpXn`2q – . . . – hnpXNq “ hnpXq.
We will discuss in the next lecture how to lift the assumption dimX ă 8, but if you are willing

to accept this assumption for now, then the proof that h˚pXq – HCW
˚ pX ;Gq will be complete as
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soon as we can show that the boundary maps βn in (37.4) are the same as our usual cellular
boundary maps. In other words, we need to prove that the diagram

CCW
n pX ;Gq hnpXn, Xn´1q

CCW
n´1pX ;Gq hn´1pXn´1, Xn´2q

–

B βn

–

commutes for every n, where the horizontal maps are the canonical isomorphisms that we discussed
at the beginning of this lecture. The theorem that B2 “ 0 will also follow from this, since we already
know βn´1 ˝ βn “ 0.

Here is a useful observation: the characteristic maps Φα : pDn, BDnq Ñ pXn, Xn´1q also induce
maps of quotients Dn{BDn Ñ Xn{Xn´1 such that the direct sum of the induced maps on reduced
homology

(37.7)
à
αPKn

pΦαq˚ :
à
αPKn

rhnpDn{BDnq Ñ rhnpXn{Xn´1q

is an isomorphism. Indeed, under the natural isomorphisms between relative homology for good
pairs and reduced homology of quotients, this is equivalent to the fact that (37.1) is an isomorphism.
The advantage of rewriting this map in terms of quotients is, however, that we can explicitly write
down its inverse. We recall the projections pα : Xn Ñ Xn{pXnzenαq “ Dn{BDn that appear in
the definition of the cellular boundary map, and notice that pα sends Xn´1 to the base point in
Dn{BDn represented by points in the boundary, hence it descends to a map

pα : Xn{Xn´1 Ñ Dn{BDn.
Lemma 37.3. The inverse of the map (37.7) is

ź

αPKn

ppαq˚ : rhnpXn{Xn´1q Ñ
à
αPKn

rhnpDn{BDnq.

Proof. Since we already know that (37.7) is an isomorphism, it will suffice to prove thatś
βppβq˚ ˝ À

αpΦαq˚ is the identity map on
À

α
rhnpDn{BDnq. This follows from the fact that

pα ˝ Φα : Dn{BDn Ñ Dn{BDn is the identity map and thus induces the identity on rhnpDn{BDnq,
while for β ‰ α, pβ ˝Φα is a constant map and thus factors through a one-point space, so the map
it induces on rhnpDn{BDnq is trivial. �

Here’s a diagram to help us understand what βn has to do with the cellular boundary map:

(37.8)

CCW
n pX ;Gq CCW

n´1pX ;Gq

À
αPKn hnpDn, BDnq À

αPKn
rhn´1pBDnq À

βPKn´1
rhn´1pDn´1{BDn´1q

hnpXn, Xn´1q rhn´1pXn´1q rhn´1pXn´1{Xn´2q

hn´1pXn´1, Xn´2q hn´1pXn´1{Xn´2, Xn´2{Xn´2q

À
α B˚

–

À
αpΦαq˚–

À
αpϕαq˚

BCW

Bn

βn

q˚

jn´1 –

ś
βppβq˚ –

–

The following details deserve clarification:
‚ The map labeled q˚ is induced by the quotient projection q : Xn´1 Ñ Xn´1{Xn´2.
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‚ Regarding the same quotient projection as a map of pairs produces the horizontal map
at the bottom, which we proved in Theorem 30.23 is an isomorphism. Composing the
latter with (the inverse of) the lower right vertical isomorphism from the reduced long
exact sequence of pXn´1{Xn´2, Xn´2{Xn´2q produces the usual natural isomorphism
hn´1pXn´1, Xn´2q –Ñ rhn´1pXn´1{Xn´2q.

‚ We have replaced hn´1pXn´1q with rhn´1pXn´1q for the middle term in the composition
βn “ jn´1 ˝ Bn, which is fine because the connecting homomorphism in the long exact
sequence of a pair always has its image in redued homology anyway.

‚ The diagram is intended to serve as a definition of the map BCW : CCW
n pX ;Gq Ñ

CCW
n´1pX ;Gq, i.e. it is what βn : hnpXn, Xn´1q Ñ hn´1pXn´1, Xn´2q turns into after

using canonical isomorphisms to replace its domain and target with cellular chain groups.

The point here is really just to replace the target group hn´1pXn´1, Xn´2q of βn with rhn´1pXn´1{Xn´2q
so that we can then Lemma 37.3 to identify the latter with CCW

n´1pX ;Gq via an explicit formula.
The resulting formula for BCW is

ź

βPKn´1

ppβq˚ ˝
à
αPKn

pϕαq˚ :
à
αPKn

rhn´1pSn´1q Ñ
à

βPKn´1

rhn´1pSn´1q.

This is determined by the collection of endomorphisms of rhn´1pSn´1q induced by pβ ˝ ϕα for all
α P Kn and β P Kn´1, and by Theorem 34.8, each of these maps is just multiplication by the
degree of pβ ˝ϕα, also known as the incidence number ren´1

β : enαs. This proves that BCW is indeed
simply the cellular boundary map B, and in particular, the latter satisfies B2 “ 0.

To complete the proof of Theorem 36.9 in the absolute case, we still need to understand how
a cellular map f : X Ñ Y between two CW-complexes interacts with the two isomorphisms
HCW

˚ pX ;Gq – h˚pXq and HCW
˚ pY ;Gq – h˚pY q. Being a cellular map implies that f defines a

map of pairs pXn, Xn´1q Ñ pY n, Y n´1q for every n and thus induces homomorphisms from every
term in the diagram (37.3) to the corresponding term in a similar diagram for Y . Something like
this:

hnpY n´1q

hn`1pY nq hn`1pY n`1q hn`1pY n`1, Y nq hnpY nq hnpY n`1q

hnpY n, Y n´1q

hnpXn´1q hn´1pY n´1q

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q . . .

hnpXn, Xn´1q

hn´1pXn´1q

Bn`1

βn`1

jn

in

f˚

Bn`1

βn`1

f˚

in

jn

f˚
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All of the red arrows in this three-dimensional diagram are maps induced by f , and the diagram
commutes due to the naturality of long exact sequences. In particular, we now have

hn`1pXn`1, Xnq hnpXn, Xn´1q

hn`1pY n`1, Y nq hnpY n, Y n´1q,

βn`1

f˚ f˚

βn`1

so that f˚ defines a chain map from the chain complex (37.4) to the corresponding chain complex
for Y , and therefore induces a homomorphism HCW

˚ pX ;Gq Ñ HCW
˚ pY ;Gq. To relate this to the

map f˚ : h˚pXq Ñ h˚pY q, recall that the isomorphism HCW
n pX ;Gq “ kerβn{ imβn`1 – hnpXq is

defined in terms of the maps in and jn in the diagram, along with the map induced by the inclusion
Xn`1 ãÑ X , and all of these commute with f˚, thus we also obtain

HCW
n pX ;Gq hnpXq

HCW
n pY ;Gq hnpY q.

–

f˚ f˚

–

To finish, we just need to check that under the canonical identification of hnpXn, Xn´1q and
hnpY n, Y n´1q with CCW

n pX ;Gq and CCW
n pY ;Gq respectively, the map f˚ : hnpXn, Xn´1q Ñ

hnpY n, Y n´1q matches the formula we gave in (36.2) for maps CCW
n pX ;Gq Ñ CCW

n pY ;Gq in-
duced by cellular maps. This will prove simultaneously the theorem that the map in (36.2) is a
chain map. Here is the analogue of the diagram (37.8) for the situation at hand:

(37.9)

CCW
n pX ;Gq CCW

n pY ;Gq

À
enαĂX

rhnpDn{BDnq À
en
β

ĂY
rhnpDn{BDnq

rhnpXn{Xn´1q rhnpY n{Y n´1q

fCW

˚

À
αpΦαq˚–

f˚

ś
βppβq˚ –

The direct sums here are over the set of all n-cells enα in X or enβ in Y , and the diagram is to be
understood as a definition of the map fCW

˚ : CCW
n pX ;Gq Ñ CCW

n pY ;Gq, which is equivalent to
f˚ : hnpXn, Xn´1q Ñ hnpY n, Y n´1q under the canonical isomorphisms. It produces the formula

fCW
˚ “

ź

e
β
nĂY

ppβq˚ ˝ f˚ ˝
à
enαĂX

pΦαq˚ :
à
enαĂX

rhnpSnq Ñ
à
en
β

ĂY

rhnpSnq,

and this map is determined by the set of all its “matrix elements”

ppβq˚ ˝ f˚ ˝ pΦαq˚ “ ppβ ˝ f ˝ Φαq˚ : rhnpSnq Ñ rhnpSnq
for each individual enα Ă X and enβ Ă Y . Applying Theorem 34.8 again, this map is multiplication
by degppβ ˝ f ˝ Φαq “ renβ : enαs, thus fCW

˚ does indeed match the formula given in (36.2) for
f˚ : CCW

n pX ;Gq Ñ CCW
n pY ;Gq.

The proof of Theorem 36.9 is now complete except for three details, the first two of which will
be left as exercises.

Exercise 37.4. Some portions of the discussion above do not make sense for n “ 0, especially
when Dn{BDn is mentioned. Adapt the discussion as needed for that particular case.
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Exercise 37.5. Extend the entire discussion to the case of a CW-pair pX,Aq with A ‰ H.
Hint: Start by showing that CCW

n pX,A;Gq is canonically isomorphic to hnpXn Y A,Xn´1 Y Aq,
and instead of the long exact sequence of the pair pXn, Xn´1q, consider the long exact sequence
of the triple pXn YA,Xn´1 YA,Aq.
Comment: This exercise is a bit lengthy, but it is not fundamentally difficult—every step is simply
a minor generalization of something that we discussed in this lecture. Working through it is one
of the best ways to achieve a deeper understanding of the isomorphism HCW

˚ pX ;Gq – h˚pXq.
The third unresolved issue is the simplifying assumption dimX ă 8 that we imposed in order

to argue that hnpXn`1q – hnpXq. We will discuss in the next lecture how to lift this assumption
for the specific homology theory h˚ :“ H˚p¨;Gq.

Exercise 37.6. The complex projective n-space CPn is a compact 2n-manifold defined as
the set of all complex lines through the origin in Cn`1, or equivalently,

CP
n “ pCn`1zt0uq

L
„

where two points z, z1 P Cn`1zt0u are equivalent if and only if z1 “ λz for some λ P C. It is
conventional to write elements of CPn in so-called homogeneous coordinates, meaning the equiva-
lence class represented by pz0, . . . , znq P Cn`1 is written as rz0 : . . . : zns. Notice that CPn can be
partitioned into two disjoint subsets

Cn – tr1 : z1 : . . . : zns P CP
nu and CP

n´1 – tr0 : z1 : . . . : zns P CP
nu.

(a) Show that the partition CP
n “ Cn Y CP

n´1 gives rise to a cell decomposition of CP
n

with one 2k-cell for every k “ 0, . . . , n.
(b) Compute H˚pCPn;Gq and H˚pCPn;Gq for an arbitrary coefficient group G.

Hint: This is easy.

38. Direct limits and infinite-dimensional cell complexes

If X is an infinite-dimensional CW-complex, then the arguments of the previous lecture do
not suffice to prove HCW

˚ pX ;Gq – h˚pXq for every axiomatic homology theory h˚ with coefficient
group G. What they do prove is that for every integer n ě 0, there are isomorphisms

HCW
n pX ;Gq – hnpXn`1q – hnpXn`2q – hnpXn`3q – . . . ,

where the maps hnpXn`kq Ñ hnpXn`k`1q are induced by the inclusions Xn`k ãÑ Xn`k`1, and
moreover, these isomorphisms are natural in the sense that for any cellular map f : X Ñ Y , the
induced homomorphism f˚ : HCW

n pX ;Gq Ñ HCW
n pY ;Gq fits into a commutative diagram

HCW
n pX ;Gq hnpXn`1q hnpXn`2q hnpXn`3q . . .

HCW
n pY ;Gq hnpY n`1q hnpY n`2q hnpY n`3q . . .

–

f˚

–

f˚

–

f˚

–

f˚

– – – –

To get from here to a computation of hnpXq, the idea is to interpret X as a “limit” of the sequence
of spaces X0, X1, X2, . . ., so that if the functor h˚ can be shown to be “continuous” with respect
to such limits, we would conclude

hnpXq “ hn
`
lim
kÑ8

Xk
˘

“ lim
kÑ8

hnpXkq,

and the value of this limit seems intuitively clear since all the groups in the sequence

hnpXn`1q, hnpXn`2q, hnpXn`3q, . . .
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are isomorphic to HCW
n pX ;Gq. To make all this precise, we need to explain in what sense a

topological space X can be a “limit” of a sequence of spaces tXnu8
n“0, and similarly for a sequence

of abelian groups such as thnpXkqu8
k“0.

Suppose I is a set with a pre-order ă, i.e. ă is reflexive (α ă α) and transitive (α ă β and
β ă γ implies α ă γ), but the relations α ă β and β ă α need not imply α “ β, so ă need not
be a partial order. Recall that pI,ăq is called a directed set (gerichtete Menge) if for every pair
α, β P I, there exists γ P I with γ ą α and γ ą β. The most common directed set in our examples
will be pN,ďq, or sometimes pN0,ďq where N0 :“ t0u Y N. Some more interesting examples will
arise when we discuss Poincaré duality and Čech (co-)homology later in this semester; see also
Example 38.17 below.

In the following, we use the notation X
fÑ Y indicate that f is a morphism from X to Y , where

X and Y may be objects in an arbitrary category. In this way we can use commutative diagrams
to encode relations between compositions of morphisms in any category—one should keep in mind
however that the literal meaning of such a diagram may vary radically depending on the category
we are working with.

Definition 38.1. Given a category C , a direct system (induktives System) tXα, ϕβαu in C

over pI,ăq associates to each α P I an object Xα of C , along with morphisms

ϕβα P MorpXα, Xβq for each α ă β

such that
ϕαα “ IdXα

and the diagram

Xα Xβ Xγ

ϕβα

ϕγα

ϕγβ

commutes for every triple α, β, γ P I with α ă β ă γ.

Remark 38.2. Exercise 26.16 shows that a pre-order ă on a set I can be encoded by calling
I the collection of objects in a category I , such that for each pair x, y P I, the set of morphisms
Morpx, yq contains exactly one element whenever x ă y and is otherwise empty. A direct system
in C over pI,ăq is then nothing other than a (covariant) functor I Ñ C .

Example 38.3. For any CW-complex X , its collection of skeleta tXnu8
n“0 forms a direct

system in Top over pN0,ďq, with the maps ϕmn for eachm ě n defined as the inclusionsXn ãÑ Xm.
Similarly, the skeleta of a CW-pair define a direct system in Toprel.

Example 38.4. For any axiomatic homology theory h˚, the homology groups of the skeleta
of a CW-complex from a direct system in AbZ over pN0,ďq: it consists of the graded abelian
groups th˚pXnqu8

n“0 and for each m ě n the map h˚pXnq Ñ h˚pXmq induced by the inclusion
Xn ãÑ Xm. For each individual k P Z, we can also extract from this a direct system in Ab over
pN0,ďq, formed by the sequence of abelian groups thkpXnqu8

n“0.

The last example illustrates the following general observation, which is immediate from the
definitions:

Proposition 38.5. If tXα, ϕβαu is a direct system in A over pI,ăq, and F : A Ñ B is a
covariant functor, then tFpXαq,Fpϕβαqu forms a direct system in B over pI,ăq. �

The notion of “convergence” for a direct system will necessarily look somewhat different from
what we’ve seen before for sequences or nets: in most categories, there is no obvious topology
or metric with which to measure how closely the objects Xα approach some limiting object X8
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as α P I becomes large. What we do have in every category is the notion of morphisms and the
composition function pf, gq ÞÑ f ˝g, so this is the structure that we will use. The idea is to measure
the convergence of a direct system tXα, ϕβαu in terms of the morphisms from each Xα to other
fixed objects in the category.

Definition 38.6. For a direct system tXα, ϕβαu in C over pI,ăq, a target tY, fαu of the
system consists of an object Y of C together with associated morphisms fα P MorpXα, Y q for each
α P I such that the diagram

Xα Xβ

Y

ϕβα

fα

fβ

commutes for every pair α, β P I with α ă β.

Definition 38.7. A target tX8, ϕαu of the direct system tXα, ϕβαu is called a direct limit53

(induktiver Limes) of the system and written as

X8 “ limÝÑtXαu
if it satisfies the following “universal” property: for all targets tY, fαu of tXα, ϕβαu, there exists a
unique morphism f8 P MorpX8, Y q such that the diagram

Xα X8

Y

ϕα

fα
f8

commutes for every α P I.
The essential meaning of a direct limit can be encoded in the diagram

Xα Xβ Xγ . . . limÝÑtXαu

Y

ϕβα ϕγβ

where we assume α ă β ă γ ă . . . P I. The key feature of the object limÝÑtXαu is that whenever
an object Y and morphisms Xα Ñ Y in a commuting diagram of this type are given, the “limit”
morphism from limÝÑtXαu to Y indicated by the dashed arrow must also exist and be unique.

Note that from these definitions, there is generally no guarantee that a direct limit exists, and
if it exists then it is generally not unique. Indeed:

Exercise 38.8. If tX, fαu is a direct limit of tXα, ϕβαu and Y is another object such that
there exists an isomorphism ψ P MorpX,Y q, show that tY, ψ˝fαu is also a direct limit of tXα, ϕβαu.
Remark: The invertibility of ψ is needed only for showing that tY, ψ ˝ fαu satisfies the universal
property; it is already a target without this.

The non-uniqueness exhibited by the exercise above is however the worst thing that can happen:
if tX, fαu and tY, gαu are any two direct limits of the same system tXα, ϕβαu, then the universal
property provides unique morphisms g8 P MorpX,Y q and f8 P MorpY,Xq satisfying g8 ˝ fα “ gα
and f8 ˝ gα “ fα for every α P I. It follows that f8 ˝ g8 is the unique morphism from X to X
satisfying pf8 ˝ g8q ˝ fα “ fα for every α P I, which implies f8 ˝ g8 “ IdX . A similar argument
shows g8 ˝ f8 “ IdY , thus X and Y are isomorphic, and there is a distinguished isomorphism

53Direct limits are also sometimes called inductive limits or colimits (Kolimes).
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relating them. For this reason, we shall typically feel free to refer to “the” (rather than “a”) direct
limit of any system for which a limit exists.

The next exercise computes direct limits in a situation that is of concrete interest for the
homology of a CW-complex X : recall from the previous lecture that for each k P Z, the sequence
of homology groups hkpX0q Ñ hkpX1q Ñ . . . Ñ hkpXnq Ñ hkpXn´1q Ñ . . . stabilizes as n Ñ 8,
i.e. the maps induced by the inclusions Xn ãÑ Xn`1 all become isomorphisms as soon as n is
sufficiently large. The intuition here is the same as in the elementary observation that for any
sequence that is “eventually constant,” its limit is what you think it should be.

Exercise 38.9. Suppose tXα, ϕβαu is a direct system in C over pI,ăq with the property that
for some α0 P I, ϕγβ P MorpXβ , Xγq is an isomorphism for every β, γ P I with β ą α0 and γ ą α0.
For each α P I, choose γ P I such that γ ą α and γ ą α0, and define

ϕα :“ ϕ´1
γα0

˝ ϕγα P MorpXα, Xα0
q.

(a) Prove that the morphism ϕα does not depend on the choice of the element γ P I.
(b) Prove that tXα0

, ϕαu is a target of the system.
(c) Prove that tXα0

, ϕαu also satisfies the universal property in Definition 38.7, hence Xα0
“

limÝÑtXαu.
For the categories that we are most interested in, we will see presently that direct limits always

exist and can be described in more concrete terms.

Exercise 38.10. Suppose tXα, ϕβαu is a direct system in C over pI,ăq, where C is any
category in which objects are sets (possibly with extra structure) and morphisms are maps between
them. For any α, β P I, x P Xα and y P Xβ, define the relation x „ y to mean

x „ y ô ϕγαpxq “ ϕγβpyq for some γ P I with γ ą α and γ ą β.

Prove that „ is an equivalence relation on the set-theoretic disjoint union
š
αPI Xα.54

Proposition 38.11. If tXα, ϕβαu is a direct system in Top over pI,ăq, then its direct limit
is the space

limÝÑtXαu “
ž

αPI

Xα

O
„,

where the equivalence relation is defined as in Exercise 38.10, and the associated morphisms ϕα :

Xα Ñ limÝÑtXαu are the compositions of the inclusions Xα ãÑ š
βPI Xβ with the quotient projection.

Moreover, the topology on limÝÑtXαu is the strongest topology for which the maps ϕα : Xα Ñ limÝÑtXαu
are continuous for all α P I.

Proof. Abbreviate X8 “
š
αXα

L
„. The topology of X8 is determined from that of the

individual spaces Xα via the quotient and disjoint union topologies: concretely, this means that
a set U Ă X8 is open if and only if its preimage q´1pUq Ă š

βXβ via the quotient projection
q :

š
βXβ Ñ X8 is open, and the latter is true if and only if q´1pUq X Xα is open in Xα for

every α P I. Since q´1pUq X Xα “ ϕ´1
α pUq, this means that U Ă X8 is open if and only if every

ϕ´1
α pUq Ă Xα is open, thus characterizing the topology of X8 as the strongest for which every

map ϕα : Xα Ñ X8 is continuous. An easy corollary of this observation is that for any other space

54The set-theoretic disjoint union of a collection of sets tXαuαPI can be defined in general as the set
tpα, xq | α P I, x P Xαu, i.e. it is a union of all the sets Xα, but defined such that even if some pair of the sets Xα

and Xβ for α ‰ β have elements in common, they are each identified with disjoint subsets of
š

γ Xγ . The disjoint
union of topological spaces is defined in the same way, but with the extra structure of a topology, which for the
purposes of Exercise 38.10 is not needed.
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Y , a map f : X8 Ñ Y is continuous if and only if the maps f ˝ ϕα : Xα Ñ Y are continuous for
all α P I (cf. Exercise 35.4).

It is clear that tX8, ϕαu is a target since for any α, β P I with α ă β, the relation

ϕβ ˝ ϕβαpxq “ ϕαpxq for all x P Xα

follows from the fact that x „ ϕβαpxq. Now assuming tY, fαu is another target, we need to show
that there is a unique continuous map f8 : X8 Ñ Y satisfying the condition f8 ˝ ϕα “ fα for
every α P I. To write down f8pxq for an arbitrary element x P X8, observe that since the quotient
projection q :

š
βXβ Ñ X8 is surjective, we have x “ qpxαq “ ϕαpxαq for some α P I and

xα P Xα Ă
š
βXβ , so in order to achieve f8 ˝ ϕα “ fα, we are forced to define

f8pxq :“ fαpxαq.
We claim that f8pxq is then independent of the choice of element xα P q´1pxq. Indeed, suppose
β P I and xβ P Xβ Ă š

γ Xγ such that ϕβpxβq “ qpxβq “ x. The equivalence xα „ xβ then means
that for some γ P I satisfying γ ą α and γ ą β,

ϕγαpxαq “ ϕγβpxβq “: xγ P Xγ ,

and thus fγpxγq “ fαpxαq “ fβpxβq. This proves that a map f8 : X8 Ñ Y with the desired
properties is well defined and uniquely determined, though a remark is still required on why f8 is
continuous: this follows from the previous paragraph since f8 ˝ ϕα “ fα : Xα Ñ Y is continuous
for every α P I. �

Remark 38.12. Proposition 38.11 extends in an obvious way to give a concrete description of
any direct limit in the category Toprel of pairs of spaces.

Consider the specific direct system of topological spaces tXnu8
n“0 from Example 38.3, con-

sisting of the skeleta of a CW-complex X with maps Xm ãÑ Xn for n ě m defined by inclusion.
Considering the quotient X8 :“

š8
n“0X

n
L

„ as in Proposition 38.11 along with the natural maps
ϕn : Xn Ñ X8, the disjoint union of the inclusion maps in : Xn ãÑ X descends to the quotient as
a bijection

8ž

n“0

in :

8ž

n“0

Xn
M

„ –ÝÑ X

which identifies ϕn with the inclusion in for each n. Since the topology of both X8 and X

is the strongest for which the maps ϕn or in respectively are all continuous, this bijection is a
homeomorphism, and we’ve proved:

Corollary 38.13. For the direct system of Example 38.3 formed by the skeleta of a CW-
complex X,

limÝÑtXnu “ X,

with the associated morphisms Xn Ñ limÝÑtXnu defined as the inclusions Xn ãÑ X. �

We next consider the analogue of Proposition 38.11 in the category Ab of abelian groups.

Proposition 38.14. If tGα, ϕβαu is a direct system in Ab over pI,ăq, then its direct limit is
the group

limÝÑtGαu “
à
αPI

Gα

N
H,

were H Ă À
αGα is the subgroup generated by all elements of the form g´ϕβαpgq for g P Gα and

β ą α, and the associated homomorphisms ϕα : Gα Ñ limÝÑtGαu are the compositions of the natural
inclusions Gα ãÑ

À
β Gβ with the quotient projection.
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Proof. Abbreviating G8 “
À

αGα

M
H , it is easy to see that tG8, ϕαu is a target. Given

another target tA,ψαu, the condition ψβ˝ϕβα “ ψα for each β ą α implies that the homomorphism
à
αPI

ψα :
à
αPI

Gα Ñ A

vanishes on the subgroup H and thus descends to a homomorphism ψ8 : G8 Ñ A that satisfies
ψ8 ˝ ϕα “ ψα for all α. �

Exercise 38.15. Prove the obvious analogues of Proposition 38.14 for direct systems in the
categories AbZ of Z-graded abelian groups and Chain of chain complexes.

The following consequence of Proposition 38.14 makes proving things about direct limits of
abelian groups (or the other algebraic categories mentioned in the exercise above) considerably
easier.

Corollary 38.16. The following statements hold for any direct system tGα, ϕβαu in Ab, AbZ
or Chain over a directed set pI,ăq:

(i) For every x P limÝÑtGαu, there exists β P I and xβ P Gβ such that x “ ϕβpxβq.
(ii) For every β P I and xβ P Gβ satisfying ϕβpxβq “ 0 P limÝÑtGαu, there exists γ ą β such

that ϕγβpxβq “ 0 P Gγ .

Proof. Writing limÝÑtGαu “ À
αGα

M
H , any given element x P limÝÑtGαu is an equivalence

class represented by an element ÿ

αPI0

gα P
à
αPI

Gα

for some finite subset I0 Ă I. Since pI,ăq is a directed set, we can then find an element β P I

satisfying β ą α for every α P I0, so
ÿ

αPI0

gα ´
ÿ

αPI0

ϕβαpgαq P H,

implying that xβ :“
ř
αPI0

ϕβαpgαq P Gβ satisfies ϕβpxβq “ x.
For the second statement, we observe that ϕβpxβq “ 0 holds if and only if xβ P Gβ Ă

À
αGα

belongs to the subgroup H , meaning

(38.1) xβ “
Nÿ

i“1

pgi ´ ϕβiαi
pgiqq

for some finite collection of elements βi ą αi P I and gi P Gαi
, i “ 1, . . . , N . Choose a finite

subset I0 Ă I that contains all the αi, βi for i “ 1, . . . , N , along with an element γ P I such that
γ ą α for all α P I0. Applying the homomorphism

À
αPI0

ϕγα to both sides of (38.1) then produces
ϕγβpxβq P Gγ on the left hand side and kills the right hand side since for each i,

˜
à
αPI0

ϕγα

¸
pgi ´ ϕβiαi

pgiqq “ ϕγαi
pgiq ´ ϕγβi

˝ ϕβiαi
pgiq “ ϕγαi

pgiq ´ ϕγαi
pgiq “ 0.

We have thus proved ϕγβpxβq “ 0. �

We have seen above that any CW-complex X can be identified with the direct limit of its
skeleta. Combining Exercise 38.9 with the computations of the previous lecture proves moreover
that for any axiomatic homology theory h˚ and any k P Z, the direct system of abelian groups
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thkpXnqu8
n“0 stabilizes as n Ñ 8 and thus has direct limit hkpXnq for any n sufficiently large,

which matches HCW
k pXnq “ HCW

k pXq. This gives an isomorphism of Z-graded abelian groups

HCW
˚ pXq – limÝÑth˚pXnqu.

The isomorphism HCW
˚ pXq – h˚pXq will therefore follow if we can prove that the functor h˚

behaves “continuously” under this direct limit, i.e. the question becomes

limÝÑth˚pXnqu – h˚

`
limÝÑtXnu

˘
?

It is time to insert a word of caution: the next exercise shows that singular homology does not
always behave as nicely as one would hope with respect to direct limits.

Exercise 38.17. Define tXαuαPI to be the collection of all countable subspaces of S1, with a
partial order assigned to the index set such that

α ă β ô Xα Ă Xβ .

In this case we can define ϕβα : Xα ãÑ Xβ to be the inclusion map and regard tXα, ϕβαu as a direct
system of topological spaces. Prove that limÝÑtXαu is homeomorphic to S1, but limÝÑtH˚pXα;Zqu is
not isomorphic to H˚pS1;Gq.
Hint 1: Describing limÝÑtXαu as in Proposition 38.11, it is not hard to find a natural bijection
between limÝÑtXαu and

Ť
αPI Xα “ S1, but you need to check that the topology of this direct limit

matches the standard topology of S1.
Hint 2: What can you say about H1pXα;Zq for each α?

To see nonetheless why it might sometimes be true that limÝÑth˚pXαqu – h˚

`
limÝÑtXαu

˘
, let

us observe first that there is always a natural morphism between these two objects. Indeed,
suppose more generally that tXα, ϕβαu is a direct system in some category A over pI,ăq, and
F : A Ñ B is a covariant functor, thus producing a direct system tFpXαq,Fpϕβαqu in B. The
natural morphisms

Xα limÝÑtXαuϕα

for every α P I then induce morphisms

FpXαq FplimÝÑtXαuqΦα:“Fpϕαq

which satisfy

Φβ ˝ Fpϕβαq “ Fpϕβq ˝ Fpϕβαq “ Fpϕβ ˝ ϕβαq “ Fpϕαq “ Φα

for all β ą α and thus make tFplimÝÑtXαuq,Φαu a target of the system tFpXαq,Fpϕβαqu. It follows
via the universal property of the direct limit that there is a limiting morphism

(38.2) limÝÑtFpXαqu FplimÝÑtXαuq.Φ8

We would now like to identify some situations in which Φ8 is guaranteed to be an isomorphism—in
particular, we shall prove that this is true when tXα, ϕβαu is the direct system in Top formed by
the skeleta of a CW-complex and F is the singular homology functor H˚p¨;Gq.

Recall that H˚p¨;Gq : Top Ñ AbZ is in fact the composition of two functors: the first is
C˚p¨;Gq : Top Ñ Chain, which sends each space X to its singular chain complex with coefficients
in G, and the second is H˚ : Chain Ñ AbZ, sending a chain complex to its homology. The second
of these two functors turns out to be extremely well behaved with respect to direct limits.
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Proposition 38.18. Suppose pI,ăq is a directed set, with a chain complex Cα˚ associated to
each α P I and a chain map ϕβα : Cα˚ Ñ C

β
˚ associated to each pair α ă β P I such that tCα˚ , ϕβαu

is a direct system in Chain over pI,ăq. Then choosing F to be the functor H˚ : Chain Ñ AbZ, the
map

Φ8 : limÝÑtH˚pCα˚ qu Ñ H˚

`
limÝÑtCα˚ u

˘

defined as in (38.2) is an isomorphism of Z-graded abelian groups.

We will prove this in the next lecture; the most essential ingredient in the proof is Corol-
lary 38.16, which allows us to replace statements about direct limits with statements about indi-
vidual objects in the direct system.

If one now tries to prove the analogous statement about the functor C˚p¨;Gq : Top Ñ Chain,
one finds sooner or later that one needs to know whether a singular simplex σ : ∆n Ñ limÝÑtXαu
in a space that is a direct limit can always be factored through the map Xβ Ñ limÝÑtXαu for some
“sufficiently large” index β. This would be something of an analogue to Corollary 38.16 in the
setting of the singular chain complex, but it is far from obvious whether it is true. Exercise 38.17
shows in fact that the result we’d ideally like to prove is not true in general without some extra
condition. We already know however that if X is a CW-complex and ϕn : Xn ãÑ X denotes the
inclusion for each n ě 0, then every singular simplex σ : ∆k Ñ X is of the form ϕn ˝ σ1 for some
σ1 : ∆k Ñ Xn if n is large enough; this follows from the fact that compact subsets are always
contained in finite subcomplexes (Proposition 36.1). This turns out to be enough:

Proposition 38.19. Suppose tXα, ϕβαu is a direct system of topological spaces over pI,ăq
satisfying the following conditions:

(1) For every α P I, Xα is a subspace of X :“ limÝÑtXαu and the maps ϕβα : Xα Ñ Xβ and
ϕα : Xα Ñ X are the natural inclusions;

(2) Every compact subset K Ă X is contained in Xα for some α P I.
Then choosing F to be the singular chain complex functor C˚p¨;Gq : Top Ñ Chain with an arbitrary
coefficient group G, the chain map

Φ8 : limÝÑtC˚pXα;Gqu Ñ C˚

`
limÝÑtXαu;G

˘

defined as in (38.2) is an isomorphism of chain complexes.

The proof of this result is postponed along with that of Proposition 38.18 to be the beginning
of the next lecture. Once both are established, applying them together proves:

Theorem 38.20. Under the same hypotheses as in Proposition 38.19, there is a natural iso-
morphism of Z-graded abelian groups

limÝÑtH˚pXα;Gqu –ÝÑ H˚

`
limÝÑtXαu;G

˘

for every coefficient group G. �

Corollary 38.21. For any CW-complex X, there is a natural isomorphism HCW
˚ pX ;Gq –

H˚pX ;Gq. �

The corollary is also true if singular homology H˚p¨;Gq is replaced by an arbitrary axiomatic
homology theory h˚, but proving this would take us into somewhat more abstract territory than
we have time for right now, so we will settle for the special case of singular homology. The original
treatment of the homology axioms by Eilenberg and Steenrod [ES52] dealt mainly with finite com-
plexes, for which our proof of the isomorphism HCW

˚ pX ;Gq – h˚pXq was already completed in the
previous lecture. The extension of this result to infinite-dimensional complexes was accomplished
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originally by Milnor in [Mil62], who introduced the additivity axiom for this purpose.55 Milnor’s
proof via the “mapping telescope” construction is reproduced in [Hat02, pp. 138–139].

Exercise 38.22. Each of the following spaces can be defined as a direct limit in terms of the
natural inclusions Fm ãÑ Fn for n ě m, where F is R or C, and we identify Fm with the subspace
Fm ‘ t0u Ă Fn. In particular, Rm`1 ãÑ Rn`1 gives rise to inclusions Sm ãÑ Sn and RP

m
ãÑ RP

n,
and the complex version gives CPm ãÑ CPn. Use cell decompositions to compute the homology
with integer coefficients for each space:

(a) S8 “ limÝÑtSnunPN

(b) RP8 “ limÝÑtRPnunPN

(c) CP
8 “ limÝÑtCPnunPN

Exercise 38.23. Suppose tXα, ϕβαu is a direct system of topological spaces such that each
Xα is a subspace of some fixed topological space X , β ą α if and only if Xα Ă Xβ, and the maps
ϕβα : Xα Ñ Xβ in this case are the natural inclusions. Let us use Proposition 38.11 to identify

limÝÑtXαu with
š
αXα

M
„, in terms of the equivalence relation

Xα Q x „ y P Xβ ô ϕγαpxq “ ϕγβpyq for some γ P I with γ ą α, γ ą β.

The disjoint union of the inclusions Xα ãÑ Ť
βPI Xβ then descends to the quotient as a bijection

limÝÑtXαu Ñ
ď

αPI

Xα,

and we have seen examples where it is a homeomorphism: this is true in particular for the direct
system consisting of the skeleta of a CW-complex. The following example shows however that it
need not be a homeomorphism in general: let I “ p0, 1q and consider the family of sets Xt “
t0u Y pt, 1s Ă R for t P I, ordered by inclusion. The union of these sets is r0, 1s, but show that the
topological space limÝÑtXtu is not connected.

39. The Euler characteristic

Topic 1: Continuity under direct limits. Before we get to the main topic for today, I
owe you two proofs from the end of the last lecture. In the interest of time, I will give only the
first half of each proof and leave the remainders as exercises. The first result says that the functor
H˚ : Chain Ñ AbZ that takes each chain complex to its homology is continuous with respect to
direct limits.56

Proposition 39.1. Suppose pI,ăq is a directed set, with a chain complex Cα˚ associated to
each α P I and a chain map ϕβα : Cα˚ Ñ C

β
˚ associated to each pair α ă β P I such that tCα˚ , ϕβαu

is a direct system in Chain over pI,ăq. Then choosing F to be the functor H˚ : Chain Ñ AbZ, the
map

Φ8 : limÝÑtH˚pCα˚ qu Ñ H˚

`
limÝÑtCα˚ u

˘

defined as in (38.2) is an isomorphism of Z-graded abelian groups.

55Recall that for finite disjoint unions, the additivity axiom follows from the other axioms, and one does not
need any infinite disjoint unions to compute the homology of a finite CW-complex.

56The technical term for this in category theory is that H˚ is cocontinuous; this is consistent with the standard
practice in homotopy theory of calling direct limits “colimits”. In that context, a “limit” (without the “co-”) is what
we would call an inverse limit—we will encounter these later in the context of cohomology and other contravariant
functors.
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Proof. We prove first that Φ8 is surjective. Given a homology class rcs P H˚

`
limÝÑtCα˚ u

˘

represented by a cycle c P limÝÑtCα˚ u, Corollary 38.16 implies c “ ϕβpcβq for some β P I and
cβ P Cβ˚ , where ϕβ : C

β
˚ Ñ limÝÑtCα˚ u denotes the natural morphism associated to the direct limit.

Since Bc “ 0 and ϕβ is a chain map, we have ϕβpBcβq “ 0, so by Corollary 38.16, we can find some
γ ą β and replace cβ with cγ :“ ϕγβpcβq P Cγ˚ such that ϕγpcγq “ ϕγ ˝ ϕγβpcβq “ ϕβpcβq “ c but
also Bcγ “ 0, and cγ thus represents a homology class rcγs P H˚pCγ˚ q. Now let

Ψγ : H˚pCγ˚q Ñ limÝÑtH˚pCα˚ qu

denote the natural morphism associated to the direct limit of the system tH˚pCα˚ q,Φγαu, where
Φγα :“ pϕγαq˚ : H˚pCα˚ q Ñ H˚pCγ˚q for γ ą α. Writing Φγ :“ pϕγq˚ : H˚pCγ˚q Ñ H˚

`
limÝÑtCα˚ u

˘
,

the diagram

H˚pCγ˚q limÝÑtH˚pCα˚ qu

H˚

`
limÝÑtCα˚ u

˘

Ψγ

Φγ
Φ8

commutes by the definition of Φ8, thus Φ8pΨγrcγsq “ Φγrcγs “ rϕγpcγqs “ rcs, proving that Φ8

is surjective.
The proof of injectivity uses all the same ideas, so we shall leave it as an exercise. �

An essential role in the proof above was played by Corollary 38.16, which is a tool for replacing
statements about direct limits with corresponding statements about individual objects in the direct
system. We saw in Exercise 38.17 that the singular homology functor H˚p¨;Gq : Top Ñ AbZ is
not always continuous with respect to direct limits; since this is the composition of two functors
H˚ : Chain Ñ AbZ and C˚p¨;Gq : Top Ñ Chain, Proposition 39.1 implies that something must go
wrong in general with the continuity of C˚p¨;Gq : Top Ñ Chain. But if tXα, ϕβαu is a direct system
of spaces with certain properties, then it is still possible to prove continuity by an argument very
much analogous to the proof above. The key point is that we need something playing the role of
Corollary 38.16 to tell us when a singular n-simplex σ : ∆n Ñ limÝÑtXαu can be written as ϕβ ˝ σβ
for some β P I and a singular n-simplex σβ : ∆n Ñ Xβ.

Proposition 39.2. Suppose tXα, ϕβαu is a direct system of topological spaces over pI,ăq
satisfying the following conditions:

(1) For every α P I, Xα is a subspace of X :“ limÝÑtXαu, Xα Ă Xβ whenever α ă β and the
maps ϕβα : Xα Ñ Xβ and ϕα : Xα Ñ X are the natural inclusions;

(2) Every compact subset K Ă X is contained in Xα for some α P I.
Then choosing F to be the singular chain complex functor C˚p¨;Gq : Top Ñ Chain with an arbitrary
coefficient group G, the chain map

Φ8 : limÝÑtC˚pXα;Gqu Ñ C˚

`
limÝÑtXαu;G

˘

defined as in (38.2) is an isomorphism of chain complexes.

Proof. For surjectivity, given c “
ř
i giσi P Cn

`
limÝÑtXαu;G

˘
, the finitely many singular

n-simplices σi : ∆n Ñ limÝÑtXαu can each be written as σi “ ϕαi
˝ σ1

i for some αi P I and
σ1
i : ∆

n Ñ Xαi
since ∆n is compact. We can then find β P I with β ą αi for all i and define

σ2
i :“ ϕβαi

˝ σ1
i : ∆

n Ñ Xβ , so

σi “ ϕαi
˝ σ1

i “ ϕβ ˝ ϕβαi
˝ σ1

i “ ϕβ ˝ σ2
i ,
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producing an element cβ :“ ř
i giσ

2
i P CnpXβ ;Gq such that pϕβq˚cβ “ c. Writing Ψβ : C˚pXβ;Gq Ñ

limÝÑtC˚pXα;Gqu for the natural map associated to the direct limit, the diagram

C˚pXβ ;Gq limÝÑtC˚pXα;Gqu

C˚

`
limÝÑtXαu;G

˘

Ψβ

pϕβq˚

Φ8

commutes by the definition of Φ8, and thus gives Φ8pΨβpcβqq “ c.
Injectivity is again proved by similar arguments, which we shall leave as an exercise. �

As explained in the previous lecture, these two results in combination with the computations
in Lecture 37 imply that for every CW-complex X and coefficient group G, there is a natural
isomorphism

HCW
˚ pX ;Gq – limÝÑtH˚pXn;Gqu – H˚

`
limÝÑtXnu;G

˘
“ H˚pX ;Gq.

It is a straightforward matter to extend that entire discussion to the case of a CW-pair pX,Aq and
prove HCW

˚ pX,A;Gq – H˚pX,A;Gq, and also to prove that these isomorphisms commute with the
maps induced by any map of CW-pairs f : pX,Aq Ñ pY,Bq. We will shall leave the further details
of these extensions as exercises and thus regard the proof of Theorem 36.9 (at least for singular
homology) as complete.

Topic 2: Some applications of cellular homology. We would now like to discuss a few
applications of the isomorphism

HCW
˚ pX,A;Gq – H˚pX,A;Gq.

One of the advantages of cellular homology is that for compact spaces, cell decompositions are
always finite, in which case the cellular chain complex itself is finitely generated, and so therefore
is its homology. This proves:

Corollary 39.3. If pX,Aq is a compact CW-pair, then its singular homology H˚pX,A;Zq is
finitely generated. �

Recall that if G is any abelian group and K is a field, regarded as an abelian group with respect
to its addition operation, then the tensor product G b K inherits the structure of a vector space
over K: indeed, to define this we just need to say what scalar multiplication Kˆ pGbKq Ñ GbK

means, and the obvious definition determined by the formula

λpg b kq :“ g b pλkq for λ, k P K, g P G

satisfies the required axioms. Moreover, if Φ : G Ñ H is a homomorphism between two abelian
groups, then Φ b 1 : G b K Ñ H b K becomes a K-linear map with respect to the natural vector
space structures on its domain and target. This means that if we choose a field K as a coefficient
group, C˚pX,A;Kq “ C˚pX,Aq b K becomes a vector space over K and the boundary map on
C˚pX,A;Kq becomes K-linear, so that H˚pX,A;Kq is also a vector space over K. The compactness
of pX,Aq then makes C˚pX,A;Kq a finite-dimensional vector space, and Corollary 39.3 becomes a
statement of linear algebra:

Corollary 39.4. If pX,Aq is a compact CW-pair, then for any field K, H˚pX,A;Kq is a
finite-dimensional vector space over K. �
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Note that each of these corollaries is actually two statements in one: they say on the one hand
that HnpX,A;Zq is finitely generated or HnpX,A;Kq is finite dimensional for every n P Z, but also
that both are trivial for all but finitely many values of n. It is similarly obvious that CCW

k pX ;Gq
and therefore also HCW

k pX ;Gq must vanish for any CW-pair that has no k-cells:

Corollary 39.5. If pX,Aq is an n-dimensional CW-pair, then HkpX,A;Gq “ 0 for all k ą n

and every coefficient group G. �

Remark 39.6. As I’m sure I’ve mentioned a few times by now, it is not too hard to prove
that every smooth n-manifold is triangulable and is therefore also an n-dimensional CW-complex,
so Corollary 39.5 applies to every smooth n-manifold. It also applies to every n-dimensional
topological manifold, though this is less easy to see—there exist manifolds that do not admit cell
decompositions, but it is also known that every n-dimensional manifold is homotopy equivalent to
a CW-complex of dimension n or less. Since singular homology depends only on homotopy type,
Corollary 39.5 still applies.

For a closed n-manifold, we will see another proof that HkpMq “ 0 for all k ą n when
we talk about Poincaré duality later in the course, and that proof requires no knowledge of cell
decompositions. It’s worth mentioning that homology is in this sense very different from the higher
homotopy groups: there are plenty of n-dimensional manifolds M that have πkpMq ‰ 0 for some
k ą n, e.g. the simplest example is π3pS2q – Z. This is one of the details that makes homology
generally easier than homotopy theory.

Remark 39.7. By results of Palais [Pal66] proved in 1966, it is also known that every smooth
(but not necessarily finite-dimensional) Fréchet manifold is homotopy equivalent to a (not neces-
sarily finite-dimensional) CW-complex. Fréchet manifolds are spaces that can be covered by charts
identifying them locally with Fréchet spaces, a class of complete metrizable topological vector space
that includes all Banach spaces, plus popular non-Banach examples like the space of C8-functions
on a compact smooth manifold. For example, if M and N are two smooth finite-dimensional
manifolds and M is compact, then C8pM,Nq is naturally a Fréchet manifold. Since many results
of algebraic topology hold only for CW-complexes, Palais’s theorem makes the techniques of the
subject applicable in many of the functional-analytic settings that are used to study nonlinear
PDEs.

Associating a sequence of abelian groups to every topological space is a nice thing to do,
but sometimes one would prefer something simpler, e.g. a number. There are several numerical
invariants that we can now associate to spaces in terms of their homology. Recall that according
to the classification of finitely generated abelian groups, every such group G is isomorphic to

G – Zn ‘ T,

for a unique integer n ě 0 and a unique finite group T . Concretely, T is the torsion subgroup
of G, meaning the group of all elements g P G that satisfy mg “ 0 for some m P N. The integer n
is called the rank (Rang) of G, and we will denote it by

rankG ě 0.

If like many people you prefer linear algebra to group theory, then you might prefer the following
way of repackaging this definition: suppose K is a field of characteristic 0. Then G b K – pZn b
Kq ‘ pT b Kq, but for every g P T , we have mg “ 0 for some m P N and thus for q P K,

g b q “ g b

¨
˚̋ q

m
` . . . ` q

mlooooooomooooooon
m

˛
‹‚“ m

´
g b q

m

¯
“ mg b q

m
“ 0,
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implying T bK “ 0.57 Since ZbK – K, this gives GbK – Kn, so in terms of the natural K-vector
space structure on G b K, we have

rankG “ dimKpG b Kq.
We cannot justify this quite yet, but in a couple of lectures we will prove the universal coefficient
theorem, a purely algebraic result that implies among other things that for singular homology with
coefficients in any field K of characteristic zero,

(39.1) H˚pX ;Kq – H˚pXq b K.

We will assume this result for the rest of the present lecture, as it makes it possible to erase one
or two slightly subtle algebraic issues by converting them into linear algebra.

Definition 39.8. For any space X and integer k ě 0, the kth Betti number of X is the
nonnegative (or possibly infinite) integer

bkpXq :“ rankHkpX ;Zq.
In light of (39.1), bkpXq could equivalently be defined as

bkpXq “ dimKHkpX ;Kq
if K is any field of characteristic zero. The most popular choice for this purpose is Q, though R

and C work just as well.

Definition 39.9. For any spaceX with finitely-generated singular homology, the Euler char-
acteristic (Eulercharakteristik) of X is the integer58

χpXq “
8ÿ

k“0

p´1qkbkpXq P Z.

The usefulness of χpXq as an invariant derives from a simple phenomenon in homological
algebra that has remarkable consequences for topology:

Proposition 39.10. If C˚ is a finitely-generated chain complex of free abelian groups, then
ÿ

nPZ

p´1qn rankHnpC˚q “
ÿ

nPZ

p´1qn rankCn “
ÿ

nPZ

p´1qn dimKHnpC˚ b Kq

for any field K.

In the following proof, we shall make use of the same special case of the universal coefficient
theorem that implies (39.1), namely that for any chain complex of free abelian groups C˚ and any
field K of characteristic zero,

(39.2) H˚pC˚ b Kq – H˚pC˚q b K.

It is not strictly necessary to assume this right now, but doing so makes the following proof
algebraically a bit easier.

Proof of Proposition 39.10. Since each Cn is a free abelian group for every n, we have

rankCn “ dimKpCn b Kq

57Did you notice how we used the assumption here that K has characteristic 0? It implies in particular that K

contains the rational numbers Q. You cannot do the same trick e.g. with K “ Z2.
58Let’s be clear about this notational detail: χ is the Greek latter “chi,” not a variety of the letter “X” in a

strange font. The χ of course stands for “characteristic”.
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for any field K. (Here there is no need for K to have characteristic zero because Cn by assumption
has no torsion.) With this in mind, let us suppose instead for the moment that C˚ is a finite-
dimensional chain complex of K-vector spaces with K-linear boundary maps Bn : Cn Ñ Cn´1, and
abbreviate

Zn :“ ker Bn, Bn :“ im Bn`1, Hn :“ Zn{Bn.
The dimensions of these vector spaces over K are then related by

dimHn “ dimZn ´ dimBn

for every n P Z. Since Bn : Cn Ñ Cn´1 descends to an isomorphism Cn{Zn Ñ Bn´1, we also have

dimCn “ dimZn ` dimBn´1.

Combining these two relations gives
ÿ

nPZ

p´1qn dimHn “ . . .´ pdimZ´1 ´ dimB´1q ` pdimZ0 ´ dimB0q ´ pdimZ1 ´ dimB1q ` . . .

“ . . .´ dimZ´1 ` pdimB´1 ` dimZ0q ´ pdimB0 ` dimZ1q ` dimB1 ` . . .

“ . . .´ dimC´1 ` dimC0 ´ dimC1 ` . . . “
ÿ

nPZ

p´1qn dimCn.

Moving back to the original hypothesis where each Cn is a free abelian group, this computation
implies

ÿ

nPZ

p´1qn rankCn “
ÿ

nPZ

p´1qn dimKpCn b Kq “
ÿ

nPZ

p´1qn dimKHnpC˚ b Kq

for every choice of coefficient field K. Now choosing K “ Q and applying (39.2) identifies the last
expression with

ř
nPZp´1qn dimK

`
HnpC˚qbQ

˘
“ ř

nPZp´1qn rankHnpC˚q and thus completes the
proof. �

Notice what we gain if this result is combined with the isomorphism HCW
˚ pX ;Gq – H˚pX ;Gq

for X a finite cell complex: in this case H˚pXq is the homology of a finitely-generated chain
complex of free abelian groups CCW

˚ pXq, and this knowledge alone is sufficient to compute the
Euler characteristic χpXq without needing to compute the homology! All we actually need to know
for the computation is the rank of each chain group CCW

n pXq, which is the same as the number of
n-cells in the complex. But since χpXq is a topological invariant, we also learn from this that the
alternating sum of these counts of cells does not depend on the choice of cell decomposition:

Corollary 39.11. For any compact space X that admits a cell decomposition, every such
decomposition satisfies

8ÿ

n“0

p´1qn|Kn| “ χpXq,

where |Kn| ě 0 denotes the number of n-cells in the decomposition. �

Computing Euler characteristics of cell complexes is now quite easy.

Example 39.12. For n ě 0, we have χpSnq “ 2 when n is even and χpSnq “ 0 when n is odd.
One can see this by writing Sn as the union of one 0-cell with one n-cell, or almost as easily, by
writing Sn as the union of two k-cells for every k “ 0, . . . , n.

Example 39.13. For the closed surface Σg of genus g ě 0, we computed H˚pΣgq in Exam-
ple 36.3: the nontrivial homology groups were H0pΣgq – Z, H1pΣgq – Z2g and H2pΣgq – Z,
thus

χpΣgq “ 1 ´ 2g ` 1 “ 2 ´ 2g.
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But one can also compute χpΣgq without computing H˚pΣgq, just by observing that Σg has a
cell decomposition with one 0-cell, one 2-cell and 2g cells of dimension 1; this is the same cell
decomposition we used in Example 36.3, but there is no longer any need to compute the boundary
map.

Here is an application of a more combinatorial nature. Recall that a graph (Graph) consists
of a set V whose elements are called vertices (Ecken or Punkte), and a set E whose elements
are called edges (Kanten), each of which is associated to a particular pair of vertices. Graphs
are typically depicted by drawing a point for each vertex and drawing a curve for each edge such
that its end points are the two vertices associated to that edge, and in this way every graph Γ

naturally gives rise to a 1-dimensional CW-complex |Γ| whose 0-cells are the vertices and 1-cells
are the edges. The space |Γ| is compact if and only if the graph Γ is finite, meaning both V and
E are finite, and we say that Γ is connected if |Γ| is a connected space. A finite connected graph
is called a tree (Baum) if it contains no cycles, meaning there does not exist any finite sequence
of distinct vertices v0, . . . , vN P V together with a finite sequence of distinct edges e0, . . . , eN such
that the end points of ej are vj and vj`1 for j “ 0, . . . , N ´ 1 but the end points of eN are vN
and v0. Now, since |Γ| is a 1-dimensional CW-complex, we have Hkp|Γ|q “ 0 for all k except 0

and 1. If Γ is connected, then |Γ| is also path-connected and therefore H0p|Γ|q – Z. Since there
are no 2-cells, H1p|Γ|q is isomorphic to the subgroup of 1-cycles in CCW

1 p|Γ|q, but it is not hard
to prove that if Γ is a tree, then there are also no nontrivial 1-cycles in the chain complex, so
H1p|Γ|q “ 0. This proves χp|Γ|q “ 1, and combining it with Corollary 39.11, we then have:

Theorem 39.14. For any finite graph Γ with v vertices and e edges, if Γ is a tree, then
v ´ e “ 1. �

Let’s conclude this discussion with an application to covering spaces.

Exercise 39.15. Suppose X is a compact cell complex and π : Y Ñ X is a covering map of
finite degree d P N. Show that Y admits a cell decomposition such that Y n “ π´1pXnq for every n,
and every individual n-cell enα Ă X corresponds to exactly d cells in Y whose characteristic maps
Dn Ñ Y are lifts of the characteristic map Dn Ñ X for enα.
Hint: The key point here is that characteristic maps Dn Ñ X will always lift to the cover since Dn

is simply connected. It’s probably easiest if you argue by induction on n.

The exercise implies:

Theorem 39.16. If X is a finite cell complex and π : Y Ñ X is a covering map of finite degree
d P N, then χpY q “ dχpXq. �

As an easy application, the fact that χpXq is always an integer allows us to deduce that there
are not very many ways for an even-dimensional sphere to be the universal cover of something else:

Corollary 39.17. If π : Sn Ñ X is a d-fold covering map, n is even and X is a CW-complex,
then d is either 1 or 2. �

Example 39.18. Clearly both options in the above corollary are possible: d “ 1 is always
possible since the identity map is a covering map, and d “ 2 occurs for the natural quotient
projection Sn Ñ RP

n.

40. The Lefschetz fixed point theorem

As another application of cellular homology, in this lecture I’d like to address the following
general question:
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Question 40.1. What topological conditions on a map X fÑ X are sufficient to guarantee that
f has a fixed point?

We saw one example last semester: by the Brouwer fixed point theorem, no conditions at all
are needed for f if X is a disk. We also saw in Lecture 33 that for X “ Sn, every map f that does
not have degree p´1qn`1 must have a fixed point—this is a homotopy-invariant condition, but of
course it is important to include the exception in this statement, as e.g. the antipodal map does
not have any fixed points.

Our goal for today is a much more general homotopy-invariant criterion for the existence of
fixed points. The rough idea is as follows: if f : X Ñ X has no fixed points but X is a nice enough
space to admit cell decompositions, then we would like to find a special cell decomposition of X
such that after adjusting f by a homotopy, f becomes a cellular map sending each cell to different
cells. In other words, the induced chain map f˚ : CCW

˚ pXq Ñ CCW
˚ pXq given by

f˚e
n
α “

ÿ

en
β

ĂX

renβ : enαsenβ

will then have the property that its diagonal terms all vanish:

renα : enαs “ 0 for all n-cells enα Ă X.

In this situation, the chain map f˚ is represented by a matrix that has zeroes along the diagonal,
so its trace vanishes. At this point it is useful to introduce an algebraic result that has much in
common with the previous lecture’s Propostion 39.10:

Theorem 40.2 (Hopf trace formula). Suppose C˚ is a finite-dimensional chain complex of
vector spaces over a field K, and f : C˚ Ñ C˚ is a K-linear chain map. Then

ÿ

nPZ

p´1qn tr
´
Cn

fÑ Cn

¯
“

ÿ

nPZ

p´1qn tr
´
HnpC˚q f˚Ñ HnpC˚q

¯
.

Proof. For the boundary maps Bn : Cn Ñ Cn´1 for each n P Z, abbreviate

Zn :“ ker Bn Ă Cn, Bn :“ im Bn`1 Ă Cn, Hn :“ Zn{Bn.
Denote fCn

:“ f |Cn
: Cn Ñ Cn, and note that since f is a chain map, it restricts to these subspaces

and the quotient as linear maps

Zn
fZnÝÑ Zn, Bn

fBnÝÑ Bn, Hn
fHnÝÑ Hn,

such that the following diagram commutes

0 Zn Cn Bn´1 0

0 Zn Cn Bn´1 0

fZn fCn

Bn

fBn´1

Bn

and its rows are exact. Here it is convenient to make use of the assumption that all these objects
are vector spaces, not just abelian groups—it guarantees in particular that a short exact sequence
always splits, i.e. we can choose a subspace of Cn complementary to Zn and use the map Bn to
identify that subspace with Bn´1, giving a (non-canonical) isomorphism

Cn – Zn ‘Bn´1.

Identifying Cn in this way with Zn ‘Bn´1, the map fCn
: Cn Ñ Cn becomes a matrix of the form

fCn
“
ˆ
fZn

g

0 fBn´1

˙



40. THE LEFSCHETZ FIXED POINT THEOREM 267

for some linear map g : Bn´1 Ñ Zn. Here the lower-left term vanishes because fCn
preserves the

subspace Zn, and the other off-diagonal term might not vanish because fCn
need not preserve the

complementary subspace, yet if we restrict fCn
to this subspace and project away the term in Zn,

what remains is the map Bn´1 Ñ Bn´1 induced by the same chain map f , i.e. it is the lower-right
term fBn´1

. This formula proves

(40.1) trpfCn
q “ trpfZn

q ` trpfBn´1
q.

Now apply the same argument to the diagram

0 Bn Zn Hn 0

0 Bn Zn Hn 0

fBn fZn fHn

where the maps Zn Ñ Hn are the natural quotient projections and the rows are therefore exact.
We obtain

trpfZn
q “ trpfBn

q ` trpfHn
q,

and combining this with (40.1) gives
ÿ

nPZ

p´1qn
“
trpfCn

q ´ trpfBn´1
q
‰

“
ÿ

nPZ

p´1qn trpfZn
q “

ÿ

nPZ

p´1qn rtrpfBn
q ` trpfHn

qs ,

which implies the desired result after dropping the extraneous terms trpfBn
q from both sides. �

Definition 40.3. For any space X and a field K such that H˚pX ;Kq is finite dimensional,
the Lefschetz number (Lefschetz-Zahl) of a map f : X Ñ X is defined by

LKpfq :“
ÿ

nPZ

p´1qn tr
`
HnpX ;Kq f˚ÝÑ HnpX ;Kq

˘
P K.

In the case K “ Q, we denote this more simply by

Lpfq :“ LQpfq.
Notice that by the homotopy axiom for homology, LKpfq depends on f only up to homotopy.

Remark 40.4. We will not need to know this for our discussion, but it’s interesting to
note that while the definition above makes Lpfq a rational number, it is secretly always an
integer. If X is a finite CW-complex and f a cellular map, then this follows easily from the
Hopf trace formula, as LQpfq is then the same as the alternating sum of the traces of maps
f˚ : CCW

n pXq b Q Ñ CCW
n pXq b Q, each of which can be written in the canonical basis as a ma-

trix with integer entries. Without these assumptions, it follows more generally from the universal
coefficient theorem, which will give us a natural isomorphism H˚pX ;Qq – H˚pXq bQ, so that the
maps f˚ : H˚pX ;Qq Ñ H˚pX ;Qq can also be presented as matrices with integer entries. More
precisely, every endomorphism HnpXq Ñ HnpXq preserves the torsion subgroup Tn Ă HnpXq and
thus descends to an endomorphism of the free part of HnpXq,

HnpXq
L
Tn

f˚ÝÑ HnpXq
L
Tn,

which is a free abelian group. Thus f˚ can again be presented as an integer matrix with respect
to any basis of this free group, and the alternating sum of the traces of these matrices is the
integer Lpfq.

Exercise 40.5. Show that if X has finitely-generated homology and f : X Ñ X is homotopic
to the identity map, Lpfq “ χpXq.

Here is the main result of this lecture.
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Theorem 40.6 (Lefschetz-Hopf). If X is a compact polyhedron and K is a field, then every
map f : X Ñ X satisfying LKpfq ‰ 0 has a fixed point.

Before discussing the proof, we give one application and a few remarks. The application is an
extension of the famous “hairy sphere” theorem (recall Theorem 33.4), and its proof requires some
knowledge of the flow of a smooth vector field from differential geometry.

Corollary 40.7. For any closed smooth manifold M with χpMq ‰ 0, there is no continuous
vector field on M that is nowhere zero.

Proof. If such a vector field exists, then we can approximate it with a smooth vector field X
that is also nowhere zero. The flow of X for some small but nonzero time t ą 0 is then a
diffeomorphism ϕtX : M Ñ M with no fixed points, but is clearly also homotopic to the identity,
thus by Exercise 40.5, LpϕtXq “ χpMq “ 0. �

Remark 40.8. Another easy corollary of the theorem is that it also holds for spaces somewhat
more general than compact polyhedra: it holds in particular whenever X is a compact Euclidean
neighborhood retract, meaning X admits a topological embedding X ãÑ RN for some N P N

such that some neighborhood U Ă RN of X admits a retraction to X . It is not so hard to prove
(see [Hat02, Corollary A.9]) that all compact topological manifolds have this property, even those
which do not admit triangulations. In this situation, even if X does not have a triangulation, we
can triangulate RN finely enough so that all simplices touching X Ă RN are contained in the neigh-
borhood U , and the retraction r : U Ñ X then makes X a retract of a compact polyhedron K Ă U

containing X . Now if f : X Ñ X has LKpfq ‰ 0, one can consider the map

i ˝ f ˝ r : K Ñ K

where i : X ãÑ K is the inclusion, and use Exercise 40.9 below to prove LKpi ˝ f ˝ rq “ LKpfq, so
that Theorem 40.6 guarantees a fixed point for i ˝ f ˝ r. But i ˝ f ˝ rpxq “ x implies x P X and
fpxq “ x.

Exercise 40.9. Suppose A Ă X is a subspace with inclusion i : A ãÑ X and a retraction
r : X Ñ A, and X has finite-dimensional homology with coefficients in some field K. Show that
H˚pA;Kq is also finite dimensional, and for any map f : A Ñ A, the induced maps f˚ : HnpA;Kq Ñ
HnpA;Kq and pi ˝ f ˝ rq˚ : HnpX ;Kq Ñ HnpX ;Kq for every n P Z satisfy

trpf˚q “ trppi ˝ f ˝ rq˚q.
Hint: Write pi ˝ f ˝ rq˚ “ i˚f˚r˚ as the composition of two homomorphisms f˚r˚ : HnpX ;Kq Ñ
HnpA;Kq and i˚ : HnpA;Kq Ñ HnpX ;Kq, and recall the formula trpABq “ trpBAq.

Remark 40.10. Lefschetz’s original version of the fixed point theorem applied only to mani-
folds and was thus more restrictive, but it has the following nice feature that Theorem 40.6 lacks.
For a map f : M Ñ M on an n-manifold with at most finitely many fixed points, the Lefschetz
number Lpfq gives not only a sufficient condition but also an algebraic count of the fixed points,
in the same sense that the degree of a map f : M Ñ N counts the points in f´1pqq for any q P N .
The proof of this version is best expressed in terms of Poincaré duality and homological intersec-
tion theory; see e.g. [Bre93, §VI.12]. As a consequence, one can then extend Corollary 40.7 to the
statement that on a closed oriented manifold M , for any vector field that has at most finitely many
zeroes, the algebraic count of these zeroes is χpMq; this is known as the Poincaré-Hopf theorem.

Remark 40.11. It is easy to see that the compactness of X in Theorem 40.6 is essential: for
instance, R has finitely-generated homology and f : R Ñ R : x ÞÑ x ` 1 is homotopic to the
identity, hence Lpfq “ χpRq “ 1, even though f has no fixed points.
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Figure 20. A compact space X with χpXq “ 1 admitting maps homotopic to
the identity that have no fixed point.

Remark 40.12. Figure 20 shows a compact space X that violates the Lefschetz fixed point
theorem because it is not a polyhedron. Indeed, X has three path-components, two (the outer and
inner circle) that are homeomorphic to S1 and one (the spiral in between) homeomorphic to R,
thus

H˚pXq – H˚pS1q ‘H˚pS1q ‘H˚pRq,
implying χpXq “ χpS1q`χpS1q`χpRq “ 0`0`1 “ 1. But it is easy to visualize a map f : X Ñ X

that is homotopic to the identity and has no fixed points, e.g. define f by a small rotation, with
radii adjusted appropriately so that it preserves the spiral. (You may notice that X is also an
example of a space that is connected but not path-connected—that is a property that polyhedra
never have.)

To prove Theorem 40.6, we need to make precise the idea sketched at the beginning of this
lecture: a map f : X Ñ X with no fixed points can be modified to a cellular map whose induced
chain map has no diagonal terms. Since we are working with polyhedra, it is natural to consider
not just cellular but also simplicial maps. You may want to take a moment to review the definitions
given in Lecture 29 for the combinatorial notion of a simplicial map and the induced continuous
map on polyhedra, which maps each n-simplex linearly to a k-simplex for some k ď n. In this
context, the following question seems natural, though its immediate answer may disappoint you:

Question 40.13. Given two polyhedra X and Y , is every continuous map f : X Ñ Y homo-
topic to a simplicial map?

The answer is no: for example, if Y happens to have more vertices than X , then a simplicial
map f : X Ñ Y can never be surjective. We could for instance take X and Y to be the sphere Sn

with two distinct triangulations such that Y has more vertices, in which case only maps Sn Ñ Sn

with degree zero have any hope of being homotopic to simplicial maps. The message of this answer
is that we asked the wrong question. Suppose we eliminate this counterexample as follows: instead
of fixing given triangulations of X and Y , we first make the triangulation of X finer by subdividing
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Figure 21. Barycentric subdivision of a 2-simplex.

it until it has at least as many vertices as Y . If this extra step is allowed, then it is no longer
obvious that any given map f : X Ñ Y cannot be homotopic to a simplicial map. I remind you
that when I say “subdivision,” I typically mean barycentric subdivision, as shown in Figure 21.

Here’s the main technical result we need. I will give only a sketch of the proof, but the main
idea is not so hard to understand. (For a more detailed proof, see [Hat02, §2.C].)

Theorem 40.14 (simplicial approximation). If X and Y are compact polyhedra and f : X Ñ Y

is any continuous map, then after modifying the triangulation of X by finitely many barycentric
subdivisions, f is homotopic to a simplicial map g : X Ñ Y such that for every x P X, gpxq is
contained in the smallest simplex of Y containing fpxq.

Sketch of the proof. For each vertex v P X , define the so-called open star of v as the
open neighborhood

st v Ă X

of v formed by the union of the interiors of all simplices in X that have v as a vertex. Figure 22
shows the open stars of two neighboring vertices in a 2-dimensional polyhedron; notice that their
intersection contains the interior of the 1-simplex bounded by these two vertices (cf. Exercise 40.15
below). The collection of all open stars of vertices defines an open covering of any polyhedron.
Now given f : X Ñ Y continuous, after subdividing the triangulation of X enough times, we can
assume that for every vertex v P X there exists a vertex wv P Y such that (see Figure 22 again)

st v Ă f´1pstwvq.
Having associated to each v P X some wv P Y with this property, there is a unique simplicial map
g : X Ñ Y that satisfies gpvq “ wv: indeed, for every simplex tv0, . . . , vnu of X , the exercise below
implies that the set twv0 , . . . , wvnu is also a simplex of Y . One can now check that g is indeed an
“approximation” of f in the sense that gpxq is contained in the smallest simplex of Y containing
fpxq for every x P X . In light of this, a homotopy h : I ˆ X Ñ Y from f to g can be defined by
choosing hp¨, xq : I Ñ Y for every x P X to be the linear path from fpxq to gpxq in the smallest
simplex containing fpxq. �

Exercise 40.15. Given vertices v0, . . . , vk in a polyhedron X , show that
Şk
i“0 st vi ‰ H if and

only if X contains a simplex whose vertices are v0, . . . , vk.

We can now prove the Lefschetz-Hopf theorem.

Proof of Theorem 40.6. Assume X is a compact polyhedron, K is a field and f : X Ñ X

has no fixed points. Compact polyhedra are metrizable, so we can choose a metric dp¨, ¨q on X and
observe that since X is compact, there exists a number ǫ ą 0 such that

dpx, fpxqq ě ǫ ą 0 for all x P X.
After repeated subdivisions, we can assume without loss of generality that every simplex in the
triangulation of X has diameter less than ǫ{2. Now let X 1 denote the same space but with its
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v0

v1

wv0
wv1

f

X

Y

Figure 22. A map f : X Ñ Y between two polyhedra, with vertices v0, v1 P X
and wv0 , wv1 P Y chosen such that f maps the open star of vi into the open star of
wvi for i “ 0, 1. The prescription in the proof of Theorem 40.14 will then produce
a simplicial map g : X Ñ Y sending vi ÞÑ wvi for i “ 0, 1, so the 1-simplex in X

bounded by v0 and v1 is sent to the 1-simplex in Y bounded by wv0 and wv1 .

triangulation further subdivided so that the simplicial approximation theorem applies, giving a
simplicial map

g : X 1 Ñ X
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that is homotopic to f as a continuous map. Since the n-skeleton ofX is contained in the n-skeleton
of X 1 for every n ě 0, one can also regard g as a cellular (though not simplicial) map

g : X 1 Ñ X 1.

Now, every simplex in either X 1 or X has diameter less than ǫ{2, and since gpxq and fpxq always
lie in a common simplex of X , it follows that dpgpxq, fpxqq ă ǫ{2 for every x P X . Therefore,

dpx, gpxqq ě dpx, fpxqq ´ dpfpxq, gpxqq ą ǫ´ ǫ

2
“ ǫ

2
,

implying that x and gpxq never belong to the same simplex of X 1. It follows that the diagonal
incidence numbers renα : enαs vanish for every n-cell enα Ă X 1 defined as the interior of an n-simplex
in our subdivided triangulation, implying that the induced chain map

CCW
˚ pX 1;Kq g˚ÝÑ CCW

˚ pX 1;Kq
has only zeroes along the diagonal, and its trace in every dimension is therefore 0. By the Hopf
trace formula, it follows that LKpgq “ LKpfq “ 0. �

41. Coefficients and the Tor functor

In this lecture we’ll begin a closer examination of precisely how the groups H˚pX,A;G1q and
H˚pX,A;G2q are related to each other for different choices of abelian coefficient group G1 and G2.
Recall that H˚p¨;Gq is the composition of three functors:

(41.1) Toprel
C˚ÝÑ Chain

bGÝÑ Chain
H˚ÝÑ AbZ,

where the first sends each pair of spaces pX,Aq to its singular chain complex C˚pX,Aq with
integer coefficients, the second replaces the latter with C˚pX,A;Gq :“ C˚pX,Aq b G, and the
third computes the homology of the chain complex. If we were only concerned with defining
topological invariants and not with computing them, then we could stop with C˚ : Toprel Ñ Chain,
as the singular chain complex C˚pX,Aq is in itself a topological invariant, and it contains in
principle all of the information that we could ever want to extract from any version of the singular
homology of pX,Aq. The problem is that, as an invariant in itself, C˚pX,Aq is horribly unwieldy
and impractical: the group is absurdly large, and if you want to prove pX,Aq and pY,Bq are not
homeomorphic, you typically cannot do it by proving directly that C˚pX,Aq and C˚pY,Bq are not
isomorphic chain complexes. This is where replacing the complexes with their homology groups
is useful: strictly speaking, we lose a lot of information when we do this, but it’s worth it if the
information that remains afterwards is manageable.

The situation is slightly different for the cellular homology functor HCW
˚ p¨;Gq : CWrel Ñ AbZ,

which is also a composition of three functors

CWrel

CCW

˚ÝÑ Chain
bGÝÑ Chain

H˚ÝÑ AbZ.

For a CW-pair pX,Aq, the chain complex CCW
˚ pX,Aq is typically much more manageable, but it

depends on the cell decomposition and is thus not a topological invariant. Passing to the homology
HCW

˚ pX,Aq is thus necessary in order to obtain something that depends only on the topology of
pX,Aq. One could say the same thing about simplicial homology, which of course is just a special
case of cellular homology.

For this lecture we’re going to focus on the purely algebraic aspects that are common to both
singular and cellular homology, namely the two functors

Chain
bGÝÑ Chain

H˚ÝÑ AbZ.
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Each of them destroys some information in general, e.g. the homology of a chain complex can
easily be trivial even when the complex itself is not, and applying bQ to an abelian group with
nontrivial torsion elements will always kill them. The case G “ Z is special, because bZ is
actually the identity functor, so there seems to be less potential for losing information if we stick
with integer coefficients. Of course we have also seen cases (e.g. the Klein bottle) where HnpX ;Zq
is trivial while HnpX ;Z2q is not. The main result of this and the next lecture will show however
that HnpX ;Z2q is nevertheless determined by the collection of all the groups HkpX ;Zq; in fact
it suffices to consider these groups for k “ n and k “ n ´ 1. Results like this should not be
interpreted to mean that homology with different coefficient groups is unnecesary—we’ve seen for
instance that when X is a manifold with a non-orientable triangulation, it is in some ways more
natural to consider H˚pX ;Z2q than H˚pX ;Zq. But as a computational device, it is also often
useful to know that the homology with integer coefficients determines everything else. Moreover,
there is a kind of converse to this statement, allowing information about H˚pX ;Zq to be deduced
from a collection of groups H˚pX ;Kq for various choices of field coefficients K.

The universal coefficient theorem. Given a chain complex C˚, we would now like to
compare the homology of this complex with that of C˚ bG for some coefficient group G. The first
important observation is that for every n P Z, there is a natural homomorphism

(41.2) HnpC˚q bG
hÝÑ HnpC˚ bGq : rcs b g ÞÑ rcb gs.

Indeed, this map is well defined since Bc “ 0 implies pB b 1qpc b gq “ 0 and c “ Ba implies
cb g “ pB b 1qpab gq. One might hope for this map to be an isomorphism, and we will show that
this is true in many important cases, but not always. Here is the general result.

Theorem 41.1 (universal coefficient theorem). There exists a functor59

Tor : Ab ˆ Ab Ñ Ab,

covariant in both variables, such that the following is true. For any chain complex C˚ of free
abelian groups, a fixed abelian group G and n P Z, there exists a split exact sequence

0 ÝÑ HnpC˚q bG
hÝÑ HnpC˚ bGq ÝÑ TorpHn´1pC˚q, Gq ÝÑ 0,

where h is the map in (41.2). Moreover, the sequence (but not its splitting) is natural in the sense
that for any chain map of Φ : A˚ Ñ B˚ between two chain complexes of free abelian groups, the
diagram

0 HnpA˚q bG HnpA˚ bGq TorpHn´1pA˚q, Gq 0

0 HnpB˚q bG HnpB˚ bGq TorpHn´1pB˚q, Gq 0

h

Φ˚b1 pΦb1q˚

h

commutes, where TorpHn´1pA˚q, Gq Ñ TorpHn´1pB˚q, Gq is the map induced by Φ˚ : Hn´1pA˚q Ñ
Hn´1pB˚q via the functoriality of Tor.

59While it is conventional to call Tor a “functor,” we will see from the definition that this is cheating a little
bit, as one cannot simply feed a pair of groups G and H into Tor and extract a well-defined group TorpG,Hq. In
reality, the definition of TorpG,Hq requires some auxiliary choices beyond the groups G and H, but we will see that
for any two sets of these choices, there is a canonical isomorphism between our two definitions of TorpG,Hq. In this
sense, TorpG,Hq is well defined in the same sense that “the one-point space” is well defined: one can take any set of
one element and label it “tptu,” and any two spaces defined in this way are not technically the same, but there is a
canonical homeomorphism between them.
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In this lecture our main objective will be to explain what the mysterious extra term TorpHn´1pC˚q, Gq
means, and we will proceed to prove the theorem in the next lecture. The splitting of the exact
sequence means that there is always an isomorphism

HnpC˚ bGq – pHnpC˚q bGq ‘ TorpHn´1pC˚q, Gq,
so that is the sense in whichHnpC˚q andHn´1pC˚q determineHnpC˚bGq. It should be emphasized
however that this isomorphism depends in general on non-canonical choices and does not fit into
any nice commutative diagrams together with maps induced by chain maps—this is what is meant
when we say that the splitting is “not natural”. The isomorphism is in any case not very useful
unless one has a means of computing TorpHn´1pC˚q, Gq, but the following result makes this quite
doable in most cases that arise in practice:

Theorem 41.2. The functor Tor has the following properties for all abelian groups A,B,G:60

(1) TorpA,Gq “ 0 whenever A is free;
(2) TorpA ‘B,Gq – TorpA,Gq ‘ TorpB,Gq;
(3) For every k P N, TorpZk, Gq is isomorphic to the kernel of the map G Ñ G : g ÞÑ kg.

The proof of this theorem will be an easy exercise once the definition of Tor is understood; see
Exercise 42.15 in the next lecture. The following sample application is also an extremely useful
computational tool in itself.

Corollary 41.3. If A is any finitely-generated61 abelian group and G is an abelian group with
trivial torsion, then TorpA,Gq “ 0.

Proof. By the classification of finitely-generated abelian groups, A – F ‘ Zn1 ‘ . . . ‘ Znk

for some free abelian group F and n1, . . . , nk P N. Thus TorpF,Gq “ 0, and

TorpA,Gq “ TorpF,Gq ‘
˜

kà
i“1

TorpZni
, Gq

¸
“

kà
i“1

ker
`
G

¨niÝÑ G
˘

“ 0

since G is torsion free. �

The following easy consequence was already mentioned in the previous two lectures:

Corollary 41.4. For any field K of characteristic zero and any chain complex C˚ of free
abelian groups such that HnpC˚q is finitely generated for every n,62 the natural map h : H˚pC˚q b
K Ñ H˚pC˚ b Kq is an isomorphism. In particular, if the singular homology of a pair pX,Aq is
finitely generated in every dimension, then there is a natural vector space isomorphism H˚pX,A;Kq –
H˚pX,Aq b K. �

Example 41.5. The characteristic zero assumption in the above corollary cannot be dropped
in general: we know this already from the example of the Klein bottle K2, which has H2pK2q “ 0

but H2pK2;Z2q – Z2 ‰ 0 “ H2pK2q b Z2. Here is a sanity check: since H1pK2q – Z ‘ Z2, the
universal coefficient theorem in this case gives

H2pK2;Z2q –
`
H2pK2q b Z2

˘
‘ TorpH1pK2q,Z2q – TorpZ ‘ Z2,Z2q,

and by Theorem 41.2,

TorpZ‘Z2,Z2q “ TorpZ,Z2q‘TorpZ2,Z2q “ TorpZ2,Z2q – ker
`
Z2

¨2Ñ Z2

˘
“ ker

`
Z2

0Ñ Z2

˘
“ Z2.

60A few additional useful properties of Tor are proved in [Hat02, Prop. 3A.5].
61The corollary is also true without assuming A to be finitely generated, the proof just takes a bit more effort;

see [Hat02, Prop. 3A.5].
62As with the footnote on Corollary 41.3, it is not actually necessary to assume HnpC˚q is finitely generated,

but this assumption is satisfied in every example we are likely to care about.
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Projective resolutions and Tor. The explanation of Tor begins with a thought-experiment.
The simplest case in which we might hope to compare H˚pC˚q with H˚pC˚ bGq is when H˚pC˚q
is trivial, i.e. the complex C˚ is an exact sequence. Let’s simplify further and consider a short
exact sequence

0 ÝÑ A
iÝÑ B

jÝÑ C ÝÑ 0

of (not necessarily free) abelian groups, and ask whether the associated sequence

0 ÝÑ A bG
ib1ÝÑ B bG

jb1ÝÑ C bG ÝÑ 0

must also be exact. The answer is in general no: for example,

0 ÝÑ Z
¨2ÝÑ Z

prÝÑ Z2 ÝÑ 0

is an exact sequence, but applying bZ2 to it produces

0 ÝÑ Z b Z2
¨2ÝÑ Z b Z2

pr b1ÝÑ Z2 b Z2 ÝÑ 0,

which is not exact, because the first map Z2
¨2Ñ Z2 is trivial and thus not injective. The problem

here is with the first nontrivial term, and this turns out to be the only problem in general:

Proposition 41.6. If A iÑ B
jÑ C Ñ 0 is an exact sequence of abelian groups, then for every

abelian group G, the sequence AbG
ib1Ñ B bG

jb1Ñ C bG Ñ 0 is also exact.

Proof. Exactness of the first sequence means that j is surjective and im i “ ker j Ă B. Then
for every c P C and g P G, we can find b P B with jpbq “ c and write pj b 1qpb b gq “ c b g,
implying that j b 1 is surjective. Clearly pj b 1q ˝ pi b 1q “ pj ˝ iq b 1 “ 0 since j ˝ i “ 0, so we
only still need to show kerpj b 1q Ă impi b 1q, which is now equivalent to showing that the map

(41.3) pB bGq
L
impi b 1q Ñ C bG : rbˆ gs ÞÑ jpbq b g

is injective (in which case it is an isomorphism). We can do this by constructing its inverse: define
Φ : C b G Ñ pB b Gq{ impi b 1q by Φpc b gq :“ b b g for any b P j´1pcq. This is well defined
because for any two choices b, b1 P j´1pcq, we have b1 ´ b P ker j “ im i and thus b1 ´ b “ ipaq for
some a P A, thus b1 b g ´ b b g “ ipaq b g P impi b 1q. It is easy to check that Φ is an inverse for
the map (41.3). �

The technical term for the phenomenon in Proposition 41.6 is that bG is a right-exact
functor. We would drop the prefix “right-” from this terminology if an initial “0 Ñ” could be
added to both sequences, but the example above with G “ Z2 shows that this does not work in
general. The situation for split exact sequences is better:

Exercise 41.7. Show that if 0 Ñ A
iÑ B

jÑ C Ñ 0 is a split exact sequence of abelian groups,
then for every abelian group G, the sequence 0 Ñ A b G

ib1Ñ B b G
jb1Ñ C b G Ñ 0 is also split

exact.
Hint: Up to isomorphism, you can assume B “ A‘C and write very simple formulas for i and j.

We will see that the Tor term appearing in the universal coefficient theorem is in some sense
measuring the failure of bG to be an exact functor. To say more precisely what this means, it
is natural at this point to generalize somewhat beyond abelian groups and discuss more general
modules over a commutative ringR with unit. Recall that anR-module homomorphismG Ñ H

is then a group homomorphism Φ : G Ñ H that additionally respects the “scalar multiplication”
by elements of R, i.e. it satisfies

Φpλgq “ λΦpgq for all λ P R, g P G.
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If R “ Z, then nothing has changed and we are still talking about abelian groups with group
homomorphisms; on the other end of the spectrum, one can choose R to be a field K, so that
R-modules are vector spaces over K and R-module homomorphisms are K-linear maps. In this
more general context, there are obvious notions of chain complexes, chain maps, chain homotopies,
homology groups and exact sequences, where all objects are assumed to be R-modules and all
morphisms are R-module homomorphisms.

Definition 41.8. An R-module F is called projective if for every surjective R-module homo-
morphism π : G Ñ H , every R-module homomorphism ϕ : F Ñ H can be lifted to an R-module
homomorphism rϕ : F Ñ G so that the following diagram commutes:

G

F H

π
rϕ

ϕ

Example 41.9. Every free abelian group is a projective Z-module. Indeed, if F has a basis
B Ă F , then the required lift rϕ : F Ñ G can be defined by choosing any rϕpbq P π´1pϕpbqq for each
b P B and extending rϕ to the unique homomorphism with these values on the basis elements.

Example 41.10. The group Z2 is not a projective Z-module. For example, the lift in the
diagram

Z

Z2 Z2

π
rϕ

1

can never exist since HompZ2,Zq “ 0.

Example 41.9 extends easily to R-modules for any R: recall that an R-module A is called free
if it admits a basis, meaning a subset B Ă A such that every element x P A is uniquely expressible
as

ř
bPB xbb with at most finitely many nonzero coefficients xb P R. This is equivalent to saying

that A is isomorphic to
Fmod
R pSq :“

à
sPS

R,

the so-called free R-module on S. Clearly every free R-module is also projective.

Definition 41.11. A projective resolution pF˚, f˚q of an R-module A is an exact sequence

. . . ÝÑ F2
f2ÝÑ F1

f1ÝÑ F0
f0ÝÑ A ÝÑ 0

such that all of the Fi for i “ 0, 1, 2, . . . are projective R-modules.

Proposition 41.12. Every R-module A admits a projective resolution.

Proof. Pick any generating set S0 Ă A, e.g. it would suffice to choose S0 “ A, though
smaller subsets are usually possible. We then set F0 “ Fmod

R pS0q and define f0 : F0 Ñ A as the
unique R-module homomorphism that extends the inclusion S0 ãÑ A, noting that f0 is surjective
by construction. Next, pick S1 to be a generating subset of ker f0 Ă F0, and define F1 “ Fmod

R pS1q
and f1 : F1 Ñ ker f0 analogously; this defines f1 : F1 Ñ F0 such that im f1 “ ker f0. Now continue
this process inductively: all of the modules Fi produced in this way are projective since they are
free. �

There seem to be quite a lot of arbitrary choices involved in constructing projective resolutions,
but the next result shows that they are more unique than one might expect.
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Proposition 41.13. Given an R-module homomorphism ϕ : A Ñ B and any projective reso-
lutions pF˚, f˚q of A and pG˚, g˚q of B, there exists a chain map ϕ˚ from F˚ to G˚, i.e. a sequence
of R-module homomorphisms ϕi : Fi Ñ Gi such that the diagram

(41.4)
. . . F2 F1 F0 A

. . . G2 G1 G0 B

f2

ϕ2

f1

ϕ1

f0

ϕ0 ϕ

g2 g1 g0

commutes. Moreover, this chain map is unique up to chain homotopy.

Corollary 41.14. Any two projective resolutions of the same R-module are chain homotopy
equivalent.

Proof. If pF˚, f˚q and pG˚, g˚q are both projective resolutions of A, then applying Propo-
sition 41.13 with ϕ : A Ñ A as the identity map produces chain maps pF˚, f˚q Ñ pG˚, g˚q and
pG˚, g˚q Ñ pF˚, f˚q, which can be composed in either direction to produce chain maps from
pF˚, f˚q to itself and from pG˚, g˚q to itself. Uniqueness then implies that both of the latter are
chain homotopy equivalent to the identity. �

Proof of Proposition 41.13. For convenience denote ϕ´1 :“ ϕ, and assume for some in-
teger k ě 0 that the maps ϕ´1, . . . , ϕk´1 in (41.4) have already been constructed so that all the
relevant squares commute. We must then find a map ϕk : Fk Ñ Gk such that gkϕk “ ϕk´1fk.
Notice that

gk´1ϕk´1fk “ ϕk´2fk´1fk “ 0,

thus impϕk´1fkq Ă ker gk´1 “ im gk, and we can therefore define ϕk to be any solution to the
lifting problem

Gk

Fk ker gk´1

gk
ϕk

ϕk´1fk

A solution exists since Fk is projective. The existence of the complete chain map ϕ˚ now follows
by induction on k.

For uniqueness, suppose ϕ˚ and ψ˚ are two chain maps as above, and we want to define a
chain homotopy between them, i.e. a sequence of maps hk : Fk Ñ Gk`1 for k ě 0 satisfying

ϕk ´ ψk “ gk`1hk ` hk´1fk

for every k. For this to make sense when k “ 0, we need also a map h´1 : A Ñ G0, which we
define as h´1 :“ 0. (Note that this makes sense if we regard both rows of (41.4) as chain complexes
extended to the right with a sequence of zero terms, since ϕ´1 ´ ψ´1 “ ϕ ´ ϕ “ 0 by definition.)
Assume for some k ě 0 that h´1, . . . , hk´1 have already been constructed, so we now need to find
a map hk : Fk Ñ Gk`1 such that

gk`1hk “ ϕk ´ ψk ´ hk´1fk.

We observe that by commutativity and the chain homotopy relation for k ´ 1,

gkpϕk ´ ψk ´ hk´1fkq “ pϕk´1 ´ ψk´1qfk ´ gkhk´1fk

“ pgkhk´1 ` hk´2fk´1 ´ gkhk´1q fk “ hk´2fk´1fk “ 0,
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so impϕk ´ ψk ´ hk´1fkq Ă ker gk “ im gk`1, and hk can now be defined as any solution to the
lifting problem

Gk`1

Fk ker gk

gk`1
hk

ϕk´ψk´hk´1fk

The result now follows again by induction on k. �

Your first instinct when you see a chain map like ϕ˚ : pF˚, f˚q Ñ pG˚, g˚q as in the above
result should be to look at the homomorphisms it induces between the homologies of the two chain
complexes. Unfortunately, that is not interesting in this case, as pF˚, f˚q and pG˚, g˚q are both
exact sequences, so their homologies vanish. But this is where the failure of bG to be an exact
functor comes into play: for any pair of abelian groups A and G with a chosen projective resolution
pF˚, f˚q of A, the exact sequence . . . F2

f2Ñ F1
f1Ñ F0

f0Ñ A Ñ 0 induces a chain complex

. . . ÝÑ F2 bG
f2b1ÝÑ F1 bG

f1b1ÝÑ F0 bG
f0b1ÝÑ A bG ÝÑ 0,

whose homology groups

HnpF˚ bGq “ kerpfn b 1q
L
impfn`1 b 1q

might not be trivial, but are in any case well defined up to canonical isomorphisms due to Propo-
sition 41.13:

Corollary 41.15. Given abelian groups G, A and B, one can associate to any homomorphism
ϕ : A Ñ B and chosen projective resolutions pF˚, f˚q of A and pF 1

˚, f
1
˚q of B a sequence of canonical

homomorphisms

ϕ˚ : HnpF˚ bGq Ñ HnpF 1
˚ bGq, n P Z,

which are functorial in the sense that composable homomorphisms give pψ ˝ ϕq˚ “ ψ˚ϕ˚ and
A

1Ñ A with the same projective resolution on both sides gives 1˚ “ 1. In particular, any two
choices of projective resolutions pF˚, f˚q and pF 1

˚, f
1
˚q for the same group A come with canonical

isomorphisms HnpF˚ bGq –Ñ HnpF 1
˚ bGq. �

Definition 41.16. Given abelian groups A and G, we define

TorpA,Gq :“ H1pF˚ bGq,

where F˚ is any choice of projective resolution for A. For any homomorphism ϕ : A Ñ B of abelian
groups, an induced homomorphism

TorpA,Gq ϕ˚ÝÑ TorpB,Gq

is defined as the canonical map ϕ˚ : H1pF˚ b Gq Ñ H1pF 1
˚ b Gq given in Corollary 41.15 for any

choice of projective resolution F 1
˚ of B.

Exercise 41.17. Show that TorpA,Gq is also a covariant functor in the second variable, i.e. ho-
momorphisms G Ñ H naturally induce homomorphisms TorpA,Gq Ñ TorpA,Hq.

There are good reasons to single out the group H1pF˚ bGq rather than considering HnpF˚ bGq
for other values of n ě 0; we’ll get into this in the next lecture.
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42. Universal coefficient theorem and Künneth formula

Topic 1: Proof of the universal coefficient theorem. In the previous lecture, we defined
the group TorpA,Gq for any pair of abelian groups A and G as the first homology group of a
tensored chain complex,

TorpA,Gq “ H1pF˚ bGq,
where pF˚, f˚q is any choice of projective resolution . . . Ñ F2 Ñ F1 Ñ F0 Ñ A Ñ 0. We have seen
why this group is well defined up to canonical isomorphisms, but you may still be wondering what
is special about H1pF˚ bGq, as opposed to HnpF˚ bGq for other integers n ě 0. The answer comes
from the following fundamental algebraic result, which we will also need to make essential use of
in proving the universal coefficient theorem. You can find a proof in many standard textbooks on
algebra, such as [Lan02].

Proposition 42.1. Every subgroup of a free abelian group is also a free abelian group. �

Remark 42.2. The proof of this result is fairly elementary when the group is finitely generated
(see [Lan02, §I.7]), though if the group is not finitely generated, then the standard proof requires
Zorn’s lemma, a version of the axiom of choice. If the axiom of choice makes you uncomfortable,
then you will have to bury that discomfort now, as many of the free abelian groups we want to deal
with are in fact uncountably infinitely generated, e.g. the singular chain groups of any interesting
topological space.

Corollary 42.3. Every abelian group A admits a projective resolution of the form . . . Ñ 0 Ñ
F1

f1Ñ F0
f0Ñ A Ñ 0. In particular, HnpF˚ bGq “ 0 for every n ě 2 and every abelian group G.

Proof. Take F0 to be any free abelian group that admits a surjective homomorphism f0 :

F0 Ñ A, e.g. the free abelian group on any generating subset of A. Then Proposition 42.1 implies
that ker f0 Ă F0 is also free and therefore projective, hence

. . . Ñ 0 Ñ ker f0 ãÑ F0
f0Ñ A Ñ 0

is a projective resolution of A. �

The group H0pF˚ b Gq is also trivial, for slightly simpler reasons: if pF˚, f˚q is a projective
resolution, then F1 Ñ F0 Ñ A Ñ 0 is an exact sequence, so by Proposition 41.6 (i.e. the fact that
bG is a right-exact functor), so is F1 b G Ñ F0 b G Ñ A b G Ñ 0, making the homology at the
term F0 b G zero. The upshot is that when we apply the functor bG to a projective resolution
pF˚, f˚q of A, the only nontrivial homology group that can emerge is H1pF˚ b Gq. It serves as a
measurement of the failure of bG to be an exact functor, i.e. if we could also say that projective
resolutions of the form 0 Ñ F1 Ñ F0 Ñ A Ñ 0 as in Corollary 42.3 always give rise to exact
sequences 0 Ñ F1 bG Ñ F0 bG Ñ Ab G Ñ 0, then H1pF˚ bGq would also vanish. This is why
it gets a special name.

We can now prove the universal coefficient theorem. Here is the statement again in short form.

Theorem 42.4. For any chain complex C˚ of free abelian groups, a fixed abelian group G and
n P Z, there exists a natural exact sequence

0 ÝÑ HnpC˚q bG
hÝÑ HnpC˚ bGq ÝÑ TorpHn´1pC˚q, Gq ÝÑ 0,

where h is the canonical map defined in (41.2), and the sequence splits (but not naturally).

Proof. For the given boundary maps Bn : Cn Ñ Cn´1, abbreviate

Zn :“ ker Bn Ă Cn, Bn :“ im Bn`1 Ă Zn Ă Cn,
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and note that since Cn is free, Proposition 42.1 implies that Zn and Bn are also free. Writing
pr : Zn Ñ HnpC˚q “ Zn{Bn for the natural quotient projection, the short exact sequence

0 Bn Zn HnpC˚q 0
in pr

then becomes a projective resolution of HnpC˚q if we insert an infinite sequence of zero terms at
the left. Tensoring with G now gives the chain complex

. . . 0 Bn bG Zn bG HnpC˚q bG 0,
inb1 pr b1

which is exact at the last two terms by Proposition 41.6, thus prb1 is surjective and descends to
an isomorphism

(42.1) cokerpin b 1q “ pZn bGq
L
impin b 1q pr b1ÝÑ HnpC˚q bG.

By the definition of Tor, we also have

(42.2) kerpin b 1q “ TorpHnpC˚q, Gq.

Now consider the short exact sequence 0 Ñ Z˚ ãÑ C˚
BÑ B˚´1 Ñ 0, which is actually a short

exact sequence of chain complexes if we define Z˚ :“
À

nPZ Zn and B˚´1 :“
À

nPZBn´1 as chain
complexes with trivial boundary maps, i.e. we have a commuting diagram

...
...

...

0 Zn Cn Bn´1 0

0 Zn´1 Cn´1 Bn´2 0

...
...

...

0

Bn

Bn 0

0

Bn´1

Bn´1 0

where each row is a short exact sequence. Since the groups Bn are free, each row also splits, so
that by Exercise 41.7, applying bG to each of these rows produces exact sequences 0 Ñ Zn bG Ñ
Cn bG Ñ Bn´1 bG, thus forming another short exact sequence of chain complexes

0 ÝÑ Z˚ bG ÝÑ C˚ bG ÝÑ B˚´1 bG ÝÑ 0.

By the usual diagram-chasing result, this gives rise to a long exact sequence of the homology groups
of those complexes:

. . . ÝÑ Bn bG
ΦÝÑ Zn bG ÝÑ HnpC˚ bGq ÝÑ Bn´1 bG

ΦÝÑ Zn´1 bG ÝÑ . . . ,

where Φ denotes the connecting homomorphisms in this long exact sequence. If you look closely at
the diagram chase required for constructing Φ, you’ll find that it can be described explicitly: the
map Φ : Bn bG Ñ Zn bG for each n P Z is just in b 1, where in : Bn ãÑ Zn is again the obvious
inclusion. Now we use the standard trick for turning a long exact sequence into a short exact
sequence centered on a certain term, in this case HnpC˚ bGq: the map from this to Bn´1 bG is
surjective onto the kernel of Φ, while the map from Zn bG preceding this descends to an injection
on the quotient of Zn bG by imΦ, giving a short exact sequence

0 ÝÑ cokerpin b 1q ÝÑ HnpC˚ bGq ÝÑ kerpin´1 b 1q ÝÑ 0.
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Now plug in the isomorphisms (42.1) and (42.2) and our short exact sequence becomes the one in
the statement of the theorem.

It is a bit tedious but straightforward to establish the naturality of this sequence, i.e. that any
chain map from C˚ to another chain complex C 1

˚ of free abelian groups produces a commutative
diagram with the exact sequences beginning with HnpC˚q bG and HnpC 1

˚q bG as its two rows. I
will leave this as an exercise.

But we should still discuss why the sequence splits, as this is less straightforward. By Ex-
ercise 28.5, it will suffice to construct a left-inverse for the injective map h : HnpC˚q b G Ñ
HnpC˚ b Gq. Recall first that the exact sequence 0 Ñ Zn ãÑ Cn

BnÑ Bn´1 Ñ 0 splits since Bn´1

is free due to Proposition 42.1, thus there exists a left-inverse of the inclusion Zn ãÑ Cn, i.e. a
projection homomorphism

p : Cn Ñ Zn, p|Zn
“ 1Zn

.

The composition of p with the quotient projection pr : Zn Ñ Zn{Bn “ HnpC˚q then defines a
chain map

pC˚, Bq pH˚pC˚q, 0qpr ˝p

since pr ˝p ˝ B “ 0, and this induces a chain map

pC˚ bG, B b 1q pH˚pC˚q bG, 0q,ppr ˝pqb1

which then descends to a homomorphism on the homologies that we shall call

π :“ pppr ˝pq b 1q˚ : HnpC˚ bGq Ñ HnpC˚q bG

for each n P Z. One can now check that π ˝ h is the identity map on HnpC˚q bG. �

Remark 42.5. It should be clear from the construction of the left-inverse π : HnpC˚ bGq Ñ
HnpC˚q b G that it has little chance of interacting nicely with morphisms of chain complexes,
as it depended rather seriously on the completely arbitrary choice of a left-inverse p : Cn Ñ Zn
for the inclusion Zn ãÑ Cn. The latter can be derived from a right-inverse of Bn : Cn Ñ Bn´1,
which exists because Proposition 42.1 guarantees that Bn´1 has a basis, and we can then choose
an element in B´1

n pbq Ă Cn for every basis element b P Bn´1, but this step requires in general an
explicit invocation of the axiom of choice, and we already used this axiom in a less obvious way
by quoting Proposition 42.1 (cf. Remark 42.2). This discussion does not prove that the splitting is
not natural, but it should take away any reason you may have had to believe that it is. For actual
counterexamples to naturality, see [Hat02, pp. 264–265] or [Bre93, Chapter V, Example 7.7].

Exercise 42.6. Prove that for any space X with finitely-many path-components63 and any
abelian group G, H1pX ;Gq – H1pXq bG. Hint: H0pX ;Zq is always free.

Topic 2: Tensor products of chain complexes. Our next major topic is computing the
homology of product spaces. We will tackle the algebraic aspect of this problem in the present
lecture, since it is very similar to the universal coefficient theorem—in fact, the result we need to
prove generalizes Theorem 42.4 to a statement about the homology of the tensor product of two
chain complexes.

To see why we might want such a result, suppose X and Y are both compact CW-complexes,
and consider the product X ˆ Y . This has a natural cell decomposition such that

pX ˆ Y qn “
ď

0ďkďn

Xk ˆ Y n´k.

63The assumption of finitely-many path-components is not necessary in general; we need it only because we have
not proved any thing about TorpA,Gq when A is not finitely generated, though one could (see [Hat02, Prop. 3A.5].
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It is easiest to see this if we choose a homeomorphism of the disk Dn with the n-dimensional cube
In and thus regard In as the domain of the characteristic maps of n-cells. Since Ik`ℓ “ Ik ˆ Iℓ,
any pair consisting of a k-cell ekα Ă X and ℓ-cell eℓβ Ă Y with characteristic maps Φα : Ik Ñ X

and Φβ : Iℓ Ñ Y respectively gives rise to a pk ` ℓq-cell

ekα ˆ eℓβ Ă X ˆ Y

with characteristic map

Φα ˆ Φβ : Ik`ℓ Ñ X ˆ Y : ps, tq ÞÑ pΦαpsq,Φβptqq.

The bilinear operation

CCW
k pXq ˆ CCW

ℓ pY q ˆÝÑ CCW
k`ℓ pX ˆ Y q

defined on the cellular chain complex by sending a pair of generators pekα, eℓβq to ekαˆeℓβ is called the
cellular cross product. The following formula for the boundary map arises from the geometric
intuition that the boundary of a product of manifolds M ˆN consists of all points px, yq P M ˆN

such that either x P BM or y P BN ; one then has to think somewhat more carefully about
orientations to get the signs right (see Exercise 42.17).64

Proposition 42.7. For any pair of CW-complexes X and Y with a k-cell ekα Ă X and an
ℓ-cell eℓβ Ă Y ,

Bpekα ˆ eℓβq “ Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ P CCW
k`ℓ´1pX ˆ Y q.

�

The following purely algebraic definition should now hopefully seem quite natural.

Definition 42.8. Given chain complexes pA˚, BAq and pB˚, BBq, the tensor product chain
complex pA˚ bB˚, Bq is defined by

(42.3) pA˚ bB˚qn “
à

k`ℓ“n

Ak bBℓ,

where the direct sum is understood to be over the set of all pairs of integers k, ℓ that add up to n,
and the boundary map is determined by the formula

Bpa b bq “ BAab b` p´1qkab BBb for a P Ak, b P Bℓ.

You should take a moment to assure yourself that this really defines a chain complex: B2

includes some terms that vanish because pBAq2 “ pBBq2 “ 0, but also cross terms BAa b BBb
that disappear due to sign cancelations. Here is another easy thing to check: given chain maps
f : A˚ Ñ A1

˚ and g : B˚ Ñ B1
˚, there is a chain map

(42.4) f b g : A˚ bB˚ Ñ A1
˚ bB1

˚ : a b b ÞÑ fpaq b gpbq.

We can now rephrase Proposition 42.7 as follows:

Proposition 42.9. The cellular cross product determines an isomorphism of chain complexes

CCW
˚ pXq b CCW

˚ pY q Ñ CCW
˚ pX ˆ Y q : ab b Ñ aˆ b.

�

64An explicit proof of the formula in Prop. 42.7 can also be found in [Hat02, Prop. 3B.1].
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Remark 42.10. The sign changes in all these formulas take some getting used to, but there is
an easy rule of thumb for remembering them. Every element a P Ak in a chain complex A˚ can be
regarded as even or odd depending on whether k is even or odd, and we can also naturally regard
boundary maps B : A˚ Ñ A˚ as having degree ´1 since they send Ak to Ak´1. If we view B is an
odd object in this sense, then the rule is that a sign changes every time the order of two odd objects
is interchanged. In other words, the sign in the formula Bpab bq “ Bab b` p´1qkab Bb comes from
the fact that in the last term, we have interchanged the order of B and a, which produces a sign if
and only if a is odd (since B is always odd). Similar sign conventions appear in many branches of
mathematics and arise for reasons having to do with signs of permutations, e.g. a familiar example
in differential geometry is the formula for the exterior derivative of a wedge product of differential
forms.

With product cell complexes as motivation, it is important to be able to compute the homology
of a tensor product chain complex, and it seems a good guess that the answer should be related
to the tensor product of the individual homologies of the two complexes. As with the universal
coefficient theorem, we can begin by observing that there is a canonical map: for any two chain
complexes A˚, B˚ and each k, ℓ P Z, we can define

HkpA˚q bHℓpB˚q Ñ Hk`ℓpA˚ bB˚q : ras b rbs ÞÑ rab bs.
It is an easy exercise to check that this is a well-defined homomorphism, and taking the direct sum
of these maps for all choices of k, ℓ P Z with a fixed sum produces a canonical map

(42.5)
à

k`ℓ“n

HkpA˚q bHℓpB˚q Ñ HnpA˚ bB˚q

for each n P Z. It seems reasonable to hope that this will at least sometimes be an isomorphism.
What’s actually true is in fact a direct generalization of the universal coefficient theorem.

Theorem 42.11 (algebraic Künneth formula). Given two chain complexes C˚, C
1
˚ of free

abelian groups, the map (42.5) for every n P Z fits into a natural short exact sequence

0 Ñ
à

k`ℓ“n

HkpC˚q bHℓpC 1
˚q Ñ HnpC˚ b C 1

˚q Ñ
à

k`ℓ“n´1

TorpHkpC˚q, HℓpC 1
˚qq Ñ 0,

and the sequence splits (but not naturally).

The statement becomes a bit more concise if we define the operation b on the category of
Z-graded abelian groups via (42.3) and define Tor as a functor AbZ ˆ AbZ Ñ AbZ by

`
TorpC˚, C

1
˚q
˘
n
:“

à
k`ℓ“n

TorpCk, C 1
ℓq.

Then the exact sequence in Theorem 42.11 becomes

0 Ñ H˚pC˚q bH˚pC 1
˚q Ñ H˚pC˚ b C 1

˚q Ñ
`
TorpH˚pC˚q, H˚pC 1

˚q
˘

˚´1
Ñ 0,

where the subscript “˚ ´ 1” on the last term indicates the downward degree shift. The splitting
gives rise to an isomorphism

H˚pC˚ b C 1
˚q –

`
H˚pC˚q bH˚pC 1

˚q
˘

‘
`
TorpH˚pC˚q, H˚pC 1

˚q
˘

˚´1
,

which can be used in practice to compute the cellular homology of products. We will see in the
next lecture how this can be applied to singular homology more directly, without needing to know
that singular and cellular homologies are isomorphic.

The proof of the Künneth formula requires the following easy exercise, which also provides a
useful criterion (beyond Theorem 41.2) for the vanishing of Tor groups.
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Exercise 42.12. Show that if C˚ is any chain complex and G is a free abelian group, the
canonical map h : H˚pC˚q bG Ñ H˚pC˚ bGq is an isomorphism.
Hint: Proving TorpHnpC˚q, Gq “ 0 does not suffice, as the chain groups in C˚ are not assumed to
be free, so you cannot just feed this into the universal coefficient theorem. But if G is free, you
can write it as a direct sum of copies of Z, so try rewriting the chain complex C˚ bG similarly.

Proof of Theorem 42.11. As in the proof of the universal coefficient theorem, we abbrevi-
ate the subgroups of boundaries and cycles in Cn by Bn Ă Zn Ă Cn, and think of B˚ :“ À

nBn and
Z˚ :“ À

n Zn as chain complexes with trivial boundary maps, so their homologies areHnpZ˚q “ Zn
and HnpB˚q “ Bn. We shall denote by B˚´1 the chain complex that is the same as B˚ but with
all degrees shifted one step downward, meaning pB˚´1qn “ Bn´1. Since C˚ (and therefore also its
subgroup B˚ Ă C˚) is free, the exact sequence 0 Ñ Z˚ ãÑ C˚

BÑ B˚´1 Ñ 0 splits, and so therefore
does the sequence

0 Z˚ b C 1
˚ C˚ b C 1

˚ Ñ B˚´1 b C 1
˚ 0,

which is now a short exact sequence of tensor product chain complexes. Note that the individual
chain groups of B˚´1 b C 1

˚ are
`
B˚´1 b C 1

˚

˘
n

“
à

k`ℓ“n´1

Bk b C 1
ℓ,

thus HnpB˚´1 b C 1
˚q “ Hn´1pB˚ b C 1

˚q. The short exact sequence of chain complexes gives rise
as usual to a long exact sequence of homology groups

. . . Ñ HnpB˚ bC 1
˚q inÑ HnpZ˚ bC 1

˚q Ñ HnpC˚ bC 1
˚q Ñ Hn´1pB˚ bC 1

˚q in´1Ñ Hn´1pZ˚ bC 1
˚q Ñ . . . ,

where the maps labeled in, in´1 are the connecting homomorphisms, and we can then turn this
into a short exact sequence centered around HnpC˚ b C 1

˚q in the usual way:

(42.6) 0 Ñ coker in Ñ HnpC˚ b C 1
˚q Ñ ker in´1 Ñ 0,

Since B˚ is free, Exercise 42.12 gives a canonical isomorphism H˚pB˚ bC 1
˚q “ B˚ bH˚pC 1

˚q, which
more precisely means

HnpB˚ b C 1
˚q “

à
k`ℓ“n

Bk bHℓpC 1
˚q for all n P Z,

and for the same reasons,

HnpZ˚ b C 1
˚q “

à
k`ℓ“n

Zk bHℓpC 1
˚q for all n P Z.

Inspecting the diagram-chase then reveals that the maps in : HnpB˚ b C 1
˚q Ñ HnpZ˚ b C 1

˚q are
exactly what one would expect, namely

in “
à

k`ℓ“n

ik,ℓ :
à

k`ℓ“n

Bk bHℓpC 1
˚q Ñ

à
k`ℓ“n

Zk bHℓpC 1
˚q,

where each of the maps ik,ℓ : Bk b HℓpC 1
˚q Ñ Zk b HℓpC 1

˚q is the tensor product of the inclusion
Bk ãÑ Zk with the identity map HℓpC 1

˚q Ñ HℓpC 1
˚q, so the exact sequence (42.6) can now be

written as

(42.7) 0 Ñ
à

k`ℓ“n

coker ik,ℓ Ñ HnpC˚ b C 1
˚q Ñ

à
k`ℓ“n´1

ker ik,ℓ Ñ 0.

Finally, to understand the terms coker ik,ℓ and ker ik,ℓ we can look at the short exact sequence

0 Ñ Bk ãÑ Zk
prÑ HkpC˚q Ñ 0,
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which defines a projective resolution ofHkpC˚q and thus gives rise for each ℓ P Z to a chain complex

0 ÝÑ Bk bHℓpC 1
˚q ik,ℓÝÑ Zk bHℓpC 1

˚q ÝÑ HkpC˚q bHℓpC 1
˚q ÝÑ 0.

This sequence is exact except possibly at the first nontrivial term, where the non-exactness is
measured by

ker ik,ℓ – TorpHkpC˚q, HℓpC 1
˚qq,

and the exactness at all other terms implies that the map Zk b HℓpC 1
˚q Ñ HkpC˚q b HℓpC 1

˚q
descends to an isomorphism

coker ik,ℓ – HkpC˚q bHℓpC 1
˚q.

The sequence we were looking for is now obtained by plugging these isomorphisms into (42.7).
The proofs of naturality and the splitting proceed as similar generalizations of the proof of the

universal coefficient theorem, so we shall leave those steps as exercises. �

There is a natural generalization of the Tor functor defined on the category ModR of R-modules
over any commutative ring R with unit

TorR : ModR ˆ ModR Ñ ModR,

such that TorZ “ Tor. Recall that the tensor product of R-modules is defined analogously to
the tensor product of abelian groups, but with the additional relation

(42.8) ab prbq “ rpa b bq “ praq b b

for any r P R; concretely, for two R-modules A and B we define

A bR B :“ Fmod
R pA ˆBq

L
N

where Fmod
R pAˆBq is the free R-module on the set AˆB, and N Ă Fmod

R pAˆBq is the smallest
submodule containing all elements of the form pa`a1, bq ´ pa, bq ´ pa1, bq, pa, b` b1q ´ pa, bq ´ pa, b1q,
pra, bq ´ rpa, bq and pa, rbq ´ rpa, bq for a, a1 P A, b, b1 P B and r P R. We denote the equivalence
class represented by pa, bq P Fmod

R pa ˆ bq in the quotient by a b b P A bR B. It should be clear
that if R “ Z, then this definition reproduces the usual tensor product of abelian groups A b B,
but in general, A bR B and A b B are typically different sets. The R-module TorRpA,Gq is now
defined by applying the R-module tensor product functor bRG to a projective resolution pF˚, f˚q
of A and then taking the first homology group:

TorRpA,Gq “ H1pF˚ bR Gq.

It is straightforward to show that this satisfies the natural generalizations of both Theorem 41.2
and Exercise 42.12; see Exercise 42.15 below. The only detail on which the discussion differs is
that in general, the higher homology groups HnpF˚ bR Gq for n ě 2 can also be nonzero, leading
to a whole sequence of so-called derived functors TorRn pA,Gq with TorRpA,Gq “ TorR1 pA,Gq. This
ceases to be true however if we add an algebraic assumption about R:

Proposition 42.13 (see [Lan02, §III.7]). If R is a principal ideal domain, then every sub-
module of a free R-module is also free. �

There is no need at this point to look up what a principal ideal domain is if you’ve forgotten:
the only cases that we actually intend to consider are when R “ Z (so the result is just a restatement
of Proposition 42.1) or when R is a field K. In the latter case, R-modules are the same thing as
vector spaces over K, so Proposition 42.13 follows immediately from the fact that every vector
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space is a free module over its field of scalars, i.e. it admits a basis. (One should not overstate how
trivial this fact is—in the infinite-dimensional case, it also depends on Zorn’s lemma.)65

The fact that subgroups of free abelian groups are free was the main ingredient of our proof of
both the universal coefficient theorem and the Künneth formula, so in light of Proposition 42.13,
both results extend to statements about chain complexes of free modules over a principal ideal
domain R. In particular, we obtain natural split exact sequences (with non-natural splittings)

0 ÝÑ HnpC˚q bR G
hÝÑ HnpC˚ bR Gq ÝÑ TorRpHn´1pC˚q, Gq ÝÑ 0,

and

0 Ñ
à

k`ℓ“n

HkpC˚q bR HℓpC 1
˚q Ñ HnpC˚ bR C

1
˚q Ñ

à
k`ℓ“n´1

TorRpHkpC˚q, HℓpC 1
˚qq Ñ 0

whenever C˚ and C 1
˚ are chain complexes of free R-modules and G is another R-module.

While there is no obvious advantage to generalizing the universal coefficient theorem in this
way, we will see when we discuss its analogue for cohomology that it is very useful to have the
freedom to choose R ‰ Z. Notice that if R is chosen to be a field K, then since every vector space
over K is a free K-module, the natural generalization of Theorem 41.2 (see Exercise 42.15(a))
implies

TorKpA,Bq “ 0

for every pair of K-vector spaces A and B. This puts the Künneth formula in an especially simple
form, thus proving the following variant of Theorem 42.11:

Corollary 42.14. For any field K and any two chain complexes C˚ and C 1
˚ of K-vector

spaces, the canonical map à
k`ℓ“n

HkpC˚q bK HℓpC 1
˚q Ñ HnpC˚ bK C

1
˚q

is a K-linear isomorphism for every n P Z. �

This result is one of the reasons why it is often easier to compute homology with field coefficients
than over the integers.

Exercise 42.15. The goal of this exercise is to prove Theorem 41.2 on computing Tor; in fact,
at no extra cost we can prove its natural generalization for modules over an arbitrary commutative
ring R with unit.

(a) If A is a free R-module, construct a projective resolution pF˚, f˚q with Fn “ 0 for all
n ě 1, and conclude from this that TorRpA,Gq “ 0 for every R-module G.

(b) If pF˚, f˚q and pF 1
˚, f

1
˚q are projective resolutions of A and B respectively, construct a

projective resolution of A ‘B using the modules Fn ‘ F 1
n, and conclude that TorRpA ‘

B,Gq – TorRpA,Gq ‘ TorRpB,Gq for every R-module G.
(c) Suppose k P N has the property that no nonzero element x P R satisfies kx “ 0. Construct

a projective resolution of the quotient module R{kR with F1 “ F0 “ R and Fn “ 0 for all
n ě 2, and conclude from this that for every R-module G, TorRpR{kR,Gq is isomorphic
to the kernel of the map G ¨kÑ G.

65Note also that when we talk algebraically about a basis of a vector space, we do not mean the same thing
that is meant when discussing bases of separable Hilbert spaces in functional analysis: the latter is a countable set
B such that every element x in the space can be written uniquely as a convergent sum

ř
bPB xbb, where it is possible

for infinitely many of the coefficients xb to be nonzero if they decay fast enough. In algebra, our vector spaces have
no topologies and thus no notion of convergence, so for B to be a basis means that every x can be written uniquely
as a linear combination

ř
bPB xbb that converges for the trivial reason that at most finitely many of the coefficients

are nonzero.
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(d) Prove that whenever G is a free R-module, TorRpA,Gq “ 0 for every R-module A.
Hint: If G is isomorphic to a direct sum of copies of R, what does that mean for the
complex F˚ bR G?

Exercise 42.16. Using product cell complexes, describe a cell decomposition of the torus Tn

for every n P N such that the cellular boundary map vanishes. Use this to prove that for any
axiomatic homology theory h˚ with coefficient group G,

hkpTnq – Gpn
kq

for all n P N and 0 ď k ď n.

Exercise 42.17. This problem is intended to elucidate in differential-geometric terms the
intuitive reason behind the formula Bpekαˆeℓβq “ Bekαˆeℓβ`p´1qkekαˆBeℓβ stated in Proposition 42.7
for the boundary map on product CW-complexes.

Recall first that an orientation of a real n-dimensional vector space V means an equivalence
class of bases, where two bases are equivalent if they are connected to each other by a continuous
family of bases. The fact that the group GLpn,Rq has two connected components (determined by
whether the determinant is positive or negative) means that every real vector space of dimension
n ą 0 has exactly two choices of orientation.66 On an oriented vector space, we call a basis positive
whenever it belongs to the equivalence class determined by the orientation. A linear isomorphism
V Ñ W between two oriented vector spaces is called orientation preserving if it maps positive
bases to positive bases, and is otherwise orientation reversing.

A smooth n-manifoldM has a tangent space TxM at every point x, which is an n-dimensional
vector space. If you haven’t seen this notion in differential geometry, then you should just pictureM
as a regular level-set f´1p0q Ă Rk of some smooth function f : Rk Ñ Rk´n for some k P N; a famous
theorem of Whitney says that every smooth n-manifold can be described in this way if k ě 2n. The
tangent space TxM at each point x P M is then the n-dimensional linear subspace ker dfpxq Ă Rk.
With this notion understood, an orientation of M means a choice of orientation for every tangent
space TxM such that the orientations vary continuously with x, i.e. every point x0 P M has a
neighborhood U Ă M admitting a continuous family of bases tpv1pxq, . . . , vnpxqquxPU of the tangent
spaces TxM such that all of them are positive. If M and N are smooth manifolds of the same
dimension, then any smooth map f : M Ñ N has a derivative dfpxq : TxM Ñ TfpxqN at every
point x P M , and we call f an immersion if dfpxq is an isomorphism for every x P M . If M and
N are both oriented, then an immersion f :M Ñ N is called orientation preserving/reversing
if dfpxq : TxM Ñ TfpxqN is orientation preserving/reversing for every x P M .

(a) Convince yourself that S2 admits an orientation (i.e. it is orientable), but RP
2 and the

Klein bottle do not.
If V and W are both oriented vector spaces, we define the product orientation of V ‘ W to
be the one such that if pv1, . . . , vnq and pw1, . . . , wmq are positive bases of V and W respectively,
then pv1, . . . , vn, w1, . . . , wmq is a positive basis of V ‘W . This notion carries over immediately to
a product of manifolds M and N since for each px, yq P M ˆ N , Tpx,yqpM ˆ Nq can be naturally
identified with TxM ‘ TyN , hence orientations of M and N give rise to a product orientation of
M ˆN .

(b) Show that if M and N are oriented manifolds of dimensions m and n respectively, then
for the natural product orientations, the map M ˆ N Ñ N ˆ M : px, yq ÞÑ py, xq is
orientation preserving if either m or n is even, and orientation reversing if both m and n
are odd.

66Dimension zero must always be treated as a special case in orientation discussions. For this informal discussion
we make our lives easier by assuming all dimensions are positive.
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If M is an n-manifold with boundary, then its boundary BM is naturally an pn´ 1q-manifold, and
for each x P BM , the tangent space TxpBMq is naturally a codimension 1 linear subspace of TxM .
The set TxMzTxpBMq thus has two connected components, characterized as the tangent vectors in
TxM that point “outward” or “inward” with respect to the boundary. Now if M has an orientation,
this induces on BM the so-called boundary orientation, defined such that for any choice of
outward pointing vector ν P TxM , a basis pX1, . . . , Xn´1q of TxpBMq is positive (with respect to
the orientation of BM) if and only if the basis pν,X1, . . . , Xn´1q of TxM is positive with respect
to the orientation of M . Take a moment to convince yourself that this notion is well defined.

The simplest example is also the most relevant for our discussion of cell complexes: the closed
n-disk Dn is a compact n-dimensional smooth manifold with boundary BDn “ Sn´1. Since all the
tangent spaces to Dn are canonically isomorphic to Rn, Dn has a canonical orientation, and this
determines a canonical orientation for Sn´1.

Finally, consider a product MˆN of two smooth manifolds with boundary, with dimensions m
and n respectively. This is a slightly more general object called a “smooth manifold with boundary
and corners”; rather than defining this notion precisely, let us simply agree that in the complement
of the “corner” BM ˆ BN , the object M ˆ N is a smooth manifold whose boundary BpM ˆ Nq is
the union of two smooth manifolds BM ˆ N and M ˆ BN of dimension m ` n ´ 1. The question
is: what orientations should these two pieces of BpM ˆNq carry?

(c) Assume M and N are both oriented, M ˆ N is endowed with the resulting product
orientation and BM and BN are each endowed with the boundary orientation. Show that
the induced boundary orientation on BpM ˆNq always matches the product orientation
of BM ˆ N , and that it matches the product orientation of M ˆ BN if and only if m is
even.

Remark: The result of part (c) can be summarized as follows. If M has an orientation and we
denote the same manifold with the opposite orientation by ´M , then for any two oriented manifolds
M and N of dimensions m and n respectively,

BpM ˆNq “ pBM ˆNq Y p´1qmpM ˆ BNq.
If you apply this to the case M “ Dm and N “ Dn and consider that the degree of a map
Sk Ñ Sk changes sign if you compose it with an orientation-reversing homeomorphism, you may
now be able to imagine the reason for the sign in the cellular boundary formula Bpekα ˆ eℓβq “
Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ.

43. The cross product on homology

We saw in the previous lecture that if X and Y are CW-complexes and we assign the product
cell decomposition to X ˆ Y , there is an obvious chain map

(43.1) CCW
˚ pXq b CCW

˚ pY q Ñ CCW
˚ pX ˆ Y q : ab b ÞÑ aˆ b,

which sends the generators ekα b eℓβ to the product pk ` ℓq-cell ekα ˆ eℓβ in X ˆ Y . Letting this
map descend to homology and then composing it with the canonical map HCW

˚ pXq bHCW
˚ pY q Ñ

H˚pCCW
˚ pXq bCCW

˚ pY qq that is defined for any tensor product of chain complexes, we obtain the
so-called cross product on cellular homology, which is a homomorphism

HCW
k pXq bHCW

ℓ pY q ˆÝÑ HCW
k`ℓ pX ˆ Y q

defined for every pair k, ℓ P Z, or equivalently, a bilinear map ˆ : HCW
k pXq‘HCW

ℓ pY q Ñ HCW
k`ℓ pXˆ

Y q. One crucial feature of this discussion is that the map (43.1) is actually an isomorphism of
chain complexes—it is determined by a bijective correspondence between the generators of the two
complexes—thus it induces an isomorphism between HCW

˚ pXˆY q and the homology of the tensor
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product chain complex. We can then feed this into the algebraic Künneth formula (Theorem 42.11)
to produce the cellular version of what is known as the topological Künneth formula, a split
exact sequence

0 Ñ
à

k`ℓ“n

HCW
k pXq bHCW

ℓ pY q ˆÑ HCW
k`ℓ pX ˆ Y q Ñ

à
k`ℓ“n´1

TorpHCW
k pXq, HCW

ℓ pY qq Ñ 0.

Our main goal in this lecture will be to drop the assumption that X and Y are CW-complexes and
generalize this whole discussion to singular homology.

Let us first mention how the above discussion can be generalized beyond integer coefficients.
There is no obvious way to define a chain map as in (43.1) on the cellular chain complex with
an arbitrary coefficient group G,67 but if we take G to be a commutative ring R with unit, then
CCW

˚ pX ;Rq can be interpreted as the free R-module generated by the cells of the CW-complex X ,
so (43.1) uniquely determines a chain map of R-modules

CCW
˚ pX ;Rq bR C

CW
˚ pY ;Rq ˆÝÑ CCW

˚ pX ˆ Y ;Rq.
The induced R-module homomorphism on homology then gives rise to an R-bilinear cross product

HCW
k pX ;Rq bR H

CW
ℓ pY ;Rq ˆÝÑ HCW

k`ℓ pX ˆ Y ;Rq.
If R is additionally a principal ideal domain, then the Künneth formula also holds, producing an
exact sequence of R-modules

0 ÝÑ
à

k`ℓ“n

HCW
k pX ;Rq bR H

CW
ℓ pY ;Rq ˆÝÑ HCW

k`ℓ pX ˆ Y ;Rq

ÝÑ
à

k`ℓ“n´1

TorRpHCW
k pX ;Rq, HCW

ℓ pY ;Rqq ÝÑ 0,

with the pleasing feature that the Tor term vanishes whenever R is taken to be a field.

Remark 43.1. There is an annoying point that we’ve been glossing over so far in our discussion
of product CW-complexes: if X and Y are two CW-complexes, then the product topology on XˆY
might not always match the topology defined on X ˆ Y via its product cell decomposition. The
difference, however, is subtle: it turns out that both topologies are the same if X and Y are
compact, and more generally, the two topologies always define the same notion of compact subsets
in X ˆ Y , and their induced subspace topologies on any compact subset of X ˆ Y are the same.
In particular, this means that if our main concern is to determine when a map K Ñ X ˆ Y from
some compact space K is continuous, then both topologies give the same answer (see Exercise 43.2
below). Applying this observation for maps ∆n Ñ X ˆ Y , it follows that the singular homology
of X ˆ Y does not depend on whether we use the product topology or the CW-complex topology,
hence the isomorphism H˚pX ˆ Y ;Gq – HCW

˚ pX ˆ Y ;Gq holds as usual. With this in mind, we
shall assume from now on that X ˆ Y carries the product topology.

Exercise 43.2. Recall that the topology of a CW-complex X is defined normally as the
strongest topology for which the characteristic maps of all cells Φα : Dk Ñ X are continuous.
Given another CW-complex Y , let Z and Z 1 denote the set X ˆY with two (potentially) different
topologies: we assign to Z the product topology, and to Z 1 the topology of the product CW-complex
induced by the cell decompositions of X and Y .

67Though, for what it’s worth, one can define a product of the form CCW
˚ pX;G1q bCCW

˚ pY ;G2q Ñ CCW
˚ pXˆ

Y ;G1 bG2q for any pair of abelian groups G1 and G2. The version with ring coefficients is essentially a composition
of this with the ring multiplication map R b R Ñ R : r b s ÞÑ rs.
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(a) Prove that every open set in Z is also an open set in Z 1, i.e. the identity map Z 1 Ñ Z is
continuous.
Remark: In general, the identity map Z 1 Ñ Z might not be a homeomorphism!68

(b) Prove that the identity map Z 1 Ñ Z is a homeomorphism if X and Y are both compact.
(c) Prove that a subset K Ă Z is compact if and only if it is compact in Z 1, and the two

subspace topologies induced by Z and Z 1 on K are the same. Deduce from this that Z
and Z 1 have the same singular homology groups.

Since cellular and singular homologies are isomorphic, the cellular cross product determines a
homomorphism

(43.2) HkpX ;Rq bR HℓpY ;Rq ˆÝÑ Hk`ℓpX ˆ Y ;Rq
whenever X and Y come with cell decompositions, but it is far from obvious at this stage whether
ˆ by this definition is independent of the choice of cell decomposition. We shall deal with this as
usual by replacing the cellular cross product with a more general operation on singular homology,
that can be defined without reference to any cell decompositions. It should be emphasized that the
construction we are about to give is distinctly for singular homology, i.e. it relies on the definition
of H˚ and not just on the Eilenberg-Steenrod axioms, so it does not give us anything for more
general axiomatic homology theories. This does not mean that a cross product on other homology
theories cannot be defined, but only that it must be defined for each theory separately, with the
final step being to prove that it matches the cellular cross product when applied to CW-complexes.

There are good geometric reasons to expect that a product map (43.2) should exist. If you like
to think about elements of HkpXq as represented by closed oriented k-dimensional submanifolds
M Ă X as in Lecture 29, then since the product of two closed oriented manifolds is also a closed
oriented manifold, it would make sense to define

rM s ˆ rN s :“ rM ˆN s P Hk`ℓpX ˆ Y q
for a k-manifold M Ă X and ℓ-manifold N Ă Y . It will be easy to see that the singular cross
product has this property when rM s and rN s are defined via oriented triangulations, and we will
be able to generalize this to a statement independent of triangulations once we have learned how
to define fundamental classes on topological manifolds in general. But not every singular homology
class can be represented by a submanifold, so the question remains: how should (43.2) be defined
in general?

Since there is always a canonical map H˚pX ;Rq bRH˚pY ;Rq Ñ H˚pC˚pX ;Rq bR C˚pY ;Rqq,
we would obtain a map (43.2) if we had a chain map

C˚pXq b C˚pY q ˆÝÑ C˚pX ˆ Y q
to play the role of (43.1) on the singular chain complex. We then need to decide what σ ˆ τ P
Ck`ℓpXˆY q should mean if we are given a pair of singular simplices σ : ∆k Ñ X and τ : ∆ℓ Ñ Y .
Unfortunately ∆k ˆ ∆ℓ is not a simplex, so we cannot simply write

(43.3) σ ˆ τ : ∆k ˆ ∆ℓ Ñ X ˆ Y : ps, tq ÞÑ pσpsq, τptqq
and call this a generator of Ck`ℓpX ˆ Y q. But we’ve dealt with this kind of thing before using
subdivision: a natural approach would be to fix a reasonable oriented triangulation of ∆k`ℓ for
every pair of integers k, ℓ ě 0, and define σ ˆ τ P Ck`ℓpX ˆ Y q as the sum of singular simplices
obtained by restricting the map (43.3) to the pk ` ℓq-simplices in this triangulation. This is the
correct geometric picture, but in practice, it is cumbersome to have to choose a triangulation

68This is easily said, but writing down actual counterexamples is surprisingly difficult, e.g. it turns out that
they must involve uncountable many cells. For more on such bizarre issues, see [BT].
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and then show that what we’ve defined is independent of the choice. We shall instead employ an
algebraic trick that accomplishes the same result: the trick is known as the method of acyclic
models. One can find in various textbooks (e.g. [Vic94,Spa95]) a result called the acyclic model
theorem, which is applicable to a wide variety of problems but difficult to digest, as it is typically
expressed in heavily abstract category-theoretic language. We shall instead follow the approach of
[Bre93] and demonstrate the method by example.

Before we continue, we need to recall something from the end of Lecture 28: the reduced
singular homology rH˚pX ;Rq of a space X with coefficients in a ring R is also the homology of
the so-called augmented chain complex rC˚pX ;Rq, defined by appending an extra nonzero term
rC´1pX ;Rq :“ R to the end of the usual singular chain complex:

. . . ÝÑ C2pX ;Rq B2ÝÑ C1pX ;Rq B1ÝÑ C0pX ;Rq ǫÝÑ R ÝÑ 0 ÝÑ 0 ÝÑ . . . .

The augmentation is the homomorphism ǫ : C0pX ;Rq Ñ R, which is defined on each of the
generators σ : ∆0 Ñ X of C0pXq by ǫpσq “ 1 (see Exercise 28.20), and is thus surjective with
ǫ ˝ B1 “ 0.

Lemma 43.3. For any commutative ring R with unit, one can associate to any two spaces X
and Y a chain map of R-modules

Φ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq
that satisfies Φpxbyq “ px, yq on 0-chains under the canonical identification of singular 0-simplices
with points, and is natural in the sense that for any continuous maps f : X Ñ X 1 and g : Y Ñ Y 1,
the diagram

C˚pX ;Rq bR C˚pY ;Rq C˚pX ˆ Y ;Rq

C˚pX 1;Rq b C˚pY 1;Rq C˚pX 1 ˆ Y 1;Rq

Φ

f˚bg˚ pfˆgq˚

Φ

commutes. Moreover, Φ with these properties is unique up to chain homotopy.

Proof. The choice of the ring R will make no difference at all in the proof, so we shall drop it
from the notation; just keep in mind throughout the following that all homomorphisms are R-linear
and all tensor products are over R. We observe first that if Φ : C0pXq b C0pY q Ñ C0pX ˆ Y q
is defined as required, then it trivially satisfies the chain map relation Φ ˝ B “ B ˝ Φ on chains of
degree 0 since they are all annihilated by the boundary maps, and it also satisfies the naturality
condition

pf ˆ gq˚Φpxb yq “ pfpxq, gpyqq “ Φpf˚ b g˚qpxb yq
for any maps f : X Ñ X 1, g : Y Ñ Y 1 and points x P X , y P Y (regarded as singular 0-simplices).
We shall now argue by induction and assume that maps Φ : CkpXq bCℓpY q Ñ Ck`ℓpX ˆ Y q have
been defined for all spaces X,Y and all integers k, ℓ ě 0 with k ` ℓ ď n ´ 1 for some n ě 1, such
that the chain map and naturality conditions are satisfied on chains up to degree n´ 1. To extend
this to chains of degree n, we start by defining Φ on a particular collection of models: for each
integer k ě 0, let ik : ∆k Ñ ∆k denote the identity map on the standard k-simplex, and regard
this as a singular k-chain in the space ∆k:

ik P Ckp∆kq.
Given integers k, ℓ ě 0 with k ` ℓ “ n, let us consider ik b iℓ P Ckp∆kq bCℓp∆ℓq and try to define

Φpik b iℓq P Cnp∆k ˆ ∆ℓq.
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To satisfy the chain map relation, Φpik b iℓq needs to have the property that

(43.4) BΦpik b iℓq “ ΦpBpik b iℓqq P Cn´1p∆k ˆ ∆ℓq,
where ΦpBpik b iℓqq is given by the inductive hypothesis since Φ has already been defined on chains
up to degree n´ 1. Since it also satisfies the chain map relation up to degree n ´ 1, we have

(43.5) BΦBpik b iℓq “ ΦB2pik b iℓq “ 0,

so ΦBpik b iℓq is a singular pn´ 1q-cycle in ∆k ˆ∆ℓ. This is a vacuous statement when n “ 1, but
in this case it can also be improved: letting ǫ : C0p∆k ˆ ∆ℓq Ñ R denote the augmentation in the
augmented chain complex rC˚p∆kˆ∆ℓq, we observe that if k “ 1 and ℓ “ 0, then Bpi1bi0q “ Bi1bi0
is a sum of two generators of C0p∆1qbC0p∆0q with coefficients 1 and ´1 respectively, so ΦBpi1bi0q
is similarly a sum of two generators with coefficients 1 and ´1. The same holds in the case k “ 0

and ℓ “ 1, proving that in either case,

(43.6) ǫΦBpik b iℓq “ 0 when n “ 1.

Now comes the crucial point: ∆k ˆ ∆ℓ is contractible, so its reduced singular homology is
trivial. In light of (43.5) and (43.6), this means

rΦBpik b iℓqs “ 0 P rHn´1p∆k ˆ ∆ℓq,

implying ΦBpik b iℓq is in the image of Cnp∆k ˆ ∆ℓq BÑ Cn´1p∆k ˆ ∆ℓq, hence the relation (43.4)
has solutions, and we can define Φpik b iℓq P Cnp∆k ˆ ∆ℓq to be any element such that

(43.7) Φpik b iℓq P B´1
`
ΦBpik b iℓq

˘
.

This is an arbitrary choice, but such an element certainly exists.
Having chosen Φpik b iℓq P Cnp∆k ˆ ∆ℓq for every k, ℓ ě 0 with k ` ℓ “ n, we claim that

the general extension of Φ : C˚pXq b C˚pY q Ñ C˚pX ˆ Y q to all chains of degree n is uniquely
determined by the naturality condition. Indeed, given any pair of spaces X and Y and singular
simplices σ : ∆k Ñ X and τ : ∆ℓ Ñ Y with k ` ℓ “ n, we have

σ “ σ˚ik P CkpXq, τ “ τ˚iℓ P CℓpY q,
so naturality requires Φ : CkpXq b CℓpY q Ñ CnpX ˆ Y q to have the property that

Φpσ b τq “ Φpσ˚ b τ˚qpik b iℓq “ pσ ˆ τq˚Φpik b iℓq.
Let us take this as a definition of Φpσbτq, and verify that Φ now satisfies all the required properties
on chains up to degree n. Keeping σ and τ as above, the fact that σ˚ : C˚p∆kq Ñ C˚pXq,
τ˚ : C˚p∆ℓq Ñ C˚pY q and pσ ˆ τq˚ : C˚p∆k ˆ ∆ℓq Ñ C˚pX ˆ Y q are chain maps and the
naturality of Φ up to degree n´ 1 implies

BΦpσ b τq “ Bpσ ˆ τq˚Φpik b iℓq “ pσ ˆ τq˚BΦpik b iℓq
“ pσ ˆ τq˚ΦBpik b iℓq “ Φpσ˚ b τ˚qBpik b iℓq
“ ΦBpσ˚ b τ˚qpik b iℓq “ ΦBpσ b τq,

where we have also used the fact that the tensor product of two chain maps induces a chain map
on the tensor product chain complex (see (42.4)). This establishes the chain map property. To see
that naturality also holds, consider two continuous maps f : X Ñ X 1 and g : Y Ñ Y 1: then

Φpf˚ b g˚qpσ b τq “ Φppf ˝ σq˚ b pg ˝ τq˚qpik b iℓq “ ppf ˝ σq ˆ pg ˝ τqq˚ Φpik b iℓq
“ pf ˆ gq˚pσ ˆ τq˚Φpik b iℓq “ pf ˆ gq˚Φpσ b τq.

This completes the inductive step and thus proves the existence of the natural chain map Φ.
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The same approach will establish uniqueness up to chain homotopy. Assuming Φ and Ψ are
two natural chain maps as in the statement of the theorem, we would like to associate to each pair
of spaces X and Y a collection of maps

h : CkpXq b CℓpY q Ñ Cn`1pX ˆ Y q
for every pair of integers k, ℓ ě 0 and n “ k ` ℓ, such that

Bh` hB “ Φ ´ Ψ.

We claim that this can be done so that the obvious naturality property is also satisfied, i.e. so that
the diagram

CkpXq b CℓpY q Cn`1pX ˆ Y q

CkpX 1q b CℓpY 1q Cn`1pX 1 ˆ Y 1q

h

f˚bg˚ pfˆgq˚

h

commutes for every pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1.
Since Φ and Ψ match precisely on all 0-chains, we are free to define h : C0pXq b C0pY q Ñ

C1pXˆY q as the trivial map, and the naturality property is obviously also satisfied for this choice.
Now by induction, assume h has been defined so as to satisfy both the chain map relation and
naturality on all chains up to degree n´ 1 for some n ě 1. To extend this to degree n, we proceed
as before by trying first to define h on the models ik b iℓ P Ckp∆kq b Cℓp∆ℓq for k ` ℓ “ n. We
need hpik b iℓq P Cn`1p∆k ˆ ∆ℓq to satisfy

Bhpik b iℓq “ p´hB ` Φ ´ Ψqpik b iℓq,
where the right hand side is already determined since Bpik b iℓq has degree n ´ 1. Applying B to
the right hand side, we use the chain homotopy relation in degree n ´ 1 and the fact that Φ and
Ψ are chain maps to prove

Bp´hB ` Φ ´ Ψqpik b iℓq “ p´Bh` Φ ´ ΨqBpik b iℓq “ phBqBpik b iℓq “ 0,

hence p´hB ` Φ ´ Ψqpik b iℓq is a cycle in Cnp∆k ˆ ∆ℓq. It is therefore also a boundary since
Hnp∆k ˆ ∆ℓq “ 0, so we can define hpik b iℓq P Cn`1p∆k ˆ ∆ℓq to be any element satisfying

hpik b iℓq P B´1
`
p´hB ` Φ ´ Ψqpik b iℓq

˘
.

Now we extend this definition to all possible σb τ P CkpXq bCℓpY q by requiring naturality, i.e. we
define hpσ b τq P Cn`1pX ˆ Y q by

hpσ b τq “ hpσ˚ b τ˚qpik b iℓq :“ pσ ˆ τq˚hpik b iℓq.
We must then check that the chain homotopy relation is satisfied on σ b τ , and indeed, we have

pBh` hBqpσ b τq “ Bpσ ˆ τq˚hpik b iℓq ` hBpσ˚ b τ˚qpik b iℓq
“ pσ ˆ τq˚Bhpik b iℓq ` hpσ˚ b τ˚qBpik b iℓq
“ pσ ˆ τq˚pBh` hBqpik b iℓq “ pσ ˆ τq˚pΦ ´ Ψqpik b iℓq
“ pΦ ´ Ψqpσ˚ b τ˚qpik b iℓq “ pΦ ´ Ψqpσ b τq,

where we’ve used the fact that pσ ˆ τq˚ and σ˚ b τ˚ are chain maps, the naturality of h on
pn ´ 1q-chains, and the naturality of Φ and Ψ. Finally, we need to verify that our definition of h
on n-chains satisfies naturality: given f : X Ñ X 1 and g : Y Ñ Y 1, we have

hpf˚ b g˚qpσ b τq “ h
`
pf ˝ σq˚ b pg ˝ τq˚

˘
pik b iℓq “

`
pf ˝ σq ˆ pg ˝ τq

˘
˚
hpik b iℓq

“ pf ˆ gq˚pσ ˆ τq˚hpik b iℓq “ pf ˆ gq˚hpσ b τq.
This completes the inductive step and finishes the proof. �
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The proof above was a bit long, but not conceptually difficult once the basic idea is understood,
and we will need to make use of this idea several more times. The general pattern is always as
follows. We want to define a chain map that is typically not unique or canonical, but should take
a specific form on 0-chains and should also be “natural” in the sense of category theory; the latter
is always a precise condition that can be expressed in terms of commutative diagrams. We then
proceed by induction on the degree of the chains, where at each step in the induction, we start by
trying to define the map on a specific set of “models,” which are acyclic in the sense that their
(reduced) homology vanishes. The latter makes it possible to define our map on the models so that
the required conditions are satisfied, and the rest of the definition is then uniquely determined by
naturality. Having extended the definition up by one degree in this way, we must then check that
it still satisfies both the chain map and the naturality conditions. With this induction complete,
one can then use the same approach again to prove that any two chain maps with the required
properties are chain homotopic. I wanted to show you one example of this method with every step
worked out in detail, but when I need to use this from now on, I will typically only tell you the
main idea and leave the remaining details as exercises.

The chain map Φ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq from Lemma 43.3 induces a map
on homology, which can then be composed with the canonical map from H˚pX ;Rq bR H˚pY ;Rq
to define what we will henceforth call the singular cross product

H˚pX ;Rq bR H˚pY ;Rq H˚

`
C˚pX ;Rq bR C˚pY ;Rq

˘
H˚pX ˆ Y ;Rq

ˆ

Φ˚

The uniqueness of Φ up to chain homotopy implies that this definition does not depend on any
choices, and naturality gives rise to a commutative diagram

H˚pX ;Rq bR H˚pY ;Rq H˚pX ˆ Y ;Rq

H˚pX 1;Rq bR H˚pY 1;Rq H˚pX 1 ˆ Y 1;Rq

ˆ

f˚bg˚ pfˆgq˚

ˆ

for any pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1. Before we can feed this into the
algebraic Künneth formula as we did with cellular homology, there is a missing ingredient: the
cellular version of Φ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq was not only a chain map, it was
an isomorphism of chain complexes, which allowed us to replace the homology of a tensor product
of chain complexes in the Künneth formula with the cellular homology of a product CW-complex.
But there is no obvious reason why Φ should be an isomorphism, except on 0-chains, for which
it clearly is one; moreover, the cellular counterpart of Φ was canonically defined, whereas Φ itself
depends on many choices and is canonical only up to chain homotopy. What we can therefore
reasonably expect is for Φ to be a chain homotopy equivalence. This is where the method of
acyclic models really demonstrates its power.

Lemma 43.4. In the setting of Lemma 43.3, if R is a principal ideal domain, then there also
exist natural chain maps

C˚pX ˆ Y ;Rq θÝÑ C˚pX ;Rq bR C˚pY ;Rq,
C˚pX ;Rq bR C˚pY ;Rq αÝÑ C˚pX ;Rq bR C˚pY ;Rq,

C˚pX ˆ Y ;Rq βÝÑ C˚pX ˆ Y ;Rq,
which are uniquely determined up to chain homotopy by their definitions on 0-chains,

θpx, yq “ xb y, αpx b yq “ xb y, βpx, yq “ px, yq.
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Here, naturality of θ means that there is a commutative diagram

C˚pX ˆ Y ;Rq C˚pX ;Rq bR C˚pY ;Rq

C˚pX 1 ˆ Y 1;Rq C˚pX 1;Rq b C˚pY 1;Rq

θ

pfˆgq˚ f˚bg˚

θ

for any pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1, and naturality is defined similarly
for α and β.

Notice that for each of the last two maps, the identity is an example of a map satisfying the
required conditions, and so are the compositions Φ ˝ θ and θ ˝ Φ, thus the uniqueness up to chain
homotopy implies that Φ and θ are chain homotopy inverses. This proves:

Corollary 43.5 (Eilenberg-Zilber theorem). The natural chain maps Φ : C˚pX ;Rq bR

C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq and θ : C˚pX ˆ Y ;Rq Ñ C˚pX ;Rq bR C˚pY ;Rq are both chain
homotopy equivalences, and the induced maps on homology are inverse to each other. �

Proof of Lemma 43.4. As before, we shall mostly omit R from the notation since the role
it plays is minimal. The definition of the desired chain map on 0-chains is given in each case and
clearly satisfies naturality, so we use the method of acyclic models to extend the definition to chains
of all degrees n ě 1 by induction on n. For θ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q, assume we already
have a definition on CkpX ˆY q for all k “ 0, . . . , n´ 1. We extend it to n-chains starting with the
model

dn : ∆n Ñ ∆n ˆ ∆n : t ÞÑ pt, tq,
interpreted as an element in Cnp∆n ˆ ∆nq. The definition of θpdnq P

À
k`ℓ“n Ckp∆nq b Cℓp∆nq

should be chosen to satisfy

Bθpdnq “ θpBdnq P
à

k`ℓ“n´1

Ckp∆nq b Cℓp∆nq,

where the right hand side is already determined since Bdn has degree n´1. To see if this is possible,
we observe that since θ is a chain map up to degree n´ 1,

BpθBdnq “ θB2pdnq “ 0,

so θBdn is an pn´ 1q-cycle in C˚p∆nq bC˚p∆nq. Now observe that since ∆n is contractible and R
is a principal ideal domain, the algebraic Künneth formula implies

Hm

`
C˚p∆n;Rq bR C˚p∆n;Rq

˘
–

à
k`ℓ“m

Hkp∆n;Rq bR Hℓp∆n;Rq –
#
R if m “ 0,

0 otherwise,

where all the Tor terms have vanished because every Hkp∆n;Rq is a free R-module. In particular
this implies that the cycle θBdn is also a boundary if n ě 2, and we can therefore choose θpdnq to
satisfy

(43.8) θpdnq P B´1pθBdnq.
The case n “ 1 is special since H0p∆n;Rq bR H0p∆n;Rq “ R is not trivial, but if we identify ∆1

with the unit interval I “ r0, 1s, then it is easy to check that

θBpd1q “ θ
`
p1, 1q ´ p0, 0q

˘
“ 1 b 1 ´ 0 b 0

is a boundary, e.g. of 1 b i1 ` i1 b 0 if i1 P C1p∆1q is the singular 1-simplex given by the identity
map.69 In either case θpdnq can be defined so that (43.8) holds.

69Equivalently, at this step one could introduce a natural augmentation on the complex C˚p∆1q b C˚p∆1q

such that the resulting reduced homology vanishes and θBpd1q is in its kernel.
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Now for an arbitrary singular n-simplex σ : ∆n Ñ X ˆ Y , we can use the projection maps
πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y to write

∆n ∆n ˆ ∆n X ˆ Y,
dn

σ

pπX˝σqˆpπY ˝σq

so naturality requires that we define

θpσq “ θ ppπX ˝ σq ˆ pπY ˝ σqq˚ dn :“ ppπX ˝ σq˚ b pπY ˝ σq˚q θpdnq.
It is then a straightforward matter to check that this extension of θ to all n-chains satisfies the
chain map and naturality conditions, and one can use the same method to construct a chain
homotopy between any two such natural chain maps. We leave these steps as exercises, along with
the uniqueness up to chain homotopy of α and β, as none of these steps require any new ideas. �

Remark 43.6. I will give you the same advice about acyclic models that I typically give about
diagram chasing: the next time you find yourself bored on a long flight or train ride, finish the
proof of Lemma 43.4. It’s relaxing.

Corollary 43.5 implies that the natural map

Φ˚ : H˚

`
C˚pX ;Rq bR C˚pY ;Rq

˘
Ñ H˚pX ˆ Y ;Rq

used in the definition of the singular cross product is an isomorphism whenever R is a principal
ideal domain, so we can now use it to replace the middle term in the algebraic Künneth formula,
proving:

Corollary 43.7 (topological Künneth formula). For any principal ideal domain R, any spaces
X,Y and every integer n ě 0, the singular cross product fits into a natural short exact sequence

0 ÝÑ
à

k`ℓ“n

HkpX ;Rq bR HℓpY ;Rq ˆÝÑ Hk`ℓpX ˆ Y ;Rq

ÝÑ
à

k`ℓ“n´1

TorpHkpX ;Rq, HℓpY ;Rqq ÝÑ 0,

and the sequence splits (but not naturally). �

In particular, we can always choose field coefficients to make the Tor terms vanish:

Corollary 43.8. For any spaces X and Y and any field K, the cross product on singular
homology with coefficients in K defines natural K-vector space isomorphisms

ˆ :
à

k`ℓ“n

HkpX ;Kq bK HℓpY ;Kq –ÝÑ HnpX ˆ Y ;Kq.

for every integer n ě 0. �

Exercise 43.9. The goal of this exercise is to prove the associativity of the cross product:

pA ˆBq ˆ C “ A ˆ pB ˆ Cq P H˚pX ˆ Y ˆ Z;Rq
for all A P H˚pX ;Rq, B P H˚pY ;Rq and C P H˚pZ;Rq. Here R may be any commutative ring
with unit.

(a) Use acyclic models to prove that for triples of spaces X,Y, Z, all natural chain maps

Φ : C˚pX ;Rq bR C˚pY ;Rq bR C˚pZ;Rq Ñ C˚pX ˆ Y ˆ Z;Rq
that act on 0-chains by Φpxb y b zq “ px, y, zq are chain homotopic.
Remark: The statement implicitly assumes that there is a well-defined notion of the
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tensor product of three chain complexes, which of course is true since there is a canoni-
cal chain isomorphism between pC˚pX ;Rq bR C˚pY ;Rqq bR C˚pZ;Rq and C˚pX ;Rq bR

pC˚pY ;Rq bR C˚pZ;Rqq. Right?
(b) Given A P H˚pX ;Rq, B P H˚pY ;Rq and C P H˚pZ;Rq, show that the products pA ˆ

Bq ˆ C and A ˆ pB ˆ Cq P H˚pX ˆ Y ˆ Z;Rq can each be expressed via natural chain
maps as in part (a), and conclude that they are identical.

Exercise 43.10. Fix a commutative ring R with unit and recall that for any path-connected
space Y , there is a canonical isomorphismH0pY ;Rq “ R. Let rpts P H0pY ;Rq denote the homology
class corresponding to the unit 1 P R under this identification, so it is a canonical generator of
the R-module H0pY ;Rq which can also be defined by rσ b 1s P H0pC˚pY q b Rq for any singular
0-simplex σ : ∆0 Ñ Y . Show that for any space X , the cross product of any A P HnpX ;Rq with
rpts P H0pY ;Rq is given by

A ˆ rpts “ i˚A

for any inclusion map of the form i : X ãÑ X ˆ Y : x ÞÑ px, constq. A similar formula holds for
cross products with rpts P H0pX ;Rq if X is path-connected. In particular, this means that the
unit in H0ptptu;Rq “ R acts as a multiplicative identity element with respect to the cross product,
under the obvious identifications X ˆ tptu “ X “ tptu ˆX .
Hint: Remember that ˆ is induced by a natural chain map Φ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ
Y ;Rq, so if you have the right formula for Φ : CnpX ;RqbRC0pY ;Rq Ñ CnpXˆY ;Rq, the relation
will become obvious. In general, one can make many choices in defining Φ, but there is an obvious
choice that one “should” make when one of the chains is 0-dimensional. Review the construction
of Φ via acyclic models to show that this choice is always possible.

The alert reader may notice that there is at least one important question we have not addressed
yet: if X and Y are CW-complexes, are the singular and cellular cross products the same? The
answer is of course yes, but we will not discuss it at length, since we don’t plan to carry out any
serious applications of the cellular cross product—it is useful to have in mind for intuition and
motivation, but the product on singular homology will play a much more important role in further
developments. One other (and closely related) question we have not addressed is how to define
the cross product on relative singular homology. We will come back to this when we introduce the
cohomology cup product.

44. Čech homology and inverse limits

By now I have said almost everything I can reasonably say about singular homology without
bringing cohomology into the picture, so that will be the next major topic. But before that, I’d
like to address a question that may have been nagging at you since we introduced the Eilenberg-
Steenrod axioms many weeks ago: what other axiomatic homology theories are there?

Let me name a few theories that are not examples: first, cellular and simplicial homology
are not axiomatic homology theories in the sense of Eilenberg-Steenrod [ES52], as they are not
functors defined on Toprel or any subcategory of Toprel. Both require auxiliary choices beyond a
pair of spaces pX,Aq for their definitions, e.g. one cannot define the group HCW

˚ pX,Aq without
having chosen a cell decomposition for pX,Aq, thus HCW

˚ is a functor CWrel Ñ AbZ, and the fact
that HCW

˚ pX,Aq up to isomorphism depends only on the topology of pX,Aq is a deep theorem,
but not an intrinsic feature of the definition. You may have heard of other theories that produce
topological invariants in spite of auxiliary choices: for example, Morse homology (see [AD14] or
[Sch93]) associates to any triple pX, f, gq consisting of a closed oriented smooth manifold X with a
generic function f : X Ñ R and Riemannian metric g a graded abelian group HMorse

˚ pX, f, gq that
turns out (by a different deep theorem that has nothing to do with the axioms) to be isomorphic
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to H˚pXq. There is also a smooth variant of singular homology defined when X is a smooth
manifold, where all singular simplices are required to be smooth maps. This is often used for
proving de Rham’s theorem, which relates H˚pX ;Rq to the de Rham cohomology H˚

dRpXq of X ,
defined in terms of the exterior derivative on smooth differential forms; but there is a canonical
isomorphism from smooth singular homology to H˚pXq, so it really is just another formulation
of the same theory. Yet another variant is the cubic version of singular homology, which is used
in place of H˚pXq in a few books such as [Mas91]: here the point is to replace the standard
n-simplex ∆n with the standard n-cube In, which makes defining product structures easier but
other things harder. In any case, cubic singular homology is indeed an axiomatic homology theory,
but actually it is always isomorphic to H˚pXq, so it is not actually a different theory—which is
why some authors feel free to use it as a substitute.

I want to describe a theory that satisfies the Eilenberg-Steenrod axioms and thus captures
the same topological information as singular homology on nice spaces, but does not match it on
all spaces and is based on a totally different idea. To explain the definition, we will also need to
introduce inverse limits, the contravariant version of direct limits. For reasons that we will see,
the Čech homology theory that I’m going to describe is not especially popular, partly because it
requires some extra conditions in order to make it satisfy all the axioms. On the other hand, the
closely related theory of Čech cohomology satisfies the analogous set of axioms without restriction,
and is widely used in several branches of mathematics, especially in algebraic geometry. We will
come back to that briefly after discussing the axioms for cohomology theories in a few lectures,
but the present lecture is intended as a sketch of Čech homology in particular, and since it is only
a sketch, we will leave several details unproved but give suitable references wherever possible. The
main source for most of this material is [ES52].

The idea behind Čech homology is to measure the topology of a space X in terms of the
combinatorial data formed by the overlaps of open sets in an arbitrarily fine open covering of X .
The starting point is the observation that for any given open covering, the overlaps can be encoded
in the form of a simplicial complex. (For the abstract combinatorial notion of a simplicial complex,
you may want to review Lecture 29.)

For a space X , let OpXq denote the set of open coverings of X , so each element U P OpXq is
a set whose elements are open subsets of X with the property that

ď

UPU

U “ X.

Similarly, for any pair of spaces pX,Aq, we define OpX,Aq to be the set of all pairs pU,UAq such
that

U P OpXq, UA Ă U and A Ă
ď

UPUA

U .

Definition 44.1. For each open covering U P OpXq of a space X , the nerve of U is the
simplicial complex N pUq whose set of vertices is U, and whose simplices are the finite subsets
σ Ă U such that

č

UPσ

U ‰ H.

More generally, for each pair of spaces pX,Aq and pU,UAq P OpX,Aq, the nerve of pU,UAq is the
simplicial pair

N pU,UAq :“ pN pUq,N pUAqq ,
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where N pUAq Ă N pUq denotes the subcomplex whose set of vertices is UA, and whose simplices
are the finite subsets σ Ă UA such that

A X
č

UPσ

U ‰ H.

You should take a moment to contemplate why N pUq satisfies all the conditions of a simplicial
complex, with N pUAq as a subcomplex; in particular, every subset of a simplex is also a simplex
since the condition

Ş
UPσ U ‰ H clearly remains true after deleting some sets from the collection

in σ. Notice also that N pUAq is the nerve of the open covering of A formed by the sets tUXAuUPUA
.

The Čech homology theory will be defined in terms of the simplicial homology of the nerves
of open coverings. To give the definition in its standard form, I need to add a detail about
simplicial homology that we did not have occasion to discuss before: recall from Lecture 29 that
if K “ pV, Sq is a simplicial complex, the generators of the simplicial n-chain group C∆

n pKq are
oriented n-simplices

rv0, . . . , vns P C∆
n pKq,

of which there are two equivalence classes for each individual n-simplex tv0, . . . , vnu P S, with
equivalence defined via even permutations of the order of vertices, and in C∆

n pKq they are also
subject to an equivalence relation such that the two orientations of tv0, . . . , vnu define linearly-
dependent generators of opposite signs:

rv0, v1, v2, . . . , vns “ ´rv1, v0, v2, . . . , vns P C∆
n pKq.

There is an alternative way to define a chain complex out of this data, and it is algebraically
simpler, though less geometrically motivated. Let

ConpKq
denote the free abelian group generated by the set of all ordered pn`1q-tuples pv0, . . . , vnq of vertices
of K such that there exists a simplex σ P S containing all of v0, . . . , vn. Note that we do not assume
the vertices v0, . . . , vn are all distinct, though if they are, then it means tv0, . . . , vnu P S and the
ordered tuple is called an ordered n-simplex of K. There is an obvious surjective homomorphism

(44.1) ConpKq Ñ C∆
n pKq : pv0, . . . , vnq ÞÑ

#
0 if vi “ vj for some i ‰ j,

rv0, . . . , vns otherwise.

This becomes a chain map if we define B : ConpKq Ñ Con´1pKq for each n ě 1 by

Bpv0, . . . , vnq “
nÿ

k“0

p´1qkpv0, . . . , vk´1, vk`1, . . . , vnq,

producing a chain complex Co˚pKq “ À
nPZ C

o
npKq, where as usual we set ConpKq :“ 0 for n ă 0.

A proof of the following result will be outlined as a guided exercise at the end of this lecture
using the method of acyclic models; fuller accounts are also given in [Spa95, §4.3] and [ES52,
Theorem VI.6.9]:

Proposition 44.2 (see Exercise 44.26). For any simplicial complex K, the canonical chain
map Co˚pKq Ñ C∆

˚ pKq defined by (44.1) is a chain homotopy equivalence. �

We shall denote the homology of the complex Co˚pKq with coefficients in an abelian group G
by

Ho
˚pK;Gq :“ H˚

`
Co˚pKq bG

˘
,

and similarly denote byHo
˚pK,L;Gq the homology of the quotient complex for a simplicial pair pK,Lq.

Proposition 44.2 implies that there is always a canonical isomorphismHo
˚pK,L;Gq – H∆

˚ pK,L;Gq;
moreover, it is easy to check that this isomorphism is natural in the sense that it identifies the
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5

Figure 23. Three examples of open coverings of S1 and their nerves, with
vertices labeled k P t1, 2, 3, 4, 5u in correspondence with the open sets Uk Ă S1.
The rightmost example includes two 2-simplices in addition to vertices and 1-
simplices.

homomorphisms on Ho
˚ and H∆

˚ that are induced by simplicial maps. This means that, in practice,
Ho

˚pK,L;Gq is exactly the same invariant as our usual simplicial homology H∆
˚ pK,L;Gq, but the

definition of Co˚pKq makes certain matters of bookkeeping slightly easier.
Figure 23 shows some examples of open covers U of S1 and the polyhedra |N pUq| that arise

from their nerves. We see that in one case, |N pUq| is homeomorphic to S1; this is not a coincidence,
and we’ll come back to it shortly. In general, however, |N pUq| need not be homeomorphic nor even
homotopy equivalent to the space that is being covered, and in fact, the nerve of an open cover of
X can easily be an infinite-dimensional simplicial complex even when X is something as tame as
a compact polyhedron. We clearly cannot hope in general to use the nerve of a single covering of
X in order to define a topological invariant of X . What seems more promising is to consider an
open covering together with all of its possible refinements.

A refinement of an open cover U P OpXq is another open covering U1 P OpXq such that
every U 1 P U

1 is a subset of some U P U. For pairs pX,Aq, we say similarly that a refinement of
pU,UAq P OpX,Aq is an element pU1,U1

Aq P OpX,Aq such that U1 is a refinement of U and U1
A is a

refinement of UA. The definition means that there exists a function

F : U1 Ñ U, F pU1
Aq Ă UA

such that for every U P U1, U Ă F pUq. It follows that if σ Ă U1 is a simplex of N pU1q, then
č

UPσ

F pUq Ą
č

UPσ

U ‰ H,

hence F pσq Ă U is a simplex of N pUq, and similarly, F maps simplices of N pU1
Aq to simplices

of N pUAq. In other words, F is a simplicial map from N pU1q to N pUq, and in the relative case, a
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map of simplicial pairs:
F : N pU1,U1

Aq Ñ N pU,UAq.
It therefore induces a chain map

(44.2) F˚ : Co˚pN pU1,U1
Aqq Ñ Co˚pN pU,UAqq.

One obvious concern in this discussion is that F is not uniquely determined by the refinement,
i.e. for each U 1 P U1, there may be more than one U P U containing U 1. But the following result
gives an enormous hint as to what we should do next:

Proposition 44.3 ([ES52, Corollary IX.2.14]). Given an open covering pU,UAq P OpX,Aq
and a refinement pU1,U1

Aq of pU,UAq, the induced chain map (44.2) on ordered simplicial chain
complexes is independent of choices up to chain homotopy equivalence. �

It follows that for any choice of coefficient group G, we can associate to any refinement β :“
pU1,U1

Aq P OpX,Aq of an open covering α :“ pU,UAq P OpX,Aq a natural homomorphism of
simplicial homology groups

ϕαβ : Ho
˚pN pU1,U1

Aq;Gq Ñ Ho
˚pN pU,UAqq;Gq.

One can view this as defining something very similar to a direct system: indeed, let us define a
pre-order on OpX,Aq by writing

pU1,U1
Aq ą pU,UAq

whenever pU1,U1
Aq is a refinement of pU,UAq. (Note that it is not a partial order, as two open

coverings can easily be refinements of each other without being identical.) Since any two open
coverings have a common refinement, this makes pOpX,Aq,ăq a directed set, and the result above
associates a morphism of Z-graded abelian groups to any pair α, β P OpX,Aq with β ą α. The
only trouble is that this morphism goes the wrong way: if the collection of graded abelian groups

tHo
˚pN pαq;GquαPOpX,Aq

were to be viewed as a direct system, then we would have to have an associated morphism ϕβα :

Ho
˚pN pαq;Gq Ñ Ho

˚pN pβq;Gq for every β ą α, but instead we have ϕαβ : Ho
˚pN pβq;Gq Ñ

Ho
˚pN pαq;Gq. There is also a name for this.

Definition 44.4. Given a category C and a directed set pI,ăq, an inverse system (projek-
tives System) tXα, ϕαβu in C over pI,ăq associates to each α P I an object Xα of C , along with
morphisms

ϕαβ P MorpXβ , Xαq for each α ă β

such that
ϕαα “ IdXα

and the diagram
Xα Xβ Xγϕαβ

ϕαγ

ϕβγ

commutes for every triple α, β, γ P I with α ă β ă γ.

Remark 44.5. In terms of the category I corresponding to the directed set pI,ăq as in
Remark 38.2, an inverse system in C over pI,ăq is the same thing as a contravariant functor
I Ñ C (recall Definition 26.13).

Convergence of inverse systems is defined analogously to direct systems, the main difference
being that most arrows go the other way.
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Definition 44.6. For an inverse system tXα, ϕαβu in C over pI,ăq, a target tY, fαu of the
system consists of an object Y of C together with associated morphisms fα P MorpY,Xαq for each
α P I such that the diagram

Xα Xβ

Y

ϕαβ

fα

fβ

commutes for every pair α, β P I with α ă β.

Definition 44.7. A target tX8, ϕαu of the inverse system tXα, ϕαβu is called an inverse
limit70(projektiver Limes) of the system and written as

X8 “ limÐÝtXαu
if it satisfies the following “universal” property: for all targets tY, fαu of tXα, ϕαβu, there exists a
unique morphism f8 P MorpY,X8q such that the diagram

Xα X8

Y

ϕα

fα
f8

commutes for every α P I.
The meaning of an inverse limit can be encoded in the diagram

Xα Xβ Xγ . . . limÐÝtXαu

Y

ϕαβ ϕβγ

where we assume α ă β ă γ ă . . . P I, and the defining feature of limÐÝtXαu is that the morphism
indicated by the dashed arrow must exist and be unique whenever all the other morphisms in the
diagram are given.

As with direct limits, there is no guarantee from these definitions that an inverse limit must
exist, but for the categories we are most interested in, its existence can be established by describing
it more concretely. One should not confuse the statement that an inverse limit exists with any
claim that it is nonempty—the empty set is also a topological space and can appear as the limit
of an inverse system in Top (see Example 44.12 below).

Exercise 44.8. If tXα, ϕαβu is an inverse system in Top over pI,ăq, show that its inverse
limit is the space

limÐÝtXαu “
#

txαu P
ź

αPI

Xα

ˇ̌
ˇ̌ xα “ ϕαβpxβq for all α, β P I with α ă β

+
,

with the associated morphisms ϕα : limÐÝtXβu Ñ Xα defined via the obvious projections
ś
βPI Xβ Ñ

Xα for each α P I. Conclude from this that the topology on limÐÝtXαu is the weakest for which the
maps ϕα : limÐÝtXβu Ñ Xα are all continuous.

Remark 44.9. The exercise extends in an obvious way to describe inverse limits in the category
Set of sets (with morphisms defined as arbitrary maps).

70Inverse limits are also sometimes called projective limits or just plain limits (as opposed to colimits).
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Exercise 44.10. Consider an inverse system tXα, ϕαβu in Top for which the spaces Xα are
all subspaces of some fixed topological space X , β ą α holds if and only if Xβ Ă Xα and the maps
ϕαβ : Xβ Ñ Xα are all inclusions. Show that limÐÝtXαu “ Ş

αPI Xα, with the associated morphisms
ϕα : limÐÝtXβu Ñ Xα given by the obvious inclusions.
Comment: The obvious analogue of this exercise involving direct limits and unions is only some-
times true, e.g. it works for viewing any CW-complex as the direct limit of its skeleta, but Exer-
cise 38.23 shows an example in which the direct limit and the union are the same set with different
topologies. In this sense, inverse systems in the category Top are somewhat better behaved than
direct systems.

Exercise 44.11. Prove that for any inverse system tXα, ϕαβu of topological spaces such that
every Xα is nonempty, compact and Hausdorff, limÐÝtXαu ‰ H.
Hint: By Tychonoff’s theorem,

ś
αXα is compact, which means that every net in

ś
αXα has a

cluster point (see Lecture 5 from last semester). For every index β, one can choose an element
xβ “ txβαu P ś

αXα whose coordinates satisfy xβα “ ϕαβpxββq for every α ă β and are arbitrary for
all other α. The collection txβ P ś

αXαuβPI then defines a net in
ś
αXα, which therefore has a

cluster point. Prove that the cluster point belongs to limÐÝtXαu. (For a slightly different argument
that does not use nets, see [ES52, Theorem VIII.3.6]; it does still require Tychonoff’s theorem.)

Example 44.12. Combining the previous two exercises produces the well-known fact that
in any Hausdorff space, the intersection of any collection of nonempty compact subsets that all
have nonempty pairwise intersections is nonempty. It is easy to see that the compactness condition
cannot be dropped from this statement: for instance, taking the collection of intervals tp0, 1{nsunPN

as an inverse system in the sense of Exercise 44.10, the inverse limit is

limÐÝtp0, 1{nsunPN “
č

nPN

p0, 1{ns “ H.

Exercise 44.13. If tGα, ϕαβu is an inverse system in Ab over pI,ăq, show that its inverse
limit is a group of the form

limÐÝtGαu “
#

tgαu P
ź

αPI

Gα

ˇ̌
ˇ̌ gα “ ϕαβpgβq for all α, β P I with α ă β

+
,

with the associated homomorphisms ϕα : limÐÝtGβu Ñ Gα defined via the projections
ś
βPI Gβ Ñ

Gα all α P I.

Exercise 44.14. Prove the obvious analogues of the result in Exercise 44.13 for inverse systems
in the categories AbZ of Z-graded abelian groups and Chain of chain complexes.

Exercise 44.15. Assume tXα, ϕαβu is an inverse system over pI,ăq in any category. A subset
I0 Ă I is called a cofinal set if for every α P I there exists some β P I0 such that β ą α. Suppose
I0 Ă I is a cofinal set with the property that for every α, β P I0 with α ă β, ϕαβ P MorpXβ , Xαq
is an isomorphism. Prove that limÐÝtXαu is then isomorphic to Xγ for any γ P I0, and describe the

associated morphisms limÐÝtXβu ϕαÝÑ Xα for every α P I.
Advice: This problem becomes a bit easier if you work in any of the categories Top, Ab or Chain

so that you can use the results of Exercises 44.8, 44.13 or 44.14 respectively. But it can also be
done without that assumption, just by using the universal property and playing with commutative
diagrams.

We now have enough concepts in place to define the Čech homology groups.
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Definition 44.16. The Čech homology qH˚pX,A;Gq of a pair of spaces pX,Aq with coefficients
in an abelian group G is defined as the Z-graded abelian group

qH˚pX,A;Gq :“ limÐÝ tHo
˚pN pU,UAq;GqupU,UAqPOpX,Aq .

It is slightly harder than for singular homology to see why this should define a functor Toprel Ñ
AbZ, but still not so hard. The main point is that whenever f : pX,Aq Ñ pY,Bq is a continuous map
of pairs and α “ pU,UAq P OpY,Bq is an open covering of pY,Bq, there is an induced open covering
f˚α P OpX,Aq of pX,Aq consisting of the subsets f´1pUq for U P U, and whenever β P OpY,Bq is
a refinement of α, f˚β P OpX,Aq is clearly also a refinement of f˚α. The obvious correspondence
between the open sets in f˚α and those in α then defines a simplicial map N pf˚αq Ñ N pαq, giving
a homomorphism

f˚ : Ho
˚

`
N pf˚αq;G

˘
Ñ Ho

˚

`
N pαq;G

˘

for every α P OpY,Bq. Using the universal property of the inverse limit, one can derive from this
a morphism

f˚ : qH˚pX,A;Gq Ñ qH˚pY,B;Gq
between the corresponding inverse limits, and prove that it satisfies the usual conditions for qH˚p¨;Gq
to be a functor. This implies in particular that homeomorphic pairs have the same Čech homology.

What is probably harder to see at this stage is why one should ever expect qH˚pX,A;Gq to
be the same as H˚pX,A;Gq. To this end, consider the case where X is the polyhedron of a finite
simplicial complex K “ pV, Sq. We saw in Lecture 40 the notion of the open star of a vertex v

in K, which defines an open set
st v Ă X

containing all points that lie in simplices that have v as a vertex (see Figure 24). These sets define
a distinguished open covering of X ,

UK :“ tst v | v P V u ,
and recall from Exercise 40.15 that for any finite collection of vertices v0, . . . , vn P V , we have

nč

k“0

st vk ‰ H ô tv0, . . . , vnu P S.

In other words, the nerve of UK is the complex K itself. Now if U P OpXq is another open covering,
since X is compact, we can always find a refinement of U in the form UK1 by applying barycentric
subdivision to the simplices of K enough times, producing a new simplicial complex K 1 with more
and smaller simplices but a homeomorphic polyhedron |K 1| “ X , and since barycentric subdivision
induces chain homotopy equivalences, one can show that the induced map

H˚

`
N pUK1 q;G

˘
Ñ H˚

`
N pUKq;G

˘

resulting from the fact that UK1 ą UK is always an isomorphism. In other words, the open coverings
that arise from successive barycentric subdivisions of K form a cofinal set in OpXq that satisfies
the hypotheses of Exercise 44.15, and thus provides enough information to compute the inverse
limit. The result is:

Theorem 44.17. For any compact polyhedron X “ |K| with underlying simplicial complex K,
qH˚pX ;Gq – H∆

˚ pK;Gq for every coefficient group G. �

It follows in particular that Čech homology is isomorphic to singular homology on compact
polyhedra. Notice by the way that if we had not already constructed one example of an axiomatic
homology theory, we could still use this argument to prove that simplicial homology is independent



44. ČECH HOMOLOGY AND INVERSE LIMITS 305

v0

v1

Figure 24. The open stars of two neighboring vertices v0 and v1 in a simplicial complex.

of the triangulation of a compact polyhedron—it follows now from the fact Čech homology is a
topological invariant.

It is not always true however that qH˚pX ;Gq – H˚pX ;Gq.
Lemma 44.18. If X is a connected space, then for every open cover U of X, the nerve N pUq

is connected.

Proof. If N pUq is not connected then it can be decomposed as a disjoint union of two
nonempty subcomplexes N pUq – K0 >K1. Let X0 Ă X denote the union of all the sets U P U that
are vertices of K0, and define X1 Ă X similarly via K1. Then both are nonempty open sets, their
union is X , and they are disjoint, since otherwise N pUq would have to contain a 1-simplex with
one vertex in K0 and one in K1. This proves that X is not connected. �

Theorem 44.19. For any connected space X and any coefficient group G, qH0pX ;Gq – G.

Proof. Lemma 44.18 implies that for every U P OpXq, Ho
0 pN pUq;Gq – H∆

0 pN pUq;Gq – G. It
is similarly easy to show that the canonical map Ho

0 pN pU1q;Gq Ñ Ho
0 pN pUq;Gq for any refinement

U1 of U is an isomorphism, and that the inverse limit is therefore isomorphic to G. �

This result is different in general from singular homology in dimension 0, which splits over a
direct sum of the path-components (not connected components) of each space. So, for instance,
Figure 20 shows an example of compact space X Ă R2 with

H0pX ;Zq – Z3 but qH0pX ;Zq – Z.

Needless to say, that space is not a CW-complex, and one should expect better results in general
for CW-complexes, as we saw with polyhedra in Theorem 44.17. At least qH˚p¨;Gq and H˚p¨;Gq
will match on all CW-pairs if qH˚p¨;Gq satisfies the Eilenberg-Steenrod axioms. So does it? The
answer is a bit surprising.

Theorem 44.20. For every abelian group G, qH˚p¨;Gq : Toprel Ñ AbZ satisfies all of the
Eilenberg-Steenrod axioms except for exactness, but it does not satisfy exactness in general.

An actual counterexample to the exactness axiom is explained in [ES52, §X.4]. It would take
at least a few lectures to either explain that counterexample or prove that the rest of the axioms
are satisfied, so we’ll mostly skip it since this lecture is meant to be only a brief digression away
from the main topic of the course. But it’s worth taking a closer look at how one would naturally
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try to prove the exactness axiom, and why it fails in general. It also succeeds in some cases, so the
negative statement in Theorem 44.20 is not the end of the story.

The problem with exactness is traceable to a problem with the behavior of exact sequences
under inverse limits. If pX,Aq is a pair of spaces and pU,UAq P OpX,Aq, then N pUAq Ă N pUq is a
subcomplex and the obvious short exact sequence of ordered simplicial chain complexes

0 Ñ Co˚
`
N pUAq;Gq Ñ Co˚pN pUq;G

˘
Ñ Co˚

`
N pU,UAq;G

˘
“ Co˚

`
N pUq;G

˘
{Co˚

`
N pUAq;G

˘
Ñ 0

gives rise to a long exact sequence of simplicial homology groups

(44.3) . . . Ñ Ho
n

`
N pUAq;G

˘
Ñ Ho

n

`
N pUq;G

˘
Ñ Ho

n

`
N pU,UAq;G

˘
Ñ Ho

n´1

`
N pUAq;G

˘
Ñ . . .

If pU1,U1
Aq P OpX,Aq is a refinement of pU,UAq, it is not hard to show that the canonical maps in

the inverse systems fit together with the long exact sequences for these two pairs into a commutative
diagram

. . . Ho
n

`
N pUAq;G

˘
Ho
n

`
N pUq;G

˘
Ho
n

`
N pU,UAq;G

˘
Ho
n´1

`
N pUAq;G

˘
. . .

. . . Ho
n

`
N pU1

Aq;G
˘

Ho
n

`
N pU1q;G

˘
Ho
n

`
N pU1,U1

Aq;G
˘

Ho
n´1

`
N pU1

Aq;G
˘

. . .

An exact sequence is the same thing as a chain complex with trivial homology groups, so we can
therefore regard this collection of exact sequences as an inverse system over pOpX,Aq,ăq in the
category Chain of chain complexes. By Exercise 44.14, this system will have an inverse limit, which
will be a chain complex

(44.4) . . . Ñ qHnpA;Gq Ñ qHnpX ;Gq Ñ qHnpX,A;Gq Ñ qHn´1pA;Gq Ñ . . .

But it is not obvious whether this sequence of maps is exact. If this had been a direct limit, we
could now appeal to Proposition 38.18, which would produce a natural isomorphism between the
homology of the direct limit and the direct limit of the homology groups in the system; the latter
are all zero since the sequences are all exact, so this would imply that the limit sequence is also
exact. But we don’t have an analogue of Proposition 38.18 for inverse limits. As a matter of fact,
the result we would like to prove at this point is false:

Example 44.21. For every n P N, denote by 0 Ñ An Ñ Bn Ñ Cn Ñ 0 the short exact
sequence 0 Ñ Z

¨2Ñ Z
prÑ Z2 Ñ 0, and define homomorphisms ϕn´1,n for each n ě 2 by

An
¨3Ñ An´1, Bn

¨3Ñ Bn´1, Cn
1Ñ Cn´1.

Then the resulting diagram

. . . 0 A1 B1 C1 0 . . .

. . . 0 A2 B2 C2 0 . . .

. . . 0 A3 B3 C3 0 . . .

...
...

...
...

...

¨2 pr

¨3

¨2 pr

¨3 1

¨3

¨2 pr

¨3 1

commutes, meaning the ϕn´1,n are all chain maps, and we can compose them to define further
chain maps ϕm,n for every m ă n and interpret this collection of data as an inverse system of chain
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complexes. By Exercises 44.13 and 44.14, the individual terms of the inverse limit complex are as
follows: first,

limÐÝtAnu “
#

pa1, a2, a3, . . .q P
ź

nPN

An

ˇ̌
ˇ̌ an´1 “ 3an for all n ě 2

+
“ 0,

and limÐÝtBnu similarly vanishes since no integer is divisible by arbitrarily large powers of 3. On the
other hand,

limÐÝtCnu “
#

pc1, c2, c3, . . .q P
ź

nPN

Cn

ˇ̌
ˇ̌ cn´1 “ cn for all n ě 2

+
– Z2,

so the full inverse limit chain complex is of the form

. . . 0 0 0 Z2 0 . . . ,

which is not an exact sequence.

In general, suppose we are given an inverse system of chain complexes tCα˚ , ϕαβu indexed by
α in some directed set pI,ăq, so have a commuting diagram for every β ą α in the form

(44.5)

. . . Cαn`1 Cαn Cαn´1 . . .

. . . C
β
n`1 Cβn C

β
n´1 . . .

Bα Bα Bα

Bβ

ϕαβ

Bβ

ϕαβ

Bβ

ϕαβ

and assume moreover that the rows of these diagrams are always exact. The inverse limit is

C8
˚ :“ limÐÝtCα˚ u “

#
txαu P

ź

αPI

Cα˚

ˇ̌
ˇ̌ ϕαβpxβq “ xα for all β ą α

+
,

where the chain complex boundary map can be written as

B8 :“
ź

αPI

Bα
ˇ̌
ˇ̌
ˇ
C8

˚

: C8
˚ Ñ C8

˚ ,

the restriction to the subgroup C8
˚ Ă ś

α C
α
˚ being well defined since ϕαβpBβxβq “ Bαϕαβpxβq “

Bαxα for all β ą α and xβ P Cβ˚ . Given x “ txαuαPI P C8
n with B8txαu “ 0, we have Bαxα “ 0

for all α P I and thus xα “ Bαyα for some yα P Cαn`1. The trouble is that these elements yα are
not generally unique, and if they are chosen arbitrarily, then they need not satisfy

(44.6) ϕαβpyβq “ yα for all β ą α,

without which tyαuαPI will not be an element of C8
n`1.

To get a firmer handle on this problem, define for each α P I the nonempty subset

Kα :“ pBαq´1pxαq Ă Cαn`1.

The chain map relation and the condition ϕαβpxβq “ xα then imply

ϕαβpKβq Ă Kα for all β ą α,

which makes the collection of sets tKαuαPI with maps Kβ
ϕαβÑ Kα into an inverse system in

Set over pI,ăq. By Exercise 44.8 and Remark 44.9, limÐÝtKαu is then the set of all elements
tyαu P ś

αPI Kα such that (44.6) is satisfied, in which case we then have tyαu P C8
n`1 with

B8tyαu “ txαu. The essential question thus boils down to this:

Is limÐÝtKαu nonempty?
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Example 44.21 implies that the answer must sometimes be no, and indeed, we know from Ex-
ample 44.12 that an inverse limit of nonempty sets or topological spaces can easily be the empty
set.

To make progress, we need to add more assumptions. Suppose first of all that the individual
groups Cαn for each n P Z and α P I are finite. Then the sets Kα are also finite, and if we assign
them the discrete topology, we can view them all as nonempty compact Haudroff spaces. In this
case there is a positive result we can use: Exercise 44.11 implies that limÐÝtKαu will then always be
nonempty, which fills the gap at the end of our proof that the limit sequence is exact!

I would like to point out that this trick for the case of finite groups is fairly abstract: hidden
inside Exercise 44.11 is Tychonoff’s theorem on the compactness of arbitrary products of compact
spaces (cf. Lecture 6 from last semester), which depends on Zorn’s lemma and thus the axiom
of choice. As a consequence, we are guaranteed the existence of some y P pB8q´1pxq whenever
B8x “ 0, but we cannot even begin to suggest how one might find y in practice. In the classic
book of Eilenberg and Steenrod (see [ES52, Theorem 5.7 and Lemma 5.8 in Chapter VIII]), there
is a linear-algebraic variation on this trick that also uses Zorn’s lemma, and similarly solves the
problem whenever the groups Cαn are all assumed to be finite-dimensional vector spaces over a
field K, with Bα and ϕαβ as K-linear maps. These two scenarios are relevant to Čech homology
under certain assumptions: in particular, suppose the coefficient group G is either finite or a
finite-dimensional vector space over a field, and pX,Aq is a compact pair, meaning X is a compact
Hausdorff space and A Ă X is closed. In this case, our open coverings of pX,Aq always have finite
refinements, whose nerves are then finite simplicial pairs, and the groups in the sequence (44.3) are
therefore all either finite or are finite-dimensional vector spaces over a field K. These conditions
imply that exactness is preserved under the inverse limit, and we obtain:

Theorem 44.22. If G is either a finite abelian group or a finite-dimensional vector space over
a field, then the restriction of Čech homology to the category Cpctrel of compact pairs defines an
axiomatic homology theory

qH˚p¨;Gq : Cpctrel Ñ AbZ.

�

The restriction to compact pairs means that some details of the theory we have developed for
axiomatic homology need to be handled with a bit more care: for instance, only the weaker form
of the excision axiom (see Remark 30.4) makes sense in this category, so some of the excision tricks
we used, e.g. for computing the homology of spheres and the isomorphism h˚pX,Aq – rh˚pX{Aq
for good pairs, need to be modified a bit when h˚ “ qH˚p¨;Gq. But this can be done, with the result
that if G satisfies the conditions in the theorem above, then there is always a natural isomorphism

qH˚pX,A;Gq – H˚pX,A;Gq
when pX,Aq is a compact CW-pair.

Čech homology also has one nice property that singular homology does not: it is continuous
with respect to inverse limits of spaces. The statement can be formulated for any axiomatic
homology theory h˚ as follows: suppose tpXα, Aαq, ϕαβu is an inverse system of pairs of spaces
over some directed set pI,ăq. The associated morphisms ϕα : limÐÝtpXβ , Aβqu Ñ pXα, Aαq then
induce homomorphisms

Φα :“ pϕαq˚ : h˚

`
limÐÝtpXβ , Aβqu

˘
Ñ h˚pXα, Aαq,

which make
 
h˚

`
limÐÝtpXβ, Aβqu

˘
,Φα

(
a target of the inverse system of Z-graded abelian groups

th˚pXα, Aαq, pϕαβq˚u .
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By the universal property of inverse limits, there is then a canonical limit morphism

Φ8 : h˚

`
limÐÝtpXα, Aαqu

˘
Ñ limÐÝ th˚pXα, Aαqu .

The following result is often quoted as the selling point of the Čech theory in comparison with
singular homology. One can show in fact that every compact pair is the inverse limit of some
inverse system of compact pairs that are homotopy equivalent to CW-pairs, thus the theorem can
be used to understand the topology of very “wild” spaces for which singular homology cannot be
expected to give a reasonable answer.

Theorem 44.23 (continuity in Čech homology; see [ES52, Chapter X]). For any inverse
system of compact pairs tpXα, Aαq, ϕαβu and any abelian coefficient group G, the canonical map

qH˚

`
limÐÝtpXα, Aαqu;G

˘
Ñ limÐÝ

!
qH˚pXα, Aα;Gq

)

is an isomorphism. �

Exercise 44.24. Find an example of a compact space X that is connected but not path-
connected and is the inverse limit of a system tXαu of path-connected spaces. Conclude that for
this example,

H˚

`
limÐÝtXαu

˘
fl limÐÝ tH˚pXαqu .

Hint: Use Exercise 44.10.

Exercise 44.25. Find an example of a path-connected space X for which qH1pX ;Z2q “ 0 but
H1pX ;Z2q ‰ 0. Can you also describe a specific nontrivial element of π1pXq?
Hint: Take the suspension of something that is connected but not path-connected.

Exercise 44.26. Let us outline the main steps in the proof of Proposition 44.2, which es-
tablishes the equivalence of homology groups based on ordered vs. oriented simplices. Assuming
K “ pV, Sq is a simplicial complex, the goal is to prove that the canonical chain map

Φ : Co˚pKq Ñ C∆
˚ pKq : pv0, . . . , vnq ÞÑ

#
0 if vi “ vj for some i ‰ j,

rv0, . . . , vns otherwise

is a chain homotopy equivalence.71 I suggest first taking a moment to convince yourself that Φ

really is a chain map. Moreover, it has the property that for any subcomplex L Ă K, Φ maps
Co˚pLq to C∆

˚ pLq. This can be interpreted as a form of naturality if we view Co˚ and C∆
˚ as functors

on the category of subcomplexes of K, with morphisms L Ñ L1 defined by inclusion: indeed, any
nested pair of subcomplexes L Ă L1 Ă K gives rise to a commutative diagram

Co˚pLq C∆
˚ pLq

Co˚pL1q C∆
˚ pL1q,

Φ

Φ

where the two vertical maps are the chain maps induced by the inclusion L ãÑ L1.
We would like to find a chain homotopy inverse Ψ : C∆

˚ pKq Ñ Co˚pKq for Φ. This inverse will
not be canonically defined, but we shall prove its existence and uniqueness up to chain homotopy
using the method of acyclic models (cf. Lecture 43).

71I am using integer coefficients in this whole discussion, but one can also introduce an arbitrary abelian
coefficient group G in the usual way by applying the functor bG to the chain complexes.
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As a preliminary step, we need to introduce a reduced version of simplicial homology. The
definition should seem familiar: assume P is a simplicial complex with only one vertex, let ǫ : K Ñ
P denote the unique simplicial map, and define

rHo
˚pKq :“ ker

´
Ho

˚pKq ǫ˚ÝÑ Ho
˚pP q

¯
, rH∆

˚ pKq :“ ker
´
H∆

˚ pKq ǫ˚ÝÑ H∆
˚ pP q

¯
.

(a) Prove

Ho
npKq –

#
rHo
npKq ‘ Z if n “ 0,

rHo
npKq if n ‰ 0,

and that the analogous relation between rH∆
˚ pKq and H∆

˚ pKq also holds.
(b) Show that rHo

˚pKq is also the homology of an augmented chain complex rCo˚pKq of the
form

. . . ÝÑ Co2 pKq BÝÑ Co1 pKq BÝÑ Co0 pKq ǫÝÑ Z ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

i.e. rConpKq “ ConpKq for all n ‰ ´1 but rCo´1pKq “ Z. Describe the augmentation map
ǫ : Co0 pKq Ñ Z in this complex explicitly, and show that the analogous statement also
holds for rH∆

˚ pKq.
We next define a simplicial analogue of the cone of a topological space. Let CK “ pCV,CSq

denote the simplicial complex whose vertex set CV is the union of V with one extra element
v8 R V , and whose simplices consist of all sets of the form σ Y tv8u for σ P S, plus all their
subsets. It is not hard to show that the polyhedron |CK| is then homeomorphic to the cone of |K|,
thus it is contractible, and the isomorphism H∆

˚ pCKq – H˚p|CK|q implies rH∆
˚ pCKq “ 0. But this

does not immediately imply rHo
˚pCKq “ 0 since we haven’t yet proved Ho

˚ and H∆
˚ are isomorphic.

(c) For integers n ě 0, consider the homomorphism h : ConpCKq Ñ Con`1pCKq defined by

hpv0, . . . , vnq :“ pv8, v0, . . . , vnq.
Find a definition of h : Z “ rCo´1pCKq Ñ Co0 pCKq that makes

rCo˚pCKq hÝÑ rCo˚`1pCKq

into a chain homotopy between the chain maps 1 : rCo˚pCKq Ñ rCo˚pCKq and 0 :
rCo˚pCKq Ñ rC˚pCKq, and deduce that rHo

˚pCKq “ 0.
(d) For a given simplicial complex K, let us say that a chain map Ψ : C∆

˚ pKq Ñ Co˚pKq is

natural if C∆
0 pKq ΨÑ Co0 pKq takes the form

Ψrvs :“ pvq
and for every subcomplex L Ă K, Ψ sends C∆

˚ pLq into Co˚pLq. It follows that any nested
pair of subcomplexes L Ă L1 Ă K gives rise to a commutative diagram

C∆
˚ pLq Co˚pLq

C∆
˚ pL1q Co˚pL1q,

Ψ

Ψ

where the vertical maps are again the chain maps induced by the inclusion L ãÑ L1. Use
the method of acyclic models to prove that a natural chain map Ψ : C∆

˚ pKq Ñ Co˚pKq
exists and is unique up to chain homotopy.
Hint: You need to construct Ψ : C∆

n pKq Ñ ConpKq by induction on the degree n, and for
the inductive step, the main task is to define it on “model” subcomplexes L Ă K that
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consist of a single n-simplex and all its faces. Deduce from part (c) that this can always
be done because rHo

˚pLq “ 0 for all such subcomplexes. Then show that the definition of
Ψ : C∆

n pKq Ñ ConpKq follows uniquely from this via the naturality property.

If you’ve gotten this far, then you can probably guess how the rest of the proof that H∆
˚ pKq –

Ho
˚pKq goes: one must similarly show the uniqueness up to chain homotopy of natural chain maps

Co˚pKq Ñ C∆
˚ pKq, Co˚pKq Ñ Co˚pKq and C∆

˚ pKq Ñ C∆
˚ pKq. The existence of these chain maps

does not need to be proved, because we already have examples, namely Φ, 1 and 1 respectively,
thus the uniqueness implies that Φ ˝Ψ and Ψ ˝ Φ are each chain homotopic to the identity map. I
suggest you work out the details the next time you get bored on a long train ride.

45. Singular cohomology

Motivation. Singular cohomology assigns to each topological spaceX and each abelian group
G a Z-graded abelian group denoted by

H˚pX ;Gq “
à
nPZ

HnpX ;Gq.

It is closely related to singular homology, and in many (though not all) cases is isomorphic to it,
but it has a slightly different structure. The most obvious difference is that as a functor from Top

to AbZ, it is contravariant, meaning that continuous maps f : X Ñ Y induce homomorphisms

f˚ : HnpY ;Gq Ñ HnpX ;Gq,
going the opposite direction from homology. You may at this stage rightfully question what is to
be gained from this cosmetic difference: as we will see, the most significant advantage is that if
we choose the coefficient group G to be a ring R, then H˚pX ;Rq has a natural product structure,
called the cup product

HkpX ;Rq bR H
ℓpX ;Rq YÝÑ Hk`ℓpX ;Rq.

It is closely related to the homology cross product, but the latter is something that we use to relate
the homologies of two spaces X and Y to that of their product X ˆ Y , whereas Y produces extra
algebraic structure on H˚pX ;Rq itself. This can be extremely useful in computations. Moreover,
we will see that in the special case where X is a closed oriented n-manifold, Y gives rise to a
product structure on homology that has deep geometric meaning, the intersection product

Hn´kpXq bHn´ℓpXq Ñ Hn´k´ℓpXq : rM s b rN s ÞÑ rM s ¨ rN s :“ rM XN s.
This expression assumes that M and N are closed oriented submanifolds of codimension k and ℓ

respectively in X , and the right hand side should be taken with a grain of salt at the moment since
extra conditions are required in order for it to make sense, i.e. in order for the intersection MXN Ă
X to be a submanifold of the correct dimension and thus represent a homology class. Before
explaining this, we will need to introduce Poincaré duality, which gives natural isomorphisms

HkpXq –ÝÑ Hn´kpXq
whenever X is a closed oriented n-manifold, and thus implies various unexpected relations among
the numerical invariants that one can define out of homology, e.g. the fact that every closed odd-
dimensional manifold has Euler characteristic zero. These relations can be motivated geometrically
in terms of triangulations, thus they were at least partially understood long before the develop-
ment of cohomology theory, but the proper formulation of the isomorphism requires that we first
define H˚pXq.

As further motivation, I would like to start by explaining a concrete topological application
to a familiar problem, but one that cannot be solved using homology alone. The proof below is
complete modulo a few major technical details that we will have to work through over the next
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several lectures, so you may consider this as motivation for the effort that will go into those details.
We recall from Exercise 37.6 the complex projective space CP

n, defined as the space of all complex
lines through the origin in Cn`1, meaning literally the quotient space

CP
n “ pCn`1zt0uq

L
C˚,

where the multiplicative group C˚ :“ Czt0u is understood to act on Cn`1zt0u by scalar multipli-
cation.

Theorem 45.1. For every even n ě 0, every continuous map f : CPn Ñ CP
n has a fixed

point.

Proof (modulo technical details). We saw in Exercise 37.6 CP
n has a cell decomposi-

tion of the form e0 Y e2 Y . . . Y e2n, i.e. it has a single k-cell for each even k from 0 to 2n, which
makes its cellular homology trivial to compute since the boundary map is necessarily zero. We will
see that its singular cohomology can be computed in the same way via this cell decomposition,
and gives the same answer:

HkpCPnq – HkpCPnq –
#
Z for k “ 0, 2, 4, . . . , 2n,

0 for all other k.

We will also see that there is a universal coefficient theorem that expresses HkpX ;Gq up to iso-
morphism in terms of HkpXq, Hk´1pXq and G, and implies moreover that the Lefschetz number
Lpfq P Z of a map f : X Ñ X can be computed equally well using homology or cohomology. Thus
for a map f : CPn Ñ CP

n, we can write

Lpfq “
ÿ

kPZ

p´1qk tr
`
HkpCPnq f˚

ÝÑ HkpCPnq
˘

“
nÿ

k“0

tr
`
H2kpCPnq f˚

ÝÑ H2kpCPnq
˘
.

Now we take advantage of the cup product on H˚pCPnq, which has the following properties:

‚ It is natural, i.e. for all α, β P H˚pCPnq, f˚pα Y βq “ f˚α Y f˚β. (This is a general
property of the cup product with respect to continuous maps between arbitrary spaces.)

‚ If α P H2pCPnq – Z is a generator, then for each k “ 0, 1, . . . , n,

αk :“ α Y . . . Y αlooooomooooon
k

P H2kpCPnq – Z

is also a generator. We will prove this as a corollary of Poincaré duality, which holds
since CPn is a closed and oriented manifold.

Now fixing a generator α P H2pCPnq, every continuous map f : CPn Ñ CP
n gives rise to a unique

integer m P Z such that
f˚α “ mα

sinceH2pCPnq – Z. It follows via the two properties above that for each k “ 0, . . . , n, the generator
αk P H2kpCPnq satisfies

f˚pαkq “ f˚pα Y . . .Y αq “ f˚α Y . . . Y f˚α “ mkαk,

and the Lefschetz number of f is therefore

Lpfq “ 1 `m` . . .`mk P Z.

This is clearly not equal to 0 if m “ 1. On the other hand, if m ‰ 1, then we can rewrite this as

Lpfq “ 1 ´mn`1

1 ´m
,
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which is zero if and only if mn`1 “ 1. Since m is an integer and we have already excluded the case
m “ 1, this can only happen if m “ ´1, and then only if n is odd. The result thus follows from
the Lefschetz fixed point theorem. �

The functor Homp¨, Gq and cochains. Let’s talk about algebra. Given a chain complex
pC˚, Bq of abelian groups, we obtain its homology by applying the functor H˚ : Chain Ñ AbZ,
which discards some of the information in pC˚, Bq in the hope of obtaining something computable.
For a little more flexibility, we can also choose an abelian coefficient group G and “pre-process” the
chain complex via the functor bG, producing the composition of functors

(45.1) Chain
bGÝÑ Chain

H˚ÝÑ AbZ,

which sends the chain complex C˚ to H˚pC˚ bGq.
The idea of cohomology is to pre-process the chain complex in a different way: instead of

applying bG, we apply the functor Homp¨, Gq and thus dualize it. You are certainly already
familiar with the notion of the dual space of a vector space; more generally, the dual of a module
A over a commutative ring R is defined as the module of R-module homomorphisms to R,

HomRpA,Rq :“ tλ P HompA,Rq | λpraq “ rλpaq for all r P R, a P Au ,
which reproduces the definition familiar from linear algebra if R is a field. Restricting to the case
R “ Z defines the dual of an abelian group A to be

A˚ :“ HompA,Zq.
More generally, we can fix an arbitrary abelian group G and consider the functor

Ab Ñ Ab : A ÞÑ HompA,Gq.
This is perhaps the simplest example of a contravariant functor, as one can naturally associate
to each homomorphism Φ : A Ñ B a homomorphism in the other direction

Φ˚ : HompB,Gq Ñ HompA,Gq
defined by

Φ˚pλq :“ λ ˝ Φ P HompA,Gq for λ P HompB,Gq.
You should take a moment to convince yourself that this satisfies the relations characteristic of a
contravariant functor (see Definition 26.13): the identity map 1 : A Ñ A induces the identity map
1

˚ : HompA,Gq Ñ HompA,Gq, and pΦΨq˚ “ Ψ˚Φ˚ whenever Φ and Ψ can be composed.
We next define what HompC˚, Gq should mean when C˚ is a chain complex with boundary

map B : C˚ Ñ C˚´1. Since C˚ is a Z-graded abelian group, we would like HompC˚, Gq to be
another Z-graded abelian group: the obvious definition is then

HompC˚, Gq :“
à
nPZ

HompCn, Gq,

so that HompCn, Gq is the subgroup of elements with degree n in HompC˚, Gq.72 Now we can
dualize the map B : C˚ Ñ C˚ to obtain a map

B˚ : HompC˚, Gq Ñ HompC˚, Gq : α ÞÑ α ˝ B,

72If you know enough algebra and are paying close attention, you might now notice an incongruity in our
notation: unless C˚ happens to be nonzero in only finitely many degrees, HompC˚, Gq as we’ve defined it is not
literally the group of all homomorphisms C˚ Ñ G. That would be

ś
nPZ HompCn, Gq, as dualizing infinite direct

sums generally gives rise to direct products. This should not be a cause for concern, you just need to keep in mind
that the notation HompC˚, Gq is not to be interpreted too literally.
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which sends HompCn, Gq to HompCn`1, Gq for each n P Z and clearly satisfies pB˚q2 “ 0. For
reasons that are best not to worry about right now (but see Remark 45.3), we’re going to introduce
an extra sign and define

(45.2) δ : HompC˚, Gq Ñ HompC˚, Gq : α ÞÑ p´1q|α|`1B˚α,

where α P HompC˚, Gq here is assumed to be a homogeneous element of degree |α|, i.e. it belongs
to HompCn, Gq for n “ |α|. This clearly also satisfies the relation

δ2 “ 0,

and it is a map of degree `1, meaning it sends HompCn, Gq to HompCn`1, Gq for every n P Z.
We shall refer to any Z-graded abelian group A˚ endowed with a homomorphism δ : A˚ Ñ A˚

of degree `1 satisfying δ2 “ 0 as a cochain complex. Up to a minor matter of bookkeeping, this
is the same thing as a chain complex, and the notions of chain map and chain homotopy carry
over in obvious ways: in particular, a chain homotopy between two chain maps ϕ, ψ : A˚ Ñ B˚ of
cochain complexes pA˚, δAq and pB˚, δBq is a homomorphism A˚ Ñ B˚ of degree ´1 that satisfies
the usual chain homotopy relation

ϕ ´ ψ “ hδA ` δBh.

The homology of a cochain complex pA˚, δq is the Z-graded abelian group

H˚pA˚, δq “ ker δ{ im δ,

so in other words HnpA˚, δq “ ker δn{ im δn´1 if An
δnÑ An`1 denotes the restriction of δ for each

n P Z. With these notions in place, we can associate to any chain complex pC˚, Bq its cohomology
with coefficients in G: this is the Z-graded abelian group

H˚pC˚, B;Gq :“ H˚pHompC˚, Gq, δq.
Much like (45.1), the functor that replaces a chain complex with its cohomology can be ex-

pressed as the composition of two functors:

Chain
Homp¨,GqÝÑ Cochain

H˚ÝÑ AbZ.

Here Cochain denotes the category whose objects are cochain complexes, with morphisms defined
as chain maps, and H˚ : Cochain Ñ AbZ is a covariant functor sending each cochain complex to
its homology and chain maps to the induced homomorphisms on homology. The functor

Homp¨, Gq : Chain Ñ Cochain

replaces a chain complex pC˚, Bq with the cochain complex pHompC˚, Gq, δq as defined above, and
it is contravariant: it associates to each chain map ϕ : pA˚, BAq Ñ pB˚, BBq the dual map

ϕ˚ : pHompB˚, Gq, δAq Ñ pHompA˚, Gq, δBq,
which is a chain map since for β P HompBn, Gq,

ϕ˚δBβ “ ϕ˚
`
p´1qn`1B˚

Bβ
˘

“ p´1qn`1ϕ˚B˚
Bβ “ p´1qn`1pBBϕq˚β “ p´1qn`1pϕBAq˚β

“ p´1qn`1B˚
Aϕ

˚β “ δAϕ
˚β.

As a consequence, the composition functor H˚p¨;Gq : Chain Ñ AbZ is also contravariant: it
associates to each chain map ϕ : pA˚, BAq Ñ pB˚, BBq the homomorphism H˚pHompB˚, Gq, δBq Ñ
H˚pHompA˚, Gq, δAq induced by the chian map ϕ˚, and we shall also denote the induced morphism
of Z-graded abelian groups by

ϕ˚ : H˚pB˚, BB;Gq Ñ H˚pA˚, BA;Gq.
Two further algebraic observations are worth recording before we go back to topology.
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Proposition 45.2. If ϕ, ψ : pA˚, BAq Ñ pB˚, BBq are chain maps between chain complexes
and h : A˚ Ñ B˚`1 is a chain homotopy between ϕ and ψ, then the map η : HompB˚, Gq Ñ
HompA˚´1, Gq defined for each n P Z by

HompBn, Gq ηÝÑ HompAn´1, Gq : β ÞÑ p´1qnh˚β

is a chain homotopy between ϕ˚ and ψ˚.

Proof. We have ϕ˚ ´ ψ˚ “ pϕ ´ ψq˚ “ phBA ` BBhq˚ “ B˚
Ah

˚ ` h˚B˚
B, thus for any β P

HompBn, Gq,
pδAη ` ηδBqβ “ B˚

Ah
˚β ` h˚B˚

Bβ “ pϕ˚ ´ ψ˚qβ.
�

In category-theoretic terms, the proposition means that Homp¨, Gq descends to a well-defined
functor

Homp¨, Gq : Chainh Ñ Cochainh,

where Cochainh is the category with cochain complexes as objects and chain homotopy classes of
chain maps as morphisms. As a consequence, H˚p¨;Gq likewise descends to a functor

H˚p¨;Gq : Chainh Ñ AbZ.

The second observation is that for any chain complex pC˚, Bq, the canonical pairing

(45.3) HompCn, Gq ˆ Cn Ñ G : pα, cq ÞÑ αpcq
descends to homology to give a well-defined pairing

(45.4) HnpC˚, B;Gq ˆHnpC˚, Bq Ñ G : prαs, rcsq ÞÑ xrαs, rcsy :“ αpcq.
To see that this is well defined, we observe that if δα and Bc are both assumed to be zero, then in
the case c “ Ba for some a P Cn`1, we have

αpBaq “ pB˚αqpaq “ ˘pδαqpaq “ 0,

and similarly if α “ δβ for some β P HompCn´1, Gq,
pδβqpcq “ ˘pB˚βqpcq “ ˘βpBcq “ 0.

We will often refer to (45.4) as the evaluation of cohomology classes on homology classes.

Remark 45.3. The reason for the sign in (45.2) can be understood in terms of the “chain-level”
evaluation map (45.3). Since it is bilinear, it can be expressed as a homomorphism

HompCn, Gq b Cn Ñ G,

which extends in a trivial way to all degrees as a homomorphism

(45.5) HompC˚, Gq b C˚ Ñ G

if we define αpcq :“ 0 whenever α P HompCk, Gq and c P Cℓ for k ‰ ℓ. With a little care, we can
then rephrase the fact that (45.4) is well defined as a corollary of the fact that (45.5) is a chain
map. For this we need to make sense of HompC˚, Gq bC˚ as a tensor product chain complex, even
though HompC˚, Gq strictly speaking is not a chain complex but a cochain complex: however, any
cochain complex becomes a chain complex if we simply reverse the degrees by a sign, so let us
write

HompC˚, Gqn :“ HompC´n, Gq
and think of δ as a homomorphism that sends HompC˚, Gqn to HompC˚, Gqn´1. The fact that
αpcq “ 0 whenever α P HompCk, Gq and c P Cℓ with k ‰ ℓ then means that the map (45.5) vanishes
on all elements of degree nonzero in the tensor product chain complex, so it becomes natural to
understand the right hand side as a chain complex that has the group G in degree 0 and the trivial
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group in all other degrees. With this convention in place, the boundary map on the right hand
side is zero, so the chain map condition demands that for all α P HompCk, Gq and c P Cℓ,

Bpα b cq “ δα b c ` p´1qkα b Bc ÞÑ pδαqpcq ` p´1qkαpBcq “ 0,

leading in the case k “ ℓ´ 1 “ n to the formula

pδαqpcq “ ´p´1qnαpBcq “ p´1qn`1pB˚αqpcq.
The sign in (45.2) is therefore necessary in order to make the evaluation HompC˚, Gq bC˚ Ñ G a
chain map in this sense.

It is not strictly necessary to adopt this sign convention, and many textbooks do not; you will
notice of course that the definition of H˚pC˚, B;Gq does not care whether the sign is included since
it does not change ker δ or im δ. But if we don’t include the sign here, we will be forced to insert
a different unwanted sign somewhere later in the development of the theory. I am trying to stay
consistent with the conventions in [Bre93].

Remark 45.4. The entirety of this discussion admits a straightforward generalization in which
pC˚, Bq is a chain complex of modules over a commutative ring R with unit, G is also an R-
module, and the functor Homp¨, Gq is replaced by HomRp¨, Gq, which transforms a chain complex
of R-modules into a cochain complex of R-modules. The homology H˚pC˚, Bq and cohomology
H˚pC˚, B;Gq then both also have natural R-module structures, and the evaluation (45.4) becomes
an R-module homomorphism

H˚pC˚, B;Gq bR H˚pC˚, Bq Ñ G,

which just means that (45.4) is R-bilinear. This situation arises naturally if we start with pC˚, Bq
as a chain complex of abelian groups but then introduce R as a coefficient ring by replacing it
with pC˚ bR, B b 1q, which has a natural R-module structure. The following exercise shows that
if we now take the cohomology of pC˚ bR, B b 1q with coefficients in an R-module G by applying
HomRp¨, Gq and then H˚, we obtain exactly the same result as the cohomology of pC˚, Bq with
coefficients in G, except that instead of just the pairing of abelian groups that is defined in (45.4),
we have a bilinear R-module pairing

H˚pC˚, B;Gq ˆH˚pC˚ bR, B b 1q Ñ G.

Exercise 45.5. Assume R is a commutative ring with unit, A is an abelian group and G is
an R-module.

(a) Show that AbG and HompA,Gq each have natural R-module structures defined via the
relations

rpa b gq :“ ab prgq for r P R, a P A, g P G,
prΦqpaq :“ r pΦpaqq for r P R, a P A, Φ P HompA,Gq,

and that bG and Homp¨, Rq can each be understood as functors (covariant and contravari-
ant respectively) from the category of abelian groups to the category of R-modules.

(b) Show that there is a canonicalR-module isomorphism between HompA,Gq and HomRpAb
R,Gq, which defines a natural transformation between the functors

Ab Ñ ModR : A ÞÑ HompA,Gq and Ab Ñ ModR : A ÞÑ HomRpA bR,Gq.
The singular cochain complex. The singular cohomology of a pair pX,Aq with coeffi-

cients in an abelian group G is now defined by applying the algebraic processing described above
to the singular chain complex: that is,

H˚pX,A;Gq :“ H˚
`
C˚pX,Aq;G

˘
“ H˚

`
HompC˚pX,Aq, Gq

˘
.
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For the case G “ Z, we sometimes abbreviate

H˚pX,Aq :“ H˚pX,A;Zq,
though we will occasionally also use this shorter notation for cohomology with arbitrary coeffi-
cients when there is no danger of confusion. It is standard to abbreviate the cochain complex
HompC˚pX,Aq, Gq by

C˚pX,A;Gq :“ Hom
`
C˚pX,Aq, G

˘

and refer to elements of C˚pX,A;Gq as singular cochains. Elements of ker δ Ă C˚pX,A;Gq and
im δ Ă C˚pX,A;Gq are likewise called (singular) cocycles and coboundaries respectively. Each
element ϕ P CnpX ;Gq is a homomorphism ϕ : CnpXq Ñ G, and since CnpXq is a free abelian
group, all such homomorphisms can be described uniquely via their values on the generators,
i.e. the singular n-simplices in X . We thus have a canonical identification

CnpX ;Gq “ GKnpXq “
ź

σPKnpXq

G “ tfunctions ϕ : KnpXq Ñ Gu ,

where KnpXq again denotes the set of all singular n-simplices inX . We will often use this identifica-
tion to regard cochains ϕ P CnpX ;Gq simply as functions ϕ : KnpXq Ñ G. With this understood,
we plug in (45.2) and the usual formula for the boundary operator B : Cn`1pXq Ñ CnpXq to find
a corresponding formula for the coboundary operator δ : CnpX ;Gq Ñ Cn`1pX ;Gq, in the form

(45.6) pδϕqpσq “ p´1qn`1
n`1ÿ

k“0

p´1qkϕ
`
σ|Bpkq∆

n`1

˘
for ϕ : KnpXq Ñ G, σ P Kn`1pXq.

In the relative case, we can think of a homomorphism ϕ : CnpX,Aq “ CnpXq{CnpAq Ñ G as
equivalent to a homomorphism ϕ : CnpXq Ñ G that vanishes on the subgroup CnpAq Ă CnpXq,
so this is the same thing as a function KnpXq Ñ G that vanishes on the subset KnpAq Ă KnpXq:

CnpX,A;Gq “
!
ϕ : KnpXq Ñ G

ˇ̌
ˇ ϕ|KnpAq “ 0

)
.

The formula (45.6) then gives the correct homomorphism δ : CnpX,A;Gq Ñ Cn`1pX,A;Gq by
restriction.

As a functor, H˚p¨;Gq : Toprel Ñ AbZ is the composition of three functors,

Toprel
C˚ÝÑ Chain

Homp¨,GqÝÑ Cochain
H˚ÝÑ AbZ,

one of which is contravariant, thus H˚p¨;Gq is also contravariant. Concretely, this means that
continuous maps of pairs f : pX,Aq Ñ pY,Bq induce “pullback” homomorphisms

f˚ : HnpY,B;Gq Ñ HnpX,A;Gq
for every n P Z. These maps are induced by the chain map f˚ : C˚pY,B;Gq Ñ C˚pX,A;Gq
defined by

pf˚ϕqpcq :“ ϕpf˚cq for ϕ P CnpY,B;Gq, c P CnpX,Aq.
By the previous algebraic discussion, there is a natural pairing

H˚pX,A;Gq bH˚pX,Aq Ñ G : rϕs b rcs ÞÑ xrϕs, rcsy :“ ϕpcq,
which we call the evaluation of the cohomology class rϕs on the homology class rcs, and it satisfies

(45.7) xf˚rϕs, rcsy “ xrϕs, f˚rcsy for rϕs P H˚pY,B;Gq, rcs P H˚pX,Aq, pX,Aq fÑ pY,Bq.
More generally, if G is a module over a commutative ring R with unit, one can define an R-bilinear
pairing

H˚pX,A;Gq bR H˚pX,A;Rq Ñ G

as in Remark 45.4.
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Let us conclude this lecture with two straightforward but revealing computations of HnpX ;Gq
for particular values of n. We start with the case n “ 0.

For any space X , C´1pX ;Gq “ 0, thus H0pX ;Gq is simply the kernel of the map C0pX ;Gq δÑ
C1pX ;Gq, also known as the group of 0-cocycles. Under the usual identification of K0pXq with X
and K1pXq with the set of paths γ : I Ñ X , (45.6) gives

pδϕqpγq “ ˘ rϕpγp1qq ´ ϕpγp0qqs for ϕ : X Ñ G, γ : I Ñ X,

which vanishes for all paths γ if and only if ϕpxq “ ϕpyq for every pair of points x, y P X that are
in the same path-component of X . A function ϕ : X Ñ G is therefore a 0-cocycle if and only if it
is constant on path-components, meaning it is equivalent to a function π0pXq Ñ G. We’ve proved:

Theorem 45.6. For any space X and abelian group G, there is a canonical isomorphism

H0pX ;Gq –
ź

π0pXq

G.

�

Remark 45.7. This proves that H0pX ;Gq – H0pX ;Gq if X has only finitely-many path-
components, but otherwise H0pX ;Gq is larger than H0pX ;Gq. Indeed, for any collection of groups
tGαuαPI , the direct sum

À
αPI Gα can be identified with the subgroup of the direct productś

αPI Gα consisting of tuples tgαuαPI that have at most finitely-many nonzero coordinates. For
example, if the index set I is N and Gα “ Z2 for every α P I, then

À
αPI Gα is countably infinite

but
ś
αPI Gα is uncountable.

The second computation relates H1pX ;Gq to π1pXq; we shall give a brief sketch and leave the
details as exercises. Assume X is a path-connected space, and identify ∆1 with I “ r0, 1s as usual
so that singular 1-cochains ϕ P C1pX ;Gq can be interpreted as functions from the set of paths
tγ : I Ñ Xu to G.

Exercise 45.8. Show that a singular 1-cochain ϕ P C1pX ;Gq is a cocycle if and only if it
satisfies both of the following:

(i) For all paths γ : I Ñ X , ϕpγq P G depends only on the homotopy class of γ with fixed
end points;

(ii) For every pair of paths α, β : I Ñ X with αp1q “ βp0q, ϕpα ¨ βq “ ϕpαq ` ϕpβq.
Hint: If σ : ∆2 Ñ X is a singular 2-simplex, one can identify its three boundary faces with paths
α, β, γ : I Ñ X such that α ¨ β is homotopic to γ with fixed end points.

Exercise 45.9. Show that a singular 1-cochain ϕ P C1pX ;Gq is a coboundary if and only if
there exists a function73 ψ : X Ñ G such that for all paths γ : I Ñ X , ϕpγq “ ψpγp1qq ´ ψpγp0qq.

Exercise 45.10. Prove that for any x P X , there is a well-defined homomorphism

Ψ : H1pX ;Gq Ñ Hompπ1pX, xq, Gq : rϕs ÞÑ Ψϕ

such that for each 1-cocycle ϕ P C1pX ;Gq, Ψϕ : π1pX, xq Ñ G is given by

Ψϕprγsq “ ϕpγq for x
γ
 x.

Then prove that Ψ is injective and surjective.
Hint: For injectivity, you need to show that if ϕpγq “ 0 for all loops γ then ϕ satisfies the
condition in Exercise 45.9. For surjectivity, it might help to observe that since H1pXq is the

73Note that since G is not assumed to have any topology in this discussion, there is no continuity assumption
on the function ψ : X Ñ G.
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abelianization of π1pX, xq and G is abelian, Hompπ1pX, xq, Gq “ HompH1pXq, Gq, so the map
Ψ : H1pX ;Gq Ñ Hompπ1pX, xq, Gq can then be identified with

H1pX ;Gq Ñ HompH1pXq, Gq : rϕs ÞÑ xrϕs, ¨y.
You then need to show that every homomorphism to G from the group Z1 of 1-cycles that vanishes
on the subgroup B1 Ă Z1 of boundaries can be extended to a homomorphism C1pXq Ñ G. Use

the fact that 0 Ñ Z1 ãÑ C1pXq BÑ B0 Ñ 0 is a split exact sequence. (Why?)

46. Axioms for cohomology

Eilenberg-Steenrod revisited. Each of the Eilenberg-Steenrod axioms for homology the-
ories has an analogue that is satisfied by singular cohomology, thus giving rise to the notion of
axiomatic cohomology theories. The proof that H˚p¨;Gq satisfies the axioms is at this point quite
easy; it is mostly a matter of reusing the same lemmas that were used for proving properties of
H˚p¨;Gq, but with most of the arrows reversed.

Definition 46.1. An axiomatic cohomology theory h˚ is a contravariant functor

Toprel Ñ AbZ : pX,Aq ÞÑ h˚pX,Aq “
à
nPZ

hnpX,Aq,

together with a natural transformation δ˚ from the functor Toprel Ñ Ab : pX,Aq ÞÑ hnpAq to the
functor Toprel Ñ Ab : pX,Aq ÞÑ hn`1pX,Aq for each n P Z such that the following axioms are
satisfied:

‚ (Exactness) For all pairs pX,Aq with inclusion maps i : A ãÑ X and j : pX,Hq ãÑ
pX,Aq, the sequence

. . . ÝÑ hn´1pAq δ˚

ÝÑ hnpX,Aq j˚

ÝÑ hnpXq i˚ÝÑ hnpAq δ˚

ÝÑ hn`1pX,Aq ÝÑ . . .

is exact.
‚ (Homotopy) For any two homotopic maps f, g : pX,Aq Ñ pY,Bq, the induced mor-

phisms f˚, g˚ : h˚pY,Bq Ñ h˚pX,Aq are identical.
‚ (Excision) For any pair pX,Aq and any subset B Ă X with closure in the interior of A,

the inclusion pXzB,AzBq ãÑ pX,Aq induces an isomorphism

h˚pX,Aq –ÝÑ h˚pXzB,AzBq.
‚ (Dimension) For any space tptu containing only one point, hnptptuq “ 0 for all n ‰ 0.
‚ (Additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš

βPJ Xβ , the induced homomorphisms i˚α : h˚
´š

βPJ Xβ

¯
Ñ h˚pXαq determine an

isomorphism
ź

αPJ

i˚α : h˚

˜ž

βPJ

Xβ

¸
–ÝÑ

ź

αPJ

h˚pXαq.

The group h0ptptuq is called the coefficient group of the theory.

Theorem 46.2. For any abelian group G, the singular cohomology H˚p¨;Gq is an axiomatic
cohomology theory with coefficient group G.

Proof. Exactness follows from the fact that if we dualize the usual short exact sequence of

singular chain complexes 0 Ñ C˚pAq i˚Ñ C˚pXq j˚Ñ C˚pX,Aq Ñ 0, then the resulting sequence of
chain maps

(46.1) 0 ÐÝ C˚pA;Gq i˚ÐÝ C˚pX ;Gq j˚

ÐÝ C˚pX,A;Gq ÐÝ 0
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is also exact. Indeed, under the canonical identifications of these groups with sets of functions
KnpXq Ñ G or KnpAq Ñ G, j˚ becomes the obvious inclusion

j˚ :
!
ϕ : KnpXq Ñ G

ˇ̌
ˇ ϕ|KnpAq “ 0

)
ãÑ tϕ : KnpXq Ñ Gu ,

and i˚ becomes the restriction map

i˚ : tϕ : KnpXq Ñ Gu Ñ tϕ : KnpAq Ñ Gu : ϕ ÞÑ ϕ|KnpAq,

which is manifestly surjective and has kernel equal to im j˚. I should caution you against thinking
that the exactness of this dualized sequence follows automatically from abstract nonsense—we
will see in the next lecture that not every short exact sequence of abelian groups remains exact
after it is dualized. But this one does. As a result, (46.1) is what we may sensibly call a short
exact sequence of cochain complexes, which is the same thing as a short exact sequence of chain
complexes except that the coboundary operator raises degrees instead of lowering them. The usual
diagram-chasing argument therefore produces from this a long exact sequence of the homology
groups of the complexes, with a connecting homomorphism that raises the degree by 1.

The main reason for the homotopy axiom is Proposition 45.2 in the previous lecture, which
implies that if the two chain maps f˚, g˚ : C˚pX,Aq Ñ C˚pY,Bq are chain homotopic, then so are
the two chain maps f˚, g˚ : C˚pY,B;Gq Ñ C˚pX,A;Gq.

For excision, recall from Theorem 28.2 that if B Ă sB Ă Å Ă A Ă X , then the inclusion
i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzBq Ñ C˚pX,Aq,
meaning in particular that there is a chain map ρ˚ : C˚pX,Aq Ñ C˚pXzB,AzBq such that ρ˚i˚ and
i˚ρ˚ are each chain homotopy equivalent to the identity. Dualizing both i˚ and ρ˚ then produces
chain maps i˚ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq and ρ˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq
such that by Proposition 45.2, i˚ρ˚ and ρ˚i˚ are also chain homotopic to the identity, hence

i˚ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq

is a chain homotopy equivalence and induces an isomorphism H˚pX,A;Gq Ñ H˚pXzB,AzB;Gq.
The dimension axiom and the computation of the coefficient group are straightforward since

there is only one singular n-simplex σn P Knptptuq for each n ě 0, giving canonical isomorphisms

Cnptptu;Gq –ÝÑ G : ϕ ÞÑ ϕpσnq.

The map δ : Cnptptu;Gq Ñ Cn`1ptptu;Gq then becomes

δn : G Ñ G : g ÞÑ p´1qn`1
n`1ÿ

k“0

p´1qkg “
#
0 if n is even,
p´1qn`1g if n is odd.

For n ą 0 even, this means ker δn “ im δn´1 and thus Hnptptu;Gq “ 0. For n ą 0 odd, we
instead have ker δn “ 0 and thus Hnptptu;Gq “ 0. The only special case is n “ 0, for which
H0ptptu;Gq “ ker δ0 “ G.

The additivity axiom is a straightforward consequence of the fact that since no individual
singular simplex can have image in more than one component of a disjoint union, the chain complex
C˚

`š
βXβ

˘
splits naturally into a direct sum of chain complexes

À
β C˚pXβq. Dualizing then

changes the direct sum to a direct product as we saw in the computation of H0pX ;Gq in the
previous lecture. We leave the details as an exercise. �

Exercise 46.3. Describe a cohomological version of the “braid” diagram in Lecture 30 and
use it to prove that for every triple of spaces pX,A,Bq with B Ă A Ă X and every axiomatic
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cohomology theory h˚, the maps induced by the inclusions i : pA,Bq ãÑ pX,Bq and j : pX,Bq ãÑ
pX,Aq fit into a long exact sequence

. . . ÐÝ hn`1pX,Aq δ˚

ÐÝ hnpA,Bq i˚ÐÝ hnpX,Bq j˚

ÐÝ hnpX,Aq δ˚

ÐÝ hn´1pA,Bq ÐÝ . . . .

Give also an alternative proof of this for singular cohomology using a short exact sequence of
cochain complexes.

Reduced cohomology. Every cohomology theory h˚ also has a reduced version, which is
again defined in terms of the unique map

ǫ : X Ñ tptu.
Choosing any embedding i : tptu Ñ X , the fact that ǫ ˝ i is the identity map implies that

pǫ ˝ iq˚ “ i˚ǫ˚ : h˚ptptuq Ñ h˚ptptuq
is also the identity, so ǫ˚ : h˚ptptuq Ñ h˚pXq is injective and has i˚ as a left-inverse. We then
define

rh˚pXq :“ coker ǫ˚ “ h˚pXq
L
im ǫ˚,

so that the quotient projection h˚pXq Ñ rh˚pXq fits into a split exact sequence

0 ÝÑ h˚ptptuq ǫ˚

ÝÑ h˚pXq ÝÑ rh˚pXq ÝÑ 0,

implying that if h˚ has coefficient group G,

hnpXq –
#
rhnpXq ‘G for n “ 0,

rhnpXq for n ‰ 0.

If X is contractible, then ǫ is a homotopy equivalence and ǫ˚ : h˚ptptuq Ñ h˚pXq is thus an
isomorphism, so its cokernel is trivial:

Theorem 46.4. For any axiomatic cohomology theory h˚, if X is contractible, rh˚pXq “ 0. �

As with homology, this result is mainly useful because of the role that trivial homology groups
play in exact sequences. We showed in Lecture 28 via diagram-chasing arguments that the homol-
ogy long exact sequence of a pair pX,Aq is also exact if all homology groups are replaced by their
reduced versions, where the reduced homology of a pair pX,Aq with A ‰ H is defined to match
the ordinary homology. We can do the same thing here: if we define

rh˚pX,Aq :“ h˚pX,Aq if A ‰ H,

then repeating the arguments of Lecture 28 with reversed arrows gives:

Theorem 46.5. For any pair pX,Aq and any axiomatic cohomology theory, the sequence

. . . ÝÑ rhn´1pAq δ˚

ÝÑ rhnpX,Aq j˚

ÝÑ rhnpXq i˚ÝÑ rhnpAq δ˚

ÝÑ rhn`1pX,Aq ÝÑ . . .

is also well defined and exact. �

Exercise 46.6. Show that rH˚pX ;Gq is also the cohomology of the augmented chain complex

. . . ÝÑ C2
B2ÝÑ C1

B1ÝÑ C0
ǫÝÑ G ÝÑ 0 ÝÑ 0 ÝÑ . . .

described in Remark 28.19.

Exercise 46.7. Adapt the proof of Theorem 30.14 to prove that for any axiomatic cohomology
theory h˚ and any space X , there is an isomorphism rhnpXq Ñ rhn`1pSXq for every n P Z.
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Exercise 46.8. For any axiomatic cohomology theory h˚ and two spaces X and Y with maps
ǫX : X Ñ tptu and ǫY : Y Ñ tptu, show that the isomorphism h˚pX > Y q – h˚pXq ˆ h˚pY q given
by the additivity axiom identifies rh˚pX > Y q with the cokernel of the map

pǫ˚
X , ǫ

˚
Y q : h˚ptptuq Ñ h˚pXq ˆ h˚pY q.

Then apply this in the case X “ Y “ tptu to identify rh0ptptu > tptuq with the cokernel of the
diagonal map G Ñ G ˆG, where G “ h0ptptuq. Conclude in particular

rhnpS0q –
#
G if n “ 0,
0 if n ‰ 0.

Exercise 46.9. Combine the previous two exercises to prove by induction on n P N that for
any axiomatic cohomology theory h˚ with coefficient group G,

hkpSnq –
#
G if k “ 0 or k “ n,

0 otherwise.

Exercise 46.10. Adapt the proof of Theorem 30.23 to prove that for any axiomatic cohomol-
ogy theory h˚ and any good pair pX,Aq, there is a natural isomorphism

h˚pX,Aq – rh˚pX{Aq.
Remark 46.11. You may by now be getting the impression that cohomology is always isomor-

phic to homology, especially in light of the computation above for Sn. There is a grain of truth in
this, but the whole story is more complicated: e.g. we will see in the next lecture that H˚pX ;Gq is
fully determined by H˚pXq, but it is not always the same, especially if H˚pXq has torsion. It also
deserves to be emphasized that for arbitrary axiomatic theories, the premise does not always make
sense: in contrast to the obvious “duality” between H˚p¨;Gq and H˚p¨;Gq, not every axiomatic
cohomology theory h˚ has a corresponding axiomatic homology theory h˚ (cf. Remark 46.20 at
the end of ths lecture).

The Mayer-Vietoris sequence. One can use a diagram-chase as in Exercise 31.3 to derive
from the axioms a Mayer-Vietoris sequence for any axiomatic cohomology theory, but for singular
cohomology it also can be seen more directly. Indeed, suppose A,B Ă X are subsets whose interiors
cover X , let

a : AXB ãÑ A, b : AXB ãÑ B

denote the obvious continuous inclusions of spaces, and

α : C˚pAq ãÑ C˚pAq ` C˚pBq, β : C˚pBq ãÑ C˚pAq ` C˚pBq
the obvious inclusions of subgroups of C˚pXq. The Mayer-Vietoris sequence in singular homology
was derived in Lecture 31 from a short exact sequence of chain complexes in the form

0 C˚pA XBq C˚pAq ‘ C˚pBq C˚pAq ` C˚pBq 0.
pa˚,´b˚q α‘β

Applying to this the functor Homp¨;Gq and using the natural isomorphism

Hom
`
C˚pAq, G

˘
‘ Hom

`
C˚pBq, G

˘ –Ñ Hom
`
C˚pAq ‘ C˚pBq, G

˘

pϕ, ψq ÞÑ ϕ ‘ ψ

transforms it into to the sequence

0 C˚pA XB;Gq C˚pA;Gq ‘ C˚pB;Gq C˚pA `B;Gq 0,
a˚‘p´b˚q pα˚,β˚q
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where we are abbreviating

C˚pA `B;Gq :“ Hom
`
C˚pAq ` C˚pBq, G

˘
.

The dual maps

a˚ : C˚pA;Gq Ñ C˚pA XB;Gq, b˚ : C˚pB;Gq Ñ C˚pA XB;Gq,
α˚ : C˚pA `B;Gq Ñ C˚pA;Gq, β˚ : C˚pA `B;Gq Ñ C˚pB;Gq

are all canonical restriction maps, e.g. α˚ replaces a homomorphism ϕ : C˚pAq ` C˚pBq Ñ G

with its restriction to the subgroup C˚pAq. It is now an easy exercise to check that the dualized
sequence is also exact. To make use of this, we need to identify the homology of the cochain
complex C˚pA `B;Gq with something more familiar. By Lemma 28.1, the condition X “ Å Y B̊

guarantees that the inclusion j : C˚pAq `C˚pBq ãÑ C˚pXq is a chain homotopy equivalence, so by
Proposition 45.2, the dual map

j˚ : C˚pX ;Gq Ñ C˚pA `B;Gq
is also a chain homotopy equivalence and therefore induces an isomorphism

H˚pX ;Gq –ÝÑ H˚

`
C˚pA `B;Gq

˘
.

Combining this with the usual diagram-chasing result gives:

Theorem 46.12 (Mayer-Vietoris sequence for cohomology). If A,B Ă X are subsets such that
X “ Å Y B̊ and

iA : A XB ãÑ A, iB : AXB ãÑ B, jA : A ãÑ X, jB : B ãÑ X,

denote the obvious inclusions, then there exist connecting homomorphisms δ˚ : HnpA X B;Gq Ñ
Hn`1pX ;Gq for every n P Z such that the sequence

. . . ÐÝ Hn`1pX ;Gq δ˚

ÐÝ HnpA XB;Gq i
˚
A‘p´i˚BqÐÝ HnpA;Gq ‘HnpB;Gq

pj˚
A,j

˚
BqÐÝ HnpX ;Gq δ˚

ÐÝ Hn´1pA XB;Gq ÐÝ . . .

is exact, and this sequence is also natural with respect to maps f : X Ñ X 1 “ Å1 Y B̊1 satisfying
fpAq Ă A1 and fpBq Ă B1. �

Exercise 46.13. Adapt the diagram-chasing arguments in Lecture 31 to show that every
axiomatic cohomology theory h˚ admits a Mayer-Vietoris sequence under the same hypotheses on
X “ A YB, and that it also works if h˚ is replaced by rh˚.

Cellular cohomology. The cellular cohomology of a CW-pair pX,Aq with coefficients in G

is defined as the cohomology of the cellular chain complex, or equivalently,

H˚
CWpX,A;Gq :“ H˚

`
C˚

CWpX,A;Gq
˘
,

where we define the cellular cochain complex

C˚
CWpX,A;Gq :“ Hom

`
CCW

˚ pX,Aq, G
˘
.

This gives a contravariant functor H˚
CW : CWrel Ñ AbZ that is typically not very hard to compute.

The coboundary map δ : CnCWpX,A;Gq Ñ Cn`1
CW pX,A;Gq can be expressed in terms of the same

incidence numbers that describe the cellular boundary map: indeed, for each n-cell enα Ă X , define
its dual cochain

ϕnα P CnCWpX ;Zq, ϕnαpenβq :“
#
1 if β “ α,

0 otherwise.
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These generators form a basis of CnCWpX ;Zq if there are only finitely many n-cells, and any element
of CnCWpX ;Gq can then similarly be described as a linear combination of the ϕnα with coefficients
in G, thus it suffices to write down a formula for δϕnα P Cn`1pX ;Zq. We have

pδϕnαqpen`1
β q “ p´1qn`1ϕnαpBen`1

β q “ p´1qn`1
ÿ

enγ ĂX

ϕnα
`
renγ : en`1

β senγ
˘

“ p´1qn`1renα : en`1
β s,

and thus,
δϕnα “ p´1qn`1

ÿ

en`1

β
ĂX

renα : en`1
β sϕn`1

β .

As with homology, cellular cohomology provides a powerful tool for computing arbirary ax-
iomatic cohomology theories on spaces that have cell decompositions:

Theorem 46.14. For any axiomatic cohomology theory h˚ with coefficient group G and every
CW-pair pX,Aq, there exists an isomorphism H˚

CWpX,A;Gq Ñ h˚pX,Aq, which is natural in the
sense that every cellular map f : pX,Aq Ñ pY,Bq gives rise to a commutative diagram

H˚
CWpX,A;Gq h˚pX,Aq

H˚
CWpY,B;Gq h˚pY,Bq

–

f˚

–

f˚

For finite-dimensional complexes, this theorem can be proved in a way that closely parallels
the corresponding argument for cellular homology carried out in Lectures 36 and 37. One starts
by deriving from the axioms a natural isomorphism

hkpXn, Xn´1q –
ź

enαĂX

hkpDn, BDnq

for every k and n, then using the long exact sequence of pDn, BDnq in cohomology to prove that
the right hand side is zero for all k ‰ n but (since hnpDn, BDnq – rhn´1pSn´1q – G) is identical to
the cellular n-cochain group CnCWpX ;Gq when k “ n. Putting hnpXn, Xn´1q for each n ě 0 in the
role of CnCWpX ;Gq, one then assembles the long exact sequences of pXn`1, Xnq and pXn, Xn´1q
into the diagram

0 hnpXn´1q 0

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q hnpXn`1, Xnq

hnpXn, Xn´1q 0

hn´1pXn´1q

j˚
n`1 δ˚

n

γn

i˚n

j˚
n

δ˚
n´1

in which the diagonal arrow defines maps γn so that the sequence

h0pX0q γ0ÝÑ h1pX1, X0q γ1ÝÑ h2pX2, X1q ÝÑ . . .

becomes a cochain complex. One can check that γn is equivalent to the cellular coboundary map
CnCWpX ;Gq δÑ CCW

n`1pX ;Gq under the natural isomorphisms hnpXn, Xn`1q – CnCWpX ;Gq. The
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diagram then allows us to deduce that the map i˚n : hnpXn`1q Ñ hnpXnq is injective and j˚
n

descends to an isomorphism

kerγn{ imγn´1
j˚
nÝÑ im i˚n – hnpXn`1q – hnpXn`2q – . . . ,

thus giving an isomorphism Hn
CWpX ;Gq – hnpXq if X “ XN for some N P N sufficiently large.

To handle CW-pairs pX,Aq with A ‰ H, one carries out this same argument with hnpXn, Xn´1q
replaced by hnpXn Y A,Xn´1 Y Aq and the long exact sequence of pXn, Xn´1q replaced by the
sequence of the triple pXn YA,Xn´1 YA,Aq.

Exercise 46.15. Work out the further details of the proof of Theorem 46.14 for finite-
dimensional CW-pairs.

Some additional arguments are needed if the CW-pair pX,Aq is infinite dimensional. In Lec-
ture 38, we handled this for singular homology by viewing any CW-complex as the direct limit
of its skeleta and establishing sufficient conditions for singular homology to behave continuously
under direct limits. You may recall that this issue was a little bit subtle: some topological con-
dition is required on a direct system of spaces in order for the singular chain complex functor to
behave continuously under direct limits, but fortunately, all CW-complexes satisfy the condition
(cf. Prop. 39.2). For cohomology, the situation is worse: since H˚p¨;Gq is contravariant, the coho-
mology groups of the skeleta tH˚pXn;Gquně0 define an inverse system of graded abelian groups,
and we’ve seen in Lecture 44 that in contrast to direct systems, the algebraic functor taking chain
complexes to their homology groups does not always behave continuously under inverse limits.
This does not mean that the situation is hopeless, but it does make things more complicated: it
means that one must introduce another “derived” functor (analogous to Tor) to account for the
nonexactness of the functor that takes each inverse system to its inverse limit. This is done in
[Mil62] in the more general context of axiomatic cohomology theories, but we will not discuss it
any further here since we do not need that level of generality. For our purposes, it will suffice if
we can prove the general case of the isomorphism H˚

CWpX,A;Gq – H˚pX,A;Gq, and in the next
lecture we will see a cheap way of deriving this from facts already proven about H˚pX,A;Gq via
a universal coefficient theorem.

Other cohomology theories. Finally, I would like to give brief sketches of two axiomatic
cohomology theories other than singular cohomology. They will demonstrate in particular that the
two properties of H˚p¨;Gq we discussed at the end of the previous lecture,

H0pX ;Gq –
ź

π0pXq

G and H1pX ;Gq – Hompπ1pXq, Gq,

do not follow from the axioms, but are distinctive to the singular theory.
We begin with Čech cohomology. Recall from Lecture 44 that for any open cover pU,UAq P

OpX,Aq of a pair of spaces pX,Aq, one can define its nerve N pU,UAq, which consists of a simplicial
complex N pUq and subcomplex N pUAq Ă N pUq. The ordered simplicial cohomology of the nerve
with coefficients in G is defined in the obvious way as the cohomology of the ordered simplicial
chain complex

H˚
o pN pU,UAq;Gq :“ H˚

`
Co˚pU,UAq;G

˘
.

Recall moreover that the set OpX,Aq of all open coverings of pX,Aq is a directed set with respect to
refinement, and any refinement pU1,U1

Aq of pU,UAq gives rise to a simplicial map F : N pU1,U1
Aq Ñ

N pU,UAq whose induced chain map

F˚ : Co˚pN pU1,U1
Aqq Ñ Co˚pN pU,UAqq
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is unique up to chain homotopy. It follows via Proposition 45.2 that dualizing this map produces
a map of cochain complexes that is also unique up to chain homotopy, producing a canonically
defined morphism

F˚ : H˚
o pN pU,UAqq Ñ H˚

o pN pU1,U1
Aqq.

Notice what has happened as a result of dualization: the collection of simplicial homology groups
tHo

˚pN pU,UAq;GqupU,UAqPOpX,Aq in Lecture 44 was an inverse system, but the reversal of arrows
now means that the corresponding cohomology groups

tH˚
o pN pU,UAq;GqupU,UAqPOpX,Aq

form a direct system, and we define the Čech cohomology of pX,Aq with coefficients in G to
be the direct limit

qH˚pX,A;Gq :“ limÝÑ tH˚
o pN pU,UAq;GqupU,UAqPOpX,Aq .

There is a huge technical advantage in the fact that qH˚pX,A;Gq is defined via a direct limit
instead of an inverse limit: exactness of sequences is preserved under direct limits (cf. Prop. 39.1),
and one can use this to prove that unlike qH˚p¨;Gq, the cohomology qH˚p¨;Gq satisfies the exactness
axiom without any restrictions. It also satisfies all the other axioms:

Theorem 46.16 (see [ES52,Spa95]). For any abelian group G, the Čech cohomology qHp¨;Gq :
Toprel Ñ AbZ is an axiomatic cohomology theory with coefficient group G. �

It follows that qH˚pX ;Gq and H˚pX ;Gq are isomorphic whenever X is a CW-complex. To find
examples in which qH˚pX ;Gq and H˚pX ;Gq differ, it suffices again to consider a space X that is
connected but not path-connected. Recall from Lemma 44.18 that whenever U P OpXq is an open
covering of a connected space X , the nerve N pUq is also connected, thus H0pN pUq;Gq – G. One
can deduce from this that if X is connected, qH0pX ;Gq – G and the reduced Čech cohomology of
X in degree zero vanishes. Exercise 46.7 then implies qH1pSX ;Gq “ 0. But if X has more than
one path-component, then rH0pX ;Gq and H1pSX ;Gq are both nontrivial; the latter is isomorphic
to Hompπ1pSXq, Gq since the suspension SX is always path-connected, thus SX is an example of
a space for which qH1pSX ;Gq fl Hompπ1pSXq, Gq.

The Alexander-Spanier cohomology is yet another theory that satisfies all of the Eilenberg-
Steenrod axioms but is based on a different idea of how to detect topological information. Let us
describe the absolute version.

For integers n ě 0, let sCnpX ;Gq denote the additive abelian group of equivalence classes of
functions

ϕ : Xn`1 “ X ˆ . . .ˆXloooooomoooooon
n`1

Ñ G,

where we say ϕ „ ψ whenever ϕ and ψ are identical on some neighborhood of the diagonal

∆ :“ tpx, . . . , xq P Xn`1 | x P Xu.
The group operation on sCnpX ;Gq is defined via pointwise addition, so for two equivalence classes
rϕs, rψs P sCnpX ;Gq, rϕs`rψs P sCnpX ;Gq is represented by the function ϕ`ψ : Xn`1 Ñ G defined
by

pϕ ` ψqpx0, . . . , xnq :“ ϕpx0, . . . , xnq ` ψpx0, . . . , xnq.
You should take a moment to assure yourself that the equivalence class of ϕ`ψ is independent of
the choice of representatives ϕ P rϕs and ψ P rψs. Note that since the group G is not assumed to
have a topology, there is no continuity condition on the functions Xn`1 Ñ G representing elements
of sCnpX ;Gq. Instead, this group detects the topology of X via the notion of “neighborhoods of
∆ Ă Xn`1” that is used to define the equivalence relation.
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To make the collection of groups sCnpX ;Gq for n ě 0 into a cochain complex, we associate to
each function ϕ : Xn`1 Ñ G the function δϕ : Xn`2 Ñ G defined by

pδϕqpx0, . . . , xn`1q :“
n`1ÿ

k“0

p´1qkϕpx0, . . . , xk´1, xk`1, . . . , xn`1q.

This defines a homomorphism from the group of pn`1q-functions to the group of pn`2q-functions
such that δ2 “ 0, and it preserves the subgroup of functions that vanish near the diagonal, thus it
descends to a coboundary homomorphism

δ : sCnpX ;Gq Ñ sCn`1pX ;Gq.
Extending this to all n P Z by defining sCnpX ;Gq “ 0 for n ă 0, we obtain a cochain complex
p sC˚pX ;Gq, δq, and its homology is the Alexander-Spanier cohomology of X , denoted by

sH˚pX ;Gq :“ H˚

` sC˚pX ;Gq
˘
.

It is not hard to give sH˚ the structure of a contravariant functor: given a continuous map f : X Ñ
Y , one defines a chain map

f˚ : sC˚pY ;Gq Ñ sC˚pX ;Gq : ϕ ÞÑ ϕ ˝ pf ˆ . . .ˆ fq,
thus inducing homomorphisms f˚ : sH˚pY ;Gq Ñ sH˚pX ;Gq. With some more effort, one can also
define relative groups sH˚pX,A;Gq and prove that sH˚ satisfies all of the Eilenberg-Steenrod axioms
for a cohomology theory.74 I recommend thinking through the following two exercises in order to
gain some intuition on how sH˚pX ;Gq measures the topology of X .

Exercise 46.17. Show that for any space X , sH0pX ;Gq is a direct product of copies of G, one
for each connected component of X .

Exercise 46.18. Show by explicit computation that sH1pR;Gq “ 0 and sH1pS1;Gq – G.
Hint: Consider the map sH1pX ;Gq Ñ G : rϕs ÞÑ řN

k“1 ϕpγptkq, γptk´1qq for some loop γ : r0, 1s Ñ
X and partition 0 “ t0 ă t1 ă . . . ă tN “ 1. It is well defined because ϕ represents a cocycle.
(Why?)

Both qH˚ and sH˚ satisfy an “extra” axiom that singular cohomology does not, the so-called
continuity axiom (cf. Theorem 44.23). Since both are contravariant functors, any inverse system
of spaces tXα, ϕβαu gives rise to direct systems of cohomology groups, e.g. in the Alexander-Spanier
theory, we obtain the system t sH˚pXα;Gq, ϕ˚

βαu. It turns out that whenever the spaces Xα are all
compact and Hausdorff, there is an isomorphism

sH˚plimÐÝtXαu;Gq – limÝÑt sH˚pXα;Gqu,
and the same is true for Čech cohomology. It is not hard to find examples (e.g. involving spaces
that are connected but not path-connected) for which this is not true in singular cohomology,
cf. Exercise 44.24.

Remark 46.19. One can show that every compact Hausdorff space is an inverse limit of some
inverse system of compact Hausdorff spaces homotopy equivalent to CW-complexes. It follows
that up to isomorphism, there is only one cohomology theory on compact Hausdorff spaces that
satisfies all of the Eilenberg-Steenrod axioms plus continuity. In particular, qH˚pX ;Gq – sH˚pX ;Gq
whenever X is compact and Hausdorff, though both may be different from H˚pX ;Gq. (This result
can be generalized beyond compact spaces using sheaf cohomology; details are carried out in
[Spa95, Chapter 6].)

74For a good exposition of the details, see [Spa95, §6.4–6.5].
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Remark 46.20. It is interesting to note that sC˚pX ;Gq is not in any obvious way the dual com-
plex of a chain complex, thus it is far from obvious at this stage what the definition of “Alexander-
Spanier homology” might be. A corresponding homology theory was defined in an appendix of
[Spa48], but its definition is much more complicated, requiring inverse limits, and as a result it
suffers from the same drawbacks as Čech homology, i.e. it fails to satisfy the exactness axiom of
Eilenberg-Steenrod.

47. Universal coefficients and the Ext functor

The goal of this lecture is to understand how H˚pX ;Gq is determined in general by H˚pXq,
and in particular, under what circumstances the natural homomorphism

(47.1) h : HnpX ;Gq Ñ HompHnpXq, Gq : ϕ ÞÑ xϕ, ¨y
is an isomorphism. The answer closely parallels the universal coefficient theorem for homology
that we discussed in Lectures 41 and 42.

We shall assume throughout this lecture that R is a commutative ring with unit, G is an
R-module and C˚ is a chain complex of free R-modules. Recall that in the homological story, the
failure of the natural map H˚pC˚q bR G Ñ H˚pC˚ bR Gq to be an isomorphism in some cases is
closely related to the fact that bRG is not an exact functor, i.e. it does not preserve exactness when
applied to short exact sequences, though the failure of exactness is limited to the first nontrivial
term in the sequence. We should therefore begin the cohomological discussion by investigating the
analogous question for the functor HomRp¨, Gq : ModR Ñ ModR. For instance, applying Homp¨,Z2q
to the short exact sequence

0 ÝÑ Z
¨2ÝÑ Z

prÝÑ Z2 ÝÑ 0

gives

0 ÐÝ Z2
0ÐÝ Z2

1ÐÝ Z2 ÐÝ 0,

which is exact everywhere except at the leftmost nontrivial term, since the zero map Z2 Ñ Z2 is
not surjective. It is not hard to show that exactness at the other terms must always hold:

Exercise 47.1. Show that if A iÑ B
jÑ C Ñ 0 is an exact sequence of R-modules, then for

every R-module G, the sequence 0 Ñ HomRpC,Gq j
˚

Ñ HomRpB,Gq i˚Ñ HomRpA,Gq is also exact.

Given a short exact sequence 0 Ñ A
iÑ B

jÑ C Ñ 0, the failure of the dualized sequence

0 Ñ HomRpC,Gq j˚

Ñ HomRpB,Gq i˚Ñ HomRpA,Gq Ñ 0 to be exact in general at the last term has
an easy explanation: e.g. if we view the injective map i : A ãÑ B as the inclusion of a submodule
A Ă B, then exactness at HomRpA,Gq would mean that

i˚ : HomRpB,Gq Ñ HomRpA,Gq : β ÞÑ β ˝ i “ β|A
is surjective, which is true if and only if every homomorphism A Ñ G can be extended to a
homomorphism B Ñ G. But it is easy to come up with examples where this extension problem
cannot be solved, such as extending

2Z Ñ Z : m ÞÑ 1

2
m

over the larger group Z that contains 2Z. Notice, incidentally, that the subgroup 2Z Ă Z also
appears in our favorite example of a short exact sequence that does not split, namely 0 Ñ 2Z ãÑ
Z Ñ Z2 Ñ 0. It should not surprise you to learn that the extension problem can always be solved
in the split case:
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Exercise 47.2 (cf. Exercise 41.7). Show that if 0 Ñ A
iÑ B

jÑ C Ñ 0 is a split exact sequence

of R-modules, then for every R-module G, the sequence 0 Ñ HomRpC,Gq j˚

Ñ HomRpB,Gq i˚Ñ
HomRpA,Gq Ñ 0 is also split exact.

In category-theoretic terms, Exercise 47.1 shows that HomRp¨, Gq : ModR Ñ ModR is what is
called a left-exact functor, but like the functor bRG studied in Lecture 41, it is not generally
exact. The failure of bRG to be exact was measured by a derived functor called TorR, and we will
now introduce another derived functor that plays the analogous role for HomRp¨, Gq.

Suppose A and G are R-modules, and pF˚, f˚q is a projective resolution of A. We showed
in Lecture 41 that projective resolutions always exist and they are unique up to chain homotopy
equivalence. We can then treat the exact sequence

. . . ÝÑ F2
f2ÝÑ F1

f1ÝÑ F0
f0ÝÑ A ÝÑ 0

as a chain complex of R-modules and apply HomRp¨, Gq to it, producing a cochain complex

. . . ÐÝ HomRpF2, Gq f˚
2ÐÝ HomRpF1, Gq f˚

1ÐÝ HomRpF0, Gq f˚
0ÐÝ HomRpA,Gq ÐÝ 0.

By Proposition 45.2 and the uniqueness of projective resolutions, this dual complex is also unique
up to chain homotopy equivalence. In fact, for any R-module homomorphism ϕ : A Ñ A1 with
choices of projective resolutions pF˚, f˚q for A and pF 1

˚, g
1
˚q for A1, Proposition 41.13 gives a chain

map from pF˚, f˚q to pF 1
˚, g

1
˚q which can be dualized, giving a chain map between cochain complexes

(47.2)

. . . HomRpF2, Gq HomRpF1, Gq HomRpF0, Gq HomRpA,Gq

. . . HomRpF 1
2, Gq HomRpF 1

1, Gq HomRpF 1
0, Gq HomRpA1, Gq

f˚
2

ϕ˚
2

f1

ϕ˚
1

f0

ϕ˚
0 ϕ˚

g˚
2

g˚
1

g˚
0

that is also unique up to chain homotopy. It follows that we can associate to A the (co-)homology
groups

HnpF˚;Gq “ Hn

`
HomRpF˚, Gq

˘
“ ker f˚

n`1

L
im f˚

n ,

which depend on A but are independent of the choice of projective resolution pF˚, f˚q up to canon-
ical isomorphisms, and moreover, they behave as contravariant functors since homomorphisms
ϕ : A Ñ A1 induce maps

ϕ˚
n : HnpF 1

˚;Gq Ñ HnpF˚;Gq
via the chain map in (47.2). The left-exactness of HomRp¨, Gq implies that H0pHomRpF˚, Gqq “ 0,
and if R is a principal ideal domain, then one can always choose a projective resolution pF˚, f˚q
with Fn “ 0 for all n ě 2, proving HnpHomRpF˚, Gqq “ 0 for n ě 2. The remaining homology
group in the sequence is the one that measures the failure of HomRp¨, Gq to be an exact functor,
thus it gets a name:

Definition 47.3. For any pair of R-modules A and G and a choice of projective resolution
pF˚, f˚q for A, we define

ExtRpA,Gq :“ H1pF˚;Gq “ H1

`
HomRpF˚, Gq

˘
.

In the case R “ Z, we abbreviate

ExtpA,Gq :“ ExtZpA,Gq.
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The discussion above implies that any two choices of projective resolution for A give rise to
canonically isomorphic definitions of ExtRpA,Gq, thus we shall not distinguish between them in
the notation. Moreover, homomorphisms ϕ : A Ñ A1 induce natural homomorphisms

ϕ˚ : ExtRpA1, Gq Ñ ExtRpA,Gq,
making ExtRp¨, Gq : ModR Ñ ModR a contravariant functor.

Exercise 47.4 (cf. Exercise 41.17). Show that for any fixed R-module A, ExtRpA, ¨q : ModR Ñ
ModR is naturally a covariant functor.

As with Tor, ExtR is not difficult to compute for simple classes of R-modules, which include
all finitely-generated abelian groups.

Exercise 47.5. Make intelligent choices of projective resolutions in order to prove the following
properties of ExtR:

(1) ExtRpA,Gq “ 0 whenever A is a free R-module;
(2) ExtRpA ‘B,Gq – ExtRpA,Gq ‘ ExtRpB,Gq;
(3) ExtpZk, Gq is isomorphic for each k P N and every abelian group G to the cokernel of the

map G ¨kÑ G, i.e. the quotient group G{kG.

The following easy application of this exercise is worth recording for future use:

Proposition 47.6. For any finitely generated abelian group A, ExtpA,Zq is isomorphic to the
torsion subgroup of A.

Proof. By the classification of finitely generated abelian groups, A is isomorphic to the direct
sum of some free abelian group F with the torsion subgroup T Ă A, and T in turn is a finite direct
sum of finite cyclic groups Zk1 , . . . ,ZkN . Exercise 47.5 then gives

ExtpA,Zq – ExtpF,Zq ‘
˜

Nà
j“1

ExtpZkj ,Zq
¸

–
Nà
j“1

Zkj – T.

�

With this bit of machinery in place, we can now state the universal coefficient theorem for
cohomology.

Theorem 47.7 (universal coefficient theorem). For any chain complex C˚ of free modules
over a principle ideal domain R, a fixed R-module G and n P Z, the map h : HnpC˚;Gq Ñ
HompHnpC˚q, Gq defined as in (47.1) fits into a split exact sequence

0 ÝÑ ExtR
`
Hn´1pC˚q, G

˘
ÝÑ HnpC˚;Gq hÝÑ HomR

`
HnpC˚q, G

˘
ÝÑ 0.

Moreover, the sequence (though not its splitting) is natural in the sense that for any chain map
ϕ : A˚ Ñ B˚ between two chain complexes of free R-modules, the exact sequences for both fit into
a commutative diagram

0 ExtR
`
Hn´1pA˚q, G

˘
HnpA˚;Gq HomR

`
HnpA˚q, G

˘
0

0 ExtR
`
Hn´1pB˚q, G

˘
HnpB˚;Gq HomR

`
HnpB˚q, G

˘
0,

h

ϕ˚

h

ϕ˚ ϕ˚

where the map ϕ˚ : ExtRpHn´1pB˚q, Gq Ñ ExtRpHn´1pA˚q, Gq arises from the functoriality
of ExtR, and ϕ˚ : HomRpHn´1pB˚q, Gq Ñ HomRpHn´1pA˚q, Gq is defined by dualizing ϕ˚ :

Hn´1pA˚q Ñ Hn´1pB˚q.
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Before going into the proof, let us discuss some consequences. When applied to the singular
chain complex of a pair pX,Aq, the splitting of the sequence gives an isomorphism

HnpX,A;Gq – Hom
`
HnpX,Aq, G

˘
‘ Ext

`
Hn´1pX,Aq, G

˘
,

revealing that HnpX,A;Gq is determined up to isomorphism by HnpX,Aq, Hn´1pX,Aq and G.
More generally, if G is a module over a principal ideal domain R, then we can view H˚pX,A;Rq
as the homology of a chain complex of free R-modules C˚pX,Aq b R, and H˚pX,A;Gq is the
cohomology of the same chain complex due to Exercise 45.5, so the theorem also gives an R-
module isomorphism

HnpX,A;Gq – HomR

`
HnpX,A;Rq, G

˘
‘ ExtR

`
Hn´1pX,A;Rq, G

˘
,

which reduces to the same statement again if R “ Z. All of this applies equally well to cellular or
simplicial chain complexes, since these are also freely generated.

There is a particularly appealing corollary whenever R and G are both chosen to be a field K.
All modules in the picture are then vector spaces over K, which are automatically free, so the
vector space ExtKpHn´1pX,A;Kq,Kq is trivial by Exercise 47.5, and we conclude that cohomology
is just the dual vector space of homology:

Corollary 47.8. For any field K and any pair of spaces pX,Aq, the natural map

HnpX,A;Kq Ñ HomKpHnpX,A;Kq,Kq : rϕs ÞÑ xrϕs, ¨y
is an isomorphism. �

Here is another situation in which the Ext term vanishes automatically: since H0pXq is the free
abelian group generated by π0pXq, Exercise 47.5 implies ExtpH0pXq, Gq “ 0 for every X and G.

Corollary 47.9. The natural map H1pX ;Gq Ñ HompH1pXq, Gq is an isomorphism for all
spaces X and abelian groups G. �

Remark 47.10. Note that if X is path-connected, then HompH1pXq, Gq is canonically isomor-
phic to Hompπ1pXq, Gq; indeed, since G is abelian, every homomorphism π1pXq Ñ G vanishes on
the commutator subgroup and thus descends to the abelianization, which is H1pXq. Corollary 47.9
thus confirms the result of Exercise 45.10.

If we take R “ Z, then the Ext term need not vanish in general, but one still obtains something
revealing whenever the homology groups are finitely generated. Assume C˚ is a chain complex of
free abelian groups, abbreviate Hn :“ HnpC˚q and Hn :“ HnpC˚q “ HnpC˚;Zq, and let Tn Ă Hn

and T n Ă Hn denote their respective torsion subgroups. If Hn and Hn are finitely generated, we
can define their free parts as the quotients

H free
n pC˚q “ H free

n :“ Hn{Tn, Hn
freepC˚q “ Hn

free :“ Hn{T n,
and these are finitely-generated free abelian groups such that there exist isomorphisms

Hn – H free
n ‘ Tn, Hn – Hn

free ‘ T n.

Applying the universal coefficient theorem with G “ Z now produces the formula

Hn – HompHn,Zq ‘ ExtpHn´1,Zq.
Since all homomorphisms Hn Ñ Z kill torsion elements and HompZm,Zq – Zm for each m P N,
we have HompHn,Zq – HompH free

n ‘ Tn,Zq – HompH free
n ,Zq – H free

n , and if Hn´1 is also finitely
generated, Proposition 47.6 gives an isomorphism ExtpHn´1,Zq – Tn´1, resulting in the formula

(47.3) Hn – H free
n ‘ Tn´1.
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This implies Hn
free – H free

n and T n – Tn´1. The first isomorphism can also be understood as
follows. According to Theorem 47.7, the natural map h : Hn Ñ HompHn,Zq descends to an
isomorphism

(47.4) Hn
L
T

hÑ HompHn,Zq,
where T Ă Hn is the image of the injective map ExtpHn´1,Zq Ñ Hn in the long exact sequence.
Composing homomorphisms Hn Ñ Z with the quotient projection Hn Ñ H free

n gives a natural
isomorphism HompH free

n ,Zq “ HompHn,Zq since HompTn,Zq “ 0, and HompH free
n ,Zq – H free

n

is a finitely generated free abelian group. Since ExtpHn´1,Zq – Tn´1 is a torsion group, the
subgroup T Ă Hn is necessarily contained in the torsion subgroup, but it must in fact be all of it
since the isomorphism (47.4) implies that Hn{T is free. Combining all this with the naturality in
Theorem 47.7 gives:

Corollary 47.11. For any chain complex C˚ of free abelian groups and any n P Z such that
HnpC˚q and Hn´1pC˚q are both finitely generated, the natural map h : HnpC˚q Ñ HompHnpC˚q,Zq “
HompH free

n pC˚q,Zq descends to a natural isomorphism

Hn
freepC˚q hÝÑ HompH free

n pC˚q,Zq,
where naturality means that for any two chain complexes A˚, B˚ satisfying the above conditions
and a chain map ϕ˚ : A˚ Ñ B˚, there is a commutative diagram

Hn
freepA˚q HompH free

n pA˚q,Zq

Hn
freepB˚q HompH free

n pB˚q,Zq.

h

–

h

–

ϕ˚ ϕ˚

In particular, Hn
freepC˚q – H free

n pC˚q. Moreover, the torsion of HnpC˚q is isomorphic to the torsion
of Hn´1pC˚q. �

Exercise 47.12. Use cellular cohomology to compute H˚pRP2q, and compare the result with
H˚pRP2q in light of Corollary 47.11.

Recall the numerical invariants defined in Lecture 39, namely the Betti numbers bnpXq “
rankHnpXq and the Euler characteristic χpXq “ ř8

n“0p´1qnbnpXq. The universal coefficient
theorem now gives us the freedom to compute these in terms of cohomology instead of homology:

Corollary 47.13. For any space X such that H˚pXq is finitely generated,

bnpXq “ rankHnpXq “ dimKH
npX ;Kq

for every integer n ě 0 and any field K of characteristic zero. Moreover, if X is a compact
CW-complex, then the formula

χpXq “
8ÿ

n“0

p´1qn dimKH
npX ;Kq

holds for any field K.

Proof. Since bnpXq depends only on the free part of HnpXq, it matches rankHnpXq due
to Corollary 47.11. For any field K of characteristic zero, the universal coefficient theorem for
homology then implies rankHnpXq “ dimKHnpX ;Kq, and the latter matches dimKH

npX ;Kq by
Corollary 47.8. Finally if X is a finite cell complex, then we already know by applying Proposi-
tion 39.10 to the cellular chain complex that χpXq “ ř8

n“0p´1qn dimKHnpX ;Kq holds for every
field K, and Corollary 47.8 enables us to replace HnpX ;Kq by HnpX ;Kq in this expression. �
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We can also use these kinds of tricks to compute the Lefschetz number of a map f : X Ñ X .
Here is one of the technical results that was used without proof when we argued two lectures ago
that Lpfq ‰ 0 for every map f : CPn Ñ CPn if n is even (cf. Theorem 45.1).

Corollary 47.14. Assume X is a space such that H˚pXq is finitely generated. Then for any
map f : X Ñ X and any field K,

LKpfq “
8ÿ

n“0

p´1qn tr
ˆ
HnpX ;Kq f˚

ÝÑ HnpX ;Kq
˙
,

while for the special case K “ Q,

Lpfq “
8ÿ

n“0

p´1qn tr
ˆ
Hn

freepXq f˚

ÝÑ Hn
freepXq

˙
,

where Hn
freepXq denotes the free part of HnpX ;Zq.

Proof. Under the isomorphism of HnpX ;Kq with the dual space of HnpX ;Kq given by Corol-
lary 47.8, the map f˚ : HnpX ;Kq Ñ HnpX ;Kq is the transpose of f˚, as we have

xf˚rϕs, rcsy “ pf˚ϕqpcq “ ϕpf˚cq “ xrϕs, f˚rcsy
for all rϕs P HnpX ;Kq and rcs P HnpX ;Kq. This implies the formula above for LKpfq since every
linear map has the same trace as its transpose. The formula for Lpfq follows similarly from the
naturality statement in Corollary 47.11, which gives a commutative diagram

Hn
freepXq HompH free

n pXq,Zq

Hn
freepXq HompH free

n pXq,Zq

–

–

ϕ˚ ϕ˚

and thus identifies f˚ : Hn
freepXq Ñ Hn

freepXq with the transpose of f˚ : H free
n pXq Ñ H free

n pXq. �
We still have a loose end to tie up regarding cellular cohomology: the argument of the previ-

ous lecture only proves H˚
CWpX ;Gq – H˚pX ;Gq when the CW-complex X is finite dimensional.

Without this assumption, what it proves is that

Hn
CWpX ;Gq – HnpXN ;Gq

for every n ě 0 and N ě n` 1. Thus it will suffice to prove:

Lemma 47.15. For any CW-complex X, the inclusion Xn`2 ãÑ X induces an isomorphism
HnpX ;Gq Ñ HnpXn`2;Gq for every integer n ě 0.

Proof. The direct limit approach in Lecture 38 proves that the inclusion Xn`2 ãÑ X induces
isomorphisms HkpXn`2q –Ñ HkpXq for every k ď n ` 1, and the long exact sequence

. . . ÝÑ HkpXn`2q –ÝÑ HkpXq ÝÑ HkpX,Xn`2q ÝÑ Hk´1pXn`2q –ÝÑ Hk´1pXq ÝÑ . . .

then implies HkpX,Xn`2q “ 0. Plugging the relative singular chain complex C˚pX,Xn`2q into
the universal coefficient theorem now gives a short exact sequence

0 ÝÑ Ext
`
Hk´1pX,Xn`2q, G

˘
ÝÑ HkpX,Xn`2;Gq ÝÑ Hom

`
HkpX,Xn`2q, G

˘
ÝÑ 0,

in which the first and last terms both vanish, therefore so does HkpX,Xn`2;Gq. The long exact
sequence of pX,Xn`2q in cohomology then has a segment of the form

0 “ HnpX,Xn`2;Gq Ñ HnpX ;Gq Ñ HnpXn`2;Gq Ñ Hn`1pX,Xn`2;Gq “ 0,

implying that HnpX ;Gq Ñ HnpXn`2;Gq is an isomorphism. �



334 SECOND SEMESTER (TOPOLOGIE II)

Corollary 47.16. The isomorphism H˚
CWpX ;Gq – H˚pX ;Gq holds for all (not just finite-

dimensional) CW-complexes X. �

Exercise 47.17. Extend this discussion to prove that for all CW-pairs pX,Aq, the obvious
inclusions of pairs induce isomorphisms

HnpXn`1 YA,A;Gq –ÝÑ HnpX,A;Gq,
HnpX,A;Gq –ÝÑ HnpXn`2 YA,A;Gq

for all n ě 0, and conclude from this that the isomorphisms HCW
˚ pX,A;Gq – H˚pX,A;Gq and

H˚
CWpX,A;Gq – H˚pX,A;Gq hold for all (possibly infinite-dimensional) CW-pairs pX,Aq.

Hint: For homology, you need to extend the direct limit discussion in Lecture 38 to accommodate
direct limits in Toprel. You can then derive the cohomological statement from this by plugging the
singular chain complex of pX,Xn`2 YAq into the universal coefficient theorem and using the exact
sequence of the triple pX,Xn`1 YA,Aq.

Finally, let’s prove the universal coefficient theorem. The proof is at every step parallel to
the theorem we proved for homology with coefficients in Lecture 42, but instead of applying the
functor bG, we apply Homp¨, Gq and reverse arrows as needed.

Proof of Theorem 47.7. We use the usual abbreviations Zn :“ ker Bn Ă Cn and Bn :“
im Bn`1 Ă Cn for the boundary map Bn : Cn Ñ Cn´1 in the chain complex C˚. Since Cn for each
n P Z is assumed to be a free R-module and R is a principal ideal domain, Zn and Bn are also free
R-modules, which makes the exact sequence

. . . 0 0 Bn Zn HnpC˚q 0
in pr

a projective resolution of HnpC˚q. Applying HomRp¨, Gq then gives a cochain complex

. . . 0 HomRpBn, Gq HomRpZn, Gq HomR

`
HnpC˚q, G

˘
0,

i˚n pr˚

which is exact at the two rightmost nontrivial terms by Exercise 47.1, so pr˚ is injective and defines
an isomorphism

(47.5) HomR

`
HnpC˚q, G

˘ pr˚

ÝÑ ker i˚n Ă HomRpZn, Gq.
The definition of Ext meanwhile gives

(47.6) coker i˚n “ HomRpBn, Gq
L
im i˚n “ ExtRpHnpC˚q, Gq.

Now regard Z˚ :“
À

nPZ Zn and B˚ :“
À

nPZBn as chain complexes with trivial boundary oper-

ators, so that 0 Ñ Z˚ ãÑ C˚
BÑ B˚´1 Ñ 0 is a short exact sequence of chain complexes. It also

splits since B˚´1 is free, so by Exercise 47.2, we can apply HomRp¨, Gq to it and obtain a short
exact sequence of cochain complexes

0 ÐÝ HomRpZ˚, Gq ÐÝ HomRpC˚, Gq ÐÝ HomRpB˚´1, Gq ÐÝ 0.

Here HomRpZ˚, Gq and HomRpB˚´1, Gq are each regarded as cochain complexes with trivial
coboundary map, so they do not change if we replace them with their respective homologies.
The usual diagram-chasing result thus produces a long exact sequence

. . . ÐÝ HomRpBn, Gq i˚nÐÝ HomRpZn, Gq ÐÝ HnpC˚;Gq

ÐÝ HomRpBn´1, Gq
i˚n´1ÐÝ HomRpZn´1, Gq ÐÝ . . . ,
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where the maps i˚n and i˚n´1 are actually connecting homomorphisms in the long exact sequence.
(One must check this by reviewing the definition of the connecting homomorphisms via the diagram-
chase.) Finally, we turn this into a short exact sequence with HnpC˚;Gq at the center by replacing
HomRpZn, Gq with ker i˚n and HomRpBn´1, Gq with coker i˚n´1, giving

0 ÐÝ ker i˚n ÐÝ HnpC˚;Gq ÐÝ coker i˚n´1 ÐÝ 0.

In light of the isomorphisms (47.5) and (47.6), this is exactly the sequence we were aiming for.
I will leave it as an exercise to check the naturality of the sequence. The splitting follows easily

from the chain map
pC˚, Bq pr ˝pÝÑ pH˚pC˚q, 0q

that we derived at the end of the proof of Theorem 41.1: dualizing this map gives a chain map of
cochain complexes

ppr ˝pq˚ : HomRpH˚pC˚q, Gq Ñ HomRpC˚, Gq,
where the first complex has a trivial coboundary map, so this induces a homomorphism

HomRpHnpC˚q, Gq Ñ HnpC˚;Gq
for each n P Z. One can check that the latter is a right-inverse of the canonical map h :

HnpC˚;Gq Ñ HomRpHnpC˚q, Gq. �

48. Products on cohomology, part 1

In this lecture we shall define the cup product

Y : HkpX ;Rq bR H
ℓpX ;Rq Ñ Hk`ℓpX ;Rq

and thus turn H˚pX ;Rq into a ring. The definition is based on the cross product which we defined
for homology in Lecture 43: we shall first have to adapt that definition to define a cohomological
version of the cross product, and then use the contravariance of H˚p¨;Rq to derive the cup product
from this and prove its basic properties.

We assume throughout this lecture that R is a commutative ring with unit; it will not need to
be a principal ideal domain.

Cross product. The cross product in singular homology was based on the existence and
uniqueness (up to chain homotopy) of natural chain maps

(48.1) ΦpX,Y q : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq.
Indeed, ˆ : H˚pX ;RqbRH˚pY ;Rq Ñ H˚pXˆY ;Rq was defined as the composition of the map in-
duced by ΦpX,Y q on homology with the canonical map H˚pX ;RqbRH˚pY ;Rq Ñ H˚

`
C˚pX ;RqbR

C˚pY ;Rq
˘
, the latter being a purely algebraic construct that can be defined for any pair of chain

complexes of R-modules. Exercise 43.9 outlined an argument via acyclic models to show that ˆ is
associative, and we saw in Exercise 43.10 that the canonical generator of H0ptptu;Rq acts as a mul-
tiplicative identity element. The question of commutativity is a bit subtler: in the first place, the
relation AˆB “ BˆA would not make sense in general since for A P H˚pX ;Rq and B P H˚pY ;Rq,
AˆB and B ˆA do not belong to the same group, i.e. H˚pX ˆ Y ;Rq is strictly speaking not the
same thing as H˚pY ˆX ;Rq. Of course we can choose the obvious homeomorphism

τ : X ˆ Y Ñ Y ˆX : px, yq ÞÑ py, xq,
and use it to identify these two groups via the isomorphism

H˚pX ˆ Y ;Rq τ˚ÝÑ H˚pY ˆX ;Rq,
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but even then things are not so simple: instead of strict commutativity, we run into the usual
convention that requires a sign change whenever the order of two elements with odd degree is
interchanged.

Proposition 48.1. For any A P HkpX ;Rq and B P HℓpY ;Rq, τ˚pA ˆBq “ p´1qkℓpB ˆAq.
Proof. Define Ψ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pY ;Rq bR C˚pX ;Rq by

Ψpab bq :“ p´1qkℓpbb aq for a P CkpX ;Rq, b P CℓpY ;Rq.
This is a chain map, since for a P CkpX ;Rq and b P CℓpY ;Rq,

ΨBpab bq “ ΨpBab b` p´1qka b Bbq “ p´1qpk´1qℓbb Ba` p´1qkp´1qkpℓ´1qBbb a,

which is the same as

BΨpab bq “ p´1qkℓBpbb aq “ p´1qkℓpBbb a` p´1qℓbb Baq.
It also satisfies a naturality property: if f : X Ñ X 1 and g : Y Ñ Y 1 are continuous maps, then
we have a commutative diagram

C˚pX ;Rq bR C˚pY ;Rq C˚pY ;Rq bR C˚pX ;Rq

C˚pX 1;Rq bR C˚pY 1, Rq C˚pY ;Rq bR C˚pX ;Rq.

Ψ

f˚bg˚ g˚bf˚

Ψ

Similarly, τ´1
˚ : C˚pY ˆX ;Rq Ñ C˚pX ˆ Y ;Rq is a natural chain map in the sense that for any f

and g as above, the diagram

C˚pY ˆX ;Rq C˚pX ˆ Y ;Rq

C˚pY 1 ˆX 1;Rq C˚pX 1 ˆ Y 1;Rq

τ´1

˚

pgˆfq˚ pfˆgq˚

τ´1

˚

also commutes. We can therefore compose three natural chain maps

C˚pX ;Rq bR C˚pY ;Rq C˚pY ;Rq bR C˚pX ;Rq C˚pY ˆX ;Rq C˚pX ˆ Y ;Rq,Ψ ΦpY,Xq τ´1

˚

obtaining a natural chain map C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq that acts on 0-chains in
the obvious way x b y ÞÑ px, yq. By the uniqueness statement for natural chain maps that we
proved in Lemma 43.3, it follows that τ´1

˚ ˝ΦpY,Xq ˝Ψ is chain homotopic to ΦpX,Y q : C˚pX ;Rq bR

C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq, so these two chain maps induce the same map on homology, which
proves AˆB “ p´1qkℓτ´1

˚ pB ˆAq for A P HkpX ;Rq and B P HℓpY ;Rq. �

Exercise 48.2. Adapt Proposition 48.1 to prove the analogous statement about the cellular
cross product ˆ : HCW

k pX ;Rq bR H
CW
ℓ pY ;Rq Ñ HCW

k`ℓ pX ˆ Y ;Rq, where X and Y are assumed
to be CW-complexes and X ˆ Y and Y ˆX carry the resulting product cell decompositions.
Remark: The tricky part here is that one must compute the relevant incidence numbers for the
cellular map τ : X ˆ Y Ñ Y ˆX ; this is where the strange sign change will come from.

We would now like to define a similar product for the singular cohomology of two spaces: for
each pair of integers k, ℓ ě 0, this should define a map

(48.2) HkpX ;Rq bR H
ℓpY ;Rq ˆÝÑ Hk`ℓpX ˆ Y ;Rq



48. PRODUCTS ON COHOMOLOGY, PART 1 337

that is dual to the homology cross product in the sense of the natural pairing ofH˚p¨;Rq withH˚p¨;Rq.
The first step is an easy algebraic observation: cohomology groups are just the homology groups
of dualized chain complexes, which are in this case cochain complexes of R-modules, so in light of
the canonical map

H˚pA˚q bR H˚pB˚q Ñ H˚

`
A˚ bR B˚

˘
: ras b rbs ÞÑ rab bs

that exists for any pair of chain complexes of R-modules, plugging in A˚ “ C˚pX ;Rq and B˚ “
C˚pY ;Rq gives a canonical map

(48.3) HkpX ;Rq bR H
ℓpY ;Rq Ñ Hk`ℓ

`
C˚pX ;Rq bR C

˚pY ;Rq
˘
.

The complex at the right of this expression is to be understood as a tensor product cochain complex,
meaning its degree n group is the direct sum of all CkpX ;Rq bR C

ℓpY ;Rq for k ` ℓ “ n, and its
coboundary map is determined by the usual “graded Leibnitz rule”

δpϕ b ψq “ δϕ b ψ ` p´1qkϕb δψ for ϕ P CkpX ;Rq, ψ P CℓpY ;Rq.

The obvious way we should try to get from here to (48.2) is by finding a natural chain map
C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq and composing the induced map on homology with
(48.3). This can be done as follows. Recall from Lemma 43.4 that the natural chain map Φ :

C˚pXq b C˚pY q Ñ C˚pX ˆ Y q has a natural chain homotopy inverse

θ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q,

which was also unique up to chain homotopy. (Note that this is a statement about chain complexes
of abelian groups, i.e. Z-modules, so it requires the fact that Z is a principal ideal domain, but
it has nothing to do with the ring R.) We can dualize this to produce a chain map of cochain
complexes

θ˚ : Hom
`
C˚pXq b C˚pY q, R

˘
Ñ C˚pX ˆ Y ;Rq,

and the desired chain map C˚pX ;Rq bR C
˚pY ;Rq Ñ C˚pX ˆ Y ;Rq can then be defined as the

composition

(48.4) C˚pX ;Rq bR C
˚pY ;Rq Hom

`
C˚pXq b C˚pY q, R

˘
C˚pX ˆ Y ;Rq,F

ˆ

θ˚

where the map at the left arises canonically from the following purely algebraic construct:

Exercise 48.3. Show that for any two chain complexes of abelian groups A˚, B˚, the canonical
map

F : HompA˚, Rq bR HompB˚, Rq Ñ HompA˚ bB˚, Rq
defined for α P HompAk, Rq and β P HompBℓ, Rq by

F pα b βqpa b bq “
#

p´1qkℓαpaqβpbq if a P Ak and b P Bℓ,
0 otherwise

is a chain map of cochain complexes.
Hint: To evaluate each of δF pαbβq and Fδpαbβq on some element ab b, you need to distinguish
two cases, depending on the individual degrees of a and b. Getting all the signs right is a bit tricky.
Remark: The sign convention in the definition of F would need to change if we had defined
coboundary operators simply by δ “ B˚, instad of with the extra sign that appears in (45.2).
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In the following, we shall remove the symbol F from the notation and simply regard elements
of C˚pX ;Rq bR C

˚pY ;Rq as homomorphisms C˚pXq b C˚pY q Ñ R via the formula that results
from Exercise 48.3, namely

pϕ b ψqpa b bq :“
#

p´1q|ψ||a|ϕpaqψpbq if |ϕ| “ |a| and |ψ| “ |b|,
0 otherwise.

We shall denote the image of ϕ b ψ P CkpX ;Rq bR C
ℓpY ;Rq under the map (48.4) by ϕ ˆ ψ P

Ck`ℓpX ˆ Y ;Rq. This can now be written as a homomorphism Ck`ℓpX ˆ Y q Ñ R in the form

ϕˆ ψ “ pϕ b ψq ˝ θ : Ck`ℓpX ˆ Y q Ñ R,

and the fact that (48.4) is a chain map means that it satisfies the Leibniz rule

δpϕ ˆ ψq “ δϕˆ ψ ` p´1q|ϕ|ϕ ˆ δψ.

It follows that ˆ descends to the singular cohomology groups, and we can define an R-bilinear
product

HkpX ;Rq bR H
ℓpY ;Rq Ñ Hk`ℓpX ˆ Y ;Rq : rϕs b rψs ÞÑ rϕs ˆ rψs :“ rϕ ˆ ψs.

Note that the cochain-level cross product ϕˆψ depends in general on an arbitrary choice, namely
the chain map θ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q, but since the latter is unique up to chain
homotopy, its dual θ˚ is similarly unique up to chain homotopy, and so therefore is the resulting
chain map C˚pX ;Rq bR C

˚pY ;Rq Ñ C˚pX ˆ Y ;Rq, proving that rϕs ˆ rψs does not depend on
any choices.

Remark 48.4. After Lecture 43, you may have been tempted to try constructing the chain
map C˚pX ;Rq bR C

˚pY ;Rq Ñ C˚pX ˆ Y ;Rq via the method of acyclic models. This idea runs
into the following difficulty: a cochain group such as CkpX ;Zq “ HompCkpXq,Zq is not generally
free, it is a direct product rather than a direct sum, thus it does not admit a basis. It is therefore
quite unclear what models one might try to use for defining a map on C˚pX ;RqbRC

˚pY ;Rq. The
solution is to do the same thing we have done all along in our treatment of singular cohomology:
reuse results that we’ve already proved about homology, but dualize them where appropriate.

Proposition 48.5. The cross product on singular cohomology has the following properties:

(1) It is associative: pϕˆ ψq ˆ η “ ϕˆ pψ ˆ ηq P H˚pX ˆ Y ˆ Z;Rq for any ϕ P H˚pX ;Rq,
ψ P H˚pY ;Rq and η P H˚pZ;Rq.

(2) It is graded commutative: ϕˆψ “ p´1qkℓτ˚pψˆϕq for any ϕ P HkpX ;Rq, ψ P HℓpY ;Rq
and the homeomorphism τ : X ˆ Y Ñ Y ˆX : px, yq ÞÑ py, xq.

(3) It is dual to the homology cross product: we have

(48.5) xϕ ˆ ψ,AˆBy “ p´1qkℓxϕ,Ayxψ,By
for all ϕ P HkpX ;Rq, A P HkpXq, ψ P HℓpY ;Rq and B P HℓpY q.75

Proof. We shall leave the first two properties as exercises; they can be solved as in Exer-
cise 43.9 and Proposition 48.1 using the uniqueness up to chain homotopy of certain natural chain
maps. For associativity, for instance, it is possible to express each of pϕ ˆ ψq ˆ η and ϕˆ pψ ˆ ηq
as the composition of ϕ b ψ b η with some natural chain map.

75The relation (48.5) uses R as the coefficients for cohomology and integer coefficients for homology, but since
R is a ring, there is also an R-bilinear cross product ˆ : H˚pX;Rq bR H˚pY ;Rq Ñ H˚pX ˆ Y ;Rq and natural
evaluation pairings of H˚p¨;Rq with H˚p¨;Rq. It is straightforward to check as a consequence of (48.5) that the
same relation holds for the R-bilinear homology cross product and evaluation pairings.
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Let’s quickly check the third property: given cycles a P CkpXq, b P CℓpY q and cocycles
ϕ P CkpX ;Rq, ψ P CℓpY ;Rq, we have by definition

xrϕs ˆ rψs, ras ˆ rbsy “ xrϕˆ ψs, rΦpab bqsy “ pϕ ˆ ψq
`
Φpa b bq

˘

“ pϕ b ψq ˝ θ ˝ Φpab bq “ pϕ b ψq ˝ p1 ` Bh` hBqpab bq “ pϕ b ψqpa b bq
“ p´1qkℓϕpaqψpbq “ p´1qkℓxrϕs, rasyxrψs, rbsy,

where in the second line we’ve used the existence of a chain homotopy h between θ ˝ Φ and the
identity map, plus the fact that Bpa b bq and pϕ b ψq ˝ B both vanish since Ba “ Bb “ 0 and
δϕ “ δψ “ 0. �

Exercise 48.6. The cross product on cellular cohomology is defined in the same way as above,
but with the simplifying feature that since the chain map Φ : CCW

˚ pXq bCCW
˚ pY q Ñ CCW

˚ pXˆY q
is an isomorphism, the required map θ : CCW

˚ pX ˆY q Ñ CCW
˚ pXq bCCW

˚ pY q is simply its inverse,
and is unique. Prove that the resulting product H˚

CWpX ;Rq bR H
˚
CWpY ;Rq Ñ H˚

CWpX ˆ Y ;Rq
satisfies the same (or analogous) properties as in Proposition 48.5.

Exercise 48.7. Prove that the naturality formula

pf ˆ gq˚pϕ ˆ ψq “ f˚ϕ ˆ g˚ψ

holds for all ϕ P H˚pX ;Rq and ψ P H˚pY ;Rq given continuous maps f : X 1 Ñ X and g : Y 1 Ñ Y .

Exercise 48.8. The goal of this problem is to show that the canonical generator 1 P R “
H0ptptu;Rq acts as a multiplicative identity element for the cross product.

(a) Suppose Ψ associates to every space X a chain map Ψ : C˚pXq Ñ C˚pXq, and call this
a natural chain map C˚pXq Ñ C˚pXq if it acts as the identity map on 0-chains and
satisfies Ψ ˝ f˚ “ f˚ ˝ Ψ for every continuous map f : X Ñ Y . Use the method of
acyclic models to show that any two choices of natural chain maps in this sense are chain
homotopic for all X .

(b) Identify the chain complex C˚pX ˆ tptuq with C˚pXq via the obvious canonical isomor-
phism between them, and consider the following two maps:

C˚pX ˆ tptuq θÝÑ C˚pXq b C˚ptptuq 1bǫÝÑ C˚pXq b Z “ C˚pXq,

C˚pX ˆ tptuq pπXq˚ÝÑ C˚pXq,
where πX : X ˆ tptu Ñ X is the canonical projection, θ is any natural chain homotopy
inverse for the natural chain map Φ : C˚pXq b C˚ptptuq Ñ C˚pX ˆ tptuq as used in the
construction of the cross product, and ǫ : C˚ptptuq Ñ Z is the augmentation map, which
vanishes on Cnptptuq for n ‰ 0 and sends the generator σ P C0ptptuq to 1. Verify that
both of these define natural chain maps, hence by part (a), they are chain homotopic.

(c) Deduce from part (b) that for any space X , the cross product of ϕ P H˚pX ;Rq with
1 P R Ă H0ptptu;Rq satisfies ϕ ˆ 1 “ π˚

Xϕ.

Cup product. Thus far the development of cohomology looks quite similar to that of homol-
ogy, i.e. every theorem or construction for homology has had a cohomological analogue. But we
can now introduce something in cohomology that has no homological analogue: it is possible due
to the fact that cohomology is contravariant, so in particular, the diagonal map d : X Ñ X ˆ X

induces a natural map H˚pX ˆX ;Rq Ñ H˚pX ;Rq.
Definition 48.9. The cup product on H˚pX ;Rq is an R-bilinear map Y : HkpX ;Rq ‘

HℓpX ;Rq Ñ Hk`ℓpX ;Rq for each k, ℓ ě 0 defined by

ϕ Y ψ :“ d˚pϕ ˆ ψq,
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where d : X Ñ X ˆX is the diagonal map x ÞÑ px, xq.
On the cochain level, one can write rϕs Y rψs “ rϕ Y ψs if

Y : CkpX ;Rq bR C
ℓpX ;Rq Ñ Ck`ℓpX ;Rq : ϕ b ψ ÞÑ ϕ Y ψ

is defined by

(48.6) ϕ Y ψ :“ d˚pϕ ˆ ψq “ pϕ b ψq ˝ θ ˝ d˚.

This really is just the composition of our previous chain map C˚pX ;Rq bR C
˚pX ;Rq Ñ C˚pX ˆ

X ;Rq with the chain map d˚ : C˚pX ˆ X ;Rq Ñ C˚pX ;Rq induced by the diagonal map, thus it
is also a chain map and therefore satisfies the Leibniz rule

δpϕ Y ψq “ δϕY ψ ` p´1q|ϕ|ϕ Y δψ.

The presence of the mysterious object θ : C˚pXˆXq Ñ C˚pXq bC˚pXq in (48.6) prevents it from
being a useful formula on its own; we should also keep in mind that it is not uniquely defined since
θ itself is not unique. We will see however that one can exploit this freedom to produce useful
formulas.

Definition 48.10. A diagonal approximation is an assignment to every space X of a chain
map

ΨX : C˚pXq Ñ C˚pXq b C˚pXq
that is defined on 0-chains x P C0pXq by ΨXpxq “ x b x and is natural in the sense that every
continuous map f : X Ñ Y gives rise to a commutative diagram

C˚pXq C˚pXq b C˚pXq

C˚pY q C˚pY q b C˚pY q.

ΨX

f˚ f˚bf˚

ΨY

Exercise 48.11. Show that the map θ ˝ d˚ appearing in (48.6) is a diagonal approximation.

Exercise 48.12. Prove via acyclic models that all diagonal approximations are chain homo-
topic, and deduce that for any two cocycles ϕ, ψ P C˚pX ;Rq, the cohomology class of pϕbψq ˝Ψ P
C˚pX ;Rq is independent of the choice of diagonal approximation Ψ.

Exercise 48.12 reveals an alternative but equivalent definition of the cup product that we could
have taken if we had wanted to leave the cross product out of the discussion: Y on cohomology is
induced by any cochain-level product Y : CkpX ;Rq bR C

ℓpX ;Rq Ñ Ck`ℓpX ;Rq of the form

ϕ Y ψ :“ pϕ b ψq ˝ Ψ,

where Ψ is an arbitrary choice of diagonal approximation.
The most popular diagonal approximation in the literature is called the Alexander-Whitney

diagonal approximation and is defined as follows. Number the vertices of the standard n-simplex
∆n Ă Rn`1 as 0, . . . , n, and given any integers 0 ď j0 ă j1 ă . . . ă jk ď n, let

rj0, . . . , jks Ă ∆n

denote the k-simplex spanned by the vertices j0, . . . , jk, which is identified naturally with the
standard k-simplex. For instance, in this notation, the jth boundary face of ∆n is Bpjq∆

n “
r0, . . . , j ´ 1, j ` 1, . . . , ns for each j “ 0, . . . , n. Now define Ψ : C˚pXq Ñ C˚pXq bC˚pXq on each
singular n-simplex σ : ∆n Ñ X by

Ψpσq :“
ÿ

k`ℓ“n

`
σ|r0,...,ks

˘
b
`
σ|rk,...,ns

˘
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Exercise 48.13. Verify that Ψ as defined above is a diagonal approximation.

Plugging the Alexander-Whitney approximation into ϕY ψ “ pϕ b ψq ˝ Ψ gives the following
formula for the cup product of cochains: for any singular n-simplex σ : ∆n Ñ X with n “ k` ℓ,76

pϕ Y ψqpσq “ p´1qkℓϕpσ|r0,...,ksqψpσ|rk,...,nsq.
On its own, this formula is seldom very useful since explicit computations with singular cochains are
almost never practical. What is slightly more reasonable, however, is to use the same formula for
computing the cup product in the simplicial cohomology of a simplicial complex, which of course is
a special case of cellular cohomology and is therefore isomorphic to its singular cohomology. This
trick is sometimes used for explicit computations of singular cohomology rings; see for instance
[Hat02, Examples 3.7 and 3.8], or [Bre93, Example VI.4.6]. I will avoid computations like that in
these notes, essentially for two reasons: first, they depend on a nontrivial fact we have not proved
about the natural product structures on singular and simplicial cohomology being the same; second,
they are ugly. We will see there are more elegant ways to carry out all the computations we need.

To that end, let us now establish some properties of the cup product that will be essential in
further developments. To understand the second property below, we need to be aware that there
is always a canonical inclusion

R Ă H0pX ;Rq
that makes the coefficient ring a submodule of H0pX ;Rq: namely, each r P R is identified with the
cohomology class of the cocycle ϕr : C0pXq Ñ R that has the value ϕrpσq “ r on every generator
σ : ∆0 Ñ X .

Theorem 48.14. The cup product Y : H˚pX ;Rq bRH
˚pX ;Rq Ñ H˚pX ;Rq has the following

properties.
(1) It is natural: for all continuous maps f : Y Ñ X and ϕ, ψ P H˚pX ;Rq, f˚pϕ Y ψq “

f˚ϕY f˚ψ.
(2) It has a unit: under the canonical inclusion R Ă H0pX ;Rq, 1 P R satisfies 1 Y ϕ “

ϕY 1 “ ϕ for all ϕ P H˚pX ;Rq.
(3) It is associative: pϕ Y ψq Y η “ ϕ Y pψ Y ηq for all ϕ, ψ, η P H˚pX ;Rq.
(4) It is graded commutative: ϕYψ “ p´1qkℓψYϕ for all ϕ P HkpX ;Rq and ψ P HℓpX ;Rq.
(5) It is related to the cross product by

ϕ ˆ ψ “ π˚
Xϕ Y π˚

Y ψ for ϕ P H˚pX ;Rq, ψ P H˚pY ;Rq,
where πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y are the natural projections.

Proof. Most of these properties are relatively straightforward exercises using some combina-
tion of the cross product properties proved earlier and acyclic model arguments. Let’s go quickly
through the list:

Naturality is an easy consequence of the similar formula pf ˆ gq˚pϕ ˆ ψq “ f˚ϕ ˆ g˚ψ from
Exercise 48.7. The unit property follows similarly from Exercise 48.8, while associativity and
graded commutativity are easy consequences of the corresponding properties for the cross product.

For the last property, we observe that for any cocycles ϕ P C˚pX ;Rq, ψ P C˚pY ;Rq and
any choice of diagonal approximation Ψ : C˚pX ˆ Y q Ñ C˚pX ˆ Y q b C˚pX ˆ Y q, the resulting
expression for the cocycle π˚

Xϕ Y π˚
Y ψ : C˚pX ˆ Y q Ñ R is the composition

C˚pX ˆ Y q C˚pX ˆ Y q b C˚pX ˆ Y q C˚pXq b C˚pY q R.
Ψ pπXq˚bpπY q˚ ϕbψ

76The formula we have derived here for the cochain ϕYψ matches a formula in [Bre93] but differs from [Hat02]
by a sign if k and ℓ are both odd. This is due to the sign convention in (45.2) for the definition of coboundary maps.
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As can easily be checked, this is the composition of ϕbψ with a natural chain map C˚pX ˆY q Ñ
C˚pXq b C˚pY q that is defined in the canonical way on 0-chains, thus the chain map is chain
homotopic to θ and we end up with the usual formula for ϕ ˆ ψ. �

49. Products on cohomology, part 2

The cohomology rings of tori. Let’s start today with a computation. Theorem 48.14
in the previous lecture states that for any space X and commutative ring R with unit 1 P R,
H˚pX ;Rq “ À8

n“0H
npX ;Rq is a graded commutative ring with unit 1 P R Ă H0pX ;Rq, where

the ring structure is defined via the cup product HkpX ;Rq ˆHℓpX ;Rq Ñ Hk`ℓpX ;Rq : pϕ, ψq ÞÑ
ϕ Y ψ. Recall that “graded commutative” means something slightly different than “commutative”:
homogeneous elements commute up to a sign that depends on their degrees,

ϕY ψ “ p´1qkℓψ Y ϕ for ϕ P HkpX ;Rq, ψ P HℓpX ;Rq.
In order to access the full range of applications of cohomology, one often needs to compute not
just the individual groups HkpX ;Rq for k ě 0, but also the ring structure of H˚pX ;Rq. We saw
an example of this with X “ CPn in Theorem 45.1. At this point we do not yet have enough
machinery to compute the ring H˚pCPnq, but we can compute H˚pTnq for every n ě 0.

The homology of Tn is fairly easy to compute because Tn “ S1 ˆ . . . ˆ S1 has a natural
structure as a product cell complex (see Exercise 42.16). Without mentioning cell complexes, we
can also use an inductive argument based on the Künneth formula. Indeed, the case n “ 1 is
trivial since T1 “ S1, so in particular, H˚pS1q is a finitely generated free abelian group. Let’s call
its canonical generators

rpts P H0pS1q, rS1s P H1pS1q,
i.e. rpts is the homology class represented by any singular 0-simplex ∆0 Ñ S1, and rS1s is the class
represented by the identity map S1 Ñ S1 under the isomorphism H1pS1q – π1pS1q. Now suppose
we assume for a given integer n ě 2 that H˚pTqq is finitely generated and free for every q ď n´ 1.
Then the Künneth formula gives for every m ě 0 an isomorphism

ˆ :
à

k`ℓ“m

HkpTn´1q bHℓpS1q –ÝÑ HmpTnq

since all Tor terms vanish, while HℓpS1q on the left hand side is only nontrivial for ℓ “ 0, 1 and is
then Z, giving

HmpTnq – Hm´1pTn´1q ‘HmpTn´1q.
This proves that HmpTnq is also a finitely-generated free abelian group, and its rank is an entry
in Pascal’s triangle,

rankHmpTnq “
ˆ
n

m

˙
.

Moreover, the cross product provides a canonical set of generators of HmpTnq: for each choice of
integers 1 ď j1 ă . . . ă jm ď n, we define

ej1,...,jm :“ A1 ˆ . . .ˆAn P HmpTnq
by setting Aji :“ rS1s for each i “ 1, . . . ,m and Aj :“ rpts for all other j “ 1, . . . , n. So far so
good.

It will be useful to have an alternative description of the degree 1 generators ej P H1pTnq.
Pick a base point t0 P S1 and consider the embedding

(49.1) ij : S
1

ãÑ Tn : x ÞÑ pt0 ˆ . . . ˆ t0loooooomoooooon
j´1

, x, t0 ˆ . . .ˆ t0loooooomoooooon
n´j

q.
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Note that different choices of the base point t0 P S1 give homotopic maps ij : S1 Ñ Tn, thus the
induced map pijq˚ : H˚pS1q Ñ H˚pTnq is independent of this choice.

Lemma 49.1. For each j “ 1, . . . , n, pijq˚rS1s “ ej.

Proof. Consider first the case j “ n. Under the obvious identification of S1 with tptu ˆ S1,
we can then write in “ cˆ Id : tptuˆS1 Ñ Tn´1 ˆS1, where c : tptu Ñ Tn´1 denotes the constant
map with value pt0, . . . , t0q. The naturality of the cross product now gives a commutative diagram

H0ptptuq bH1pS1q H1pS1q

H0pTn´1q bH1pS1q H1pTnq.

ˆ

c˚b1 pinq˚

ˆ

In light of Exercise 43.10, this proves pinq˚rS1s “ pinq˚

`
rpts ˆ rS1s

˘
“ c˚rptsˆrS1s “ rptsˆrS1s “

en since c˚ : H0ptptuq Ñ H0pTn´1q is an isomorphism relating the canonical generators rpts. The
general case j P t1, . . . , nu follows from this same argument after permuting the coordinates. �

The computation ofHmpTn;Rq for eachm is now an easy application of the universal coefficient
theorem: the Ext terms vanish since H˚pTnq is always free, implying that the canonical map

HmpTn;Rq Ñ HompHmpTnq, Rq : ϕ ÞÑ xϕ, ¨y

is an isomorphism. Since HmpTnq – Zpn
mq, this means HmpTn;Rq – Rpn

mq, and we can write down
a canonical set of generators as follows. For n “ 1, define

λ P H1pS1;Rq
to be the unique cohomology class such that

xλ, rS1sy “ 1.

Now for each choice of integers 1 ď j1 ă . . . jm ď n, define

λj1,...,jm :“ α1 ˆ . . . ˆ αn P HmpTn;Rq,
where we choose αji :“ λ for each i “ 1, . . . ,m and αj “ 1 P H0pS1;Rq for all other j “ 1, . . . , n.
By (48.5), we have

xλj1,...,jm , ek1,...,kmy “ xα1 ˆ . . .ˆ αn, A1 ˆ . . . ˆAny “ ˘xα1, A1y . . . xαn, Any

“
#

˘1 if ji “ ki for all i “ 1, . . . ,m,

0 otherwise,

proving that the collection of classes λj1,...,jm for all choices 1 ď j1 ă . . . ă jm ď n is a basis for
H˚pTn;Rq as a free R-module.

To describe H˚pTn;Rq as a ring, we now need to compute each product of the form λj1,...,jm Y
λk1,...,kq P Hm`qpTn;Rq. We start with an observation about the 1-dimensional classes λj P
H1pTn;Rq. Consider for each j “ 1, . . . , n the projection map

πj : T
n Ñ S1 : px1, . . . , xnq ÞÑ xj ,

which is related to the inclusions ij : S1 ãÑ Tn defined in (49.1) above by

πj ˝ ik “
#
Id : S1 Ñ S1 if j “ k,

constant if j ‰ k.

Lemma 49.2. We have π˚
j λ “ λj for each j “ 1, . . . , n.
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Proof. In light of Lemma 49.1 and the isomorphism H1pTn;Rq – HompH1pTnq, Rq, the
classes π˚

j λ P H1pTn;Rq are characterized by

xπ˚
j λ, eky “ xλ, pπjq˚pikq˚rS1sy “ xλ, pπj ˝ ikq˚rS1sy “

#
1 if j “ k,

0 if j ‰ k.

At the same time, (48.5) implies

xλj , eky “
#
1 if j “ k,
0 if j ‰ k,

and the result follows. �

We are now in a position to compute λj1 Y. . .Yλjm P HmpTn;Rq for any set of integers 1 ď j1 ă
. . . ă jm ď n. Indeed, writing αji “ λ P H1pS1;Rq for each i “ 1, . . . ,m and αj “ 1 P H0pS1;Rq
for all other j, we have π˚

j αj “ λj P H1pTn;Rq in the first case and π˚
j αj “ π˚

j 1 “ 1 P H0pTn;Rq
in the second case, thus by Theorem 48.14(5),

λj1 Y . . . Y λjm “ π˚
1α1 Y . . .Y π˚

nαn “ α1 ˆ . . .ˆ αn “ λj1,...,jm .

This means that all of our basis elements for H˚pTn;Rq can be obtained as cup products of
the degree 1 elements λ1, . . . , λn, and moreover, this relation fully determines all cup products
in H˚pTn;Rq; indeed, graded commutativity implies

λi Y λj “ ´λj Y λi

for all i and j, so in particular λi Y λi always vanishes, and all other products of basis elements
λji,...,jm can be derived from this via associativity. We’ve proved:

Theorem 49.3. For any commutative ring R with unit and any n P N, the ring H˚pTn;Rq is
isomorphic to the exterior algebra ΛRrλ1, . . . , λns on n generators of degree 1, where the generators
λj P H1pTn;Rq can be defined in terms of the projections πj : Tn Ñ S1 and the canonical generator
λ P H1pS1;Rq by λj “ π˚

j λ. �

We will be able to compute more examples of cohomology rings after we discuss Poincaré
duality, which provides the most useful geometric interpretation of the cup product in terms of
intersections.

The relative case. Our whole discussion of products so far has focused on absolute homology
and cohomology, so you may be wondering how it extends to pairs of spaces pX,Aq with A ‰ H.
As usual, some valuable intuition for this comes from cellular homology. If pX,Aq and pY,Bq are
CW-pairs, then xby P CCW

˚ pXqbCCW
˚ pY q represents a trivial element of CCW

˚ pX,AqbCCW
˚ pY,Bq

whenever either x P CCW
˚ pAq or y P CCW

˚ pBq. Thus the chain-level cellular cross product defined
in (43.1) becomes an isomorphism of relative chain complexes

CCW
˚ pX,Aq b CCW

˚ pY,Bq ˆÝÑ CCW
˚ ppX,Aq ˆ pY,Bqq

if we define the product of two CW-pairs by

(49.2) pX,Aq ˆ pY,Bq :“ pX ˆ Y, pA ˆ Y q Y pX ˆBqq .
You should take a moment to convince yourself that this does in fact define a CW-pair. The most
general version of the cross product on relative cellular homology thus takes the form

HCW
k pX,A;Rq bR H

CW
ℓ pY,B;Rq ˆÝÑ HCW

k`ℓ ppX,Aq ˆ pY,Bq;Rq,
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and the Künneth formula (in the case where R is a principal ideal domain) then becomes

0 ÝÑ
à

k`ℓ“n

HCW
k pX,A;Rq bR H

CW
ℓ pY,B;Rq ˆÝÑ HCW

k`ℓ ppX,Aq ˆ pY,Bq;Rq

ÝÑ
à

k`ℓ“n´1

TorRpHCW
k pX,A;Rq, HCW

ℓ pY,B;Rqq ÝÑ 0.

Adapting this discussion for singular homology is slightly nontrivial, and it does not work for
arbitrary pairs pX,Aq and pY,Bq, but it will work for most pairs that we are actually interested
in. We shall adopt (49.2) as a definition of the product of two objects in the category Toprel.

77

Applying the naturality of the chain map Φ : C˚pX ;Rq bR C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq to the
inclusions A ãÑ X and B ãÑ Y , we see that Φ maps C˚pA;Rq bR C˚pY ;Rq into C˚pAˆY ;Rq and
C˚pX ;Rq bR C˚pB;Rq into C˚pX ˆB;Rq, thus it descends to a natural chain map

Φ : C˚pX,A;Rq bR C˚pY,B;Rq Ñ C˚ppX,Aq ˆ pY,Bq;Rq,
so that the cross product on relative homology is well defined:

ˆ : HkpX,A;Rq bR HℓpY,B;Rq Ñ Hk`ℓppX,Aq ˆ pY,Bq;Rq.
We run into a complication, however, if we either want to define the cross product on relative
cohomology or prove a relative Künneth formula: both require the chain homotopy inverse θ :

C˚pX ˆ Y ;Rq Ñ C˚pX ;Rq bR C˚pY ;Rq, and this does not always descend to a map

C˚ppX,Aq ˆ pY,Bq;Rq Ñ C˚pX,A;Rq bR C˚pY,B;Rq.
The point is that if we are given a chain in the subspace pA ˆ Y q Y pX ˆ Bq, there is generally
no reason to expect that θ will send it into pC˚pA;Rq bR C˚pY ;Rqq ` pC˚pX ;Rq bR C˚pB;Rqq.
What we can immediately say instead is that Φ and θ descend to chain homotopy inverses between
the two quotient complexes
(49.3)

C˚pX ;Rq bR C˚pY ;Rq
pC˚pA;Rq bR C˚pY ;Rqq ` pC˚pX ;Rq bR C˚pB;Rqq

C˚pX ˆ Y ;Rq
C˚pA ˆ Y ;Rq ` C˚pX ˆB;Rq .

Φ

θ

The complex at the left is just C˚pX,A;Rq bR C˚pY,B;Rq, which is what we want, but the one
at the right is not the same as C˚ppX,Aq ˆ pY,Bq;Rq. However, the identity map does descend to
a natural chain map

C˚pX ˆ Y ;Rq
C˚pA ˆ Y ;Rq ` C˚pX ˆB;Rq ÝÑ C˚pX ˆ Y ;Rq

C˚

`
pA ˆ Y q Y pX ˆBq;R

˘ “ C˚ppX,Aq ˆ pY,Bq;Rq,

and it will happen sometimes that this map is a chain homotopy equivalence, so that Φ descends
after all to an isomorphism from the homology of C˚pX,A;Rq bR C˚pY,B;Rq to H˚ppX,Aq ˆ
pY,Bq;Rq. The situation should remind you of the technical hurdles we had to overcome in order
to prove excision or define the Mayer-Vietoris sequence, and it can be dealt with in a similar way.

77This definition of pX,Aq ˆ pY,Bq is the right one for talking about the cross product and Künneth’s formula,
but it is not so good for other purposes: in particular it suffers from the fact that the obvious projection maps from
X ˆ Y to X or Y do not generally define morphisms from pX,Aq ˆ pY,Bq to pX,Aq or pY,Bq under this definition.
(Think about it.) There is a more obvious alternative definition of the product for an arbitrary collection of pairs
of spaces which does not have this problem with projection maps. That is the right definition to use if, say, one
wants an explicit description of inverse limits in Toprel, in the spirit of Exercise 44.8.
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Definition 49.4. Given a space X , two subspaces X1, X2 Ă X are called an excisive couple
if the natural chain map defined by the inclusion

C˚pX1q ` C˚pX2q ãÑ C˚pX1 YX2q
induces isomorphisms on the homology groups.78

Lemma 49.5. Two subspaces X1, X2 Ă X form an excisive couple if and only if the canonical
chain map

C˚pXq
C˚pX1q ` C˚pX2q ÝÑ C˚pX,X1 YX2q

descends to an isomorphism on the homology groups.

Proof. Assume either that X1 and X2 form an excisive couple or that the map of quotient
complexes induces isomorphisms on homology. There is a commutative diagram

0 C˚pX1q ` C˚pX2q C˚pXq C˚pXq
C˚pX1q`C˚pX2q 0

0 C˚pX1 YX2q C˚pXq C˚pX,X1 YX2q 0,

1

where both rows are short exact sequences of chain complexes and all arrows represent chain
maps induced by either inclusions or quotient projections. Transforming both rows into long exact
sequences of homology groups then produces a diagram in which two out of every three vertical
maps are isomorphisms, so the five-lemma implies that the third one is as well. �

Exercise 49.6. Show that if X1, X2 Ă X are an excisive couple, then the relevant induced
maps on homology or cohomology with an arbitrary coefficient group are also isomorphisms.
Hint: Use the naturality of the universal coefficient theorems.

The lemma implies that all important results regarding products pX,Aq ˆ pY,Bq in homology
or cohomology will hold as long as the two subsets A ˆ Y and X ˆ B in X ˆ Y form an excisive
couple.

Lemma 49.7. Given two pairs or spaces pX,Aq and pY,Bq, the subsets A ˆ Y and X ˆ B in
X ˆ Y form an excisive couple whenever any of the following conditions holds:

(1) A Ă X and B Ă Y are both open subsets;
(2) A “ H or B “ H;
(3) pX,Aq and pY,Bq are both CW-pairs.

Proof. The first case follows by barycentric subdivision, as we showed when we proved the
excision axiom (see Lemma 24.11 from last semester). The second case is trivial. The third can be
proven by replacing singular with cellular chain complexes and appealing to the isomorphism of
singular with cellular homology: the necessary condition is obvious on the cellular chain complex
since CCW

˚ pAq ` CCW
˚ pBq and CCW

˚ pA YBq are exactly the same. �

Now using the quotient complex at the right hand side of (49.3) as a stand-in for C˚ppX,Aq ˆ
pY,Bq;Rq, we obtain a relative version of the Eilenberg-Zilber theorem and therefore a relative
Künneth formula:

78Notice what this definition does not say: it would seem natural to ask for this inclusion to be a chain
homotopy equivalence, but we are requiring something slightly weaker. We will in fact want to use the weaker
conditions in some situations where the stronger one might not hold; an example is the third case of Lemma 49.7.
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Theorem 49.8. If R is a principal ideal domain and pX,Aq and pY,Bq are pairs such that the
subsets A ˆ Y and X ˆ B in X ˆ Y form an excisive couple, then there is a natural short exact
sequence

0 ÝÑ
à

k`ℓ“n

HkpX,A;Rq bR HℓpY,B;Rq ˆÝÑ Hk`ℓppX,Aq ˆ pY,Bq;Rq

ÝÑ
à

k`ℓ“n´1

TorRpHkpX,A;Rq, HℓpY,B;Rqq ÝÑ 0,

and the sequence splits. �

Exercise 49.9. Using Exercise 49.6 to identify H˚ppX,Aq ˆ pY,Bq;Rq with the cohomology
of the quotient complex on the right hand side of (49.3), write down a chain-level definition of the
cross product on relative singular cohomology,

ˆ : HkpX,A;Rq bR H
ℓpY,B;Rq Ñ Hk`ℓppX,Aq ˆ pY,Bq;Rq,

under the assumption that A ˆ Y,X ˆB Ă X ˆ Y form an excisive couple.

Here is an interesting application of the relative Künneth formula. If pX, x0q and pY, y0q are
two pointed spaces, their smash product X ^ Y is defined as the quotient space

X ^ Y :“ pX ˆ Y q
L

pptx0u ˆ Y q Y pX ˆ ty0uqq .
Strictly speaking, this construction depends on the choice of base points, but we shall suppress
this in the notation. Notice that the subset being quotiented out is homeomorphic to the wedge
sum X _ Y , so it is sensible to write

X ^ Y “ pX ˆ Y q
L

pX _ Y q.
It is now straightforward to check that for any base-point preserving continuous maps f : pX, x0q Ñ
pX 1, x1

0q and g : pY, y0q Ñ pY 1, y1
0q, the product map f ˆ g : X ˆ Y Ñ X 1 ˆ Y 1 descends to the

quotient as a continuous map
f ^ g : X ^ Y Ñ X 1 ^ Y 1.

Example 49.10. For any integers k, ℓ ě 0, Sk ^ Sℓ – Sk`ℓ. This is obvious if either k or ℓ
is 0, and otherwise, we can identify Sn with Dn{BDn for every n P N and choose the equivalence
clas of the boundary to be the base point. The claim then follows easily from the fact that there
is a homeomorphism Dk`ℓ – Dk ˆ Dℓ identifying BDk`ℓ with pBDk ˆ Dℓq Y pDk ˆ BDℓq.

Now assume X and Y are both CW-complexes, with base points chosen to be 0-cells in their
cell decompositions, so by Lemma 49.7, the Künneth formula is valid for the pairs pX, tx0uq and
pY, ty0uq. Since pX, tx0uq ˆ pY, ty0uq “ pX ˆ Y,X _ Y q, the Künneth formula now takes the form

0 Ñ
à

k`ℓ“n

HkpX, tx0uq bHℓpY, ty0uq ˆÝÑ HnpX ˆ Y,X _ Y q

ÝÑ
à

k`ℓ“n´1

TorpHkpX, tx0uq, HℓpY, ty0uqq Ñ 0,

or under the natural isomorphisms H˚pX,Aq “ rH˚pX{Aq for good pairs,

0 Ñ
à

k`ℓ“n

rHkpXq b rHℓpY q ˆÝÑ rHnpX ^ Y q ÝÑ
à

k`ℓ“n´1

Torp rHkpXq, rHℓpY qq Ñ 0.

Exercise 49.11. Show that for the cross product on reduced homology as described above
and the identification of Sk ^ Sℓ with Sk`ℓ as indicated in Example 49.10, if rSks P rHkpSkq and
rSℓs P rHℓpSℓq are generators, then rSks ˆ rSℓs P rHk`ℓpSk`ℓq is also a generator.

Exercise 49.12. Suppose f : Sk Ñ Sk and g : Sℓ Ñ Sℓ are base-point preserving maps.
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(a) Use the naturality of the Künneth formula to prove degpf ^ gq “ degpfq ¨ degpgq.
(b) Find an alternative proof of degpf ^ gq “ degpfq ¨ degpgq using the following fact from

differential topology: any continuous map f : Sk Ñ Sk admits a small perturbation to a
smooth map such that for almost every point x P Sk, f´1pxq is a finite set of points at
which the local degree of f is ˘1. (This follows from Sard’s theorem.)

(c) Using the definition of cellular chain maps and the cellular cross product, prove that the
cellular cross product is natural, i.e. if f : X Ñ X 1 and g : Y Ñ Y 1 are cellular maps,
then the diagram

CCW
˚ pXq b CCW

˚ pY q CCW
˚ pX ˆ Y q

CCW
˚ pX 1q b CCW

˚ pY 1q CCW
˚ pX 1 ˆ Y 1q

f˚bg˚

ˆ

pfˆgq˚

ˆ

commutes.

With significantly more effort, one can proceed from Exercise 49.12 to a proof that the cellular
cross product matches the cross product on singular homology under the natural isomorphisms
HCW

˚ pX ;Rq – H˚pX ;Rq for all CW-complexes X . We will not go into this since we do not intend
to use the cellular cross product for anything beyond intuition, but the basic idea (by reducing
to the case of wedges of spheres and then computing both explicitly in that case) is outlined in a
slightly different context in [Hat02, p. 279].

50. Relative cup and cap products, orientations

Topic 1: Product loose ends. There are two more things about products that we should
discuss before moving on to the next major topic.

The relative cup product. Recall that the cup product can be defined in terms of any map
on cochains CkpX ;Rq bR C

ℓpX ;Rq Ñ Ck`ℓpX ;Rq : ϕb ψ ÞÑ ϕY ψ of the form

(50.1) ϕ Y ψ “ pϕ b ψq ˝ Ψ : C˚pXq Ñ R,

where Ψ : C˚pXq Ñ C˚pXq b C˚pXq is any choice of natural chain map that acts as the diagonal
map on 0-chains, i.e. Ψ is a diagonal approximation. This formulation will be convenient in the
following because it avoids any reference to the cross product, whose definition in the relative case
we have seen involves some subtleties. We claim that whenever A,B Ă X are two subspaces that
form an excisive couple (see Definition 49.4), there is a well-defined relative cup product

Y : HkpX,A;Rq bR H
ℓpX,B;Rq Ñ Hk`ℓpX,A YB;Rq.

Indeed, under this assumption, Exercise 49.6 identifies H˚pX,A Y B;Rq with the cohomology
of the complex C˚pXq{ pC˚pAq ` C˚pBqq, and one can then choose any diagonal approximation
Ψ : C˚pXq Ñ C˚pXq b C˚pXq and make sense of

ϕ Y ψ “ pϕ b ψq ˝ Ψ :
C˚pXq

C˚pAq ` C˚pBq Ñ R

for ϕ P C˚pX,A;Rq and ψ P C˚pX,B;Rq, the point here being that since Ψ is natural, it sends
any chain in either C˚pAq or C˚pBq to something in C˚pAq b C˚pAq or C˚pBq b C˚pBq, which is
then annihilated by ϕbψ since ϕ vanishes on C˚pAq and ψ vanishes on C˚pBq. One can show that
this version of Y satisfies properties analogous to those listed in Theorem 48.14, though we need
to be a bit careful about its relation to the cross product. While the diagonal map d : X Ñ XˆX

always gives a well-defined map of pairs

pX,A YBq dÝÑ pX,Aq ˆ pY,Bq,
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the formula ϕYψ “ d˚pϕˆψq might not make sense under the assumption above, because AˆX

and X ˆ B might not be an excisive couple in X ˆ X , in which case the cross product in this
expression is not well defined. If both A,B Ă X and AˆX,X ˆB Ă X ˆX are excisive couples,
then both definitions of ϕ Y ψ P H˚pX,A YB;Rq do make sense, and they match.

As a special case, the product

Y : HkpX,A;Rq bR H
ℓpX,A;Rq Ñ Hk`ℓpX,A;Rq

is well defined for every pair pX,Aq, as A,A Ă X always trivially forms an excisive couple. This is
true even though the cross product ˆ : HkpX,A;Rq bR H

ℓpX,A;Rq Ñ Hk`ℓppX,Aq ˆ pX,Aq;Rq
might not always make sense.

The cap product. The cap product is another pairing that intertwines cohomology with
homology to produce a homology class, and its main property is that it is in some sense dual to the
cup product. For this discussion, we use a fixed commutative ring R with unit as the coefficient ring
for both homology and cohomology, though in order to prevent notational clutter, we will also work
with the chain groups CnpXq over Z and make use of the fact that since CnpX ;Rq “ CnpXq bR,
there is a canonical isomorphism

HompCnpXq, Gq “ HomRpCnpX ;Rq, Gq for any R-module G,

cf. Exercise 45.5. We’ll use the notation x , y to denote both of the natural pairings

CnpX ;Rq b CnpXq Ñ R : ϕ b c ÞÑ xϕ, cy :“ ϕpcq,
CnpX ;Rq bR CnpX ;Rq Ñ R : ϕ b pcb rq ÞÑ xϕ, c b ry :“ rϕpcq,

so for fixed ϕ P CnpX ;Rq, xϕ, ¨y can be interpreted either as a group homomorphism CnpXq Ñ R

or as the equivalent R-module homomorphism CnpX ;Rq Ñ R. We shall also adopt the convention
of defining

xϕ, cy :“ 0 if |ϕ| ‰ |c|,
so that the pairing makes sense for all ϕ P C˚pX ;Rq and c in C˚pXq or C˚pX ;Rq.

Proposition 50.1. Given a diagonal approximation Ψ : C˚pXq Ñ C˚pXq b C˚pXq and the
associated cup product of cochains defined in (50.1), there exists a unique R-module homomorphism

(50.2) CkpX ;Rq bR CℓpX ;Rq Ñ Cℓ´kpX ;Rq : ϕ b c ÞÑ ϕ X c

for each pair of integers k, ℓ such that the relation

xψ Y ϕ, cy “ xψ, ϕX cy
is satisfied for all ψ, ϕ P C˚pX ;Rq and c P C˚pX ;Rq. Moreover, X satisfies

(50.3) BpϕX cq “ δϕ X c` p´1qkϕ X Bc for all ϕ P CkpX ;Rq, c P CℓpX ;Rq.

Remark 50.2. The degrees appearing in (50.2) become easy to remember if you regard
C˚pX ;Rq in the spirit of Remark 45.3 as a chain (not cochain) complex by reversing the de-
grees and writing C˚pX ;Rqk :“ C´kpX ;Rq. We can then regard C˚pX ;Rq bR C˚pX ;Rq as
a tensor product chain complex, and the Leibniz rule (50.3) becomes the statement that X :

C˚pX ;Rq bR C˚pX ;Rq Ñ C˚pX ;Rq is a chain map.

Proof of Proposition 50.1. The uniqueness of X is easy to see, because if X and X1 are
two such maps that both satisfy xψ Y ϕ, cy “ xψ, ϕX cy “ xψ, ϕX1 cy for all ψ, ϕ, c, then for every
ϕ P CkpX ;Rq and c P CℓpX ;Rq we have

xψ, ϕX c´ ϕ X1 cy “ 0 for all ψ P Cℓ´kpX ;Rq.
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Since Cℓ´kpX ;Rq is a free R-module, this cannot happen unless ϕXc´ϕX1c “ 0; see Exercise 50.3
below.

For existence, we can write down a formula for X in terms of the diagonal approximation
Ψ : C˚pXq Ñ C˚pXqbC˚pXq, though the formula will take some effort to digest. Fix ϕ P CkpX ;Rq
and regard this as a group homomorphism C˚pXq Ñ R that is trivial on CℓpXq for every ℓ ‰ k.
We can then form the composed homomorphism

C˚pXq C˚pXq b C˚pXq C˚pXq bR “ C˚pX ;Rq.Ψ

ϕXp¨q

1bϕ

Feeding an ℓ-chain c P CℓpXq into this composition produces at first a finite sum

Ψpcq P
à

p`q“ℓ

CppXq b CqpXq,

and the only term in this sum that does not vanish when fed into 1 b ϕ is the one with q “
k and p “ ℓ ´ k, thus ϕ X p¨q maps CℓpXq into Cℓ´kpX ;Rq. In light of the identification
HompC˚pXq, C˚pX ;Rqq “ HomRpC˚pXqbR,C˚pX ;Rqq, ϕXp¨q has a canonical R-linear extension
to an R-module homomorphism C˚pX ;Rq Ñ C˚pX ;Rq, and moreover, fixing c P CℓpX ;Rq instead
produces an R-linear map C˚pX ;Rq Ñ C˚pX ;Rq : ϕ ÞÑ ϕX c, hence X can now be interpreted as
either a group homomorphism C˚pX ;Rq b C˚pXq Ñ C˚pX ;Rq or an R-module homomorphism
C˚pX ;Rq bR C˚pX ;Rq Ñ C˚pX ;Rq. The former is easier to write down in an explicit formula,
namely

(50.4) ϕ X c “ p1 b ϕq ˝ Ψpcq.
Note that since ϕ may have either odd or even degree, it is understood in this expression that the
usual sign convention must be obeyed when evaluating 1 b ϕ on a product chain: in particular, if
ϕ P CkpX ;Rq, a P Cℓ´kpXq, b P CkpXq and ψ P Cℓ´kpX ;Rq, then

xψ, p1 b ϕqpa b bqy “ p´1qkpℓ´kqxψ, ab ϕpbqy “ p´1qkpℓ´kqψpaqϕpbq “ pψ b ϕqpa b bq,
hence the map C˚pXq b C˚pXq Ñ R defined by xψ, p1 b ϕqp¨qy is the same as ψ b ϕ. As a
consequence, for every c P CℓpXq we have

xψ, ϕX cy “ xψ, p1 b ϕqpΨpcqqy “ pψ b ϕqpΨpcqq “ xψ Y ϕ, cy,
and the same relation therefore holds if c P CℓpX ;Rq and x , y is the R-bilinear pairing. This
proves existence.

The Leibniz rule (50.3) can now be deduced via xψYϕ, cy “ xψ, ϕX cy from the corresponding
Leibniz rule for Y, but this is a slightly annoying computation in which getting all the signs right
is tricky,79 so let’s instead describe a more “highbrow” version of the same argument. The relation
between Y and X can be interpreted as saying that the diagram

C˚pX ;Rq bR C
˚pX ;Rq bR C˚pX ;Rq C˚pX ;Rq bR C˚pX ;Rq

C˚pX ;Rq bR C˚pX ;Rq R

1bX

Yb1 x , y

x , y

commutes. Notice that if we view C˚pX ;Rq as a chain complex with C˚pX ;Rqn “ C´npX ;Rq as
in Remark 45.3, then all maps in this diagram other than 1 b X are already known to be chain

79I got it right on the third try.
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maps. The composition x , y ˝ p1 b Xq is therefore also a chain map, implying that if we take any
pair of elements ϕ P C˚pX ;Rq and x P C˚pX ;Rq bR C˚pX ;Rq, we will have

pp1 b Xq ˝ B ´ B ˝ p1 b Xqq pϕ b xq P kerx , y.
Applying the usual graded Leibniz rule for Bpϕ b xq gives

pp1 b Xq ˝ B ´ B ˝ p1 b Xqq pϕ b xq “ p´1q|ϕ|ϕ b ppX ˝ B ´ B ˝ Xqpxqq ,
so after plugging this into x , y, we deduce that

xϕ, pX ˝ B ´ B ˝ Xqxy “ 0

holds for all ϕ P C˚pX ;Rq and x P C˚pX ;Rq bR C˚pX ;Rq. It follows via Exercise 50.3 that
pX ˝ B ´ B ˝ Xqx “ 0 for all x, i.e. X is a chain map. �

Exercise 50.3. Show that if A is a free R-module and a P A is a nontrivial element, then
ϕpaq ‰ 0 for some ϕ P HomRpA,Rq.
Hint: This is not true in general without the freeness assumption, e.g. it is clearly false for the
Z-module Z2, since HompZ2,Zq “ 0. Use a basis of A in your proof.

Exercise 50.4. Prove that X : CkpX ;Rq bR CℓpX ;Rq Ñ Cℓ´kpX ;Rq has the following natu-
rality property: for any map f : X Ñ Y with a cochain ϕ P CkpY ;Rq and chain c P CℓpX ;Rq,

f˚ pf˚ϕ X cq “ ϕ X f˚c.

Since X is a chain map, it descends to a pairing

HkpX ;Rq bR HℓpX ;Rq Ñ Hℓ´kpX ;Rq : rϕs b rcs ÞÑ rϕs X rcs :“ rϕX cs,
which we call the cap product. One can use the formula (50.4) and the fact that diagonal approxi-
mations are unique up to chain homotopy to prove that different choices of diagonal approximation
define the same cap product on the level of homology.

Since the diagonal approximation in the definition of X can be chosen freely, we might as
well make our “favorite” choice to write down an explicit formula: recall from Lecture 48 the
Alexander-Whitney diagonal approximation, defined on singular n-simplices σ : ∆n Ñ X by

Ψpσq “
ÿ

k`ℓ“n

`
σ|r0,...,ks

˘
b
`
σ|rk,...,ns

˘
,

which leads to the chain-level cup product formula

pϕ Y ψqpσq “ p´1q|ϕ||ψ|ϕpσ|r0,...,ksqψpσ|rk,...,nsq.
This formula has the convenient feature that it satisfies

(50.5) 1 Y ϕ “ ϕ “ ϕY 1

and

(50.6) pϕ Y ψq Y η “ ϕ Y pψ Y ηq
for all cochains ϕ, ψ, η, where 1 P C0pX ;Rq is the cochain sending all singular 0-simplices to 1 P R,80

which represents the unit element 1 P H0pX ;Rq. Under other choices of diagonal approximation,
these formulas may not hold except “up to chain homotopy” (so that they do of course hold after
descending to cohomology). The corresponding explicit formula for X in this setting is

ϕ X σ “ p´1qkpℓ´kqϕ
`
σ|rℓ´k,...,ℓs

˘
σ|r0,...,ℓ´ks P Cℓ´kpX ;Rq for ϕ P CkpX ;Rq and σ : ∆ℓ Ñ X.

80In different contexts, we have also previously referred to the cochain 1 : C0pXq Ñ R as the augmentation of
the singular chain complex.
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We will not use this formula for anything, but now you’ve seen it. The relations (50.5) and (50.6),
however, are concretely useful in the following exercise.

Exercise 50.5. Use the relation xψYϕ, cy “ xψ, ϕX cy to prove that if X is defined using the
Alexander-Whitney diagonal approximation, then it satisfies

1 X c “ c for all c P C˚pX ;Rq

and

pϕ Y ψq X c “ ϕ X pψ X cq for all ϕ, ψ P C˚pX ;Rq, c P C˚pX ;Rq.

Letting all these properties descend to the level of homology and cohomology, here is a summary
of what we have proved so far about the cap product:

Theorem 50.6. The cap product X : H˚pX ;Rq bR H˚pX ;Rq Ñ H˚pX ;Rq has the following
properties.

(1) f˚pf˚ϕ X Aq “ ϕ X f˚A for all continuous maps f : Y Ñ X, ϕ P H˚pY ;Rq and
A P H˚pX ;Rq.

(2) 1 XA “ A for all A P H˚pX ;Rq.
(3) pϕ Y ψq XA “ ϕ X pψ XAq for all ϕ, ψ P H˚pX ;Rq and A P H˚pX ;Rq.
(4) x1, ϕXAy “ xϕ,Ay for any ϕ P H˚pX ;Rq and A P H˚pX ;Rq with the same degree.

�

Remark 50.7. The identity

(50.7) xϕY ψ,Ay “ xϕ, ψ XAy for all ψ P HkpX ;Rq, A P HℓpX ;Rq, ϕ P Hℓ´kpX ;Rq

was left out of the above theorem only because it is redundant: it follows from the third and fourth
identities by writing

xϕ Y ψ,Ay “ x1, pϕY ψq XAy “ x1, ϕX pψ XAqy “ xϕ, ψ XAy.

Conversely, the fourth identity is a special case of this one.

The relative cap product takes the form

(50.8) X : H˚pX,A;Rq bR H˚pX,A YB;Rq Ñ H˚pX,B;Rq

for any two subsets A,B Ă X that form an excisive couple. To see why this works, observe that
the chain-level cap product pairing

C˚pX ;Rq b C˚pXq Ñ C˚pX ;Rq : ϕ b c ÞÑ ϕX c “ p1 b ϕq ˝ Ψpcq

always descends to a well-defined map on the relative complexes

C˚pX,A;Rq b C˚pXq
C˚pAq ` C˚pBq Ñ C˚pX,B;Rq,

as ϕ P C˚pX,A;Rq means ϕ : C˚pXq Ñ R vanishes on C˚pAq Ă C˚pXq, so if c P C˚pAq then Ψpcq P
C˚pAqbC˚pAq and ϕXc thus vanishes, whereas if c P C˚pBq, then Ψpcq P C˚pBqbC˚pBq and ϕXc P
C˚pB;Rq. Now if A,B Ă X are an excisive couple, the homology of C˚pXq{ pC˚pAq ` C˚pBqq with
coefficients in R has a natural identification with H˚pX,A YB;Rq, thus making sense of (50.8).
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Topic 2: Topological manifolds and orientations. At this point we’ve covered the essen-
tial properties of products, so the next few lectures will focus on a new topic: the global topology
of finite-dimensional topological manifolds.81

There is a basic fact about manifolds that was briefly mentioned in the context of the Lef-
schetz fixed point theorem and now deserves to be repeated: every compact manifold M admits a
topological embedding into RN for N sufficiently large (see [Hat02, Appendix A]), and is therefore
a Euclidean neighborhood retract. In particular, this means there exists a compact polyhedron P

with a retraction r : P Ñ M , and since P necessarily has finitely generated homology, it follows
that the same is true for M :

Theorem 50.8. For every compact manifold M , H˚pMq is finitely generated. �

I would now like to discuss what it means for a topological manifold to be orientable. We
discussed this somewhat in Lecture 29 through the lens of oriented triangulations, but that charac-
terization of orientations requires some extra data that might not exist, i.e. not every topological
manifold is triangulable. Another natural approach would be to generalize something that we
discussed specifically for surfaces in Lecture 20 last semester: one needs to first understand what it
means to say that a homeomorphism between two open subsets of Rn is “orientation preserving,” so
that an orientation on M can then be defined to mean a covering of M by charts with the property
that any two overlaping charts are related by a coordinate transformation that preserves orienta-
tions. If we work with smooth manifolds, then it is fairly easy to make this precise, because we
can say that a smooth coordinate transformation preserves orientations if and only if its derivative
at every point is a linear map Rn Ñ Rn with positive determinant. For maps that are continuous
but not differentiable, it takes more effort to say precisely what “orientation preserving” means,
and the most elegant way to do it uses homology.

Instead of working with coordinate transformations, the standard approach in algebraic topol-
ogy is via the notion of local orientations, which we saw already in our discussion of the mapping
degree (Lecture 33). Recall that if dimM “ n, then for every x P M there is a locally Euclidean
neighborhood Rn – Ux Ă M of x that gives rise (via the usual axioms of homology) to natural
isomorphisms

HkpM,Mztxu;Gq – HkpUx,Uxztxu;Gq – HkpRn,Rnzt0u;Gq – HkpDn, BDn;Gq

– rHk´1pSn´1;Gq –
#
G if k “ n,

0 otherwise.

(50.9)

We call HnpM,Mztxu;Gq the local homology group of M at x, and a local orientation of M
at x is defined to be a choice of generator

rM sx P HnpM,Mztxu;Zq – Z.

At every point there are clearly two possible choices of local orientations. The question now is: if
we have chosen a local orientation of M at every point x P M , what should it mean to say that
these orientations vary continuously with x? The answer emerges from the following observation:
suppose ϕ : U

–Ñ Rn is a chart defined on some open set U Ă M and A Ă U denotes the subset

81I will typically omit the word “topological” and just say “manifold”, as for most of this discussion it will not
be at all necessary to mention smooth structures. This will only change when we discuss intersection theory.
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ϕ´1pDnq. Then for any point x P A, the obvious inclusions of pairs fit into a commutative diagram

HnpM,Mztxuq HnpU ,Uztxuq HnpRn,Rnztϕpxquq

HnpM,MzAq HnpU ,UzAq HnpRn,RnzDnq,

– ϕ
´1

˚

–

jx,A

– ϕ
´1

˚

–

–

in which the map at the right is an isomorphism due to a combination of homotopy equivalence
and the five-lemma, proving that the map

jx,A : HnpM,MzAq Ñ HnpM,Mztxuq
is an isomorphism. We shall say in this situation that A Ă M is a disk-like neighborhood of
x P M .

Definition 50.9. An orientation of an n-dimensional topological manifold M is a choice
of local orientations rM sx for every x P M satisfying the following consistency condition: every
x P M is contained in some disk-like neighborhood A Ă M such that for all y P A,

jy,A ˝ j´1
x,ArM sx “ rM sy.

A manifold equipped with an orientation will be called an oriented manifold (orientierte
Mannigfaltigkeit). In light of (50.9), you can imagine an orientation as a choice for every x P M
of a favorite generator rSxs P rHn´1pSxq – Z for some small pn ´ 1q-sphere Sx enclosing x, with
the property that translating Sx to Sy through a coordinate chart containing x and y produces
an isomorphism rHn´1pSxq Ñ rHn´1pSyq sending rSxs to rSys. You should take a moment to
contemplate why this description matches Definition 50.9 in the case M “ Rn.

We now have enough language in place to state one of the most important theorems in this
course, whose proof will be spread over the next few lectures. Recall that a manifold is called
closed (geschlossen) if it is compact and has no boundary.

Theorem 50.10. For every closed oriented topological n-manifold, there exists a distinguished
class rM s P HnpMq such that the map induced by the inclusion ix : pM,Hq ãÑ pM,Mztxuq for
every x P M satisfies

ix˚rM s “ rM sx,
and this map is an isomorphism if M is connected. Moreover, for every k “ 0, 1 . . . , n, the map

HkpMq Ñ Hn´kpMq : ϕ ÞÑ ϕ X rM s
is an isomorphism.

The distinguished class rM s P HnpMq is called the fundamental class of M , and the isomor-
phism HkpMq Ñ Hn´kpMq defined by capping with rM s is the Poincaré duality map. We will
see that it also works with other choices of coefficients, which sometimes also allow the orientation
condition to be relaxed, e.g. since rHn´1pSn´1;Z2q – Z2 allows only one choice of generator, every
manifold is orientable and admits a unique orientation in the sense of Z2 coefficients, and the Z2

version of Theorem 50.10 is then true for every closed manifold. We’ll prove the existence of the
fundamental class next time.

51. The orientation bundle

The previous lecture’s discussion of orientations can be put in a slightly more general frame-
work. Assume M is a topological n-manifold (without boundary) and G is an abelian group;
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we will be most interested in cases where G is a ring, but there is no need to impose any such
restriction just yet. It will be convenient to introduce the shorthand notation

H˚pM |A;Gq :“ H˚pM,MzA;Gq

for each A Ă M . The chain complex underlying H˚pM |A;Gq does not see any chains that
fail to intersect A, and by subdivision, we can also restrict our attention to arbitrarily “small”
chains, which means that H˚pM |A;Gq really only depends on the topology of arbitrarily small
neighborhoods of A in M . For this reason we sometimes call it the “homology of M restricted
to A”. Note that if B Ă A Ă M , the identity map on M defines a natural inclusion of pairs
pM,MzAq ãÑ pM,MzBq, which therefore induces natural homomorphisms

jB,A : H˚pM |A;Gq Ñ H˚pM |B;Gq.

Whenever A is a single point txu Ă M , we shall abbreviate

ΘGx :“ HnpM |x;Gq :“ HnpM | txu;Gq “ HnpM,Mztxu;Gq,

which associates to every point x P M a group ΘGx isomorphic to G. For x P A Ă M , we denote
the associated homomorphism by

jx,A : H˚pM |A;Gq Ñ ΘGx .

Definition 51.1. The orientation bundle of M with coefficients in G is the set82

ΘG :“
ď

xPM

ΘGx ,

endowed with the topology generated by the collection of subsets

B :“
 
Uc Ă ΘG

ˇ̌
U Ă M open and c P HnpM | sU ;Gq

(
,

where for U Ă M and c P HnpM | sU ;Gq we define

Uc :“
 
jx, sUpcq P ΘGx

ˇ̌
x P U

(
.

Proposition 51.2. The collection of subsets B “ tUcu appearing in Definition 51.1 is the base
of a topology on ΘG for which the natural projection map

p : ΘG Ñ M

sending ΘGx to x for each x P M is continuous and is a covering map.

Proof. To show that B is the base of a topology, we need to show first that these sets cover
all of ΘG, and second that any finite intersection of such sets is also a union of such sets. The
former is true because for any x P M and c P ΘGx , we can pick an open set U Ă M whose
closure is a disk-like neighborhood sU Ă M of x, for which we showed in the previous lecture that
jx, sU : HnpM | sU ;Gq Ñ ΘGx is an isomorphism, thus c P Uc1 for c1 :“ j´1

x, sUpcq.
For finite intersections, consider two open sets U ,V Ă M and classes a P HnpM | sU ;Gq and

b P HnpM | sV;Gq. Then Ua X Vb Ă Ť
xPUXV

ΘGx , and we observe that for x P U X V and any subset

82We are regarding ΘG
x and ΘG

y as disjoint sets whenever x ‰ y, so ΘG “
Ť

xPM ΘG
x is set-theoretically their

disjoint union. I am avoiding writing it as
š

xPM ΘG
x since this notation normally carries implications about the

topology of the union, and those implications would be inconsistent with the topology we actually want to define
on ΘG.
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A Ă U X V containing x, the maps jx, sU and jx,sV both factor through HnpM |A;Gq:

HnpM | sU ;Gq

HnpM |A;Gq ΘGx

HnpM | sV ;Gq

jA, sU

jx, sU

jx,A

jA, sV

jx, sV

Choose A Ă U X V to be a disk-like neighborhood, so that jx,A is an isomorphism for every x P A.
Now if x P A and c P ΘGx belongs to both Ua and Vb, it means

c “ jx, sU paq “ jx,sVpbq “ jx,Apc1q where c1 :“ j´1
x,Apcq “ jA, sU paq “ jA,sVpbq,

hence c P Åc1 , and conversely, the diagram also demonstrates that Åc1 Ă Ua XVb. This proves that
Ua XVb is a union of sets Åc P B, where A ranges over disk-like neighborhoods contained in U XV .

To prove that p : ΘG Ñ M is continuous and is a covering space, the main idea is as follows: for
each x P M , choose a disk-like neighborhood A Ă M of x and observe that the isomorphism jx,A :

HnpM |A;Gq Ñ HnpM |x;Gq factors through HnpM | sU ;Gq for any smaller open neighborhood
U Ă Å of x, implying that jx, sU : HnpM | sU ;Gq Ñ HnpM |x;Gq is also an isomorphism. One can
use this to show that for each x P Å, assigning the discrete topology to ΘGx makes the map

pp, jx,Aq : p´1pAq Ñ Aˆ ΘGx

a homeomorphism. Using it to identify p´1pAq with A ˆ ΘGx turns p´1pAq pÑ A into the trivial
covering map A ˆ ΘGx Ñ A : pa, cq ÞÑ a. �

Remark 51.3. The word “bundle” is borrowed from differential geometry, where fiber bundles
p : E Ñ B generalize the notion of a covering space by allowing the fibers p´1pbq Ă E to be
more interesting topological spaces (typically manifolds or vector spaces) rather than just discrete
sets. In general, a fiber bundle whose fibers are discrete is equivalent to a covering map. The
orientation bundle also has a bit more structure than this since its fibers ΘGx are groups—this
makes p : ΘG Ñ M a sheaf of abelian groups, or if we choose G to be a ring R so that each
homology group is an R-module, a sheaf of R-modules. For readers who may know what this
means and find it interesting: p : ΘG Ñ M is the completion of the presheaf that associates to
each open subset U Ă M the abelian group HnpM | sU ;Gq.

Exercise 51.4. Given a point x P X , let I denote the set of all open neighborhoods of x,
and write U ă V whenever V Ă U . This makes pI,ăq into a directed set, and whenever U ă V

there is an associated homomorphism jsV, sU : HnpM | sU ;Gq Ñ HnpM | sV;Gq, so that the collection
of abelian groups

 
HnpM | sU ;Gq

(
UPI

forms a direct system. Find a canonical isomorphism

limÝÑ
 
HnpM | sU ;Gq

( –ÝÑ HnpM |x;Gq.
Definition 51.5. For each subset A Ă M , we denote

ΘG|A :“ p´1pAq Ă ΘG

and call the covering map ΘG|A pÑ A the restriction of the orientation bundle to A. A section
(Schnitt) of ΘG along A is by definition a continuous map s : A Ñ ΘG such that p ˝ s “ IdA, i.e. it
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continuously associates to each x P A an element spxq P ΘGx . The set of all sections of ΘG along
A will be denoted by ΓpΘG|Aq, with the special case A “ M denoted simply by ΓpΘGq. We say a
section s P ΓpΘG|Aq has compact support if it satisfies spxq “ 0 for all x outside some compact
subset of A, and denote the set of sections with this property by

ΓcpΘG|Aq Ă ΓpΘG|Aq.

Exercise 51.6. Show that ΓpΘG|Aq and ΓcpΘG|Aq are both naturally abelian groups, where
addition of sections is defined pointwise, i.e.

ps1 ` s2qpxq :“ s1pxq ` s2pxq P ΘGx .

If G “ R is a commutative ring with unit, show similarly that ΓpΘG|Aq and ΓcpΘG|Aq are modules
over R.

For the special case G “ Z, we shall denote the orientation bundle by

Θ :“ ΘZ, Θx :“ ΘZ
x “ HnpM |x;Zq – Z.

The definition of orientations in the previous lecture can now be recouched in the following terms.

Definition 51.7. An orientation of M along a subset A Ă M is a section s P ΓpΘ|Aq such
that spxq “ rM sx generates Θx – Z for every x P A. We say M is orientable if it admits an
orientation.

More generally, if R is a commutative ring with unit, an R-orientation of M along A Ă M is a
section s P ΓpΘR|Aq such that for every x P A, spxq generates ΘRx as an R-module, i.e. Rspxq “ ΘRx .
If such a section exists, we say that M is orientable over R.

The geometric meaning of R-orientations when R ‰ Z merits further comment, but let’s first
look a bit more closely at the case R “ Z. There are exactly two possible choices of generators
rM sx in each fiber Θx, that is, the two local orientations of M at x. Let us denote

ĂM :“
 
c P Θ

ˇ̌
c is a local orientation

(
,

in other words, ĂM is the union for all x P M of the two generators of Θx – Z. Assigning to ĂM Ă Θ

the subspace topology, it is easy to see that the restriction of p : Θ Ñ M defines a two-to-one
covering map

π :“ p|ĂM : ĂM Ñ M : rM sx ÞÑ x.

It is called the orientation double cover of M . Observe now that if M is orientable over a
connected subset A Ă M , then there are exactly two choices of orientation, given by some section
s : A Ñ ĂM and its opposite, ´s : A Ñ ĂM , i.e. the section of Θ|A for which ´s`s “ 0. The images
of these two sections are disjoint, but by the definition of the topology on Θ, they are both also
open subsets of π´1pAq Ă ĂM , implying that π´1pAq is disconnected. Conversely:

Exercise 51.8. If A Ă M is connected and π´1pAq Ă ĂM has more than one connected
component, show that each component intersects Θx for every x P A. (Hint: Show that the set of
x P A for which Θx intersects the component is both open and closed.) Conclude that π´1pAq Ă ĂM
therefore has exactly two components, each of which is the image of a section of Θ along A.

Combining the exercise with the previous remarks proves:

Proposition 51.9. For any connected subset A Ă M , π´1pAq Ă ĂM has either one or two
connected components, where the latter is the case if and only if M is orientable along A. �
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Example 51.10. For M “ RP
2, the orientation double cover is equivalent to the standard

covering S2 Ñ S2{Z2 “ RP
2 defined via the antipodal map on S2. In particular, RP2 is orientable

along a loop γ Ă RP
2 if and only if γ has a lift to S2 that is a loop (instead of a path with distinct

end points).

The main advantage of generalizing to other coefficient rings R ‰ Z arises from the following
observation about the case R “ Z2:

Proposition 51.11. Every manifold is orientable over Z2.

Proof. Each fiber ΘZ2

x of the orientation bundle consists only of the trivial element 0 P Z2

and the nontrivial element 1 P Z2, so there is a unique nontrivial section s P ΓpΘZ2q, defined by
spxq “ 1 for all x. �

Exercise 51.12. Use the universal coefficient theorem to show that for every abelian group G,
there is a natural isomorphism Φx : Θx b G Ñ ΘGx for every x P M such that if s P ΓpΘ|Aq is a
section and g P G, then s1pxq :“ Φxpspxq b gq defines a section s1 P ΓpΘG|Aq. Deduce that if M is
orientable along A, then it is also R-orientable along A for every choice of R.

We would now like to formulate a relationship between the group of sections ΓpΘG|Aq and the
homology group HnpM |A;Gq.

Lemma 51.13. For every closed subset A Ă M , there exists a homomorphism

JA : HnpM |A;Gq Ñ ΓcpΘG|Aq : c ÞÑ sc

defined by scpxq :“ jx,Apcq for x P A.

Proof. We need to show two things about the map sc : A Ñ ΘG|A, first that it is continuous,
and second that its support is compact. After this it will be obvious that JA is a homomorphism.
Let’s consider first the support of sc.

Given rcs P HnpM |A;Gq represented by a relative cycle c P CnpM ;Gq with Bc P Cn´1pMzA;Gq,
we can write c as a finite linear combination

ř
imiσi of singular n-simplices σ : ∆n Ñ M with

coefficients mi P G. Since ∆n is compact and the sum is finite, there exists a compact subset
K Ă M that contains the images of all the σi, so for any x P A with x R K, c is an n-chain
in Mztxu, implying that its image under the chain map induced by pM,MzAq ãÑ pM,Mztxuq
is trivial and thus scpxq “ jx,Arcs “ 0. The support of sc is therefore contained in the compact
subset AXK Ă A.

For continuity, we start with the observation that if A Ă X happens to have the property that
jx,A is an isomorphism for every x P Å, then the same argument as in the proof of Proposition 51.2
identifies ΘG|A with A ˆ ΘGx so that sc looks like a “constant section” x ÞÑ px, gq for some g P
ΘGx and is thus obviously continuous. We can reduce the situation to this case as follows. For
rcs P HnpM,MzA;Gq represented by a relative cycle c P CnpM ;Gq as above, Bc P Cn´1pMzA;Gq
is a chain in some compact subset K Ă MzA, where MzA is open since A is closed. This implies
that every x P A admits a disk-like neighborhood sU Ă M disjoint from K, so that Bc also defines
an pn ´ 1q-chain in Mz sU and c can therefore be regarded as a relative n-cycle in pM,MzsUq,
representing a class

rcs P HnpM | sU ;Gq.
There is then a well-defined and necessarily continuous section of ΘG|U defined by the same formula
x ÞÑ jx, sUprcsq, and our original sc : A Ñ ΘG|A near x P A is the restriction of this section to AXU ,
which is therefore continuous. �

Here is the main theorem about the orientation bundle.
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Theorem 51.14. If M is a topological n-manifold without boundary, then for every closed
subset A Ă M , the map JA : HnpM |A;Gq Ñ ΓcpΘG|Aq is an isomorphism, and HkpM |A;Gq “ 0

for all k ą n.

We shall postpone the proof of this theorem until the beginning of the next lecture, and instead
focus for now on its corollaries.

Corollary 51.15. Assume M is a connected topological n-manifold without boundary and G
is an abelian group. Then:

(1) HkpM ;Gq “ 0 for all k ą n.
(2) If M is noncompact, then additionally HnpM ;Gq “ 0.

If M is also compact, then the following additional statements hold:

(3) If M is orientable, then HnpM ;Gq – G.
(4) If M is not orientable, then HnpM ;Gq – tg P G | 2g “ 0u.
(5) For any commutative ring R with unit, any R-orientation s P ΓpΘRq of M determines a

generator

rM s P HnpM ;Rq – R such that jx,M rM s “ spxq for all x P M.

Proof. We work through the claims one by one:

(1) Follows from HkpM |A;Gq “ 0 with A “ M .
(2) If M is noncompact then ΓcpΘGq “ 0 since any section with compact support must equal

zero somewhere; indeed, continuity then implies that the subset tx P M | spxq “ 0u is
both open and closed, so it is all of M .

(3) Taking A “ M gives an isomorphism HnpM ;Gq – ΓpΘGq, where the compact support
condition is irrelevant since M is compact. Then given an orientation s P ΓpΘq and
the natural isomorphisms Φx : Θx b G Ñ ΘGx from the universal coefficient theorem
(cf. Exercise 51.12), we obtain an isomorphism

G Ñ ΓpΘGq : g ÞÑ sg where sgpxq :“ Φxpspxq b gq.
(4) For the subgroup G0 “ tg P G | 2g “ 0u, we can again use the isomorphisms Φx :

Θx bG Ñ ΘGx to define an injective homomorphism

G0 Ñ ΓpΘGq : g ÞÑ sg where sgpxq :“ Φxp˘rM sx b gq.
Here the choice of local orientation ˘rM sx P Θx is arbitrary and sgpxq does not depend
on it since g “ ´g. We leave it as an exercise to show that this map is also surjective: in
particular, since ĂM is connected, given any x P M , there is no section taking the value
rM sx b g at x for some generator rM sx P Θx and g P G unless g “ ´g.

(5) This is immediate from the isomorphism JM : HnpM ;Rq –ÝÑ ΓpΘRq and the definition
of an R-orientation.

�

Definition 51.16. The generator rM s P HnpM ;Rq – R associated to any R-orientation of
a closed connected n-manifold M in the above corollary is called the fundamental class of M
(over R). More generally, the fundamental class of any finite disjoint union of closed, connected
and R-oriented n-manifolds M1, . . . ,MN is defined as

rM1 > . . . >MN s :“ i1˚rM1s ` . . .` iN˚ rMN s

for the inclusions ij :Mj ãÑ
šN
i“1Mi, j “ 1, . . . , N .
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It is not hard to show that for this extension of the fundamental class to a non-connected but
closed manifold M with R-orientation s P ΓpΘRq, rM s P HnpM ;Rq is uniquely characterized by
the condition

jx,M rM s “ spxq for all x P M.

Indeed, uniqueness follows from Theorem 51.14, as the difference between any two classes in
HnpM ;Rq satisfying this condition is then a class c P HnpM ;Rq such that JApcq “ 0 P ΓpΘRq,
implying c “ 0. In particular, the results of Lecture 34 show that the classes rM s P HnpM ;Zq or
rM s P HnpM ;Z2q that we’ve previously constructed for closed triangulated n-manifolds by sum-
ming the n-simplices in the triangulation match our new definition of fundamental classes. The
latter are defined for all closed topological manifolds with orientations and do not require any
triangulation.

Exercise 51.17. Prove that if M is a non-orientable connected topological manifold, then
π1pMq contains a subgroup of index 2. (In particular, this implies that every simply connected
manifold is orientable.)

Exercise 51.18. Suppose M is any topological manifold of dimension n P N.
(a) Prove that the torsion subgroup of Hn´1pMq is Z2 if M is compact and non-orientable,

and it is otherwise trivial.
Hint: Use the universal coefficient theorem to compute TorpHn´1pMq,Zpq “ 0 for every
prime number p, and see what you can deduce from it. You may want to consider
separately the cases where M is noncompact, compact and orientable, or compact and
non-orientable. If it helps, feel free to assume also that H˚pMq is finitely generated
(though this is not strictly necessary).

(b) Deduce that if H˚pMq is finitely generated and M is orientable, then HnpM ;Zq –
HnpM ;Zq.

Exercise 51.19. Here is an interesting application of Čech cohomology to the question of
orientability of manifolds. Fix a space X and abelian group G, and recall that the set OpXq of
all open coverings of X admits an ordering relation ă that makes it into a directed set: we write
U ă U1 whenever U1 is a refinement of U. There is a direct system of Z-graded abelian groups over
OpXq whose direct limit is Čech cohomology, namely

qH˚pX ;Gq :“ limÝÑ
 
H˚
o

`
N pUq;G

˘(
UPOpXq

,

where N pUq is the so-called nerve of the open covering U P OpXq, defining a simplicial complex,
and H˚

o

`
N pUq;G

˘
is the cohomology with coefficients in G of its ordered simplicial complex.

Concretely, H˚
o

`
N pUq;G

˘
is the homology of a cochain complex qC˚pU;Gq :“ C˚

o

`
N pUq;Gq

˘
, where

qCnpU;Gq “ 0 for n ă 0 and, for each n ě 0, qCnpU;Gq is the additive abelian group of all functions
ϕ that assign an element of G to each ordered pn ` 1q-tuple of sets U0, . . .Un P U with nonempty
intersection:

ϕpU0, . . . ,Unq P G assuming U0 X . . . X Un ‰ H.

The coboundary map δ : qCnpU;Gq Ñ qCn`1pU;Gq is defined by

pδϕqpU0, . . . ,Un`1q :“ p´1qn`1
n`1ÿ

k“0

p´1qkϕpU0, . . . , pUk, . . . ,Un`1q,

where the hat over pUk means that that term is skipped. The homologies of these cochain complexes
form a direct system over pOpXq,ăq because, as mentioned in Lecture 44, refinements U1 ą U give
rise to chain maps Co˚

`
N pU1q

˘
Ñ Co˚

`
N pUq

˘
that are canonical up to chain homotopy, so dualizing
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these gives chain maps qC˚pU;Gq Ñ qC˚pU1;Gq that are also canonical up to chain homotopy and
therefore induce canonical maps on the cohomology groups (see Lecture 46).

Let us call an open covering U admissible if intersections between two sets in U are always
connected; this will be a useful technical condition in the following, and one can show that at least
if X is a smooth manifold, every open covering of X has an admissible refinement, so assume this
from now on.83 We are going to consider covering84 maps f : Y Ñ X of degree 2. Recall that two
such covering maps pYi, fiq for i “ 1, 2 are called isomorphic if there exists a homeomorphism
ϕ : Y1 Ñ Y2 such that the diagram

Y1 Y2

X

ϕ

f1

f2

commutes. We will say that a covering map pY, fq is trivial if it is isomorphic to the trivial
double cover

X ˆ Z2 Ñ X : px, iq ÞÑ x.

Given f : Y Ñ X , any open covering U P OpXq can be replaced with a refinement such that every
U P U is evenly covered by f : Y Ñ X , meaning f´1pUq is the union of two disjoint subsets
V0,V1 Ă Y such that f |Vi

: Vi Ñ U is a homeomorphism for i “ 0, 1. After a further refinement,
assume U is also admissible. We can now choose for each U P U a so-called local trivialization,
meaning a homeomorphism

ΦU : f´1pUq Ñ U ˆ Z2

that sends f´1pxq to txu ˆ Z2 for each x P U . This determines a set of continuous transition
functions gU ,V : U X V Ñ Z2 for each intersecting pair U ,V P U, defined such that the map

pU X Vq ˆ Z2 pU X Vq ˆ Z2

ΦV˝Φ´1

U

takes the form px, iq ÞÑ px, i ` gU ,Vpxqq. Note that since U X V is always assumed connected, the
transition functions are all constant, i.e. they associate to each ordered pair pU ,Vq of sets in U with
U X V ‰ H an element ϕpU ,Vq :“ gU ,V P Z2. See if you can prove the following:

(a) ϕ P qC1pU;Z2q is a cocycle, and choosing different local trivializations changes ϕ by a
coboundary.

(b) Feeding rϕs P H1
o pN pUq;Z2q into the canonical map to the direct limit produces a class

w1pfq P qH1pX ;Z2q that is independent of the choice of admissible open covering.
(c) If X is an n-manifold and f : Y Ñ X is its orientation double cover, then

w1pXq :“ w1pfq P qH1pX ;Z2q

is zero if and only if X is orientable. (We call w1pXq the first Stiefel-Whitney class
of X .)

83Alternatively, one could avoid the need for connected intersections by using Čech cohomology with sheaf
coefficients, cf. [Spa95, Chapter 6].

84Caution! This exercise now contains two distinct meanings of the word “cover”: one in the sense of “open
covering” (Überdeckung) and the other in the sense of “covering map” (Überlagerung). I am trying very hard to
ensure that it would be clear in each instance which meaning is intended.
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52. Existence of the fundamental class

Before proving Theorem 51.14, let’s discuss one further extension of its range of applications.
The previous lecture focused entirely on manifolds without boundary, but there is an easy extension
of the fundamental class to compact manifolds M with BM ‰ H. The construction in Lecture 29
via triangulations lends some intuition on what to expect: rM s will not be an element of HnpM ;Rq
in general, but a relative class in HnpM, BM ;Rq. We first need to be clear on what an orientation
of M should be if BM ‰ H. The local homology groups HnpM |x;Gq are the same as usual if
x R BM ; indeed, the interior M̊ Ă M is a manifold without boundary that contains x, and excision
implies that the inclusion pM̊, M̊ztxuq ãÑ pM,Mztxuq induces an isomorphism

G – HnpM̊ |x;Gq –ÝÑ HnpM |x;Gq.

If x P BM however, then HnpM |x;Zq is trivial, so the notion of a local orientation at a boundary
point does not make sense. (Exercise!) The solution is simply to ignore the boundary points.

Definition 52.1. For M an n-manifold with boundary, an R-orientation of M is defined to
be an R-orientation of its interior M̊ .

We will need the following basic observation from point-set topology: if BM is compact, then it
has a so-called collar neighborhood (Kragenumgebung) in M , meaning a neighborhood U Ă M

of BM that is homeomorphic to p´1, 0sˆBM via a homeomorphism sending BM to t0uˆBM . This
is not completely obvious, but the proof is not hard (see e.g. [Hat02, Proposition 3.42]). It follows
that M is homotopy equivalent to its interior, hence the latter has finitely generated homology if
M is compact.

Since M̊ is a manifold without boundary, Theorem 51.14 gives an isomorphism

JA : HnpM̊, M̊zA;Gq Ñ ΓcpΘG|Aq

for any closed subset A Ă M̊ and abelian group G. Now set G to be a commutative ring R with
unit, and assume M has an R-orientation s P ΓpΘR|M̊ q, which fixes a generator rM sx :“ spxq P
HnpM |x;Rq – R for every x P M̊ . We will refer to a relative homology class

rM s P HnpM, BM ;Rq

as a relative fundamental class for M if the natural map ix : HnpM, BM ;Rq Ñ HnpM |x;Rq
defined via the inclusion pM, BMq ãÑ pM,Mztxuq for every x P M̊ satisfies

ix˚rM s “ rM sx.

If BM “ H, this matches our previous characterization of the fundamental class of a closed
manifold.

Theorem 52.2. If M is a compact manifold with boundary carrying an R-orientation s P
ΓpΘR|M̊ q, then there exists a unique relative fundamental class rM s P HnpM, BM ;Rq, which is a
generator of HnpM, BM ;Rq – R if M is connected.

Proof. We shall assumeM is connected, as the extension to finite disjoint unions of connected
manifolds will follow the same as in the case without boundary.

Identify a neighborhood of BM in M with p´1, 0sˆBM and for ǫ ą 0 small, let Aǫ Ă M denote
the complement of p´ǫ, 0s ˆ BM Ă M , which is a compact set homotopy equivalent to M . Now if
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x P Aǫ, consider the commuting diagram

HnpM, BM ;Rq HnpM,MzAǫ;Rq HnpM̊, M̊zAǫ;Rq

HnpM,Mztxu;Rq HnpM̊, M̊ztxu;Rq,

–

i˚x
jx,Aǫ

–

jx,Aǫ

–

where several maps are labeled as isomorphisms due to homotopy invariance. Given an R-
orientation s P ΓpΘR|M̊ q and the resulting generator rM sx :“ spxq P HnpM̊ |x;Rq for each x P Aǫ,
Theorem 51.14 provides a unique rM sǫ P HnpM̊ |Aǫ;Rq such that jx,Aǫ

rM sǫ “ rM sx for every
x P Aǫ, where uniqueness follows from the fact that if two such classes existed, applying JAǫ

to
their difference would give a section that vanishes somewhere and therefore (since M is connected)
everywhere. Following the two isomorphisms at the top of the diagram, rM sǫ now determines a
class rM s P HnpM, BMq that satisfies ix˚rM s “ rM sx P HnpM |x;Rq for all x P Aǫ. We leave it as
an exercise to check that this definition of rM s P HnpM, BM ;Rq does not depend on the choice of
ǫ ą 0. (Hint: the isomorphism of Theorem 51.14 can again be used to show that for two ǫ, δ ą 0,
rM sǫ and rM sδ have the same image under the natural maps to HnpM |Aǫ X Aδ;Rq, which is an
isomorphism.) Since any x P M̊ is in Aǫ for sufficiently small ǫ ą 0, the result follows. �

We still need to prove Theorem 51.14, that the natural map

JA : HnpM |A;Gq Ñ ΓcpΘG|Aq : c ÞÑ sc

is an isomorphism and HkpM |A;Gq “ 0 for all k ą n whenever M is a topological n-manifold
without boundary and A Ă X is a closed subset. The proof follows a certain pattern common to
theorems about manifolds: we start by proving by direct means that it holds whenever A is a special
type of “small” subset that can be found in some neighborhood of every point in a manifold. One
can view this as the first step in a generalized notion of proof by induction, where the “inductive
step” involves using a Mayer-Vietoris sequence to extend the validity of the theorem to unions or
intersections of sets for which it is already known to hold. As a convenient (but informal) bit of
terminology, we shall call a subset A Ă M in an n-manifold M convex if A is contained in a
Euclidean neighborhood U Ă M with a chart ϕ : U

–Ñ Rn such that ϕpAq Ă Rn is convex.

Exercise 52.3. Show that if M is a topological n-manifold, every compact subset A Ă M can
be written as A “

Ş8
i“1 Ai, where each Ai Ă M is a finite union of compact convex subsets.

Hint: Show that for any ǫ ą 0, A can be covered by a finite union of compact convex sets that
each have diameter less than ǫ with respect to some fixed metric on M .

The advantage of convexity is that intersections of convex sets in Rn are always convex, how-
ever, this is not true for convex subsets of a manifold M since two such sets might not lie entirely
in the same Euclidean neighborhood. This detail makes an extra step necessary in the following
proof, where we will alter our notion of “small” subsets in M to allow all compact subsets of
Euclidean neighborhoods and not just those that are convex.

Proof of Theorem 51.14. In the following we omit the coefficient group G from the nota-
tion wherever possible since it will play no significant role, so e.g. H˚pM |Aq and Θx should be
understood as abbreviations for H˚pM |A;Gq and ΘGx respectively.

Step 1 : We claim that the theorem is true whenever A Ă M is a compact convex subset.
Indeed, A is in this case a disk-like neighborhood, so jx,A : HnpM,MzAq Ñ Θx is an isomorphism
for every x P A, and since two sections of Θ along a connected subset must be identical whenever
they match at one point, this makes JA : HnpM |Aq Ñ ΓpΘ|Aq an isomorphism. For k ą n, we
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have the usual computation

HkpM,MzAq – HkpRn,RnzDnq – rHk´1pSn´1q “ 0.

Step 2 : For the first of three “inductive” steps, we show that if A,B Ă M are two subsets such
that the theorem holds for A, B and A X B, then it also holds for A Y B. The tool required for
this is the relative Mayer-Vietoris sequence from Lecture 32. Since A and B are both closed, the
complements of these and A XB and A YB are all open, so we can apply Mayer-Vietoris for the
pairs pM,MzAq and pM,MzBq, giving a long exact sequence

. . . Ñ Hk`1pM,MzAq ‘Hk`1pM,MzBq Ñ Hk`1pM, pMzAq Y pMzBqq Ñ HkpM, pMzAq X pMzBqq
Ñ HkpM,MzAq ‘HkpM,MzBq Ñ HkpM, pMzAq Y pMzBqq Ñ . . .

We can of course abbreviate this by writing H˚pM, pMzAq X pMzBqq “ H˚pM |A Y Bq and
H˚pM, pMzAq Y pMzBqq “ H˚pM |A X Bq. If k ą n, then the sequence places HkpM |A Y Bq
in between two vanishing terms and thus proves HkpM |A Y Bq “ 0. To handle the case k “ n,
observe that the groups of compactly supported sections along these various subsets also fit into a
natural exact sequence

0 Ñ ΓcpΘ|AYBq Ñ ΓcpΘ|Aq ‘ ΓcpΘ|Bq Ñ ΓcpΘ|AXBq,
where the first map sends s P ΓcpΘ|AYBq to ps|A,´s|Bq P ΓcpΘ|Aq‘ΓcpΘ|Bq, and the second sends
ps, tq P ΓcpΘ|Aq ‘ ΓcpΘ|Bq to s|AXB ` t|AXB. Note that this is not a full “short” exact sequence:
we are not claiming that the second map is surjective, as it might not be possible to extend a
given section along AXB to a section along A or B, but it should be evident that the sequence is
exact at all other terms. It can also be checked that the maps in these sequences commute with
the natural maps from homology groups to groups of sections, producing a commutative diagram

Hn`1pM |Aq ‘Hn`1pM |Bq Hn`1pM |AXBq HnpM |A YBq HnpM |Aq ‘HnpM |Bq HnpM |AXBq

0 0 ΓcpΘ|AYBq ΓcpΘ|Aq ‘ ΓcpΘ|Bq ΓcpΘ|AXBq
– – JAYB JA‘JB– JAXB–

The five-lemma now implies that JAYB is also an isomorphism.
Step 3 : The second inductive step is to show that if the theorem holds for each set Ai Ă M in

a nested sequence of compact subsets A1 Ą A2 Ą A3 Ą . . ., then it also holds for A8 :“
Ş8
i“1 Ai Ă

M . This requires a direct limit argument. Observe first that the sequence of inclusions

pM,MzA1q ãÑ pM,MzA2q ãÑ pM,MzA3q ãÑ . . . pM,MzA8q
induces a sequence of homomorphisms

H˚pM |A1q Ñ H˚pM |A2q Ñ H˚pM |A3q Ñ . . . Ñ H˚pM |A8q,
so that tH˚pM |Aiqu8

i“1 forms a direct system of Z-graded abelian groups, with H˚pM |A8q as
a target. We claim that the sequence of maps H˚pM |Aiq Ñ H˚pM |A8q satisfies the universal
property so that H˚pM |A8q is in fact the direct limit limÝÑtH˚pM |Aiqu8

i“1. For this, we need to
show that if H is another Z-graded abelian group with a sequence of morphisms Φi : H˚pM |Aiq Ñ
H making the diagram

H˚pM |A1q H˚pM |A2q H˚pM |A3q . . . H˚pM |A8q

H
Φ1

Φ3 Φ8

then the map Φ8 indicated by the dashed arrow exists and is unique. Indeed, we can define
Φ8rcs for any given class rcs P HkpM |A8q as follows: represent rcs by a relative cycle c P CkpMq,
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which means Bc P Ck´1pMzA8q, and note that MzA8 contains a compact subset K that contains
the images of all singular simplices appearing in Bc. Since A8 is compact, we can then find an
open neighborhood U Ă M of A8 that is disjoint from K, and we also have AN Ă U for N P N

sufficiently large. It follows that Bc P Ck´1pMzAN q, so c is also a relative cycle in pM,MzANq
and thus defines a class rcs P HkpM |AN q. We now define Φ8rcs as ΦN rcs after reinterpreting rcs
in this way.

By restricting sections to smaller domains, we also have a sequence of restriction homomor-
phisms

ΓpΘ|Ai
q Ñ ΓpΘ|A2

q Ñ ΓpΘ|A3
q Ñ . . . Ñ ΓpΘ|A8

q,

and we can use a similar trick to identify limÝÑtΓpΘ|Ai
qu8
i“1 with ΓpΘ|A8

q. Indeed, the problem now
is to show that any sequence of homomorphisms ϕi : ΓpΘ|Ai

q Ñ H as in the diagram

ΓpΘ|A1
q ΓpΘ|A2

q ΓpΘ|A3
q . . . ΓpΘ|A8

q

H

ϕ1

ϕ3 ϕ8

gives rise to a unique map ϕ8 : ΓpΘ|A8
q. The key here is the observation that since p : Θ Ñ M

is a covering map, A8 has an open neighborhood U Ă M such that every section A Ñ Θ has a
unique extension over U , which is therefore defined on AN for N P N sufficiently large. The desired
map ϕ8 is thus defined on any s P ΓpΘ|A8

q by extending s to AN and then applying ϕN .
With these preliminaries in place, we can combine both direct systems into a commuting

diagram

HnpM |A1q HnpM |A2q HnpM |A3q . . . HnpM |A8q

ΓpΘ|A1
q ΓpΘ|A2

q ΓpΘ|A3
q . . . ΓpΘ|A8

q,

JA1– JA2– JA3– JA8

so that the sequence of isomorphisms JAi
: HnpM |Aiq Ñ ΓpΘ|Ai

q defines an isomorphism between
the two direct systems, and its limit is therefore an isomorphism between the direct limits. One
can make this precise by composing maps in this diagram so as to understand ΓpΘ|A8

q as a target
of the system tHnpM |Aiqu8

i“1, whose limit map is necessarily JA8
, but since the JAi

are all
invertible, one can similarly understand HnpM |A8q as a target of tΓpΘ|Ai

qu8
i“1 and obtain from

this a limit map ΓpΘ|A8
q Ñ HnpM |A8q that is the inverse of JA8

.
Step 4 : Everything we’ve proved so far applies only to compact subsets A Ă M , but the

third inductive step introduces noncompact subsets by allowing infinite disjoint unions. Let us
call a collection of compact subsets tAα Ă MuαPI separated if they admit a collection of open
neighborhoods tAα Ă Uα Ă MuαPI such that Uα XUβ “ H for all α ‰ β. The claim now is that if
the theorem holds for every Aα in a separated collection of compact subsets, then it also holds for
their union A :“ Ť

αPI Aα. The point of the separation condition is that if we write U :“ Ť
αPI Uα,

then pU ,UzAq –
š
αpUα,UαzAαq, so the excision and additivity axioms give natural isomorphisms

H˚pM |Aq – H˚pU |Aq –
à
α

H˚pUα |Aαq –
à
α

H˚pM |Aαq.
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This already implies HkpM |Aq “ 0 for all k ą n. For degree n, these isomorphisms fit together
into a commutative diagram

HnpM |Aq HnpU |Aq À
αHnpUα |Aαq À

αHnpM |Aαq

ΓcpΘ|Aq ΓcpΘ|Aq À
α ΓcpΘ|Aα

q À
α ΓcpΘ|Aα

q,

–

JA JA

–

À
α JAα

–

–
À

α JAα

–

where the isomorphism
À

α ΓcpΘ|Aα
q Ñ ΓpΘ|Aq sends each

ř
α sα P À

α ΓcpΘ|Aα
q to the unique

section s P ΓpΘ|Aq such that s|Aα
“ sα for every α P I. (Note that s necessarily has compact

support since only finitely many of the summands in
ř
α sα can be nonzero.) This proves that

JA : HnpM |Aq Ñ ΓcpΘ|Aq is an isomorphism.
Step 5 : We claim that the theorem holds for every compact set A Ă M that is contained in a

Euclidean neighborhood. According to Exercise 52.3, any such set is the intersection of a nested
sequence of sets that are each finite unions of convex sets, where we can assume all the convex sets
are contained in the same Euclidean neighborhood. In this case, all intersections of these sets are
also convex, so combining steps 1 and 2 proves that the theorem holds for all the finite unions of
convex sets, and step 3 then establishes it for A.

Step 6 : We extend the theorem to arbitrary compact subsets A Ă M . In light of Exercise 52.3,
this now follows directly from steps 5, 2 and 3, as A is the intersection of a nested sequence of
compact sets that are each finite unions of sets contained in Euclidean neighborhoods. (The fact
that those sets can be assumed convex is no longer relevant, but since any intersection between
them is contained in a Euclidean neighborhood, step 5 now replaces step 1.)

Step 7 : The extension of the theorem to an arbitrary closed A Ă M can now be achieved as
follows. I need to appeal to a slightly nontrivial point-set topological fact about manifolds: every
finite-dimensional topological manifold M has a one-point compactification M˚ that is metrizable.
Recall that the one-point compactification of any space X is defined as the union of X with one
extra pointX˚ :“ XYt8u, where a subset ofX˚ is considered open if it is either an open set inX or
takes the form pXzKqYt8u for some closed and compact set K Ă X . While X˚ is always compact,
it can easily have horrible topological properties unless X is an especially nice space, e.g. X˚ is
Hausdorff if and only if X is both Hausdorff and locally compact (cf. Exercise 7.25 from last
semester’s Topologie I class). The one-point compactification M˚ of a manifold M is not usually a
manifold (the major exception being pRnq˚ – Sn), but it is always a metrizable space. This is easy
to see if you believe the (also nontrivial) theorem that every n-manifold admits a proper topological
embedding into a Euclidean space RN of sufficiently high dimension N . A proof of this is sketched
in [Lee11, p. 116], with several details either left as exercises or outsourced to other references.
Since the embedding M ãÑ RN is proper, it extends to an embedding M˚ ãÑ pRN q˚ – SN , so a
metric on M˚ can be defined as the restriction of a metric on SN .

With this detail in place, let distp , q denote a metric on M˚ and exhaust A by the countable
sequence of subsets

A1 :“
 
x P A

ˇ̌
1 ď distpx,8q ă 8

(
,

A2 :“
 
x P A

ˇ̌
1{2 ď distpx,8q ď 1

(
,

A3 :“
 
x P A

ˇ̌
1{3 ď distpx,8q ď 1{2

(
,

. . .

all of which are intersections of A with closed (and therefore compact) subsets of M˚, so they are
compact, and the theorem holds for each of them by step 6. We can now apply step 4 to conclude
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that the theorem also holds for the noncompact subsets

B :“
8ď

j“1

A2j´1, C :“
8ď

j“1

A2j , B X C “
8ď

j“1

 
x P A

ˇ̌
distpx,8q “ 1{j

(
,

all of which are unions of separated collections of compact sets. We can now conclude from step 2
that the theorem also holds for A “ B Y C. �

Exercise 52.4. Assume M satisfies the hypotheses of Theorem 52.2 and thus has a relative
fundamental class rM s P HnpM, BM ;Rq.

(a) Show that if M and BM are both connected and BM is nonempty, then BM is also R-
orientable, and the connecting homomorphism B˚ : HnpM, BM ;Rq Ñ Hn´1pBM ;Rq in
the long exact sequence of pM, BMq is an isomorphism sending rM s to the fundamental
class rBM s of BM (for a suitable choice of orientation of BM).
Hint: Focus on the case R “ Z. It is easy to prove that B˚ is injective; show that
if it were not surjective, then Hn´1pMq would have torsion, contradicting the result of
Exercise 51.18(a).

(b) Generalize the result of part (a) to prove B˚rM s “ rBM s without assuming BM is con-
nected.
Hint: For any connected component N Ă BM , consider the exact sequence of the triple
pM, BM, BMzNq and notice that Hn´1pBM, BMzNq – Hn´1pNq by excision.

(c) Conclude that for any compact manifold M with boundary and an R-orientation, the
map Hn´1pBM ;Rq Ñ Hn´1pM ;Rq induced by the inclusion BM ãÑ M sends rBM s to 0.
In other words, “the boundary of a compact oriented n-manifold M represents the trivial
homology class in Hn´1pMq.”
Remark: We discussed a similar result in the setting of triangulable manifolds in Lec-
ture 29, but here we are not assuming that any of our manifolds admit triangulations.

53. Poincaré duality

The classical perspective on Poincaré duality is demonstrated by Figure 25. The picture shows
a portion of a closed triangulated manifold M of dimension n “ 2, with the 1-simplices and vertices
of the triangulation depicted in black. We’ve then added a red dot at the barycenter of each n-
simplex and drawn a red line segment connecting the barycenters of any two n-simplices that share
a boundary face. Note that since M is assumed to be a manifold without boundary, every pn´ 1q-
simplex in the triangulation is a boundary face of exactly two n-simplices. As a consequence,
there is a one-to-one correspondence between the pn ´ 1q-simplices in the triangulation and the
red line segments joining the red dots. Moreover, every vertex of the triangulation is contained in
a unique polygon bounded by the red segments. If we think of the red dots as 0-cells, the red line
segments as 1-cells and the polygons bounded by them as 2-cells, they form what is called the dual
cell decomposition of M determined by the original triangulation. We could now write down
two quite different chain complexes to compute the homology of M : let us denote by C∆

˚ pMq the
simplicial chain complex of the original triangulation, and by CCW

˚ pMq the cellular chain complex
for its dual cell complex. Evidently, there is a natural bijection

C∆
k pMq Ñ CCW

n´kpMq,

defined by sending each k-simplex of the triangulation to its dual pn ´ kq-cell. You will notice an
interesting thing, however, if you try to understand what happens to the boundary map under this
bijection: it transforms the boundary map of C∆

˚ pMq into the coboundary map of C˚
CWpMq. Thus
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Figure 25. A triangulation of a surface and its dual cell decomposition.

it can be more properly interpreted as a bijective chain map

C∆
˚ pMq Ñ Cn´˚

CW pMq,

therefore giving rise to an isomorphism HkpMq –Ñ Hn´kpMq for each k “ 0, . . . , n.

Remark 53.1. Did you notice where we used the assumption that M is compact in the
above discussion? The notion of the dual cell decomposition makes sense on any triangulated
manifold, compact or not, so there is still a bijection C∆

k pMq Ñ CCW
n´kpMq, and simplicial and

cellular homology also still make sense in the noncompact case. A problem emerges, however, if
the triangulation is infinite and we try to pay attention to the boundary map by defining a chain
isomorphism C∆

˚ pMq Ñ Cn´˚
CW pMq. If you don’t immediately see why, then keep this question in

mind as you read the rest of this lecture, and we’ll come back to it at the end.

It would be a bit of an effort make the idea of the dual cell decomposition precise and general
enough to prove an actual theorem, and it would then be a theorem that applies only to triangulated
manifolds, which is more restrictive than we would like. The key feature that makes Poincaré dual-
ity possible is not the triangulation—there are many examples of compact n-dimensional polyhedra
X for which HkpXq fl Hn´kpXq. The important detail is rather that we are talking specifically
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about manifolds, e.g. it is the locally Euclidean structure of M in the above example that en-
ables us to identify the regions surrounded by dual 1-cells as 2-cells in bijective correspondence
with the original vertices. Now that we know there is good reason to expect an isomorphism
HkpMq Ñ Hn´kpMq, we observe that a natural candidate for this isomorphism arises naturally
from the previous two topics we discussed in this course: the fundamental class, and the cap prod-
uct, neither of which had anything directly to do with triangulations. Here’s the main theorem in
its standard form.

Theorem 53.2 (Poincaré duality). For any closed n-manifold M with an R-orientation and
corresponding fundamental class rM s P HnpM ;Rq for some commutative ring R with unit, the map

HkpM ;Rq PDÝÑ Hn´kpM ;Rq : ϕ ÞÑ ϕX rM s
is an isomorphism for every k P Z.

Before getting into the proof, let’s pick some low-hanging fruit and state a few corollaries.
Recall that by the universal coefficient theorem, the Betti numbers of a space can be expressed
as ranks of either the homology or the cohomology groups, which are the same in corresponding
degrees. Poincaré duality thus gives a nontrivial relation between them:

Corollary 53.3. For every closed orientable n-manifold M ,

bkpMq “ bn´kpMq
for all k P Z. Moreover, without any orientability assumption, the same relation also holds for the
so-called “Z2 Betti numbers,” i.e.

dimZ2
HkpM ;Z2q “ dimZ2

Hn´kpM ;Z2q
for all k P Z. �

Corollary 53.4. Every closed odd-dimensional manifold M satisfies χpMq “ 0.

Proof. In the oriented case, this follows because bkpMq and bn´kpMq cancel each other in
the alternating sum that defines χpMq.

If M is not orientable but has a cell decomposition, then here are two possible arguments.
First, Proposition 39.10 identifies χpMq with the alternating sum of the numbers of cells, which
does not change if we switch to Z2-coefficients, so χpMq “ ř

kPZp´1qk dimZ2
HkpM ;Z2q “ 0 due

to the Z2 case of Corollary 53.3. Alternatively, one could argue in terms of the orientation double
cover π : ĂM Ñ M , which satisfies χpĂMq “ 2χpMq by Theorem 39.16 but also χpĂMq “ 0 since ĂM
is in this case also a closed n-manifold and is always orientable. (In fact, ĂM is the space of local
orientations of M and thus has a “tautological” orientation.)

Both arguments actually suffice even if M does not have a cell decomposition, due to an
important (but difficult) theorem of [KS69] stating that every compact topological manifold is
homotopy equivalent to a finite CW-complex. In the case of the covering argument, one can use
the lifting theorem to produce a commutative diagram that relates π : ĂM Ñ M via homotopy
equivalences to a similar double cover of CW-complexes, thus proving that χpĂMq “ 2χpMq holds
even for topological manifolds M that are not CW-complexes.85 �

Poincaré duality also provides considerable information about the ring structure of H˚pM ;Rq
as a consequence of the relation xψ Y ϕ, rM sy “ xψ, ϕX rM sy. For each k “ 0, . . . , n, consider the

85Thanks to Levent Kotan for suggesting the argument via the orientation double cover.
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quadratic form

HkpM ;Rq bR H
n´kpM ;Rq QÑ R

ϕ b ψ ÞÑ Qpϕ, ψq :“ xϕ Y ψ, rM sy.
For reasons that we will discuss in the next lecture, this is called the intersection form on M . In
the case R “ Z, Qpϕ, ψq vanishes whenever either ϕ or ψ is torsion, thus it descends to a quadratic
form on the free part H˚

freepMq :“ H˚pMq{torsion,

Q : Hk
freepMq bHn´k

free pMq Ñ Z.

For a general pair of abelian groupsA and B, a bilinear mapQ : AˆB Ñ G (or equivalently a group
homomorphism Q : AbB Ñ G) is called nonsingular if the maps A Ñ HompB,Gq : a ÞÑ Qpa, ¨q
and B Ñ HompA,Gq : b ÞÑ Qp¨, bq are both isomorphisms. There is an obvious analogue of this
definition for R-modules and R-module homomorphisms.

Corollary 53.5. For any closed n-manifold M with a K-orientation and corresponding fun-
damental class rM s P HnpM ;Kq for some field K, the intersection form

Q : HkpM ;Kq bK H
n´kpM ;Kq Ñ K

is nonsingular for every k “ 0, . . . , n, and if M is oriented, Q descends to the free part of H˚pM ;Zq
as a nonsingular quadratic form Hk

freepM ;Zq bHn´k
free pM ;Zq Ñ Z.

Proof. With integer coefficients, we saw in Lecture 47 that the canonical map h : Hn´k
free pMq Ñ

HompH free
n´kpMq,Zq : ϕ ÞÑ xϕ, ¨y is an isomorphism. Since the duality map PD : HkpMq Ñ

Hn´kpMq is also an isomorphism, it and its inverse each map torsion to torsion and thus de-
scend to the free parts as isomorphisms Hk

freepMq – H free
n´kpMq. We can then compose h with the

dualization of PD to form an isomorphism

Hn´k
free pMq Hom

`
H free
n´kpMq,Z

˘
Hom

`
Hk

freepMq,Z
˘

h

–

Φ

–

PD˚

–

To see what this map actually is, we choose ψ P Hn´k
free pMq and ϕ P Hk

freepMq and compute:

Φpψqpϕq “ pPD˚ ˝hpψqqpϕq “ hpψq ˝ PDpϕq “ xψ, ϕX rM sy “ xψ Y ϕ, rM sy “ Qpψ, ϕq,
so this proves the first of two statements required for showing that Q is nonsingular on the free parts
with integer coefficients. But the second required statement is equivalent to this since Qpψ, ϕq “
p´1qkpn´kqQpϕ, ψq. The argument with field coefficients is completely analogous since, in that
case as well, the canonical map h : Hn´kpM ;Kq Ñ HomKpHn´kpM ;Kq,Kq is a vector space
isomorphism. �

Corollary 53.6. If M is a closed oriented n-manifold and ϕ P HkpM ;Zq is a primitive86 non-
torsion element for some k P t0, . . . , nu, then there exists some ψ P Hn´kpM ;Zq with Qpϕ, ψq “ 1.
The same result holds with coefficients in a field K for every ϕ ‰ 0 P HkpM ;Kq if M is K-oriented.

Proof. The primitivity hypothesis means that the projection of ϕ to Hk
freepMq is nontrivial

and generates a subgroup H Ă Hk
freepMq such that Hk

freepMq{H has no torsion, implying that it
is free (see e.g. [Lan02, Chapter I, Theorem 8.4]). It follows that ϕ can be taken as the first
element in a basis of Hk

freepMq, so that there exists a homomorphism Φ : Hk
freepMq Ñ Z satisfying

Φpϕq “ 1. The result then follows from the nonsingularity of Q. In the field case, one can instead
appeal to the fact that every nonzero element in a vector space can be an element of a basis. �

86i.e. ϕ is not mψ for any ψ P HkpM ;Zq and an integer m ě 2
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Exercise 53.7. We can now compute the ring structure of H˚pCPnq. Take the usual cell
decomposition CP

n “ e0 Y e2 Y . . .Y e2n, and for k “ 1, . . . , n, let αk P H2kpCPnq – Z denote the
generator that evaluates to 1 on the generator of H2kpCPnq represented by the 2k-cell.

(a) Use Corollary 53.6 to prove αk Y αn´k “ ˘αn for every k.
(b) Generalize part (a) to show that αk Y αℓ “ ˘αk`ℓ for every k, ℓ P N with k ` ℓ ď n.

Hint: There is a natural inclusion CP
k`ℓ

ãÑ CP
n that is a cellular map. How does it act

on cohomology?

This proves that the ring H˚pCPnq is generated by the single element α :“ α1 P H2pCPnq, subject
only to the relation αn`1 “ 0 since HkpCPnq “ 0 for all k ą 2n. We conclude that there is an
isomorphism of Z-graded rings87

H˚pCPnq – Zrαs
L

pαn`1q, |α| “ 2,

where Zrαs denotes the ring of integer-valued polynomials in one variable α, pαn`1q Ă Zrαs is the
ideal generated by αn`1, and the grading is determined by the condition that the variable α has
degree 2 while all coefficients have degree 0.

(c) Use inclusions CP
n

ãÑ CP
8 to find a graded ring isomorphism H˚pCP8q – Zrαs, where

again |α| “ 2.

Remark 53.8. The computation in Exercise 53.7 fills in the last remaining gap in our proof
from Lecture 45 (see Theorem 45.1) that all maps f : CPn Ñ CPn have fixed points when n is
even.

Exercise 53.9. Compute each of the following cohomology rings:
(a) H˚pRPn;Z2q – Z2rαs{pαn`1q with |α| “ 1.
(b) H˚pRP8;Z2q – Z2rαs with |α| “ 1.

Like the construction of the fundamental class, the proof of Poincaré duality starts by show-
ing that the result is in some sense true “locally,” and then uses a form of induction based on
Mayer-Vietoris sequences and direct limits to piece together local results into a global result. We
therefore need to formulate a more general version of the theorem that can make sense for small
neighborhoods in manifolds, rather than just for an entire closed manifold.

Suppose M is an n-manifold without boundary, not necessarily compact, but endowed with
an R-orientation s P ΓpΘRq. This section does not have compact support if M is noncompact, but
if we choose a compact subset K Ă M , then s|K P ΓpΘR|Kq trivially does have compact support
and therefore corresponds under Theorem 51.14 to a distinguished homology class

rM sK :“ J´1
K psq P HnpM |K;Rq.

Recall from Lecture 50 that there is a relative cap product pairing

X : HkpM,MzK;Rq bR HnpM,MzK;Rq Ñ HnpM ;Rq,
which is well defined in this case because the subsets MzK and H in M trivially form an excisive
couple. We can therefore define a “restricted” duality map by

PDK : HkpM |K;Rq Ñ HnpM ;Rq : ϕ ÞÑ ϕ X rM sK .
Now consider what happens to this map if we replace K by a larger compact subset K 1 Ă M that
contains K: first, since rM sK P HnpM |K;Rq and rM sK1 P HnpM |K 1;Rq are determined by the
same globally-defined section s P ΓpΘRq, the map induced by the inclusion

i : pM,MzK 1q ãÑ pM,MzKq
87A Z-graded ring is a ring R that is split into a direct sum R “

À
nPZRn such that any a P Rk and b P Rℓ

have product ab P Rk`ℓ.
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satisfies
i˚rM sK1 “ rM sK .

The naturality property of the cap product (i.e. Theorem 50.6(1)) then implies that for all ϕ P
HkpM |K;Rq,

i˚ pi˚ϕ X rM sK1q “ PDK1 pi˚ϕq “ ϕX rM sK “ PDKpϕq,
where “i˚” has disappeared in the second expression since PDK1 pi˚ϕq is an absolute homology class
and i :M Ñ M is just the identity map. The result is a commutative diagram

(53.1)
HkpM |K;Rq HkpM |K 1;Rq

Hn´kpM ;Rq,

i˚

PDK
PDK1

which means that we can view the maps PDK : HkpM |K;Rq Ñ Hn´kpM ;Rq as defining a target
of a direct system of abelian groups tHkpM |K;RquK over the directed set of compact subsets
K Ă M , with the partial order defined by inclusion. By the universal property of the direct limit,
there is then a uniquely determined homomorphism

PD : limÝÑ
 
HkpM |K;Rq

(
K

Ñ Hn´kpM ;Rq.

Definition 53.10. For any space X , we define the compactly supported cohomology of
X as the direct limit

H˚
c pX ;Gq :“ limÝÑ tH˚pX |K;GquK ,

where K ranges over the set of all compact subsets of X , ordered by inclusion and forming a direct
system via the mapsH˚pX |K;Gq Ñ H˚pX |K 1;Gq induced by inclusions pX,XzK 1q ãÑ pX,XzKq
whenever K Ă K 1.

With this definition in place, the previous discussion produces natural homomorphisms

PD : Hk
c pM ;Rq Ñ Hn´kpM ;Rq

for every k P Z whenever M is a (possibly noncompact) manifold of dimension n with a fixed
R-orientation.

Exercise 53.11. Show that if M is compact, there is a natural isomorphism H˚
c pM ;Rq –

H˚pM ;Rq which identifies the map PD : Hk
c pM ;Rq Ñ Hn´kpM ;Rq defined above with the usual

map ϕ ÞÑ ϕ X rM s.

Exercise 53.12. In the following, suppose G is any abelian group.

(a) Prove that Hn
c pRn;Gq – G and Hk

c pRn;Gq “ 0 for all k ‰ n.
(b) Construct a canonical isomorphism between H˚

c pX ;Gq and the homology of the subcom-
plex C˚

c pX ;Gq Ă C˚pX ;Gq consisting of every cochain ϕ : CkpXq Ñ G that vanishes
on all simplices with images outside some compact subset K Ă X . (Note that K may
depend on ϕ).

(c) Recall that a continuous map f : X Ñ Y is called proper if for every compact set
K Ă Y , f´1pKq Ă X is also compact. Show that proper maps f : X Ñ Y induce
homomorphisms f˚ : H˚

c pY ;Gq Ñ H˚
c pX ;Gq, making H˚

c p¨;Gq into a contravariant
functor on the category of topological spaces with morphisms defined as proper maps.

(d) Deduce from part (c) thatH˚
c p¨;Gq is a topological invariant, i.e. H˚

c pX ;Gq andH˚
c pY ;Gq

are isomorphic whenever X and Y are homeomorphic. Give an example showing that
this need not be true if X and Y are only homotopy equivalent.
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(e) In contrast to part (c), show that H˚
c p¨;Gq does not define a functor on the usual category

of topological spaces with morphisms defined to be continuous (but not necessarily proper)
maps.
Hint: Think about maps between Rn and the one-point space.

Here is the noncompact version of Poincaré duality, which has the compact version as a corol-
lary in light of Exercise 53.11.

Theorem 53.13. For every R-oriented topological n-manifold M and every k P Z, the map

PD : Hk
c pM ;Rq Ñ Hn´kpM ;Rq,

defined as the direct limit of the maps PDK : HkpM |K;Rq Ñ Hn´kpM ;Rq : ϕ ÞÑ ϕ X rM sK for
all compact subsets K Ă M , is an isomorphism.

The proof will proceed by a form of induction similar to the construction of the fundamental
class in the previous lecture. We start with a purely local result to begin the induction.

Notation. Since the coefficient ring R plays no significant role in the proof of Theorem 53.13,
we shall omit it from the notation wherever possible for the rest of this lecture.

Lemma 53.14. For either choice of orientation of Rn, the map PD : Hk
c pRnq Ñ Hn´kpRnq is

an isomorphism for every k P Z.

Proof. There is an obvious cofinal family88 of compact subsets to use in computing Hk
c pRnq “

limÝÑtHkpRn |KquK : every compact subset K Ă Rn is contained in the disk Dnr of sufficiently large
radius r ą 0, and the natural maps HkpRn |Dnr q Ñ HkpRn |Dnr1 q are isomorphisms for all r1 ą r,
thus

Hk
c pRnq – HkpRn |Dnq –

#
R if k “ n,

0 if k ‰ n.

Similarly, Hn´kpRnq is R if k “ n and vanishes otherwise, so it suffices to prove that for any
chosen pair of generators ϕ P HnpRn |Dnq – R and rRnsDn P HnpRn |Dnq – R, ϕ X rRnsDn

is also a generator of H0pRnq – R. This is true since the universal coefficient theorem gives
an isomorphism HnpRn |Dnq – HomRpHnpRn |Dnq, Rq by evaluation of cohomology classes on
homology classes, so that xϕ, ¨y generates HomRpHnpRn |Dnq, Rq and thus

x1, ϕX rRnsDny “ xϕ, rRnsDny P R
is a generator of R. �

The inductive step unsurprisingly requires Mayer-Vietoris sequences. To prepare for this,
we first need to understand the functoriality of H˚

c slightly better. Exercise 53.12 reveals that
continuous maps f : X Ñ Y do not always induce homomorphisms f˚ : H˚

c pY q Ñ H˚
c pXq unless

an additional condition is imposed, i.e. f : X Ñ Y needs to be proper. We will be especially
interested in inclusion maps A ãÑ X for subspaces A Ă X , and these are typically not proper,
e.g. if A is open but not closed, which will be the main case of interest. In this situation, however,
there is a natural map going the other direction, fromH˚

c pAq to H˚
c pXq. This follows from excision:

if X is a Hausdorff space with subsets K Ă A Ă X such that A is open and K is compact, then
XzA is a closed subset contained in the open set XzK, hence the inclusion pA,AzKq ãÑ pX,XzKq
is an excision map and induces an isomorphism

H˚pX |Kq –ÝÑ H˚pA |Kq.

88In a directed set pI,ăq, a subset S Ă I is called a cofinal family if for every α P I, there exists a β P S such
that α ă β.



374 SECOND SEMESTER (TOPOLOGIE II)

Now for any compact set L Ă X that contains K, composing the inverse of this isomorphism with
the natural map H˚pXzKq Ñ H˚pXzLq induced by the inclusion pX,XzLq ãÑ pX,XzKq produces
a map H˚pA |Kq Ñ H˚pX |Lq:

H˚pX |Kq

H˚pA |Kq H˚pX |Lq.
–

If we then compose this with the natural map of H˚pX |Lq to the direct limit H˚
c pXq, it produces

a map H˚pA |Kq Ñ H˚
c pXq for every compact K Ă A, and one can easily check that this map is

independent of the choice of compact subset L Ă X containing K; moreover, if K 1 Ă A is another
compact set containing K, then the diagram

H˚pA |Kq H˚pA |K 1q

H˚
c pXq

commutes. This makes H˚
c pXq a target of the direct system tH˚pA |KquK , so that there is a

uniquely determined limit map
H˚
c pAq Ñ H˚

c pXq.
We will refer to this always as the natural map induced by the inclusion A ãÑ X , and it is important
to understand that it is only well defined when A Ă X is open.

Lemma 53.15. If M is an R-oriented n-manifold and A Ă M is an open subset, then for every
k P Z, the natural maps on H˚

c and H˚ induced by the inclusion A ãÑ M fit into a commutative
diagram of the form

Hk
c pAq Hk

c pMq

Hn´kpAq Hn´kpMq
PD PD

Proof. Given a compact set K Ă A, pick any compact set L Ă M that contains K, and
denote the obvious inclusions

A
i

ãÑ M, pA,AzKq i
ãÑ pM,MzKq, pM,MzLq j

ãÑ pM,MzKq.
We then claim that the diagram

HkpM |Kq

HkpA |Kq HkpM |Lq

Hn´kpAq Hn´kpMq

i˚

– j˚

PDK PDL

i˚

commutes. To see this, observe that there is another map we could add to this diagram and
sensibly denote by PDK , namely HkpM |Kq Ñ Hn´kpMq : ϕ ÞÑ ϕX rM sK; let’s call this one PD1

K

to avoid confusion, and note that by (53.1), it satisfies

PDL ˝j˚ “ PD1
K .
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Viewing i as a map of pairs, we also have i˚rAsK “ rM sK , and naturality of the cap product then
implies that for all ϕ P HkpM |Kq,

i˚ ˝ PDK ˝i˚ϕ “ i˚ pi˚ϕ X rAsKq “ ϕ X i˚rAsK “ ϕ X rM sK “ PD1
Kpϕq,

thus proving the claim. This implies in particular that for the natural maps H˚pA |Kq Ñ
H˚pM |Lq that determine H˚

c pAq Ñ H˚
c pMq via the direct limit, the diagram

HkpA |Kq HkpM |Lq

Hn´kpAq Hn´kpMq
PDK PDL

always commutes. The rest is essentially abstract nonsense: if we let Ψ : Hk
c pAq Ñ Hn´kpMq

denote the difference between the maps defined via the two possible paths in the diagram of the
lemma, we can now view Ψ as the limiting map for a family of maps HkpA |Kq Ñ Hn´kpMq over
the directed set of compact subsets K Ă A, and the diagram above forces all these maps to vanish,
hence so does Ψ. �

Now suppose M “ AYB, where A,B Ă M are open subsets (and therefore also n-manifolds).
The Mayer-Vietoris sequence we need forH˚

c arises from the natural maps induced by the inclusions
of AXB into A and B and of each of these into M . Concretely, given any compact subsets K Ă A

and L Ă B, there are natural inclusions of pairs

pM,MzKq

pM,MzpK Y Lqq pM,MzpK X Lqq

pM,MzLq

which give rise to a relative Mayer-Vietoris sequence in cohomology. The following diagram com-
bines this sequence with the natural excision isomorphisms and localized duality maps:
(53.2)

. . . HkpM |K X Lq HkpM |Kq ‘HkpM |Lq HkpM |K Y Lq Hk`1pM |K X Lq . . .

. . . HkpA XB |K X Lq HkpA |Kq ‘HkpB |Lq HkpM |K Y Lq Hk`1pA XB |K X Lq . . .

. . . Hn´kpA XBq Hn´kpAq ‘Hn´kpBq Hn´kpMq Hn´k´1pA XBq . . .

– – –

PDKXL PDK ‘ PDL PDKYL PDKXL

We take the horizontal maps in the bottom row to be the usual maps in the Mayer-Vietoris sequence
for H˚pAYBq, and if the signs are chosen appropriately,89 then the same arguments as in the proof
of Lemma 53.15 imply that this diagram commutes, with the possible exception of the bottom right
square involving connecting homomorphisms. It turns out that this square also commutes, and

89Recall that in the Mayer-Vietoris sequence for H˚pAYBq, there needs to be a minus sign in the definition of
either of the maps HkpAXBq Ñ HkpAq ‘HkpBq or HkpAq ‘HkpBq Ñ HkpAYBq. For most purposes it does not
matter which term gets the minus sign, but since we are now relating two Mayer-Vietoris sequences to each other,
the signs in both need to be consistent.
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the proof is not especially deep, but it is a tedious chain-level calculation involving barycentric
subdivision, so we will skip it and simply refer to [Hat02, pp. 246–247]. The result is:

Lemma 53.16. The diagram in (53.2) commutes, and passing to the direct limit over all choices
of compact subsets K Ă A and L Ă B then produces a commutative diagram

(53.3)
. . . Hk

c pA XBq Hk
c pAq ‘Hk

c pBq Hk
c pMq Hk`1

c pA XBq . . .

. . . Hn´kpA XBq Hn´kpAq ‘Hn´kpBq Hn´kpMq Hn´k´1pA XBq . . .

PD PD ‘ PD PD PD

in which both rows are exact.

Sketch of the proof. Aside from the tedious verification that (53.2) commutes, the claim
that the top row of (53.3) is exact is slightly nontrivial: this follows from the general fact that
direct limits of exact sequences are always exact. Indeed, we proved in Proposition 39.1 that the
functor H˚ : Chain Ñ AbZ is continuous under direct limits, and an exact sequence is nothing other
than a chain complex with trivial homology. (Recall from Lecture 44 however that the analogous
statement for inverse limits is false, so this detail should not be taken for granted.) �

Applying the five-lemma now gives:

Corollary 53.17. If the duality map is an isomorphism on A, B and AX B, then it is also
an isomorphism on M “ A YB. �

Open convex sets in Euclidean neighborhoods are homeomorphic to Rn, and so is the inter-
section of any two such sets in the same Euclidean neighborhood, so Lemmas 53.14 and 53.16
are enough to prove that PD is an isomorphism on any finite union of open convex sets in a sin-
gle Euclidean neighborhood. Now observe that any open set in a Euclidean neighborhood is the
union of a countable collection of convex open sets: indeed, just take any covering collection of
open balls and reduce it to a countable subcover. Something similar is true in fact for any mani-
fold M : since manifolds are second countable, every open cover of M has a countable subcover (see
Lemma 5.25), so one can start with any covering by convex sets in Euclidean neighborhoods and
reduce to a countable subcover. Since these coverings consist of countable collections V1,V2,V3, . . .,
one can also arrange them into nested sequences of open subsets

U1 :“ V1 Ă U2 :“ V1 Y V2 Ă U3 :“ V1 Y V2 Y V3 Ă . . .

whose unions cover everything. In other words, every manifold is the union of a nested sequence
of open subsets that are each finite unions of convex sets. We therefore need a lemma for passing
from a nested sequence of open subsets to its union.

Lemma 53.18. Suppose U1 Ă U2 Ă U3 Ă . . . Ă M is a nested sequence of open subsets of an
R-oriented n-manifold M such that

Ť8
i“1 Ui “ M . If the duality map is an isomorphism on Ui for

every i P N, then it is also an isomorphism on M .

Proof. The idea is to present Hn´kpMq and Hk
c pMq as direct limits of the sequences of

groups Hn´kpUiq and Hk
c pUiq respectively. In the former case we already know how to do this:

it is easy to check that the direct limit of the spaces tUiu8
i“1 with respect to inclusion is M , and

since every compact subset of M must be contained in Ui for i sufficiently large, Theorem 38.20
provides a natural isomorphism

limÝÑtH˚pUiqu8
i“1

–ÝÑ H˚

`
limÝÑtUiu8

i“1

˘
“ H˚pMq.
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For the cohomology, the fact that every Ui is open in Uj for j ą i and also open in M gives rise to
natural maps

H˚
c pU1q Ñ H˚

c pU2q Ñ H˚
c pU3q Ñ . . . Ñ H˚

c pMq,
making tH˚

c pUiqu8
i“1 a direct system, and we claim that H˚

c pMq is its direct limit. This can proved
by establishing the universal property: if we have a sequence of morphisms fi : H˚

c pUiq Ñ A to
some other Z-graded abelian group A such that the diagram

H˚
c pU1q H˚

c pU2q H˚
c pU3q . . . H˚

c pMq

A

f1

f3 f8

commutes, then we need to show that the map f8 in this diagram exists and is unique. To
define f8pϕq for some ϕ P Hk

c pMq, observe that ϕ is necessarily in the image of the natural map
HkpM |Kq Ñ Hk

c pMq for some compact set K Ă M , and since K is compact, it must be contained
in UN for N P N sufficiently large. Excision then allows us to regard ϕ as an element of HkpUN |Kq,
which therefore represents some element of Hk

c pUN q, so we define f8pϕq by applying fN to this
element. Proving that this is independent of choices is now a routine matter of writing down
diagrams to check that they commute, so we shall leave it as an exercise.

By Lemma 53.15, we now obtain a commutative diagram

(53.4)
Hk
c pU1q Hk

c pU2q Hk
c pU3q . . .

Hn´kpU1q Hn´kpU2q Hn´kpU3q . . .

PD PD PD

in which the vertical maps are all isomorphisms, thus it defines an isomorphism between the two
direct systems. These therefore have a limiting map which is also an isomorphism, and one can
check that the limiting map is PD:

limÝÑ
 
Hk
c pUiq

(8

i“1
Hk
c pMq Hn´kpMq limÝÑ tHn´kpUiqu8

i“1 .
PD

–

�

Proof of Theorem 53.13. Lemmas 53.14 and 53.16 prove the theorem for all finite unions
of convex open sets Rn, and feeding this into Lemma 53.18 then establishes it for all open subsets
of Rn. In a manifold M , the intersection of two open sets contained in Euclidean neighborhoods is
also contained in a Euclidean neighborhood, so another application of Lemma 53.16 now proves the
theorem for all finite unions of open subsets in Euclidean neighborhoods, and we can then present
M is a nested union of such subsets and establish the theorem for M via a second application of
Lemma 53.18. �

Exercise 53.19. Assume M is a compact R-oriented n-manifold with boundary and rM s P
HnpM, BM ;Rq is the resulting relative fundamental class. The relative cap product with rM s then
gives rise to two natural maps

(53.5) PD : HkpM, BM ;Rq Ñ Hn´kpM ;Rq,

(53.6) PD : HkpM ;Rq Ñ Hn´kpM, BM ;Rq,
both defined by PDpϕq “ ϕ X rM s. The theorem that both are isomorphisms is sometimes called
Lefschetz duality.
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(a) Find a cofinal family of compact subsets A Ă M̊ such that the natural maps in the
diagram

H˚pM̊ |A;Rq ÐÝ H˚pM |A;Rq ÝÑ H˚pM, BM ;Rq
are isomorphisms. Use this to find a natural isomorphism (cf. Exercise 38.9)

H˚
c pM ;Rq – H˚pM, BM,Rq,

and deduce via Theorem 53.13 that (53.5) is an isomorphism.
(b) Show that the long exact sequenes of the pair pM, BMq in homology and cohomology fit

together into a commutative diagram of the form

. . . HkpM, BM ;Rq HkpM ;Rq HkpBM ;Rq Hk`1pM, BM ;Rq . . .

. . . Hn´kpM ;Rq Hn´kpM, BM ;Rq Hn´k´1pBM ;Rq Hn´k´1pM ;Rq . . . ,

j˚

¨XrMs

i˚

¨XrMs

δ˚

¨XrBMs ¨XrMs

j˚ B˚ i˚

where i : BM ãÑ M and j : pM,Hq ãÑ pM, BMq denote the usual inclusions.
Hint: Work directly with chains and cochains. It helps to know that if c P CnpM ;Rq
is a relative n-cycle representing rM s P HnpM, BM ;Rq, then the pn ´ 1q-cycle Bc P
Cn´1pBM ;Rq represents rBM s P Hn´1pBM ;Rq; see Exercise 52.4.

(c) Deduce from the diagram in part (b) that the map in (53.6) is also an isomorphism.
(d) If M has a triangulation, interpret the isomorphisms (53.5) and (53.6) in terms of the

dual cell decomposition.

Remark 53.20. Here is the promised addendum to Remark 53.1. When M is compact and
has an oriented triangulation, Ck∆pMq has an obvious identification with the free abelian group
generated by all the k-simplices in the triangulation: indeed, if we fix an orientation on each k-
simplex and call KkpMq the resulting set of oriented k-simplices so that C∆

k pMq “
À

σPKkpMq Z,
then the dual elements ϕσ : C∆

k pMq Ñ Z defined on generators τ P KkpMq by

ϕσpτq :“
#
1 if τ “ σ,

0 if τ ‰ σ

form a basis for Ck∆pMq. In this case, we obtain a chain isomorphism

Ck∆pMq Ñ CCW
n´kpMq

by sending each of the k-cochains ϕσ to the pn´ kq-cell dual to σ, and the isomorphism HkpMq –
Hn´kpMq follows. The trouble if M is not compact is that C∆

k pMq is now an infinitely-generated
free abelian group, so its dual Ck∆pMq is not isomorphic to it, but is actually much larger: the
cochains ϕσ do not form a basis for Ck∆pMq since they only span the subgroup of homomorphisms
C∆
k pMq Ñ Z that are nonzero on finitely many simplices. As a consequence, Ck∆pMq and CCW

n´kpMq
are not isomorphic, but now that you’ve seen how Poincaré duality works for singular homology
on noncompact manifolds, you may be able to guess how to fix this: the cochains ϕσ do span a
subcomplex of C˚

∆pMq, whose homology is the simplicial version of H˚
c pMq.

54. The intersection product

Today’s topic is an addendum to Poincaré duality: I want to describe the natural product
structure on homology that arises from the combination of Poincaré duality with the cup product.
Unlike the cup product, the product on H˚pXq will not be defined for arbitrary spaces X , but
makes sense only when Poincaré duality holds, i.e. when X is a closed manifold with an orientation
over the chosen coefficient ring. This is a bit restrictive, but the restriction pays off: in fact, if
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we restrict further and assume X is a smooth manifold, then the intersection product provides the
nicest possible geometric interpretation of the cup product, namely as something that measures
(in homological terms) the intersection between submanifolds.

Our standing assumptions throughout this lecture are as follows: M is a closed, connected and
R-oriented smooth manifold of dimension n, where the coefficient ring R will always be either Z,
Z2, Q or R. One can allow more general choices for R, but these are the main ones of interest.
The assumption of an R-orientation actually just means that M is oriented if R is Z, Q or R,
and in the case R “ Z2 it is a vacuous assumption. The smoothness assumption can also be
relaxed somewhat, but it is the quickest way to achieve the conditions that we will actually need
at various points: namely that suitable intersections A XB between two submanifolds A,B Ă M

are also submanifolds (of the “correct” dimension), and that neighborhoods of submanifolds can
be identified with certain vector bundles (the tubular neighborhood theorem). For this reason,
the present lecture will assume some knowledge of the basic theory of smooth manifolds and their
tangent spaces.

Definition 54.1. The intersection product on M associates to each pair of integers k, ℓ “
0, . . . , n a bilinear map

Hn´kpM ;Rq bR Hn´ℓpM ;Rq Ñ Hn´pk`ℓqpM ;Rq : A bB ÞÑ A ¨B
uniquely defined by the condition

PDpϕq ¨ PDpψq “ PDpψ Y ϕq,
for ϕ P HkpM ;Rq and ψ P HℓpM ;Rq, where PD : HmpM ;Rq Ñ Hn´mpM ;Rq denotes the Poincaré
duality isomorphism. In the case k ` ℓ “ n, we use the canonical isomorphism H0pM ;Rq –Ñ R :

c ÞÑ x1, cy to regard A ¨ B as a number in R, the intersection number between A and B,

Hn´kpM ;Rq bR HkpM ;Rq Ñ R : A bB ÞÑ A ¨B.
The intersection number is equivalent to what we called the intersection form Q : HkpM ;RqbR

Hn´kpM ;Rq Ñ R in the previous lecture: if ϕ P HkpM ;Rq and ψ P Hn´kpM ;Rq have Poincaré
dual classes A :“ PDpϕq P Hn´kpM ;Rq and B :“ PDpψq P HkpM ;Rq, then a precise relation is
given by

A ¨B “ x1, A ¨By “ x1,PDpψ Y ϕqy
“ x1, pψ Y ϕq X rM sy “ x1, ψ X pϕ X rM sqy “ xψ, ϕX rM sy
“ xψ Y ϕ, rM sy “ Qpψ, ϕq.

(54.1)

Corollary 53.5 therefore implies:

Corollary 54.2. If M is a closed, connected and oriented n-manifold, the intersection number
defines a nonsingular bilinear form

H free
n´kpMq bH free

k pMq Ñ Z : A bB ÞÑ A ¨B,
for every k “ 0, . . . , n, so in particular, for every primitive non-torsion element A P Hn´kpMq
there exists a class B P HkpMq with A ¨ B “ 1. If M is instead assumed to be orientable over a
field K, then the intersection number similarly defines a nonsingular K-bilinear form

Hn´kpM ;Kq bK HkpM ;Kq Ñ K.

�

We can also extract from the end of the second line of (54.1) the following useful formula: for
every ϕ P HkpM ;Rq and A P HkpM ;Rq,

xϕ,Ay “ A ¨ PDpϕq.
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Once we have understood how to interpret the intersection product geometrically, this formula will
yield some intuitive insight into the isomorphism PD : HkpM ;Rq Ñ Hn´kpM ;Rq, i.e. it transforms
the natural evaluation of cohomology classes on homology classes into the operation of counting
intersections between homology classes. In many situations, this can be used to compute Poincaré
dual classes explicitly.

To understand what A ¨B means in terms of “counting intersections,” we consider the following
scenario: suppose M has a smooth structure and A and B are closed smooth submanifolds of M
with dimensions n´ k and n´ ℓ respectively, i.e. their codimensions are k and ℓ. We also assume
that A and B carry R-orientations, in which case they have well-defined fundamental classes
rAs P Hn´kpA;Rq and rBs P Hn´ℓpB;Rq, and we shall use the same notation for the classes in
H˚pM ;Rq obtained by feeding these into the maps induced by the inclusions A,B ãÑ M , that is,

rAs P Hn´kpM ;Rq, rBs P Hn´ℓpM ;Rq.

Note that in practice, the orientation assumption just means that A and B are both oriented if the
coefficient ring R is chosen from among Z, Q and R, whereas there is no orientation assumption
at all if we use R “ Z2.

We now need a few basic notions from differential topology. The first is the smooth version
of an orientation, which is simpler than what we have defined for topological manifolds. For our
purposes, it is best to express this in terms of tangent spaces: since M has a smooth structure,
there is a tangent space TxM associated to every point x P M , which is a real vector space of
dimension n. In general, an orientation of an n-dimensional vector space V is defined to be an
equivalence class of bases of V , where two bases are equivalent if and only if one can be deformed
to the other through a continuous family of bases. There are always two equivalence classes, due
to the fact that the group GLpn,Rq has two connected components, distinguished by the sign of
the determinant: we call the bases in the preferred equivalence class positively oriented and all
others negatively oriented. An orientation of the smooth manifold M can then be defined as
a choice of orientation for every tangent space TxM that varies continuously with respect to x.
To make this precise, we would need to define the appropriate topology on the tangent bundle
TM “ Ť

xPM TxM and discuss what it means for a vector field to be continuous, but it should at
least be intuitively clear what is meant, and since this is only meant as a survey, we’ll leave it at
that. One can check that this notion of orientation is equivalent to the various other notions of
orientation that we’ve seen before, i.e. in terms of local homology groups or orientation-preserving
coordinate transformations.

An important fact about tangent spaces is that if A Ă M is a smooth submanifold, then
each of its tangent spaces TxA is naturally a linear subspace of TxM . This is enough background
information to define the important notion of transversality.

Definition 54.3. We say that two smooth submanifolds A,B Ă M are transverse and write
“A&B” if for every x P AXB,

TxA ` TxB “ TxM.

It is an easy exercise in linear algebra to show that if the condition TxA ` TxB “ TxM holds
where TxA Ă TxM and TxB Ă TxM have codimensions k and ℓ respectively, then TxA X TxB Ă
TxM is a subspace with codimension k ` ℓ. The following nonlinear version of this observation is
a standard application of the implicit function theorem.

Proposition 54.4. If A,B Ă M are closed smooth submanifolds of codimensions k and ℓ

respectively and are transverse to each other, then AXB Ă M is also a closed smooth submanifold,
with codimension k ` ℓ. �
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We can also add orientations to this picture. Suppose V,W Ă Rn are two oriented linear
subspaces of codimensions k and ℓ such that V `W “ Rn, so V XW has codimension k` ℓ. Define
the orientation of Rn so that the standard basis pe1, . . . , enq is considered positively oriented. We
can then define an orientation of V XW as follows. If either of V or W is contained in the other,
then their intersection is the smaller subspace and thus already has an orientation, so assume this
is not the case. Then given a basis pX1, . . . , Xn´pk`ℓqq of V X W , it is always possible to choose
additional vectors Y1, . . . , Yℓ P V and Z1, . . . , Zk P W such that the ordered tuples

pX1, . . . , Xn´pk`ℓq, Y1, . . . , Yℓq in V , pX1, . . . , Xn´pk`ℓq, Z1, . . . , Zkq in W

both form positively oriented bases, and

pX1, . . . , Xn´pk`ℓq, Y1, . . . , Yℓ, Z1, . . . , Zkq
is then a basis of Rn. We define the orientation of V XW such that pX1, . . . , Xn´pk`ℓqq is positively
oriented if and only if this basis of Rn is positively oriented. One can check that the only choices
this definition depends on are the orientations of V , W and Rn, plus the choice to write V in front
of W instead of vice versa. Doing the same thing with the tangent spaces at all points x P A XB

of a transverse intersection gives:

Proposition 54.5. In the setting of Proposition 54.4, if A, B and M are all oriented, then
A XB inherits from this data a natural orientation. �

Remark 54.6. It should be emphasized that according to the definition above, the orientation
of A XB may be different from that of B XA, i.e. they are the same submanifold, but the choice
to write A in front of B or vice versa may determine different orientations. It is an easy exercise to
show that the orientations differ if and only if the codimensions of A and B are both odd. (This
should remind you of a graded commutativity relation—there is good reason for that!)

We should add a word about the case k ` ℓ “ n, which does not quite fit into the above
discussion since we have not properly defined what an orientation of a 0-dimensional vector space
should mean. The definition is consistent with the notion that there should always be exactly two
choices of orientation: if dimV “ 0, we define an orientation of V to mean a choice of sign ˘1. To
see that this is a sensible definition, consider the situation where V,W Ă Rn are transverse linear
subspaces of dimensions k and n´k, which means V ‘W “ Rn, and V XW is thus a 0-dimensional
subspace. There are exactly two possibilities: choosing positively oriented bases pX1, . . . , Xkq of
V and pY1, . . . , Yn´kq of W , the basis

pX1, . . . , Xk, Y1, . . . , Yn´kq
of Rn is either positively or negatively oriented, and we define the orientation of V XW to be `1 or
´1 accordingly. Applying this idea to tangent spaces, the intersection AXB between two transverse
oriented closed submanifolds A,B Ă M of complementary dimensions dimA ` dimB “ dimM is
simply a finite set of points x P A XB with attached signs

ǫpxq “ ˘1,

determined as described above from the orientations of the complementary tangent spaces TxA ‘
TxB “ TxM . You should take a moment to convince yourself that this notion of the orientation of
a 0-manifold is consistent with the definition we already had for topological 0-manifolds: indeed,
if M is a discrete set, then each of the local homology groups H0pM,Mztxu;Zq is canonically
isomorphic to H0ptptu;Zq “ Z, so a local orientation is a choice of generator of the group Z,
i.e. either `1 or ´1.

We can now state the main theorem of this lecture.



382 SECOND SEMESTER (TOPOLOGIE II)

Theorem 54.7. Assume M is a closed, connected, smooth and R-oriented manifold of di-
mension n, and A,B Ă M are closed, smooth, R-oriented submanifolds of codimensions k and ℓ

respectively, such that A&B. Then for the induced R-orientation on AXB from Proposition 54.5,

rAs ¨ rBs “ rA XBs.
As usual, the case k ` ℓ “ n deserves special comment. If A and B are oriented in this case,

A X B is a finite set of points x with attached signs ǫpxq “ ˘1, and since M is connected, the
canonical isomorphism H0pM ;Zq “ Z identifies rAXBs with the integer

rAs ¨ rBs “
ÿ

xPAXB

ǫpxq P Z.

The right hand side of this expression is sometimes called the algebraic (or signed) count of trans-
verse intersections between A and B.

Exercise 54.8. Draw some examples of pairs of transversely intersecting closed oriented 1-
dimensional submanifolds A,B Ă S2, and convince yourself that the signed count of intersections
between them will always be 0. (Indeed, this must be true for at least two reasons: first, since
H1pS2q “ 0, both submanifolds represent the trivial homology class and it follows that rAs¨rBs “ 0.
Alternatively, if you believe the implication of Theorem 54.7 that the signed count of intersections
between A and B only depends on their homology classes, then you can easily adjust A or B
by a homotopy (i.e. contracting A so that it lies in an arbitrarily small neighborhood) so that
A XB “ H.)

Example 54.9. Figure 26 shows a closed, connected and orientable surface Σ with four oriented
1-dimensional submanifolds α, β, γ, δ Ă Σ, or equivalently, loops S1 ãÑ Σ. Since α bounds a disk,
it is clearly nullhomotopic, and therefore also nullhomologous, i.e. rαs “ 0 P H1pΣq. One can show
by computations of π1pΣq that β is not nullhomotopic, but it clearly is nullhomologous: this follows
from the observation that β splits Σ into two connected components, a pair of compact oriented
surfaces Σ˘ with boundary BΣ˘ “ β such that Σ “ Σ` YβΣ´. If we factor the inclusion i : β ãÑ Σ

through the inclusions β ãÑ Σ` and Σ` ãÑ Σ, we notice that the induced map H1pβq Ñ H1pΣq is
zero because the map H1pβq Ñ H1pΣ`q is zero (see Exercise 52.4(c)),

H1pβq H1pΣ`q H1pΣq,0

i˚

hence i˚rβs “ 0. The case of γ Ă Σ is less obvious: it does not split Σ in two pieces, as Σzγ is
connected, thus it is hard to imagine a 2-chain in Σ that would have γ as its boundary, but this
on its own is not a proof that no such chain exists. The intersection product, however, provides a
clear criterion showing that rγs P H1pΣq cannot be zero: the reason is that there is another loop,
δ Ă Σ, which intersects γ exactly once transversely, hence their intersection product must satisfy

rγs ¨ rδs “ ˘1.

This proves that both of the classes rγs, rδs P H1pΣq are not only nontrivial but also primitive.

The nonseparating loops in Example 54.9 admit the following interesting generalization. If M
is an n-manifold, a submanifold Σ Ă M is called a hypersurface if dimΣ “ n ´ 1. Assuming M
is connected, we say that Σ Ă M separates M if MzΣ is disconnected.

Theorem 54.10. Suppose M is a closed, connected and R-oriented smooth n-manifold con-
taining a closed, connected and R-oriented smooth hypersurface Σ Ă M . Then the homology class
rΣs P Hn´1pM ;Rq is trivial if and only if Σ separates M .
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α β

γ

δ

Figure 26. The surface and 1-dimensional submanifolds discussed in Example 54.9.

Proof. If Σ separates M then we can write M “ M` YΣ M´ where M˘ are two compact
R-oriented n-manifolds with boundary BM˘ “ Σ, so the same argument as in Example 54.9 implies
that rΣs “ 0. On the other hand, if Σ does not separate M , then MzΣ is connected, so we can fix
a point z P Σ and two nearby points z˘ P MzΣ that lie in a common Euclidean neighborhood with
z identifying Σ with Rn´1 ˆ t0u Ă Rn,90 but on opposite sides of Σ, i.e. the nth coordinates of z`

and z´ have opposite signs. We can then find a smooth path γ joining z` to z´ in MzΣ, and then
complete it with a path in the Euclidean neighborhood that passes through Σ once, producing (as
in Figure 26) a smooth loop γ Ă M that intersects Σ exactly once and transversely. It follows that

rΣs ¨ rγs “ ˘1,

hence rΣs P Hn´1pM ;Rq and rγs P H1pM ;Rq are both nontrivial. �

If you’ve been wondering why non-orientable surfaces like RP
2 and the Klein bottle cannot be

embedded in R3, we can now answer this question: if you can embed them in R3 then you can also
embed them in its one-point compactification, S3, which is prevented by the following corollary:

Corollary 54.11. For every n ě 2, closed smooth hypersurfaces in Sn are always orientable.

Proof. Suppose to the contrary that Σ Ă Sn is a closed non-orientable smooth hypersurface,
and without loss of generality assume Σ is connected. Then one can find (as in the proof of
Theorem 54.10) a path in SnzΣ that stays within a small neighborhood of Σ but starts and ends
on opposite sides of it, thus giving rise to a loop γ : S1 Ñ Sn that intersects Σ once transversely.
Using Z2 coefficients (since Σ is orientable over Z2), the intersection number of Σ with γ is then

rΣs ¨ rγs “ 1 P Z2,

implying rΣs ‰ 0 P Hn´1pSn;Z2q and rγs ‰ 0 P H1pSn;Z2q. This contradicts are computation of
H˚pSn;Z2q. �

Remark 54.12. The fact that Sn is orientable is not the decisive factor in Corollary 54.11,
as there is no obstruction in general to embedding closed non-orientable hypersurfaces into closed
orientable manifolds. An easy example is RP2

ãÑ RP3.

Notation. For the rest of this lecture, all homology and cohomology groups are to be under-
stood with coefficient ring R, but we will omit R in the notation wherever possible.

To prove Theorem 54.7, we need another basic result from differential topology, which gives
a model for the neighborhood of any smooth submanifold A Ă M . Assume dimM “ n and

90One of the standard ways of characterizing a smooth submanifold Σ Ă M is through the existence of slice

charts: for every x P Σ, some neighborhood U Ă M of x admits a smooth chart ϕ : U
–
Ñ ϕpUq

open

Ă Rn that
identifies a neighborhood of x in Σ with an open subset of the linear subspace Rk ˆ t0u Ă Rn for k “ dimΣ.
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dimA “ n ´ k, so A has codimension k. The normal bundle of A is defined as the union of
k-dimensional quotient vector spaces

NMA :“
ď

xPA

NM
x A, where NM

x A :“ TxM{TxA.

When there is no ambiguity about the ambient manifold, we will usually abbreviate

NA :“ NMA, NxA :“ NM
x A.

This is an example of a vector bundle; its fibers are the individual vector spaces NxA, which are
also the preimages of points under the natural projection map

π : NA Ñ A : NxA ÞÑ x for all x P A.
One can define a natural topology and smooth structure on NA so that it becomes a smooth n-
dimensional manifold and π : NA Ñ A is a smooth map. The determining feature of this topology
and smooth structure is that the map π : NA Ñ A is locally trivializable, meaning every point
x P A has a neighborhood U Ă A admitting a diffeomorphism

ΦU : π´1pUq Ñ U ˆ Rk

that restricts to a linear isomorphism NyA Ñ tyu ˆ Rk for each y P U . A local trivialization thus
identifies the map π´1pUq πÑ U with the obvious projection map U ˆ Rk Ñ U . The existence
of local trivializations is a straightforward consequence of the existence of slice charts near every
point of A. If NA and A are both endowed with orientations, then this local product structure
also determines an orientation of each of the fibers NxA – Rk, which can be viewed as a family
of orientations varying continuously with x P A. The subset of NA consisting of all 0-vectors
in the spaces NxA is a smooth submanifold that is canonically diffeomorphic to A, called the
zero-section. We shall often regard A itself as a submanifold of NA and write

A Ă NA

by identifying A with the zero-section.
If A Ă M and B Ă M are submanifolds that intersect transversely, then for each x P A X B,

the diagonal map TxM Ñ TxM ‘ TxM descends to a canonical isomorphism

NM
x pA XBq –ÝÑ NM

x A ‘NM
x B,

producing a vector bundle isomorphism of NM pA X Bq with the direct sum of the restrictions of
NMA and NMB along the submanifold AXB. Since AXB is also a submanifold of A and B, we
can similarly consider the normal bundles NApA X Bq and NBpA X Bq, and notice that for each
x P A XB, the inclusions TxA ãÑ TxM and TxB ãÑ TxM descend to canonical isomorphisms

NA
x pA XBq –ÝÑ NM

x B, NB
x pA XBq –ÝÑ NM

x A,

giving vector bundle isomorphisms NApA X Bq – NMB|AXB and NBpA X Bq – NMA|AXB. In
this way we can regard NBpA X Bq as a subset of NMA and NApA X Bq as a subset of NMB;
in fact, both are smooth submanifolds whose codimensions match the codimensions of B and A

respectively.
This is enough background to state the tubular neighborhood theorem. Its proof is a

fairly straightforward matter of defining a smooth map NMA Ñ M whose derivative along the
zero-section is the identity map, and then citing the inverse function theorem.

Theorem 54.13. There exists a smooth embedding NMA ãÑ M that is a diffeomorphism onto
a neighborhood of A and matches the inclusion A ãÑ M along the zero-section. Moreover, if B Ă M

is another smooth submanifold that intersects A transversely, then the embedding NMA ãÑ M can
be arranged so that it maps NBpA XBq Ă NMA onto a neighborhood of A XB in B. �
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We shall use the tubular neighborhood theorem in the following to identify an open neighbor-
hood of A Ă M with the normal bundle NA. It will be useful also to shrink this to a smaller
compact neighborhood that is a smooth manifold with boundary. To define this, choose a family of
inner products x , y on the tangent spaces TxM that vary smoothly with x; this is what is called a
Riemannian metric on M . The inner product on each TxM determines an isomorphism of NM

x A

with the orthogonal complement of TxA Ă TxM and thus (by restriction) also determines an inner
product on NM

x A. We can then define

DNxA :“
 
X P NxA

ˇ̌
xX,Xy ď 1

(
, DNA :“

ď

xPA

DNxA,

SNxA :“
 
X P NxA

ˇ̌
xX,Xy “ 1

(
, SNA :“

ď

xPA

SNxA.

Each DNxA is now a compact k-disk with boundary SNxA – Sk´1, and their union DNA is
a compact n-manifold with boundary SNA, called the unit disk bundle in NA. The tubular
neighborhood theorem then identifies DNA with a compact neighborhood of A in M , while simul-
taneously identifying the subset DNBpAXBq Ă DNA with a compact neighborhood of AXB in B.
Since DNA is an n-dimensional submanifold of M and is also compact with boundary, it inherits
an R-orientation from M and therefore has a relative fundamental class rDNAs P HnpDNA, SNAq
and Poincaré duality isomorphism

PD : HkpDNA, SNAq –ÝÑ Hn´kpDNAq : ϕ ÞÑ ϕ X rDNAs.
In the following it will be important to specify umanbiguously which homology classes belong

to which spaces or pairs, so let us reserve the notation rAs for the fundamental class in Hn´kpAq,
and denote the class in Hn´kpMq that appears in the statement of Theorem 54.7 by

piMA q˚rAs P Hn´kpMq.
We shall use the notation iYX : X ãÑ Y for the inclusion of any subspace X Ă Y , so for instance
the homology class represented by the zero-section in NA is

piDNAA q˚rAs P Hn´kpDNAq.
Note that since orientations on NA and A determine orientations on the fibers, the individ-
ual disks DNxA – Dk for each x P A also have well-defined fundamental classes rDNxAs P
HkpDNxA, SNxAq. For x P A, let us abbreviate the inclusion of the fiber by

fAx : pDNxA, SNxAq ãÑ pDNA, SNAq,
so pfAx q˚rDNxAs P HkpDNA, SNAq.

Definition 54.14. The Thom class of the normal bundle NA is

τpNAq :“ PD´1
`
piDNAA q˚rAs

˘
P HkpDNA, SNAq.

The Thom class is determined by the vector bundle NA, i.e. it depends on its properties as
a vector bundle, but not on the fact that it is the normal bundle of a submanifold A Ă M . More
generally, for any vector bundle E with R-oriented k-dimensional fibers over a closed R-oriented
manifold M , one can choose inner products on the fibers to define a unit disk bundle DE Ă E

and define the Thom class τpEq P HkpDE, SEq as the Poincaré dual of the homology class of
the zero-section M Ă E. By excision, this can be identified with a class in HkpE,EzMq, thus it
does not depend on the choice of inner products used to define DE and SE. We have chosen to
formulate the definition above in a less general way since it can then be understood without any
concrete knowledge of the theory of vector bundles, i.e. you can simply think of DNA as a compact
neighborhood of A in M and SNA as the boundary of that neighborhood.
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The next theorem is similarly true for all vector bundles that have a well-defined Thom class,
but we are stating it for the specific case that we need for applications.

Theorem 54.15 (Thom isomorphism theorem). The Thom class τpNAq P HkpDNA, SNAq is
uniquely determined by the condition

xτpNAq, pfAx q˚rDNxAsy “ 1 for every x P A.
Moreover, the map

HmpAq Ñ Hm`kpDNA, SNAq : ϕ ÞÑ π˚ϕ Y τpNAq
is an isomorphism.

Proof. One can contract all fibers DNxA to their origins to produce a deformation retraction
of DNA to its zero-section A Ă DNA, thus the inclusion iDNAA : A ãÑ DNA and projection
π : DNA Ñ A are homotopy inverses, implying that

π˚ : H˚pAq Ñ H˚pDNAq and piDNAA q˚ : H˚pAq Ñ H˚pDNAq
are inverses. Given ϕ P HmpAq, we now set ψ “ π˚ϕ P HmpDNAq and can feed ψ Y τpNAq P
Hm`kpDNA, SNAq into the duality isomorphism PD : Hm`kpDNA, SNAq Ñ Hn´pm`kqpDNAq.
Using the naturality of the cap product, this gives

PD
`
π˚ϕ Y τpNAq

˘
“ pψ Y τpNAqq X rDNAs “ ψ X pτpNAq X rDNAsq “ ψ X piDNAA q˚rAs
“ piDNAA q˚

`
piDNAA q˚ψ X rAs

˘
“ piDNAA q˚ PDpϕq,

which presents the map π˚p¨q Y τpNAq : HmpAq Ñ Hm`kpDNA, SNAq as a composition

HmpAq Hn´k´mpAq Hn´pk`mqpDNAq Hk`mpDNA, SNAq.PD

π˚p¨qYτpNAq

piDNA
A q˚ PD´1

All three maps in this composition are isomorphisms, thus so is ϕ ÞÑ π˚ϕ Y τpNAq.
To check that xτpNAq, pfAx q˚rDNxAsy “ 1 for all x P A, it suffices to prove this for the

case when A Ă M is connected, as it is then an easy exercise to generalize to a finite disjoint
union of connected submanifolds. The advantage of assuming A connected is that H0pAq is then
canonically isomorphic to the coefficient ring R, with the unit 1 P H0pAq as a generator, so the
isomorphism above then implies that τpNAq generates HkpDNA, SNAq – R. It is clear that at
most one element τ P HkpDNA, SNAq can satisfy xτ, pfAx q˚rDNxAsy “ 1 for any given x P A;
moreover, if this is satisfied for one x P A then it is also satisfied for every y P A, as the path-
connectedness of A produces a homotopy of inclusions pDk, Sk´1q ãÑ pDNA, SNAq relating fAx and
some reparametrization of fAy , so that pfAy q˚rDNyAs “ pfAx q˚rDNxAs. We shall now show that
there exists a generator τ satisfying this relation for some x P A. This will prove τ “ τpNAq in
the case R “ Z2; if R “ Z, then there is a sign ambiguity τ “ ˘τpNAq that can be resolved by
paying more careful attention to orientation conventions, and the remaining cases follow from this
via the universal coefficient theorem.

The idea is to realize the isomorphism H˚pAq Ñ H˚`kpDNA, SNAq via a cell decomposition.
Notice first that pDNA, SNAq is a good pair, so its relative cohomology is naturally isomorphic to
the reduced cohomology of the quotient space

ThpNAq :“ DNA
L
SNA.

This is known as the Thom space of the vector bundle NA. Since the interior of DNA is
homeomorphic to NA, one can imagine ThpNAq as the one-point compactification of NA, and
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we shall label the point represented by SNA “ BpDNAq accordingly as 8 P ThpNAq. The
isomorphism rH˚pThpNAqq – H˚pDNA, SNAq is then equivalent to the isomorphism

H˚pThpNAq, t8uq Ñ H˚pDNA, SNAq
induced by the quotient map pDNA, SNAq Ñ pThpNAq, t8uq; cf. Lecture 30.

Now since A is a smooth manifold, it has a triangulation, and after barycentric subdivision91

we can assume without loss of generality that every simplex in the triangulation is small enough to
be contained in a region U Ă A where there exists a local trivialization identifying π´1pUq Ă DNA

with U ˆ Dk. Regarding t8u as the 0-skeleton of ThpNAq, we can then associate to each m-
simplex σ in the triangulation of A a product pm ` kq-cell in ThpNAq, defined by identifying
π´1pσq Ă DNA with σ ˆ Dk and attaching σ ˆ BDk along the constant map to 8. This gives
pThpNAq, t8uq the structure of a CW-pair, and while the characteristic maps of the cells in this
decomposition depend on choices of local trivializations, their images do not, thus in a meaningful
sense, our cell decomposition of pThpNAq, t8uq depends only on the chosen triangulation of A.
The most important observation is that since CCW

˚ pThpNAq, t8uq is generated by the cells in the
interior DNAzSNA while ignoring the 0-cell at 8, the association of each simplex to its product
with Dk defines a chain isomorphism

C∆
˚ pAq Ñ CCW

˚`kpThpNAq, t8uq,
which can be dualized to define an isomorphismHm`kpThpNAq, t8uq – HmpAq for every m. Take
the generator τ P HkpThpNAq, t8uq that corresponds to 1 P H0pAq under this isomorphism, then
pull it back through the quotient map q : pDNA, SNAq Ñ pThpNAq, t8uq to define a generator
q˚τ P HkpDNA, SNAq. We now have an explicit cellular cochain representative of τ and can thus
check that for any point x P A in the 0-skeleton of A, the associated product k-cell in ThpNAq
represents q˚pfAx q˚rDNxAs P HkpThpNAq, t8uq and satisfies

xq˚τ, pfAx q˚rDNxAsy “ xτ, q˚pfAx q˚rDNxAsy “ 1.

�

Remark 54.16. The Thom space ThpEq can also be defined for more general vector bundles
π : E Ñ M without any reference to a submanifold or normal bundle. Together with the cell
decomposition constructed in the proof above, ThpEq is known as the Thom complex.

Let us now associate to the closed R-oriented submanifold A Ă M of codimension k its Poincaré
dual class in M ,

τMA :“ PD´1
`
piMA q˚rAs

˘
P HkpMq, i.e. τMA X rM s “ piMA q˚rAs.

The Thom class provides a way of “localizing” τMA , in the following sense. Consider the inclusions

pM,Hq pM,MzAq pDNA, SNAq,jMA iM
DNA

where iMDNA is provided by the tubular neighborhood theorem. This is an excision map, so it
induces an isomorphism on relative cohomology and thus identifies τpNAq with a class

pτMA P HkpM |Aq such that piMDNAq˚pτMA “ τpNAq.

Lemma 54.17. τMA “ pjMA q˚pτMA .

91The subdivision is not actually necessary at all if you know a little bit more about the properties of vector
bundles: in particular, they are always trivializable over a contractible space. For similar reasons, one could just as
well work with an arbitrary cell decomposition of A instead of a triangulation.
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Proof. The three fundamental classes rM s P HnpMq, rM sA P HnpM |Aq and rDNAs P
HnpDNA, SNAq in this picture are related by

pjMA q˚rM s “ rM sA “ piMDNAq˚rDNAs.
Since PDppjMA q˚pτMA q P Hn´kpMq is an absolute homology class and jMA : M Ñ M is the identity
map, the naturality of the cap product with respect to jMA : pM,Hq ãÑ pM,MzAq and iMDNA :

pDNA, SNAq ãÑ pM,MzAq gives

PDppjMA q˚pτMA q “ pjMA q˚ PDppjMA q˚pτMA q “ pjMA q˚

`
pjMA q˚pτMA X rM s

˘
“ pτMA X pjMA q˚rM s

“ pτMA X piMDNAq˚rDNAs “ piMDNAq˚

`
piMDNAq˚pτMA X rDNAs

˘

“ piMDNAq˚ PDpτpNAqq “ piMDNAq˚piDNAA q˚rAs “ piMA q˚rAs,

so pjMA q˚pτMA satisfies the defining property of τMA . �

The message of this lemma is that the cohomology class Poincaré dual to A is determined
by a class in HkpM |Aq, or equivalently HkpDNA, SNAq; in either case it depends only on a
neighborhood of A. It is now easy to see why Theorem 54.7 holds in the case A X B “ H. It is
equivalent in that case to τMA Y τMB “ 0, and by naturality of the cup product we have

τMA Y τMB “ pjMA q˚pτMA Y pjMB q˚pτMB “ pjMAXBq˚ppτMA Y pτMB q “ 0,

where the relative cup product

pτMA Y pτMB P Hk`ℓpM, pMzAq Y pMzBqq “ Hk`ℓpM,MzpAXBqq “ Hk`ℓpM,Mq “ 0

is well defined since MzA and MzB are both open in M and thus form an excisive couple. To
handle the general case where A&B so that A X B is a submanifold of A with normal bundle
NApA XBq “ NMB|AXB , we need the following application of the Thom isomorphism theorem:

Lemma 54.18. τAAXB “ piMA q˚τMB .

Proof. Let fBAXB : pDNAA XB, SNApA X Bqq ãÑ pDNMB, SNMBq denote the inclusion
defined by identifying the fiber of NApA X Bq over each point in A X B with the corresponding
fiber of NMB. For each x P A XB we then have

xpfBAXBq˚τpNMBq, pfAXB
x q˚rDNA

x pA XBqsy “ xτpNMBq, pfBAXB ˝ fAXB
x q˚rDNA

x pA XBqsy
“ xτpNMBq, pfBx q˚rDNM

x Bsy “ 1,

so pfBAXBq˚τpNMBq “ τpNApAXBqq according to Theorem 54.15.92 The result then follows from
the commutative diagram

HkpMq HkpM |Bq HkpDNB, SNBq

HkpAq HkpA |A XBq HkpDNApA XBq, SNApA XBqq

piMA q˚

pjMB q˚

piM
DNBq˚

–

piMA q˚ pfB
AXBq˚

pjAAXBq˚

piA
DNApAXBq

q˚

–

�

This is enough preparation to prove the main theorem.

92What this argument actually shows is that for any vector bundle π : E Ñ M and a map f : N Ñ M

for which the Thom classes of E and the pullback bundle f˚E Ñ N are well defined, τpf˚Eq “ pf˚τpfq, where
pf : pDpf˚Eq, Spf˚Eqq Ñ pDpEq, SpEqq is the natural map of disk bundles covering the map f : N Ñ M .
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Proof of Theorem 54.7. Combining Lemma 54.18 with the usual naturality and associa-
tivity properties of the cap and cup products, we compute:

piMAXBq˚rAXBs “ piMA q˚piAAXBq˚rAXBs “ piMA q˚ PDpτAAXBq
“ piMA q˚

`
τAAXB X rAs

˘
“ piMA q˚

`
piMA q˚τMB X rAs

˘
“ τMB X piMA q˚rAs

“ τMB X PDpτMA q “ τMB X
`
τMA X rM s

˘

“ pτMB Y τMA q X rM s “ PDpτMB Y τMA q “ piMA q˚rAs ¨ piMB q˚rBs.
�

We conclude by mentioning a beautiful reinterpretation of the Lefschetz fixed point theorem
in terms of intersection theory. Suppose M is a closed, connected and oriented smooth n-manifold
and f : M Ñ M is a smooth map. The fixed point set Fixpfq “ tx P M | fpxq “ xu is then in
one-to-one correspondence with the intersection of the two smooth submanifolds

∆ :“
 

px, xq
ˇ̌
x P M

(
Ă M ˆM,

Γf :“
 

px, fpxqq
ˇ̌
x P M

(
Ă M ˆM.

Both are closed and inherit from M obvious orientations.

Theorem 54.19. The homological intersection number r∆s ¨ rΓf s P Z is the Lefschetz num-
ber Lpfq.

The case of the Lefschetz fixed point theorem for smooth oriented cloesd manifolds follows from
this immediately since Lpfq ‰ 0 now implies that ∆ and Γf cannot be disjoint. The orientation
condition can also be dropped by using coefficients in Z2, in which case the analogous theorem
identifies r∆s ¨ rΓf s P Z2 with LZ2

pfq. In either case, the Lefschetz number is no longer just a
criterion for the existence of a fixed point, but is actually a quantitative count of fixed points, so
long as the concept of “counting” is understood in the proper generalized sense (e.g. counting with
signs). For a proof of Theorem 54.19, see [Hut].

55. Higher homotopy groups

The last two lectures in this course will have more the character of a survey, as I want to
mention several important things but will not have time to prove many of them.

The higher homotopy groups πnpXq were mentioned informally last semester in Lecture 20.
Let’s give a more formal definition. It will help to have the following popular notation at our
disposal: given spaces X and Y , we define the set

rX,Y s :“ tcontinuous maps X Ñ Y u
L

„,
where the equivalence relation is homotopy. Similarly, for pairs of spaces pX,Aq and pY,Bq,

rpX,Aq, pY,Bqs
will denote the set of homotopy classes of maps of pairs. Here one can also specialize to the case
where A and B are each a single point (homotopy classes of base-point preserving maps), or extend
the definition in an obvious way to allow triples pX,A,Bq where B Ă A Ă X . In this notation,
the fundamental group of a pointed space pX, x0q can be expressed in two equivalent ways as

π1pX, x0q “ rpS1, ptq, pX, x0qs “ rpI, BIq, pX, x0qs,
where pt denotes an arbitrary choice of base point in S1, and I is the unit interval r0, 1s. Since
the latter is homeomorphic to the 1-dimensional unit disk D1, we could also equivalently write

π1pX, x0q “ rpD1, BD1q, pX, x0qs.
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These definitions are equivalent to the definition in terms of S1 because S1 – D1{BD1. Note that
there are also higher-dimensional analogues of this statement: Sn is homeomorphic to Dn{BDn and
In{BIn for all n P N, where In here denotes the n-fold product of I, i.e. an n-dimensional unit
cube.

Definition 55.1. For each integer n ě 0, we define the set

πnpX, x0q :“ rpSn, ptq, pX, x0qs.
When n ě 1, this can be expressed equivalently as

πnpX, x0q “ rpDn, BDnq, pX, x0qs “ rpIn, BInq, pX, x0qs.
As yet this is only a set; we have not given it a group structure. The case n “ 0 has occasionally

been mentioned before: since S0 “ t1,´1u and one of these two points must be chosen as a base
point and thus mapped to x0, π0pX, x0q is just the set of homotopy classes of maps of the other
point to X , so it has a natural bijective correspondence with the set of path-components of X .
This is indeed only a set, and not a group. The group structure of π1pX, x0q as we learned it in
Topologie I is based on the notion of concatenation of paths, which makes sense due to the fact
that if I1 and I2 denote two copies of the unit interval I “ r0, 1s, then the space obtained by gluing
them together end-to-end,

pI1 > I2q
L

pI1 Q 1 „ 0 P I2q
is homeomorphic to I. One can do the same thing with the cube In by singling out one of the
coordinates as the one to be concatenated, e.g. if In1 and In2 denote two copies of In, we have

pIn1 > In2 q
L

pIn1 Q p1, t2, . . . , tnq „ p0, t2, . . . , tnq P In2 q – In,

where the equivalence relation now applies for all values of pt2, . . . , tnq P In´1. This observation
leads to the natural group structure on πnpX, x0q. We shall state it here only for n ě 2 since the
fundmental group is already familiar and the standard notation for its group structure is slightly
different, for reasons that we’ll get into in a moment.

Definition 55.2. For n ě 2 and two elements rf s, rgs P πnpX, x0q represented by maps
f, g : pIn, BInq Ñ pX, x0q, we define rf s ` rgs P πnpX, x0q to be the homotopy class of the map

pIn, BInq Ñ pX, x0q : pt1, . . . , tnq ÞÑ
#
fp2t1, t2, . . . , tnq if 0 ď t1 ď 1{2,
gp2t1 ´ 1, t2, . . . , tnq if 1{2 ď t1 ď 1.

This definition seems a bit arbitrary at first, e.g. one might wonder why the coordinate t1 is
singled out for special treatment when any of the other coordinates would work just as well. The
answer is that one could indeed formulate the definition in various alternative ways, but one would
always obtain the same result up to homotopy. This is easy to see once you’ve absorbed the proof
of the following related fact, which justifies our use of additive notation:

Proposition 55.3. For all n ě 2, the operation in Definition 55.2 makes πnpX, x0q an abelian
group.

Proof. The proof that πnpX, x0q is a group can be carried out by ignoring n ´ 1 of the
coordinates and repeating the same arguments with which we proved last semester that π1pX, x0q
is a group. The identity element is exactly what you think it should be: it is represented by the
constant map of Sn to x0.

The novel feature is that πnpX, x0q is abelian for n ě 2; as we’ve seen, the fundamental group
does not generally have this property. The proof is a homotopy depicted in Figure 27. The shaded
region in each picture represents a subset of In on which the map has constant value at the base
point. The leftmost picture shows the map representing rf s ` rgs as specified in Definition 55.2,
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Figure 27. The homotopy in the proof of Proposition 55.3.

with the cube In divided into two halves on which the map restricts to f or g. We then homotop
this map by shrinking the two halves to smaller cubes and mapping everything outside the smaller
cubes to the base point—this is possible because f |BIn and g|BIn are also constant maps to the
base point. After shrinking both cubes far enough, there is enough room to move them past each
other so that the roles of f and g are reversed. It should be clear why this trick does not work
when n “ 1. �

With this group structure, πnpX, x0q is called the nth homotopy group of X .
There are also relative homotopy groups πnpX,A, x0q associated to any pair of spaces

pX,Aq with a base point x0 P A. One can define this as a mild generalization of πnpX, x0q “
rpDn, BDnq, pX, x0qs by choosing a base point pt P BDn and setting

πnpX,A, x0q :“ rpDn, BDn, ptq, pX,A, x0qs.

This reduces to πnpX, x0q if A “ tx0u, but in all other cases we need to be aware that it only makes
sense for n ě 1; there is no definition of π0pX,A, x0q for A ‰ tx0u since n “ 0 is the one case
where the relation Sn – Dn{BDn fails to hold. For n “ 1, we can identify D1 with I and choose
0 P I as the base point so that π1pX,A, x0q becomes the set of all homotopy classes of paths from
x0 to arbitrary points in A. Since these paths do not need to be loops, there is no obvious notion
of concatenation here, so that π1pX,A, x0q does not have a natural group structure, it is only a
set. A group structure can be defined for πnpX,A, x0q if n ě 2. To explain this, we reformulate
the definition as a generalization of πnpX, x0q “ rpIn, BInq, pX, x0qs by singling out a particular
boundary face of In to play the role of BDn “ Sn´1 – In´1{BIn´1 and regarding the rest of BIn
as the base point: let

Jn :“ In´1 ˆ t0u Ă BIn

and redefine πnpX,A, x0q as

πnpX,A, x0q :“ rIn, BIn, BInzJn, pX,A, x0qs.

By this definition, the formula in Definition 55.2 still makes sense for n ě 2 and defines a group
structure on πnpX,A, x0q, though Proposition 55.3 no longer works in the n “ 2 case. You can
see why not if you look again at Figure 27 and imagine that the maps on the bottom edge of
each square are not required to be constant, but only to have their images in A: there is now
no obvious way to define the map on the shaded areas so that it gives a well-defined homotopy.
The argument can be rescued, however, if n ě 3, as we can then assume the two small cubes are
“rooted” to the bottom face Jn, but there are still enough dimensions to move them past each
other. To summarize:

Proposition 55.4. For general pairs of spaces pX,Aq with a base point x0 P A, πnpX,A, x0q
has a natural group structure for every n ě 2, and it is abelian for n ě 3. �
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Figure 28. The isomorphism πnpX, yq Ñ πnpX, xq determined by a path x
γ
 y.

Like the fundamental group, the higher homotopy groups depend on a choice of base point,
but there is an isomorphism

Φγ : πnpX, yq –ÝÑ πnpX, xq
determined by any path γ from x to y in X . The definition is best explained with a picture:
Figure 28 shows a recipe for transforming any map f : pIn, BInq Ñ pX, yq into a map pIn, BInq Ñ
pX, xq by shrinking the domain of the original map f to a smaller cube within In, and then filling
the region between this and BIn with copies of the path x

γ
 y. The picture shows the n “ 2

case, but if you draw the analogous picture for n “ 1, you will find that it reproduces exactly
the isomorphism Φγ : π1pX, yq Ñ π1pX, xq described in last semester’s Lecture 9. We leave it as
an exercise to verify that this really is a well-defined isomorphism, and that it only depends on
the (end-point preserving) homotopy class of the path γ. With this in mind, we will sometimes
abbreviate

πnpXq :“ πnpX, x0q
when the space X is path-connected and the base point does not play a major role.

There is a fairly obvious way to view πn as a functor from the category Top˚ of pointed
spaces to the category Grp of groups (or Ab for n ě 2). Namely, every base-point preserving map
f : pX, x0q Ñ pY, y0q induces a homomorphism

f˚ : πnpX, x0q Ñ πnpY, y0q : rϕs ÞÑ rf ˝ ϕs.
It is similarly easy to see that this homomorphism only depends on the (base-point preserving!)
homotopy class of f . The following property is less obvious, but important to know:

Theorem 55.5. If f : X Ñ Y is a homotopy equivalence, then f˚ : πnpX, x0q Ñ πnpY, fpx0qq
is an isomorphism for all n ě 0 and x0 P X. �

Since we’ve been talking about homology for the rest of this course, you may have forgotten
why Theorem 55.5 is already a nontrivial statement in the n “ 1 case, which took some effort to
prove in Topologie I. The annoying detail is the base point: if g : Y Ñ X is a homotopy inverse
for f , then it does not automatically induce an inverse for f˚ since g need not take fpx0q back
to the base point x0; in general, g˚ sends πnpY, fpx0qq to a different group, πnpX, gpfpx0qqq. But
this headache can be dealt with in the same way as in the n “ 1 case, using the isomorphism
Φγ : πnpX, gpfpx0qqq Ñ πnpX, x0q induced by a path x0  gpfpx0qq, which necessarily exists due
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to the homotopy inverse condition. The proof is then a direct adaptation of what we already did
for the n “ 1 case in Lecture 9, so we’ll leave it as an exercise. The reason this detail was easier
in homology theory is that homology does not care about base points, so the homotopy invariance
of induced maps f˚ : H˚pXq Ñ H˚pY q immediately implied that H˚pXq depends only on the
homotopy type of X .

Let’s look at some examples now. It should be said that, in general, higher homotopy groups
are not easy to compute—there is nothing quite analogous to cellular homology to produce a
practical algorithm for computing πnpXq. But to start with, there are some easy cases where
theorems that we’ve proved for other purposes imply computations of πnpXq.

Example 55.6. For every k ě 2 and n P N, πkpTnq “ 0. This is a consequence of the fact
that Tn has a contractible universal cover, namely p : Rn Ñ Tn. Since Sk is simply connected for
k ě 2, every map f : Sk Ñ Tn has a lift rf : Sk Ñ Rn, which is homotopic to a constant map since
Rn is contractible. Composing this homotopy with p : Rn Ñ Tn then gives a homotopy of f to a
constant map Sk Ñ Tn. (Strictly speaking, one should pay a bit more attention to the base point
in this discussion, but that is easy to do.) Note that the circle S1 “ T1 is a special case of this
computation, so we now know all the homotopy groups of S1.

Example 55.7. For n P N and k ă n, πkpSnq “ 0. One can see this by proving that every
map f : Sk Ñ Sn with n ą k is homotopic to a map g : Sk Ñ Sn that is not surjective: then if
p P SnzgpSkq, it follows that the image of g is in Snztpu – Rn, and is then homotopic to a constant
since Rn is contractible. Here are two possible ways to prove the claim that f is homotopic to
something non-surjective: (1) The simplicial approximation theorem (see Lecture 40) implies that
for suitable choices of triangulations of Sk and Sn, f is homotopic to a simplicial map g : Sk Ñ Sn,
which is therefore also a cellular map and thus has image in the k-skeleton of Sn. When n ą k,
the k-skeleton cannot cover all of Sn, thus g is not surjective. (2) There is a very easy proof using
basic results of differential topology as in [Mil97]: f : Sk Ñ Sn is homotopic to a smooth map
g : Sk Ñ Sn that is C0-close to f , and Sard’s theorem then implies that almost every point y P Sn
is a regular value of g. This means the derivative dgpxq : TxS

k Ñ TyS
n is surjective for every

x P g´1pyq, but since that condition can never be satisfied for n ą k, it follows that g´1pyq “ H.

Example 55.8. Viewing elements of πnpSnq as represented by maps f : Sn Ñ Sn, there is an
isomorphism

πnpSnq –ÝÑ Z : rf s ÞÑ degpfq
for every n P N. This does not immediately follow from anything we’ve covered in this course, but
here are two ways to see it: (1) Using differential topology as in [Mil97], the so-called Pontryagin-
Thom construction elegantly defines a bijection for any closed, connected and oriented k-manifold
M between the set of homotopy classes rM,Sns and the set of “framed bordism classes” in M ,
where the latter have a natural correspondence with the integers when k “ n. In particular,
when dimM “ n this proves that the map deg : rM,Sns Ñ Z is a bijection. (One must transform
arbitrary homotopies into base-point preserving homotopies before this becomes a statement about
πnpSnq, but the gap is not hard to fill.) (2) In the next lecture we will state the Hurewicz theorem,
which defines a natural homomorphism πnpXq Ñ HnpXq and gives conditions for it to be an
isomorphism, which hold in the case X “ Sn due to the computation of H˚pSnq.

In Example 55.16 at the end of this lecture, we will discuss the interesting case of π3pS2q,
which is fairly easy to compute, but the answer may contradict the intuition you’ve developed
from homology, i.e. it is not trivial. Unlike HkpMq, there is no reason in general why πkpMq
should vanish when k ą dimM .
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Example 55.9. The following is way beyond the scope of this course, but just to give you a
taste of what is studied in modern homotopy theory: it turns out that there are natural isomor-
phisms

πn`kpSnq Ñ πn`k`1pSn`1q
for all k ě 0 as soon as n is sufficiently large. The resulting groups that depend only on k are
known as the stable homotopy groups of the spheres. They have been computed in many cases, but
they are not known in general for k ą 64. The computation of higher homotopy groups of spheres
is considered one of the most important open problems in algebraic topology.

The following definition makes the notions of path-connectedness (n “ 0) and simple connect-
edness (n “ 1) into the first two items on an infinite hierarchy of conditions.

Definition 55.10. For integers n ě 0, a space X is called n-connected if πkpXq “ 0 for all
k ď n.

We can now give an example of the kind of problem for which computing higher homotopy
groups is useful.

Theorem 55.11. If X is a CW-complex of dimension at most n and Y is an n-connected
space, then all maps X Ñ Y are homotopic.

Proof. We need to show that any two given maps f, g : X Ñ Y are homotopic. The method
of the proof is known as “induction over the skeleta”.93 As preparation, one needs to think through
the following exercise: if f |Xk : Xk Ñ Y is homotopic to g|Xk : Xk Ñ Y for some k ě 0, then f

is also homotopic on X to a map f 1 : X Ñ Y such that f 1|Xk “ g|Xk . This can be done by using
cutoff functions to extend the homotopy from the k-skeleton to all higher-dimensional cells.

Now to start the induction, note that since Y is path-connected, f |X0 and g|X0 are clearly
homotopic, as one can just pick a path from fpxq to gpxq for every x P X0. Now for a given
k P t1, . . . , nu, we need to show that if f has already been adjusted by a homotopy so that
f |Xk´1 “ g|Xk´1 , then f |Xk is also homotopic to g|Xk . It suffices to show that the restrictions of
f and g to each k-cell ekα Ă X are homotopic via a homotopy that is fixed at the boundary of the
cell, i.e. on the pk ´ 1q-skeleton. Let Φα : pDk, Sk´1q Ñ pXk, Xk´1q denote the characteristic map
of ekα. Then f ˝Φα and g ˝Φα are two maps Dk Ñ Y that match at the boundary Sk´1, hence we
can glue their domains together to form a sphere Sk – Dk` YSk´1 Dk´ and define on this sphere a
continuous map

F : Sk Ñ Y : x ÞÑ
#
f ˝ Φαpxq if x P Dk`,

g ˝ Φαpxq if x P Dk´.

Since πkpY q “ 0, the map F : Sk Ñ Y is homotopic to a constant, which is equivalent to saying
that it extends to a map Dk`1 Ñ Y , and this extension can be used to define a homotopy between
f ˝ Φα and g ˝ Φα that is fixed along the boundary. This completes the induction. �

You may notice that Theorem 55.11 has an obvious converse: if Y is not n-connected, then
there clearly also exists a CW-complex X of dimension at most n (in particuar a sphere) such
that not all maps X Ñ Y are homotopic. This example is the beginning of the subject known as
obstruction theory, which finds necessary and sufficient conditions for the existence and/or unique-
ness (up to homotopy) of various geometric structures, particularly on manifolds. An example of
such a geometric structure is an orientation, whose existence on a manifold M is equivalent to the

93It seems that the plural of the English word “skeleton” is different in topology than it is in the rest of the
English language. Dictionaries list both “skeletons” and “skeleta,” but I have only heard the latter in mathematical
contexts, e.g. one would not say that a politician with potentially damaging secrets has “skeleta in the closet”.
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vanishing of a particular element of H1pM ;Z2q, called the first Stiefel-Whitney class (see Exer-
cise 51.19). The standard procedure is to express the geometric structure of interest in terms of
sections of some fiber bundle associated to the manifold, so that the important question to answer
is whether a section of this bundle exists and under what conditions two such sections must be
homotopic. By induction over the skeleta, these questions are typically equivalent to the vanishing
of certain higher homotopy groups. For a detailed exposition of this subject, I recommend [Ste51].

We have not yet talked much about the relative homotopy groups, and we won’t, but I should
mention that they appear in a fairly obvious exact sequence. Given a pair of spaces pX,Aq and a
base point x0 P A, denote by

pA, x0q i
ãÑ pX, x0q and pX, x0, x0q j

ãÑ pX,A, x0q
the obvious inclusions. For each n ě 1 there is also a natural homomorphism

B : πnpX,A, x0q Ñ πn´1pA, x0q : rf s ÞÑ rf |Sn´1s,
where we regard elements of πnpX,A, x0q as represented by maps f : pDn, Sn´1, ptq Ñ pX,A, x0q.
You can easily check by translating this into the corresponding formula with f : pIn, BIn, BInzJnq Ñ
pX,A, x0q that it really is a homomorphism.

Theorem 55.12. For x0 P A Ă X, the sequence

. . . Ñ πn`1pX,A, x0q BÑ πnpA, x0q i˚Ñ πnpX, x0q j˚Ñ πnpX,A, x0q BÑ πn´1pA, x0q Ñ . . .

. . . Ñ π1pX, x0q j˚Ñ π1pX,A, x0q BÑ π0pA, x0q i˚Ñ π0pX, x0q.
is exact. �

Some comments on interpretation are required since the last three terms in this sequence are
not groups, but only sets. They do have a bit more structure than this, as the constant map to x0
defines in each case a distinguished element: if one interprets the kernel of each map in this part of
the sequence to mean the preimage of the distinguished element, then it makes sense to say that the
sequence is exact. The proof of exactness is more straightforward than for most exact sequences
that arise in homology theory: instead of constructing chain complexes with a short exact sequence
and chasing diagrams, one can just check directly that the image of each map equals the kernel of
the next. For details, see [Hat02, Theorem 4.3].

A particular application of this exact sequence leads to one of the most popular tools for
computing homotopy groups, called the homotopy exact sequence of a fibration. I will express
the theorem in the form that arises most often in geometric applications, though it is somewhat
less general than what is actually true. In the previous lecture we saw some examples of vector
bundles, which one can imagine as families of vector spaces parametrized by an underlying space,
carrying a topology determined by the notion of local trivialization. If one replaces vector spaces
with arbitrary topological spaces in this picture, one arrives at the following notion.

Definition 55.13. A fiber bundle consists of the following data: topological spaces E, B
and F known as the total space, base and standard fiber respectively, and a continuous map
p : E Ñ B, such that B can be covered by open sets U that admit local trivializations, meaning
homeomorphisms

Φ : p´1pUq Ñ U ˆ F

that send p´1pbq homeomorphically to tbu ˆ F for each b P U . The fibers of the bundle are the
subspaces p´1pbq – F for b P B.

Fiber bundles are often abbreviated with the notation

F ãÑ E
pÑ B,
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where the inclusion F ãÑ E is not canonical but is defined by choosing any b P B and a local
trivialization near b to identify p´1pbq with F . Note that while every fiber of a fiber bundle is
homeomorphic to the standard fiber, there is typically no canonical homeomorphism since there
may be many choices of local trivializations covering each b P B. If we choose base points b0 P B
and x0 P p´1pb0q Ă E, then it is natural to identify F with p´1pb0q so that we obtain base-point
preserving maps

pF, x0q ãÑ pE, x0q pÑ pB, b0q.
A trivial fiber bundle is one that admits a single trivialization covering all of B, so that E can
be identified globally with B ˆ F and the map p : E Ñ B becomes the obvious production map
B ˆ F Ñ B. Here is a popular example of a fiber bundle that is not trivial—we know it is not
trivial since we know several ways of proving that S3 is not homeomorphic to S2 ˆ S1.

Example 55.14. The Hopf fibration p : S3 Ñ S2 is defined by identifying S3 with the unit
sphere in C2 and S2 with the extended complex plane C Y t8u, and then writing

p : S3 Ñ S2 : pz1, z2q ÞÑ z1

z2
.

Equivalently, one can identify S2 with CP1 so that this becomes the map

p : S3 Ñ CP
1 : pz1, z2q ÞÑ rz1 : z2s.

The fiber containing any given point pz1, z2q P S3 is the set
 

peiθz1, eiθz2q P S3
ˇ̌
θ P R

(
– S1.

We leave it as an exercise to check that local trivializations exist near every point.

Theorem 55.15. Given a fiber bundle pF, x0q i
ãÑ pE, x0q pÑ pB, b0q with base points, the map

p : pE,F, x0q Ñ pB, b0, b0q induces an isomorphism

p˚ : πnpE,F, x0q –ÝÑ πnpB, b0q
for every n P N. Plugging this into the exact sequence of pE,F, x0q thus produces an exact sequence

. . . Ñ πn`1pB, b0q BÑ πnpF, x0q i˚Ñ πnpE, x0q p˚Ñ πnpB, b0q BÑ πn´1pF, x0q Ñ . . .

. . . Ñ π1pE, x0q p˚Ñ π1pB, b0q BÑ π0pF, x0q i˚Ñ π0pE, x0q,

where the maps B : πnpB, b0q Ñ πn´1pF, x0q send each rf s to r rf |Sn´1s for f : pDn, Sn´1q Ñ pB, b0q
and rf : pDn, Sn´1, ptq Ñ pE,F, x0q solving the lifting problem

(55.1)
E

Dn B

p

f

rf

�

I will not say anything about the proof of this theorem except that the most important topo-
logical property of fiber bundles is the solvability of the lifting problem indicated in (55.1). The
proper formulation of this condition is something called the homotopy lifting property, and Theo-
rem 55.15 is true in fact for any map p : E Ñ B that has the homotopy lifting property for maps of
disks into B. Maps with this property are called Serre fibrations, and they are somewhat more
general than fiber bundles. A fiber bundle whose standard fiber is discrete is simply a covering
map, and we saw in Topologie I that the lifting problem (55.1) is solvable for covering maps since
Dn is simply connected; in fact there exists a unique lift that sends a given base point on BDn
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to the base point x0 P E. For more general Serre fibrations, the lift is not always unique, but it
is unique up to homotopy, which is why the map B : πnpB, b0q Ñ πn´1pE, x0q described in the
theorem is well defined.

Example 55.16. Returning to the Hopf fibration of Example 55.14, the homotopy exact se-
quence has a segment of the form

0 “ π3pS1q Ñ π3pS3q p˚Ñ π3pS2q Ñ π2pS1q “ 0,

proving that p˚ : π3pS3q Ñ π3pS2q is an isomorphism. Since π3pS3q – Z is generated by the
identity map S3 Ñ S3, this implies that π3pS2q – Z, with the Hopf fibration itself representing a
generator.

Example 55.17. In obstruction theory, one often needs to know the homotopy groups of
certain topological groups that arise as “structure groups” of fiber bundles. For example, the
structure group of any oriented vector bundle with n-dimensional fibers is

GL`pn,Rq :“
 
A P GLpn,Rq

ˇ̌
detA ą 0

(
.

Here is a trick for computing π1pGL`pn,Rqq. Polar decomposition provides a deformation retrac-
tion of GL`pn,Rq to SOpnq, the special orthogonal group, thus it suffices to compute π1pSOpnqq.
For n “ 1 and n “ 2 this is easy because SOp1q – tptu and SOp2q – S1. For n “ 3, it is not hard
to find a homeomorphism of SOp3q to RP

3: this arises from the fact that every element of SOp3q
defines a rotation about some axis in R3, so there is a natural map

D3 Ñ SOp3q

that sends the origin to 1 and sends the point rx for 0 ă r ď 1 and x P S2 to the rotation by angle
πr about the axis spanned by x. By this definition, a rotation of angle πr about x is the same
as a rotation of angle ´πr about ´x, so the map is injective on the interior of D3 but it sends
antipodal points on BD3 to the same point, thus descending to a homeomorphism

D3
L

„ – SOp3q

where x „ ´x for all x P BD3. This quotient space is homeomorphic to RP3, thus π1pSOp3qq –
π1pRP3q – Z2.

The remaining cases of π1pSOpnqq can now be deduced from the case n “ 3 via a homotopy
exact sequence. The fiber bundle we need for this purpose has the form

SOpnq i
ãÑ SOpn` 1q pÑ Sn,

where

ipAq :“
ˆ
1 0

0 A

˙
and ppAq “ Ae1,

for e1 “ p1, 0, . . . , 0q P Sn Ă Rn`1. The homotopy exact sequence then has segments of the form

. . . Ñ πk`1pSnq Ñ πkpSOpnqq i˚Ñ πkpSOpn` 1qq Ñ πkpSnq Ñ . . . ,

and taking k “ 1, both π2pSnq and π1pSnq vanish if n ě 3. This produces an infinite sequence of
isomorphisms

Z2 – π1pSOp3qq – π1pSOp4qq – π1pSOp5qq – . . . ,

proving that π1pGL`pn,Rqq – Z2 for all n ě 3.



398 SECOND SEMESTER (TOPOLOGIE II)

56. The theorems of Hurewicz and Whitehead

I have more to say about higher homotopy groups, but I want to focus the discussion around
a particular application:

Theorem 56.1. Every closed simply connected 3-manifold is homotopy equivalent to S3.

You may have heard of the Poincaré conjecture, which was open for most of the 20th century
and proved by Perelman early in the 21st: it strengthens the theorem above to the statement that
every closed simply connected 3-manifold is homeomorphic to S3. Actually, Poincaré himself was
originally more ambitious and suggested that every closed 3-manifold M with H˚pMq – H˚pS3q
should be homeomorphic to S3, but he found a counterexample to this conjecture a few years later,
now known as the Poincaré homology sphere. It was not simply connected and therefore, obviously,
not homotopy equivalent to S3. Theorem 56.1 thus made Poincaré’s strengthened conjecture seem
plausible, but in general there is a very wide gap between homotopy equivalence and homeomor-
phism, i.e. even in dimension three, there are many known examples of pairs of closed manifolds
that are homotopy equivalent but not homeomorphic. The proper statement of Poincaré’s con-
jecture is thus that there is something special about spheres which makes homotopy equivalence
imply homeomorphism, and in fact, that is also the right way to state the higher-dimensional
Poincaré conjecture, proved by Smale around 1960 for dimensions n ě 5 and Freedman around
1980 for dimension 4. From dimension four upwards, it is easy to see that simple connectedness
would not be enough, e.g. CP2 is an easy example of a closed simply connected 4-manifold that
is not a sphere, and there are many more. But we can easily distinguish CP2 from S4 via its
homology, of course. Part of the interest in Theorem 56.1, for our purposes, is the way that the
condition π1pMq “ 0 in dimension three produces just enough constraints on H˚pMq to make all
the familiar obstructions to a homotopy equivalence between M and S3 vanish, starting with the
homology and cohomology groups, and then continuing with the higher homotopy groups. Several
of the important theorems we’ve proved in this course have some role to play in the proof, thus
it will serve both as a review of the course and as motivation to introduce two new and powerful
theorems involving the higher homotopy groups.

Part 1: From simply connected to homology sphere. As mentioned above, this part
will be a review of techniques developed in the course.

Lemma 56.2. If M is a closed and connected 3-manifold with π1pMq “ 0, then H˚pMq –
H˚pS3q.

Any manifold for which this conclusion holds is called a homology 3-sphere. We shall prove
this as an amalgamation of several smaller lemmas. Assume henceforth that M is a closed and
simply connected 3-manifold.

Lemma 56.3. HnpMq is finitely generated for all n and vanishes for n ą 3.

Proof. The homology of every compact n-manifold is finitely generated since all such mani-
folds are Eulidean neighborhood retracts; see Theorem 50.8. The groups HkpMq for k ą n vanish
by Corollary 51.15. Alternatively, one could in the present case appeal to the (much harder) fact
that all topological 3-manifolds are triangulable (see e.g. [Moi77]), thus M is a 3-dimensional
finite cell complex and the lemma therefore follows from cellular homology. �

Lemma 56.4. H1pMq “ 0.

Proof. This is immediate from the isomorphism of H1pMq with the abelianization of π1pMq.
�
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Lemma 56.5. M is orientable.

Proof. If it is not orientable, then its orientation double cover π : ĂM Ñ M is a connected
3-manifold. But the Galois correspondence identifies the set of connected covers of M up to
isomorphism with the set of all subgroups of π1pMq, and the latter has only one element, hence
the only connected cover of M is the identity map (which is the universal cover). �

Lemma 56.6. For every choice of coefficient group G, H3pM ;Gq – G.

Proof. This is true in the top dimension for every closed, connected and oriented manifold,
by Corollary 51.15. �

Lemma 56.7. H2pMq is torsion free.

Proof. This is true for Hn´1pMq whenever M is a closed oriented n-manifold; see Exer-
cise 51.18(a). Since every closed manifold is the disjoint union of its finitely many connected
components, it suffices to consider the case where M is connected. The idea is then to apply the
universal coefficient theorem for homology with coefficients Zp for any prime number p: it gives
an isomorphism

HnpM ;Zpq – pHnpMq b Zpq ‘ TorpHn´1pMq,Zpq.
Since HnpM ;Zpq – Zp and HnpMq – Z by Corollary 51.15, this isomorphism implies the vanishing
of TorpHn´1pMq,Zpq. Since Hn´1pMq is finitely generated, we can then use the classification of
finitely-generated abelian groups to write

Hn´1pMq – F ‘
˜

Nà
i“1

Zki

¸

for some free abelian group F and integers N ě 0, k1, . . . , kN ě 2, where N ą 0 if and only if
Hn´1pMq has torsion. Applying Theorem 41.2, we then have

0 “ TorpHn´1pMq,Zpq –
Nà
i“1

TorpZki ,Zpq,

implying TorpZki ,Zpq “ 0 for every i “ 1, . . . , N and every prime p. But if p is chosen to be any
prime factor of k1, then Theorem 41.2 also gives

TorpZk1 ,Zpq “ ker
´
Zp

¨k1ÝÑ Zp

¯
“ ker

´
Zp

0ÝÑ Zp

¯
“ Zp ‰ 0,

which is a contradiction unless N “ 0. �

The last step is to apply Poincaré duality and the universal coefficient theorem for cohomology:
the former gives

H2pMq – H1pMq “ 0,

and the latter then implies

0 “ H2pMq – HompH2pMq,Zq ‘ ExtpH1pMq,Zq,

hence HompH2pMq,Zq “ 0. Since H2pMq is torsion free, it follows that H2pMq “ 0. We already
have isomorphismsHnpMq – HnpS3q for n ě 3 by Lemmas 56.3 and 56.6, and H0pMq – H0pS3q –
Z is immediate since M is connected, so this completes the proof of Lemma 56.2.
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Part 2: From homology sphere to homotopy sphere. The step from π1pMq “ 0 and
H˚pMq – H˚pS3q to M »

h.e.
S3 requires two theorems about homotopy groups that we will need

to quote without proof, though the proofs (explained e.g. in [Hat02, Chapter 4]) do not require
substantial machinery beyond what we have discussed in this course.

Definition 56.8. A map f : X Ñ Y is called a weak homotopy equivalence if for all
choices of base points x0 P X and y0 “ fpx0q P Y , f˚ : πnpX, x0q Ñ πnpY, y0q is an isomorphism
for all n ě 0.

Theorem 55.5 in the previous lecture implies that every homotopy equivalence is also a weak
homotopy equivalence. We also know of course that if f : X Ñ Y is a homotopy equivalence, then
the induced maps on homology and cohomology groups are isomorphisms, but we are not giving
any name to the latter condition because it is not sufficiently useful on its own. By contrast, the
notion of a weak homotopy equivalence justifies itself through the following result:

Theorem 56.9 (Whitehead’s theorem). If X and Y are both homotopy equivalent to CW-
complexes, then every weak homotopy equivalence f : X Ñ Y is a homotopy equivalence. �

While I do not intend to discuss the proof of this theorem, you will hopefully gain some
intuition about it from Theorem 55.11 in the previous lecture; in particular, it should be clear why
having cell decompositions of X and Y might be useful in the proof.

With Whitehead’s theorem added to our toolbox, it would suffice to find a map f : M Ñ S3

that induces isomorphisms πnpMq Ñ πnpS3q for all n. This project seems hopeless if we don’t yet
even know how to compute πnpMq for n ě 2, so we first need another tool for transforming our
computation of H˚pMq into information about the higher homotopy groups. The obvious tool to
consider is the so-called Hurewicz map,

h : πnpX, x0q Ñ HnpXq : rf s ÞÑ f˚rSns.
We’ve seen that for n “ 1, this map cannot generally be an isomorphism since H1pXq is always
abelian while π1pXq is not, but the next best thing is true: when π0pXq “ 0, h : π1pXq Ñ H1pXq
descends to an isomorphism on the abelianization of π1pXq. For n ě 2, both groups are abelian,
so there is some hope of h : πnpXq Ñ HnpXq actually being an isomorphism, though we’ve also
seen cases where this is not true: e.g. π2pT2q “ 0 but H2pT2q – Z. The Hurewicz theorem gives
sufficient conditions for h to be an isomorphism, or to put it another way, for every n-dimensional
homology class in X to correspond to a unique spherical homology class.

Theorem 56.10 (Hurewicz’s theorem). Suppose pX, x0q is a pointed space that is pn ´ 1q-
connected for some n ě 2. Then rHkpXq “ 0 for all k ď n ´ 1, and the Hurewicz map h :

πnpX, x0q Ñ HnpXq is an isomorphism. �

Here are a couple of applications before we get back to discussing 3-manifolds homotopy
equivalent to S3.

Corollary 56.11. If X is path-connected and has universal cover rX Ñ X, then π2p rXq –
H2p rXq.

Proof. Since S2 is simply connected, any map S2 Ñ X or homotopy of such maps can be
lifted to rX , implying π2pXq – π2p rXq. Since rX is simply connected, the Hurewicz theorem then
identifies π2p rXq with H2p rXq. �

Corollary 56.12. If X is a simply connected CW-complex with rH˚pXq “ 0, then X is
contractible.
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Proof. The Hurewicz theorem gives an isomorphism π2pXq – H2pXq “ 0, proving X is
2-connected, so one can then apply the theorem again and conclude π3pXq – H3pXq “ 0, and
then again. . . by induction, we deduce πnpXq “ 0 for all n ě 0. It follows that the unique map
ǫ : X Ñ tptu induces isomorphisms ǫ˚ : πnpXq Ñ πnptptuq “ 0 for all n ě 0 and is therefore
a weak homotopy equivalence. Whitehead’s theorem then implies that it is also a homotopy
equivalence. �

You can now imagine at least part of a strategy to complete the proof of Theorem 56.1: instead
of the map ǫ : X Ñ tptu in the proof of Corollary 56.12, one could take any map f : M Ñ S3 of
degree 1 and try to prove that f˚ : πnpMq Ñ πnpS3q is an isomorphism for all n ě 0. This idea
can be carried out for all n ď 3, as Hurewicz now transforms the computation H˚pMq – H˚pS3q
into π1pMq “ π2pMq “ 0 and π3pMq – Z. For n ě 4, however, we get stuck, among other reasons
because it is not so clear what πnpS3q is, and the Hurewicz theorem provides no information about
this above the lowest dimension where rHnpS3q ‰ 0. To make further progress, we need a relative
version of the Hurewicz theorem. Given x0 P A Ă X , there is a relative Hurewicz map defined for
each n P N by

h : πnpX,A, x0q Ñ HnpX,Aq : rf s ÞÑ f˚rDns,
where rf s P πnpX,A, x0q is represented by a map f : pDn, BDn, ptq Ñ pX,A, x0q and rDns P
HnpDn, BDnq denotes the relative fundamental class of Dn. One can check that this map is a
homomorphism for each n ě 2. Let us say that the pair pX,Aq is n-connected if πkpX,Aq “ 0 for
all k ď n. Since π2pX,A, x0q is not always abelian, we cannot generally expect h : π2pX,A, x0q Ñ
H2pX,Aq to be an isomorphism, even if pX,Aq is 1-connected. Observe however that if A is
additionally assumed to be simply connected, then the long exact sequence of homotopy groups
for pX,Aq has a segment of the form

. . . Ñ π2pXq Ñ π2pX,Aq Ñ π1pAq “ 0,

implying that π2pX,Aq is the surjective image of a homomorphism defined on the abelian group π2pXq,
and is therefore also abelian. This serves as a sanity check for the following generalization of The-
orem 56.10:

Theorem 56.13. Suppose pX,Aq is an pn´ 1q-connected pair of spaces for some n ě 2, where
A Ă X is also simply connected and x0 P A is a base point. Then HkpX,Aq “ 0 for all k ď n´ 1,
and the relative Hurewicz map h : πnpX,A, x0q Ñ HnpX,Aq is an isomorphism. �

Corollary 56.14. Suppose X and Y are two simply connected spaces that are both homotopy
equivalent to CW-complexes, and f : X Ñ Y is a map that induces isomorphisms f˚ : HnpXq Ñ
HnpY q for every n ě 0. Then f is a homotopy equivalence.

Proof. We first prove it under the simplifying assumption that X Ă Y is a subspace with
f : X ãÑ Y as the inclusion map. The long exact sequence of the pair pY,Xq in homology converts
the assumption f˚ : HnpXq –ÝÑ HnpY q into

HnpY,Xq “ 0 for all n ě 0.

Similarly, the long exact sequence of relative homotopy groups includes a segment of the form

0 “ π1pY q Ñ π1pY,Xq Ñ π0pXq “ 0,

implying π1pY,Xq “ 0, so that the relative Hurewicz theorem can be applied to the pair pY,Xq
with n “ 2, producing an isomorphism π2pY,Xq – H2pY,Xq “ 0 and thus proving that pY,Xq is
2-connected. One can then apply the relative Hurewicz theorem again with n “ 3, and continue
this process inductively to prove πnpY,Xq “ 0 for all n ě 0. In light of the exact sequence

0 “ πn`1pY,Xq Ñ πnpXq f˚Ñ πnpY q Ñ πnpY,Xq “ 0,
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this proves that f : X ãÑ Y is a weak homotopy equivalence, so Whitehead’s theorem implies that
it is a homotopy equivalence.

To generalize beyond the case where f : X Ñ Y is an inclusion, we consider the mapping
cylinder of f , defined as the space

Mf :“ ppX ˆ Iq > Y q
L

„ where px, 1q „ fpxq for all x P X.
This space has the following two properties:

‚ The map
g : Y Ñ Mf

defined by composing the inclusion Y ãÑ pXˆIq>Y with the quotient map is a homotopy
equivalence. Indeed, the map Mf Ñ Y sending rpx, tqs ÞÑ fpxq for px, tq P X ˆ I and
rys ÞÑ y for y P Y is a homotopy inverse.

‚ The inclusion
i : X ãÑ Mf : x ÞÑ rpx, 0qs

is homotopic to g ˝ f .
If we can now prove that i : X ãÑ Mf is a homotopy equivalence, it will follow that g ˝f : X Ñ Mf

and therefore also f : X Ñ Y are homotopy equivalences. Since Y is simply connected and
homotopy equivalent to Mf , the latter is also simply connected. Moreover, g˚ : HnpY q Ñ HnpMf q
is an isomorphism for every n ě 0, so our assumption on f˚ implies that i˚ “ g˚ ˝ f˚ : HnpXq Ñ
HnpMf q is also an isomorphism for every n ě 0. This establishes that i : X ãÑ Mf satisfies the
same hypotheses as f : X Ñ Y except that it is also an inclusion, so the result follows. �

Conclusion of the proof of Theorem 56.1. We have shown thus far that if M is a
closed simply connected 3-manifold, then H˚pMq – H˚pS3q. Now pick any map f : M Ñ S3

that has degree 1. Such maps are easily found by identifying S3 with the one-point compactifi-
cation R3 Y t8u, then choosing a Euclidean neighborhood U Ă M and defining f : M Ñ S3 to
be a homeomorphism U

–ÝÑ R3 on this neighborhood while sending every other point to 8. The
characterization of the mapping degree via local degrees in Lecture 33 implies degpfq “ 1.

It is trivial that f˚ : H0pMq Ñ H0pS3q is an isomorphism, and so is f˚ : H3pMq Ñ H3pS3q due
to the degree assumption. In all other dimensions, both homology groups vanish, so we conclude
that f˚ : H˚pMq Ñ H˚pS3q is an isomorphism. Since M and S3 are both simply connected,
Corollary 56.14 now implies that f is a homotopy equivalence. �
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