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Problem 1

This is essentially a repeat of Problem Set 5 #1, but using concepts and terminology that
we did not yet have at our disposal back then. Any nowhere-vanishing 1-form « € Q! (M)
on a 3-manifold M defines a 2-dimensional distribution £ © T'M by &, := ker o, © T, M.

(a) Deduce from the Frobenius theorem that £ is an integrable distribution if and only
if da¢ vanishes, and that the latter is also equivalent to the condition a A da = 0.

(b) Show that for a = f(x)dy + g(x) dz € Q*(R?) with smooth functions f,g: R — R,
¢ is integrable if and only if the vector (f'(z),¢'(z)) € R? is a scalar multiple of
(f(z),g(x)) for each x, and in this case, one can also write §& = ker(Ady + Bdz)
for some constants A, B € R. (The integral submanifolds are then easy to find: they
form a family of parallel planes in R3.)

Problem 2

An integrable k-dimensional distribution ¢ < T'M on an n-manifold M determines a
foliation of M, which one thinks of as a decomposition of M into a smooth family of
disjoint integral submanifolds: every point in M belongs to a unique leaf of the foliation,
meaning a maximal connected subset L < M of the form L = f(X) where ¥ is a k-manifold
and ¢ : ¥ — M is an injective immersion satisfying im(7),f) = &, for all p € X.

Consider the integrable 1-dimensional distribution ¢ on T? = R2/Z? defined by ¢ =
ker(adr + bdy) for some constant (a,b) € R?\{0}, where x,y are the usual coordina-
tes on R%, whose coordinate differentials descend to closed (but not exact) 1-forms on
the quotient T2. Show that the leaves of the resulting foliation on T? can be described as
follows:

(a) If a/be Q or b = 0, they are compact submanifolds diffeomorphic to S?.
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(b) Otherwise, they are images of injective immersions R — T+ and are dense in T
(The latter implies that they cannot be submanifolds.)

Problem 3

Suppose £ — S! is a non-orientable real line bundle over S' (as for instance in Problem
Set 8 #6). Find a path v : [0,1] — S! with 4(0) = v(1) =: p such that the parallel
transport Pvt : £, — £, cannot be the identity map for any choice of connection V.

Problem 4
Suppose V is a flat connection on a vector bundle £ — M.

(a) Show that for any smooth map f : N — M, the pullback of V to a connection on
f*E — N is also flat.

(b) Show that if {vs : [0,1] — M}so1] is a smooth family of paths with fixed end
points 75(0) = p and 75(1) = ¢ for all s € [0, 1], then the two parallel transport maps
PA}O, P~}1 : B, — E, are the same.

Hint: Write h(s,t) := ~s(t) and use the fact that the pullback connection on h*E —
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[0,1] x [0,1] is also flat. Can you construct global flat sections of h* E? What will
they look like on the subsets [0,1] x {0} and [0,1] x {1} 1]

Problem 5
For a connection V on a vector bundle £ — M, verify the following properties of the
Riemann tensor that were stated in lecture:

(a) The map R(X,Y)v = VxVyv — VyVxv — V[x yjv is C®-linear with respect to
each of X,Y € X(M) and v e T'(E).

(b) The components R, of R with respect to a chart for M and frame for £ over some
subset U < M are related to the Christoffel symbols F?k by

Rajkb == @F%b - akrab + Fa C zc]‘—‘§b‘

Problem 6
Show that if V is compatible with a bundle metric ( , » on E — M, then the Riemann
tensor satisfies the antisymmetry relation

(R(X,Y)v,wy + (v, R(X,Y)w) = 0.
Hint: Given X,Y € X(M) and v,w € I'(E), compute (LxLy — LyLx — L [X,Y ) (v, w)).

Problem 7
For a connection V on the bundle 7 : F — M, prove:

(a) For any v e I'(E) = Q% M, E) and X,Y € T,M at a point p € M, d4v := dy(dyv) €
Q2(M, E) satisfies (d&v)(X,Y) = R(X,Y)v.

(b) The connection V is flat if and only if the covariant exterior derivative operators
dy : QF(M, E) — QF1 (M, E) for all k > 0 satisfy dy o dy = 0.

Problem 8

Suppose m : E— M has structure group G < GL(m, F) with Lie algebra g c F™*™ Visa
G-compatible connection, @, : E|y, — U, x F™ is a G-compatible local trivialization and
Ay € QY (U,, g) is the corresponding connection 1-form, satisfying the formula (Vxv), =
Lxvg + Aa(X)vy for X € X(U,) and v € T'(E|y, ). We define the local curvature 2-
form F, € Q?(U,, F™*™) in terms of the curvature 2-form Qx € Q?(M,End(FE)) by
Qr(X,Y)v), = Fo( X, Y)v,.

(a) Prove the formula F,,(X,Y) = dAy(X,Y) + [Aa(X), Aa(Y)], where the bracket on
the right hand side denotes the matrlx commutator [A,B] := AB — BA.
Hint: Use the Riemann tensor as a stand-in for Q.

(b) If @5 : Ely, — Up x F™ is a second trivialization related to ®, by the transition
map g = gga : Ua N Us — G, show that F3(X,Y) = gFo(X,Y)g !

(c) Show that if G is abelian, then F, = dA, and it is independent of the choice of
trivialization, thus defining a global 2-form F' € Q2?(M,g). (It is sometimes also
called the curvature 2-form of V.)

'For the purposes of Problem 4, you are safe in pretending that [0,1] x [0,1] is a smooth manifold,
rather than something exotic like a “manifold with boundary and corners”. If this worries you, assume
that the family of paths s : [0,1] — M is defined for s € R instead of just s € [0, 1]; this does not change
the situation in any significant way.



