

Problem Set 5

To be discussed: 23.-24.11.2021

Problem 1

Suppose M is a 3-manifold and $\alpha \in \Omega^1(M)$ is nowhere zero, so for every $p \in M$, there is a well-defined 2-dimensional subspace $\xi_p := \ker \alpha_p \subset T_pM$. The set $\xi := \bigcup_{p \in M} \xi_p \subset TM$ in this situation is called a *smooth 2-plane field* in M. We say that ξ is *integrable* if its defining 1-form α satisfies the condition $\alpha \wedge d\alpha \equiv 0$.

- (a) Show that the integrability condition depends only on ξ and not on α , i.e. for any $\beta \in \Omega^1(M)$ that is also nowhere zero and satisfies $\ker \beta_p = \xi_p$ for all $p \in M$, $\alpha \wedge d\alpha \equiv 0$ if and only if $\beta \wedge d\beta \equiv 0$.
 - Hint: If ker $\alpha_p = \ker \beta_p$, how are the two cotangent vectors $\alpha_p, \beta_p \in T_p^*M$ related?
- (b) Prove that the following conditions are each equivalent to integrability:
 - (i) $(d\alpha)_p|_{\xi_p} \in \Lambda^2 \xi_p^*$ vanishes for every $p \in M$. Hint: Evaluate $(\alpha \wedge d\alpha)_p$ on a basis of T_pM that includes two vectors in ξ_p .
 - (ii) For every pair of vector fields $X, Y \in \mathfrak{X}(M)$ with $X(p), Y(p) \in \xi_p$ for all $p \in M$, $[X,Y] \in \mathfrak{X}(M)$ also satisfies $[X,Y](p) \in \xi_p$ for all $p \in M$. Hint: Use our original definition of the exterior derivative, via C^{∞} -linearity.
- (c) Using Cartesian coordinates (x, y, z) on $M := \mathbb{R}^3$, suppose $\alpha = f(x) dy + g(x) dz$ for smooth functions $f, g : \mathbb{R} \to \mathbb{R}$. Under what conditions on f and g is ξ integrable? Show that if these conditions hold, then for every point $p \in \mathbb{R}^3$ there exists a 2-dimensional submanifold $\Sigma \subset \mathbb{R}^3$ such that $p \in \Sigma$ and $T_q \Sigma = \xi_q$ for all $q \in \Sigma$.

Remark: The result of part (c) is a special case of the Frobenius integrability theorem, which we will prove later in this course. In case you're curious, the following picture gives an example of what $\xi \subset T\mathbb{R}^3$ might look like if it is **not** integrable. Can you picture a 2-dimensional submanifold that is everywhere tangent to ξ ? (I didn't think so.)

Problem 2

Prove: On an *n*-dimensional vector space V, a set of dual vectors $\lambda^1, \ldots, \lambda^k \in V^* = \Lambda^1 V^*$ is linearly independent if and only if $\lambda^1 \wedge \ldots \wedge \lambda^k \in \Lambda^k V^*$ is nonzero.

Hint: Consider products of the form $\left(\sum_{i=1}^k c_i \lambda^i\right) \wedge \lambda^2 \wedge \ldots \wedge \lambda^k$.

Problem 3

- (a) Find explicit oriented atlases for S^1 and S^2 .
- (b) Use the oriented atlases in part (a) to show that the antipodal map $S^n \to S^n : p \mapsto -p$ is orientation preserving for n=1, but orientation reversing for n=2.
- (c) Without talking about atlases, prove that S^n is orientable for every $n \in \mathbb{N}$ by defining a continuous family of orientations of the tangent spaces $\{T_pS^n \mid p \in S^n\}$. Hint: Any $p \in S^n$ together with a basis of T_pS^n forms a basis of \mathbb{R}^{n+1} .
- (d) Show that the antipodal map $S^n \to S^n$ is orientation preserving for every odd n and orientation reversing for every even n.

Problem 4

Recall that a diffeomorphism $\mathbb{R}^n \supset \mathcal{U} \xrightarrow{\psi} \mathcal{V} \subset \mathbb{R}^n$ is called orientation preserving if $\det D\psi(p) > 0$ for all $p \in \mathcal{U}$, and orientation reversing if $\det D\psi(p) < 0$ for all $p \in \mathcal{U}$. The fact that ψ is a diffeomorphism implies that for any fixed p, one of these conditions must hold, but it need not hold everywhere, i.e. not every diffeomorphism is either orientation preserving or orientation reversing.

- (a) Show that if M is an oriented manifold, then every chart (\mathcal{U}, x) whose domain $\mathcal{U} \subset M$ is connected is either orientation preserving or orientation reversing.
- (b) In Problem Set 1 #3, we defined the Klein bottle as $K^2 := \mathbb{R}^2/\sim$, where $(s,t) \sim (s,t+1)$ and $(s,t) \sim (s+1,-t)$ for all $(s,t) \in \mathbb{R}^2$. Find a pair of charts (\mathcal{U}_1,x_1) and (\mathcal{U}_2,x_2) on K^2 such that the subsets \mathcal{U}_1 and \mathcal{U}_2 are both connected but $\mathcal{U}_1 \cap \mathcal{U}_2$ has two connected components, and the transition map $x_1 \circ x_2^{-1}$ is neither orientation preserving nor orientation reversing.
- (c) Explain why part (b) implies K^2 is not orientable.
- (d) Find a continuous path $\gamma:[0,1]\to K^2$ with $\gamma(0)=\gamma(1)=:p$ and a continuous family of ordered bases $(X_1(t),X_2(t))$ of $T_{\gamma(t)}K^2$ such that $(X_1(0),X_2(0))$ and $(X_1(1),X_2(1))$ determine distinct orientations of the vector space T_pK^2 .