Differentialgeometrie I
WiSe 2021-22

Problem Set 6

To be discussed: 30.11-1.12.2021

Problem 1

Define a 1-form on $\mathbb{R}^{2} \backslash\{0\}$ in the standard (x, y)-coordinates by $\lambda=\frac{1}{x^{2}+y^{2}}(x d y-y d x)$, and let $i: S^{1} \hookrightarrow \mathbb{R}^{2}$ denote the natural inclusion of the unit circle in \mathbb{R}^{2}.
(a) Using a finite covering by oriented charts and a subordinate partition of unity, compute $\int_{S^{1}} i^{*} \lambda=2 \pi$.
(b) Can you give the result of part (a) a nice interpretation in terms of polar coordinates?
(c) Without appealing to Stokes' theorem, show that for any smooth function $f: S^{1} \rightarrow$ \mathbb{R}, the 1-form $d f \in \Omega^{1}\left(S^{1}\right)$ satisfies $\int_{S^{1}} d f=0$.
(d) Redo the computations of parts (a) and (c) without using a partition of unity: instead use a single chart whose domain covers all of S^{1} except for a set of measure zero.

Problem 2

For every oriented n-manifold M with $n \geqslant 1$, there exists another oriented manifold $-M$ that is defined as the same manifold with the "reversed" orientation, meaning that one changes the orientation of every tangent space $T_{p} M$.
(a) Show that for every $\omega \in \Omega_{c}^{n}(M), \int_{-M} \omega=-\int_{M} \omega$.

Hint: If you fix the reflection map $r\left(t^{1}, t^{2}, \ldots, t^{n}\right):=\left(-t^{1}, t^{2}, \ldots, t^{n}\right)$ on \mathbb{R}^{n} and take any oriented chart (\mathcal{U}, x) on M, then $(\mathcal{U}, r \circ x)$ will be an oriented chart on $-M$.
(b) What relation is there between $\int_{M} \varphi^{*} \omega$ and $\int_{N} \omega$ for $\omega \in \Omega_{c}^{n}(N)$ if $\varphi: M \rightarrow N$ is an orientation-reversing diffeomorphism?

Problem 3

In local coordinates with respect to an oriented chart (\mathcal{U}, x) on an oriented n-manifold M, a Riemannian metric $g \in \Gamma\left(T_{2}^{0} M\right)$ is described in terms of its components $g_{i j}:=g\left(\partial_{i}, \partial_{j}\right)$, so that vectors $X, Y \in T_{p} M$ at points $p \in \mathcal{U}$ satisfy $g(X, Y)=g_{i j} X^{i} Y^{j}$. The goal of this problem is to prove that the Riemannian volume form determined by g takes the form

$$
\begin{equation*}
d \mathrm{vol}=\sqrt{\operatorname{det} \mathbf{g}} d x^{1} \wedge \ldots \wedge d x^{n} \quad \text { on } \mathcal{U} \tag{1}
\end{equation*}
$$

where $\mathbf{g}: \mathcal{U} \rightarrow \mathbb{R}^{n \times n}$ denotes the matrix-valued function whose i th row and j th column is $g_{i j}$. Note that this matrix necessarily has positive determinant since g is everywhere positive definite. Fix a point $p \in \mathcal{U}$ and a positively-oriented orthonormal basis $\left(X_{1}, \ldots, X_{n}\right)$ of $T_{p} M$, whose dual basis we will denote by $\lambda^{1}, \ldots, \lambda^{n} \in T_{p}^{*} M$. In this case, it was shown in lecture that $d \operatorname{vol}_{p}=\lambda^{1} \wedge \ldots \wedge \lambda^{n}$. Define matrices $\mathbf{X}, \boldsymbol{\lambda} \in \mathbb{R}^{n \times n}$ whose i th row and j th column are $d x^{i}\left(X_{j}\right)$ and $\lambda^{i}\left(\partial_{j}\right)$ respectively. By Proposition 9.10 in the lecture notes, $\left(\lambda^{1} \wedge \ldots \wedge \lambda^{n}\right)\left(\partial_{1}, \ldots, \partial_{n}\right)=\operatorname{det} \boldsymbol{\lambda}$.
(a) Prove $\boldsymbol{\lambda}=\mathbf{X}^{-1}$.
(b) Prove $\mathbf{X}^{T} \mathbf{g X}=\mathbb{1}$.
(c) Deduce (1).

Problem 4

Using Cartesian coordinates (x, y, z) on \mathbb{R}^{3}, let $\omega:=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y \in$ $\Omega^{2}\left(\mathbb{R}^{3}\right)$, and let $i: S^{2} \hookrightarrow \mathbb{R}^{3}$ denote the inclusion of the unit sphere.
(a) Show that for an appropriate choice of orientation on $S^{2}, d \operatorname{vol}_{S^{2}}:=i^{*} \omega \in \Omega^{2}\left(S^{2}\right)$ is the Riemannian volume form corresponding to the Riemannian metric on S^{2} that is induced by the Euclidean inner product of \mathbb{R}^{3}.
Hint: Pick a good vector field $X \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ with which to write ω as $\iota_{X}(d x \wedge d y \wedge d z)$.
(b) Show that in the spherical coordinates (θ, ϕ) of Problem Set $1 \# 1, d \operatorname{vol}_{S^{2}}=\cos \phi d \theta \wedge$ $d \phi$.
(c) On the open upper hemisphere $\mathcal{U}_{+}:=\{z>0\} \subset S^{2} \subset \mathbb{R}^{3}$, one can define a chart $(x, y): \mathcal{U}_{+} \rightarrow \mathbb{R}^{2}$ by restricting to \mathcal{U}_{+}the usual Cartesian coordinates x and y, which are then related to the z-coordinate on this set by $z=\sqrt{1-x^{2}-y^{2}}$. Show that $d \mathrm{vol}_{S^{2}}=\frac{1}{z} d x \wedge d y$ on \mathcal{U}_{+}.
(d) Compute the surface area of $S^{2} \subset \mathbb{R}^{3}$ in two ways: once using the formula for $d \mathrm{vol}_{S^{2}}$ in part (b), and once using part (c) instead. In both cases, you should be able to express the answer in terms of a single Lebesgue integra ${ }^{1}$ over a region in \mathbb{R}^{2}, and there will be no need for any partition of unity.

Problem 5

On an n-manifold M with a fixed volume form $d \mathrm{vol} \in \Omega^{n}(M)$, the divergence of a vector field $X \in \mathfrak{X}(M)$ with respect to d vol is the unique function $\operatorname{div}(X): M \rightarrow \mathbb{R}$ such that the n-form $d\left(\iota_{X} d \mathrm{vol}\right)$ matches $\operatorname{div}(X) \cdot d$ vol. Show that in local coordinates with respect to a chart (\mathcal{U}, x) such that $d \mathrm{vol}=f d x^{1} \wedge \ldots \wedge d x^{n}$ for a function $f: \mathcal{U} \rightarrow \mathbb{R}$, the divergence is given in terms of the components X^{i} of X by

$$
\operatorname{div}(X)=\frac{1}{f} \partial_{i}\left(f X^{i}\right) \quad \text { on } \mathcal{U}
$$

Problem 6

On an oriented Riemannian 3-manifold (M, g) with Riemannian volume form d vol, the curl of a vector field $X \in \mathfrak{X}(M)$ is the unique vector field $\operatorname{curl}(X) \in \mathfrak{X}(M)$ satisfying $\iota_{\operatorname{curl}(X)} d \mathrm{vol}=d\left(X_{\mathrm{b}}\right) \in \Omega^{2}(M)$, where $X_{\mathrm{b}}:=g(X, \cdot) \in \Omega^{1}(M)$.
(a) Show that in the special case of $M=\mathbb{R}^{3}$ with g chosen to be the standard Euclidean inner product,

$$
\operatorname{curl}\left(\begin{array}{l}
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right)=\left(\begin{array}{c}
\partial_{2} X^{3}-\partial_{3} X^{2} \\
\partial_{3} X^{1}-\partial_{1} X^{3} \\
\partial_{1} X^{2}-\partial_{2} X^{1}
\end{array}\right) \in \mathfrak{X}\left(\mathbb{R}^{3}\right)
$$

(b) The gradient $\nabla f \in \mathfrak{X}(M)$ of a function $f: M \rightarrow \mathbb{R}$ on a Riemannian manifold (M, g) is uniquely determined by the relation $g(\nabla f, \cdot)=d f \in \Omega^{1}(M)$. Derive from $d \circ d=0$ the following consequences for all smooth functions $f: M \rightarrow \mathbb{R}$ and vector fields $X \in \mathfrak{X}(M)$:

$$
\operatorname{curl}(\nabla f) \equiv 0, \quad \text { and } \quad \operatorname{div}(\operatorname{curl} X) \equiv 0
$$

Problem 7

Prove the following version of integration by parts: if M is a compact oriented n-manifold with boundary, $\alpha \in \Omega^{k}(M)$ and $\beta \in \Omega^{\ell}(M)$ with $k+\ell=n-1$, then

$$
\int_{M} d \alpha \wedge \beta=\int_{\partial M} \alpha \wedge \beta-(-1)^{k} \int_{M} \alpha \wedge d \beta
$$

[^0]
[^0]: ${ }^{1}$ You may assume that the upper and lower hemispheres have the same area.

