

## Problem Set 6: Solution to Problem 4

## Problem 4

Using Cartesian coordinates (x, y, z) on  $\mathbb{R}^3$ , let  $\omega := x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ , and let  $i: S^2 \hookrightarrow \mathbb{R}^3$  denote the inclusion of the unit sphere.

(a) Show that for an appropriate choice of orientation on  $S^2$ ,  $dvol_{S^2} := i^* \omega \in \Omega^2(S^2)$  is the Riemannian volume form corresponding to the Riemannian metric on  $S^2$  that is induced by the Euclidean inner product of  $\mathbb{R}^3$ .

Hint: Pick a good vector field  $X \in \mathfrak{X}(\mathbb{R}^3)$  with which to write  $\omega$  as  $\iota_X(dx \wedge dy \wedge dz)$ .

We claim first that  $\omega = \iota_X(dx \wedge dy \wedge dz)$  for the "radial" vector field  $X := x\partial_x + y\partial_y + z\partial_z$ . To see this, recall that  $dx \wedge dy \wedge dz$  is a sum of permutations of tensor products such as  $dx \otimes dy \otimes dz$ , where terms like  $dx \otimes dz \otimes dy$  for which the permutation is *odd* come with minus signs. Computing the interior product with  $\partial_x$ , only permutations that place dx at the beginning will contribute, since  $dy(\partial_x) = dz(\partial_x) = 0$ , thus

$$\begin{split} \iota_{\partial_x}(dx \wedge dy \wedge dz) &= (dx \otimes dy \otimes dz)(\partial_x, \cdot, \cdot) - (dx \otimes dz \otimes dy)(\partial_x, \cdot, \cdot) \\ &= dx(\partial_x) \, dy \otimes dz - dx(\partial_x) \, dz \otimes dy = dy \otimes dz - dz \otimes dy = dy \wedge dz. \end{split}$$

Observe next that  $dx \wedge dy \wedge dz = dy \wedge dz \wedge dx = dz \wedge dx \wedge dy$ , since both of the last two expressions can be obtained via *even* permutations of the 1-forms dx, dy and dz. The interior products of  $dx \wedge dy \wedge dz$  with  $\partial_y$  and  $\partial_z$  can thus be derived via exactly the same calculation as above, but using the other two expressions for  $dx \wedge dy \wedge dz$ , which give

 $\iota_y(dx \wedge dy \wedge dz) = dz \wedge dx,$  and  $\iota_z(dx \wedge dy \wedge dz) = dx \wedge dy.$ 

Since  $\iota_X(dx \wedge dy \wedge dz)$  depends linearly on X, we conclude

$$\iota_{x\partial_x + y\partial_y + z\partial_z}(dx \wedge dy \wedge dz) = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy = \omega$$

as claimed.

Now observe that along  $S^2$ , X is a unit normal vector field for the sphere, and since  $dx \wedge dy \wedge dz$  is the Riemannian volume form for the Riemannian metric on  $\mathbb{R}^3$  given by the Euclidean inner product, a result proved in lecture (see Prop. 11.14 in the notes) implies that the restriction of  $\iota_X(dx \wedge dy \wedge dz)$  to  $S^2$  is a volume form compatible with its induced Riemannian metric. That restriction is precisely  $i^*\omega \in \Omega^2(S^2)$ .

(b) Show that in the spherical coordinates  $(\theta, \phi)$  of Problem Set 1 #1,  $d \operatorname{vol}_{S^2} = \cos \phi \, d\theta \wedge d\phi$ .

The Cartesian and spherical coordinates are related to each other by

 $x = r \cos \theta \cos \phi, \qquad y = r \sin \theta \cos \phi, \qquad z = r \sin \phi.$ 

These can be understood as equalities between smooth functions that are valid on whichever open subset of  $\mathbb{R}^3$  we choose as the domain of the spherical chart; a standard choice would be the complement of the set  $\tilde{E} := \{(x, 0, z) \mid x \ge 0\} \subset \mathbb{R}^3$ , so that the image of the chart  $(r, \theta, \phi)$  is  $(0, \infty) \times (0, 2\pi) \times (-\pi/2, \pi/2) \subset \mathbb{R}^3$ . Restricting to r = 1, we obtain a chart  $(\theta, \phi)$  on  $S^2$  with domain

$$\mathcal{U} := S^2 \backslash E \subset S^2, \qquad \text{where} \qquad E := \widetilde{E} \cap S^2 \subset S^2,$$

and image  $(0, 2\pi) \times (-\pi/2, \pi/2) \subset \mathbb{R}^2$ . The coordinates (x, y, z) no longer define a chart when restricted to  $\mathcal{U} \subset S^2$ , but they are still well-defined smooth functions on  $\mathcal{U}$  and are now related to  $\theta$  and  $\phi$  by

$$x = \cos\theta\cos\phi, \qquad y = \sin\theta\cos\phi, \qquad z = \sin\phi, \qquad \text{on } \mathcal{U} \subset S^2.$$
 (1)

To write down  $i^*\omega$ , we can first use the fact that wedge products and exterior derivatives are respected by pullbacks, giving rise to the slightly pedantic formula

$$i^*\omega = (i^*x) d(i^*y) \wedge d(i^*z) + (i^*y) d(i^*z) \wedge d(i^*x) + (i^*z) d(i^*x) \wedge d(i^*y).$$
(2)

I call this "pedantic" because it can be made to look a lot simpler: the function  $i^*x = x \circ i$ is actually just the restriction of the coordinate function  $x : \mathbb{R}^3 \to \mathbb{R}$  to  $S^2$ , and similarly with the other coordinates, which can then be written on  $\mathcal{U} \subset S^2$  in terms of  $\theta$  and  $\phi$ using (1), so we obtain

$$i^*\omega = (\cos\theta\cos\phi) \, d(\sin\theta\cos\phi) \wedge d(\sin\phi) + (\sin\theta\cos\phi) \, d(\sin\phi) \wedge d(\cos\theta\cos\phi) + (\sin\phi) \, d(\cos\theta\cos\phi) \wedge d(\sin\theta\cos\phi).$$

To simplify this, we use the fact that any function f has differential  $df = \frac{\partial f}{\partial x^i} dx^i$  on the domain of any chart  $(x^1, \ldots, x^n)$ , so using  $(\theta, \phi)$  as the chart on  $\mathcal{U}$ , we find

$$i^*\omega = (\cos\theta\cos\phi)(\cos\theta\cos\phi\,d\theta - \sin\theta\sin\phi\,d\phi) \wedge (\cos\phi\,d\phi) + (\sin\theta\cos\phi)(\cos\phi\,d\phi) \wedge (-\sin\theta\cos\phi\,d\theta - \cos\theta\sin\phi\,d\phi) + (\sin\phi)(-\sin\theta\cos\phi\,d\theta - \cos\theta\sin\phi\,d\phi) \wedge (\cos\theta\cos\phi\,d\theta - \sin\theta\sin\phi\,d\phi).$$

The next step is to combine all terms that contain wedge products of  $d\theta$  with  $d\phi$ , use the relation  $d\phi \wedge d\theta = -d\theta \wedge d\phi$  to reorder them all into products of smooth functions with  $d\theta \wedge d\phi$ , and throw out all terms that contain  $d\theta \wedge d\theta = d\phi \wedge d\phi = 0$ : this gives

$$i^*\omega = \left(\cos^2\theta\cos^3\phi + \sin^2\theta\cos^3\phi + \sin^2\theta\sin^2\phi\cos\phi + \cos^2\theta\sin^2\phi\cos\phi\right) \, d\theta \wedge d\phi$$
$$= \left(\cos^3\phi + \sin^2\phi\cos\phi\right) \, d\theta \wedge d\phi = \cos\phi \, d\theta \wedge d\phi.$$

Note that this is a volume form since the values of  $\phi$  on the domain of our spherical chart lie in  $(-\pi/2, \pi/2)$ , so that  $\cos \phi > 0$ . The positivity of  $\cos \phi$  also indicates that if we assign to  $S^2$  the orientation for which  $i^*\omega$  is a positive volume form, then  $(\theta, \phi)$  is an oriented chart. (This is why I chose to write the spherical chart as  $(\theta, \phi)$  instead of  $(\phi, \theta)$ ; the latter would not have turned out to be an oriented chart.)

(c) On the open upper hemisphere  $\mathcal{U}_+ := \{z > 0\} \subset S^2 \subset \mathbb{R}^3$ , one can define a chart  $(x, y) : \mathcal{U}_+ \to \mathbb{R}^2$  by restricting to  $\mathcal{U}_+$  the usual Cartesian coordinates x and y, which are then related to the z-coordinate on this set by  $z = \sqrt{1 - x^2 - y^2}$ . Show that  $d\mathrm{vol}_{S^2} = \frac{1}{z} dx \wedge dy$  on  $\mathcal{U}_+$ .

We can start from (2), but write x instead of  $i^*x$  and so forth since the latter is just the restriction of  $x : \mathbb{R}^3 \to \mathbb{R}$  to  $S^2$ . Incorporating also the relation  $z = \sqrt{1 - x^2 - y^2}$ , we have  $z^2 = 1 - x^2 - y^2$  and thus

$$d(z^{2}) = 2z \, dz = d(1 - x^{2} - y^{2}) = -2x \, dx - 2y \, dy,$$

implying

$$dz = -\frac{x}{z} dx - \frac{y}{z} dy$$
 on  $\mathcal{U}_+ \subset S^2$ .

Combining this with (2) and the fact that  $x^2 + y^2 + z^2 = 1$  on  $S^2$  gives

$$i^*\omega = x \, dy \wedge \left(-\frac{x}{z} \, dx - \frac{y}{z} \, dy\right) + y \left(-\frac{x}{z} \, dx - \frac{y}{z} \, dy\right) \wedge dx + z \, dx \wedge dy$$
$$= -\frac{x^2}{z} \, dy \wedge dx - \frac{y^2}{z} \, dy \wedge dx + z \, dx \wedge dy = \frac{z^2 + x^2 + y^2}{z} \, dx \wedge dy = \frac{1}{z} \, dx \wedge dy.$$

Note that since z > 0 on  $\mathcal{U}_+$ , this computation proves that (x, y) is also an oriented chart for the orientation on  $S^2$  such that  $i^*\omega > 0$ .

(d) Compute the surface area of  $S^2 \subset \mathbb{R}^3$  in two ways: once using the formula for  $dvol_{S^2}$  in part (b), and once using part (c) instead. In both cases, you should be able to express the answer in terms of a single Lebesgue integral<sup>1</sup> over a region in  $\mathbb{R}^2$ , and there will be no need for any partition of unity.

Here's a computation using the formula  $dvol_{S^2} = i^*\omega = \cos\phi \,d\theta \wedge d\phi$  from part (b). The domain on which that formula is valid is the complement  $\mathcal{U} = S^2 \setminus E$  of the set  $E = \{(x, 0, z) \in S^2 \mid x \ge 0\}$ , which is a semicircle connecting the north and south poles  $(0, 0, \pm 1) \in S^2$ . It should be easy to convince yourself that E has measure zero, i.e. its intersection with the domain of any chart looks like a set of measure zero in the corresponding coordinates. (I will skip this detail.) Now, Exercise 11.2 in the notes implies

$$\int_{S^2} d\operatorname{vol}_{S^2} = \int_{\mathcal{U}} d\operatorname{vol}_{S^2} + \int_E d\operatorname{vol}_{S^2} = \int_{\mathcal{U}} d\operatorname{vol}_{S^2}.$$

Since the domain of integration in the last expression is contained in the domain of a single chart  $(\theta, \phi)$ , and we saw above that this chart has the correct orientation, Proposition 11.3 from the notes allows us to use *only* that chart for the computation and avoid choosing a partition of unity. The image of  $(\theta, \phi) : \mathcal{U} \to \mathbb{R}^2$  is  $(0, 2\pi) \times (-\pi/2, \pi/2)$ , so we find

$$\int_{\mathcal{U}} d\mathrm{vol}_{S^2} = \int_{\mathcal{U}} \cos\phi \, d\theta \wedge d\phi = \int_{(0,2\pi) \times \left(-\frac{\pi}{2},\frac{\pi}{2}\right)} \cos\phi \, d\theta \, d\phi = 2\pi \int_{-\pi/2}^{\pi/2} \cos\phi = 4\pi.$$

If we want to use the formula  $dvol_{S^2} = \frac{1}{z} dx \wedge dy$  from part (c) instead, then it is useful to observe that the hemisphere  $\mathcal{U}_+ \subset S^2$  on which this formula is valid has the same area as its reflection  $\mathcal{U}_- := \{z < 0\} \subset S^2$ , and the complement of these two sets in  $S^2$  is the circle  $\{z = 0\} \subset S^2$ , which is a set of measure zero. Exercise 11.2 in the notes thus implies

$$\int_{S^2} d\mathrm{vol}_{S^2} = 2 \int_{\mathcal{U}_+} d\mathrm{vol}_{S^2} = 2 \int_{\mathcal{U}_+} \frac{1}{z} \, dx \wedge dy,$$

where the latter integral can be computed entirely in the oriented chart  $(x, y) : \mathcal{U}_+ \to \mathbb{R}^2$ due to Proposition 11.3 in the notes. The image of this chart is the unit ball  $B^2(1) := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ , and since  $z = \sqrt{1 - x^2 - y^2}$  on  $\mathcal{U}_+$ , we have

$$\int_{S^2} d\mathrm{vol}_{S^2} = 2 \int_{B^2(1)} \frac{1}{\sqrt{1 - x^2 - y^2}} \, dx \, dy.$$

<sup>&</sup>lt;sup>1</sup>You may assume that the upper and lower hemispheres have the same area.

This integral on  $B^2(1) \subset \mathbb{R}^2$  is unfortunately not as easy to compute as the one we obtained in spherical coordinates, but it becomes computable if we switch from (x, y) to polar coordinates: write  $x = \rho \cos \psi$  and  $y = \rho \sin \psi$ , then the classical change of variables formula gives

$$2\int_{B^2(1)} \frac{1}{\sqrt{1-x^2-y^2}} \, dx \, dy = 2\int_{(0,1)\times(0,2\pi)} \frac{1}{\sqrt{1-\rho^2}} \, \rho \, d\rho \, d\psi = 4\pi \int_0^1 \frac{\rho \, d\rho}{\sqrt{1-\rho^2}} = 4\pi.$$

I'm assuming you don't need any tips on computing  $\int_0^1 \frac{\rho d\rho}{\sqrt{1-\rho^2}}$ .

Comment: what actually happened in this last step was that we replaced (x, y) with yet another chart on  $S^2$  for which the integral turns out to be more easily computable. Strictly speaking, if we want to regard  $(\rho, \psi)$  as a chart, then it cannot be defined on all of  $\mathcal{U}_+$ , but is well defined as soon as we exclude a suitable subset such as  $E \cap \mathcal{U}_+ \subset \mathcal{U}_+$ ; we can denote the complement of this set by  $\mathcal{U}'_+ \subset \mathcal{U}_+$  and assume the chart  $(\rho, \psi) : \mathcal{U}'_+ \to \mathbb{R}^2$  has image  $(0, 1) \times (0, 2\pi)$ . Using the relations  $x = \rho \cos \psi$ ,  $y = \rho \sin \psi$  and  $z = \sqrt{1 - x^2 - y^2} = \sqrt{1 - \rho^2}$  on  $\mathcal{U}'_+$ , we find

$$d\operatorname{vol}_{S^2} = \frac{1}{z} \, dx \wedge dy = \frac{1}{\sqrt{1 - \rho^2}} \, d(\rho \cos \psi) \wedge d(\rho \sin \psi)$$
$$= \frac{1}{\sqrt{1 - \rho^2}} \, \left(\cos \psi \, d\rho - \rho \sin \psi \, d\psi\right) \wedge \left(\sin \psi \, d\rho + \rho \cos \psi \, d\psi\right)$$
$$= \frac{1}{\sqrt{1 - \rho^2}} \, \left(\rho \cos^2 \psi + \rho \sin^2 \psi\right) \, d\rho \wedge d\psi = \frac{\rho}{\sqrt{1 - \rho^2}} \, d\rho \wedge d\psi.$$

Since the function  $\frac{\rho}{\sqrt{1-\rho^2}}$  is positive, this shows that  $(\rho, \psi)$  is also an oriented chart on its domain, and since the set  $\mathcal{U}_+ \cap E$  we had to exclude in order to define it has measure zero, we can now reframe the computation above as

$$2\int_{\mathcal{U}_{+}} d\mathrm{vol}_{S^{2}} = 2\int_{\mathcal{U}_{+}'} d\mathrm{vol}_{S^{2}} = 2\int_{\mathcal{U}_{+}'} \frac{\rho}{\sqrt{1-\rho^{2}}} \, d\rho \wedge d\psi = 2\int_{(0,1)\times(0,2\pi)} \frac{\rho}{\sqrt{1-\rho^{2}}} \, d\rho \, d\psi$$
$$= 4\pi \int_{0}^{1} \frac{\rho \, d\rho}{\sqrt{1-\rho^{2}}} = 4\pi.$$