Differentialgeometrie I
WiSe 2021-22

Problem Set 6: Solution to Problem 4

Problem 4

Using Cartesian coordinates (x, y, z) on \mathbb{R}^{3}, let $\omega:=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y \in$ $\Omega^{2}\left(\mathbb{R}^{3}\right)$, and let $i: S^{2} \hookrightarrow \mathbb{R}^{3}$ denote the inclusion of the unit sphere.
(a) Show that for an appropriate choice of orientation on $S^{2}, d \mathrm{vol}_{S^{2}}:=i^{*} \omega \in \Omega^{2}\left(S^{2}\right)$ is the Riemannian volume form corresponding to the Riemannian metric on S^{2} that is induced by the Euclidean inner product of \mathbb{R}^{3}.
Hint: Pick a good vector field $X \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ with which to write ω as $\iota_{X}(d x \wedge d y \wedge d z)$.
We claim first that $\omega=\iota_{X}(d x \wedge d y \wedge d z)$ for the "radial" vector field $X:=x \partial_{x}+y \partial_{y}+z \partial_{z}$. To see this, recall that $d x \wedge d y \wedge d z$ is a sum of permutations of tensor products such as $d x \otimes d y \otimes d z$, where terms like $d x \otimes d z \otimes d y$ for which the permutation is odd come with minus signs. Computing the interior product with ∂_{x}, only permutations that place $d x$ at the beginning will contribute, since $d y\left(\partial_{x}\right)=d z\left(\partial_{x}\right)=0$, thus

$$
\begin{aligned}
\iota_{\partial_{x}}(d x \wedge d y \wedge d z) & =(d x \otimes d y \otimes d z)\left(\partial_{x}, \cdot, \cdot \cdot\right)-(d x \otimes d z \otimes d y)\left(\partial_{x}, \cdot, \cdot\right) \\
& =d x\left(\partial_{x}\right) d y \otimes d z-d x\left(\partial_{x}\right) d z \otimes d y=d y \otimes d z-d z \otimes d y=d y \wedge d z
\end{aligned}
$$

Observe next that $d x \wedge d y \wedge d z=d y \wedge d z \wedge d x=d z \wedge d x \wedge d y$, since both of the last two expressions can be obtained via even permutations of the 1 -forms $d x, d y$ and $d z$. The interior products of $d x \wedge d y \wedge d z$ with ∂_{y} and ∂_{z} can thus be derived via exactly the same calculation as above, but using the other two expressions for $d x \wedge d y \wedge d z$, which give

$$
\iota_{y}(d x \wedge d y \wedge d z)=d z \wedge d x, \quad \text { and } \quad \iota_{z}(d x \wedge d y \wedge d z)=d x \wedge d y
$$

Since $\iota_{X}(d x \wedge d y \wedge d z)$ depends linearly on X, we conclude

$$
\iota_{x \partial_{x}+y \partial_{y}+z \partial_{z}}(d x \wedge d y \wedge d z)=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y=\omega
$$

as claimed.
Now observe that along S^{2}, X is a unit normal vector field for the sphere, and since $d x \wedge d y \wedge d z$ is the Riemannian volume form for the Riemannian metric on \mathbb{R}^{3} given by the Euclidean inner product, a result proved in lecture (see Prop. 11.14 in the notes) implies that the restriction of $\iota_{X}(d x \wedge d y \wedge d z)$ to S^{2} is a volume form compatible with its induced Riemannian metric. That restriction is precisely $i^{*} \omega \in \Omega^{2}\left(S^{2}\right)$.
(b) Show that in the spherical coordinates (θ, ϕ) of Problem Set $1 \# 1, d \operatorname{vol}_{S^{2}}=\cos \phi d \theta \wedge$ $d \phi$.

The Cartesian and spherical coordinates are related to each other by

$$
x=r \cos \theta \cos \phi, \quad y=r \sin \theta \cos \phi, \quad z=r \sin \phi
$$

These can be understood as equalities between smooth functions that are valid on whichever open subset of \mathbb{R}^{3} we choose as the domain of the spherical chart; a standard choice would be the complement of the set $\widetilde{E}:=\{(x, 0, z) \mid x \geqslant 0\} \subset \mathbb{R}^{3}$, so that the image of
the chart (r, θ, ϕ) is $(0, \infty) \times(0,2 \pi) \times(-\pi / 2, \pi / 2) \subset \mathbb{R}^{3}$. Restricting to $r=1$, we obtain a chart (θ, ϕ) on S^{2} with domain

$$
\mathcal{U}:=S^{2} \backslash E \subset S^{2}, \quad \text { where } \quad E:=\widetilde{E} \cap S^{2} \subset S^{2}
$$

and image $(0,2 \pi) \times(-\pi / 2, \pi / 2) \subset \mathbb{R}^{2}$. The coordinates (x, y, z) no longer define a chart when restricted to $\mathcal{U} \subset S^{2}$, but they are still well-defined smooth functions on \mathcal{U} and are now related to θ and ϕ by

$$
\begin{equation*}
x=\cos \theta \cos \phi, \quad y=\sin \theta \cos \phi, \quad z=\sin \phi, \quad \text { on } \mathcal{U} \subset S^{2} \tag{1}
\end{equation*}
$$

To write down $i^{*} \omega$, we can first use the fact that wedge products and exterior derivatives are respected by pullbacks, giving rise to the slightly pedantic formula

$$
\begin{equation*}
i^{*} \omega=\left(i^{*} x\right) d\left(i^{*} y\right) \wedge d\left(i^{*} z\right)+\left(i^{*} y\right) d\left(i^{*} z\right) \wedge d\left(i^{*} x\right)+\left(i^{*} z\right) d\left(i^{*} x\right) \wedge d\left(i^{*} y\right) \tag{2}
\end{equation*}
$$

I call this "pedantic" because it can be made to look a lot simpler: the function $i^{*} x=x \circ i$ is actually just the restriction of the coordinate function $x: \mathbb{R}^{3} \rightarrow \mathbb{R}$ to S^{2}, and similarly with the other coordinates, which can then be written on $\mathcal{U} \subset S^{2}$ in terms of θ and ϕ using (1), so we obtain

$$
\begin{aligned}
i^{*} \omega=(& \cos \theta \cos \phi) d(\sin \theta \cos \phi) \\
& +(\sin \phi) d(\cos \theta \cos \phi) \\
& \wedge d(\sin \theta \cos \phi)
\end{aligned}
$$

To simplify this, we use the fact that any function f has differential $d f=\frac{\partial f}{\partial x^{i}} d x^{i}$ on the domain of any chart $\left(x^{1}, \ldots, x^{n}\right)$, so using (θ, ϕ) as the chart on \mathcal{U}, we find

$$
\begin{aligned}
i^{*} \omega=(& \cos \theta \cos \phi)(\cos \theta \cos \phi d \theta-\sin \theta \sin \phi d \phi) \wedge(\cos \phi d \phi) \\
& +(\sin \theta \cos \phi)(\cos \phi d \phi) \wedge(-\sin \theta \cos \phi d \theta-\cos \theta \sin \phi d \phi) \\
& +(\sin \phi)(-\sin \theta \cos \phi d \theta-\cos \theta \sin \phi d \phi) \wedge(\cos \theta \cos \phi d \theta-\sin \theta \sin \phi d \phi)
\end{aligned}
$$

The next step is to combine all terms that contain wedge products of $d \theta$ with $d \phi$, use the relation $d \phi \wedge d \theta=-d \theta \wedge d \phi$ to reorder them all into products of smooth functions with $d \theta \wedge d \phi$, and throw out all terms that contain $d \theta \wedge d \theta=d \phi \wedge d \phi=0$: this gives

$$
\begin{aligned}
i^{*} \omega & =\left(\cos ^{2} \theta \cos ^{3} \phi+\sin ^{2} \theta \cos ^{3} \phi+\sin ^{2} \theta \sin ^{2} \phi \cos \phi+\cos ^{2} \theta \sin ^{2} \phi \cos \phi\right) d \theta \wedge d \phi \\
& =\left(\cos ^{3} \phi+\sin ^{2} \phi \cos \phi\right) d \theta \wedge d \phi=\cos \phi d \theta \wedge d \phi
\end{aligned}
$$

Note that this is a volume form since the values of ϕ on the domain of our spherical chart lie in $(-\pi / 2, \pi / 2)$, so that $\cos \phi>0$. The positivity of $\cos \phi$ also indicates that if we assign to S^{2} the orientation for which $i^{*} \omega$ is a positive volume form, then (θ, ϕ) is an oriented chart. (This is why I chose to write the spherical chart as (θ, ϕ) instead of (ϕ, θ); the latter would not have turned out to be an oriented chart.)
(c) On the open upper hemisphere $\mathcal{U}_{+}:=\{z>0\} \subset S^{2} \subset \mathbb{R}^{3}$, one can define a chart $(x, y): \mathcal{U}_{+} \rightarrow \mathbb{R}^{2}$ by restricting to \mathcal{U}_{+}the usual Cartesian coordinates x and y, which are then related to the z-coordinate on this set by $z=\sqrt{1-x^{2}-y^{2}}$. Show that $d \mathrm{vol}_{S^{2}}=\frac{1}{z} d x \wedge d y$ on \mathcal{U}_{+}.

We can start from (2), but write x instead of $i^{*} x$ and so forth since the latter is just the restriction of $x: \mathbb{R}^{3} \rightarrow \mathbb{R}$ to S^{2}. Incorporating also the relation $z=\sqrt{1-x^{2}-y^{2}}$, we have $z^{2}=1-x^{2}-y^{2}$ and thus

$$
d\left(z^{2}\right)=2 z d z=d\left(1-x^{2}-y^{2}\right)=-2 x d x-2 y d y
$$

implying

$$
d z=-\frac{x}{z} d x-\frac{y}{z} d y \quad \text { on } \mathcal{U}_{+} \subset S^{2} .
$$

Combining this with (2) and the fact that $x^{2}+y^{2}+z^{2}=1$ on S^{2} gives

$$
\begin{aligned}
i^{*} \omega & =x d y \wedge\left(-\frac{x}{z} d x-\frac{y}{z} d y\right)+y\left(-\frac{x}{z} d x-\frac{y}{z} d y\right) \wedge d x+z d x \wedge d y \\
& =-\frac{x^{2}}{z} d y \wedge d x-\frac{y^{2}}{z} d y \wedge d x+z d x \wedge d y=\frac{z^{2}+x^{2}+y^{2}}{z} d x \wedge d y=\frac{1}{z} d x \wedge d y
\end{aligned}
$$

Note that since $z>0$ on \mathcal{U}_{+}, this computation proves that (x, y) is also an oriented chart for the orientation on S^{2} such that $i^{*} \omega>0$.
(d) Compute the surface area of $S^{2} \subset \mathbb{R}^{3}$ in two ways: once using the formula for d vol $S_{S^{2}}$ in part (b), and once using part (c) instead. In both cases, you should be able to express the answer in terms of a single Lebesgue integral over a region in \mathbb{R}^{2}, and there will be no need for any partition of unity.

Here's a computation using the formula $d \mathrm{vol}_{S^{2}}=i^{*} \omega=\cos \phi d \theta \wedge d \phi$ from part (b). The domain on which that formula is valid is the complement $\mathcal{U}=S^{2} \backslash E$ of the set $E=\left\{(x, 0, z) \in S^{2} \mid x \geqslant 0\right\}$, which is a semicircle connecting the north and south poles $(0,0, \pm 1) \in S^{2}$. It should be easy to convince yourself that E has measure zero, i.e. its intersection with the domain of any chart looks like a set of measure zero in the corresponding coordinates. (I will skip this detail.) Now, Exercise 11.2 in the notes implies

$$
\int_{S^{2}} d \mathrm{vol}_{S^{2}}=\int_{\mathcal{U}} d \mathrm{vol}_{S^{2}}+\int_{E} d \mathrm{vol}_{S^{2}}=\int_{\mathcal{U}} d \mathrm{vol}_{S^{2}} .
$$

Since the domain of integration in the last expression is contained in the domain of a single chart (θ, ϕ), and we saw above that this chart has the correct orientation, Proposition 11.3 from the notes allows us to use only that chart for the computation and avoid choosing a partition of unity. The image of $(\theta, \phi): \mathcal{U} \rightarrow \mathbb{R}^{2}$ is $(0,2 \pi) \times(-\pi / 2, \pi / 2)$, so we find

$$
\int_{\mathcal{U}} d \mathrm{vol}_{S^{2}}=\int_{\mathcal{U}} \cos \phi d \theta \wedge d \phi=\int_{(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} \cos \phi d \theta d \phi=2 \pi \int_{-\pi / 2}^{\pi / 2} \cos \phi=4 \pi .
$$

If we want to use the formula d vol $_{S^{2}}=\frac{1}{z} d x \wedge d y$ from part (c) instead, then it is useful to observe that the hemisphere $\mathcal{U}_{+} \subset S^{2}$ on which this formula is valid has the same area as its reflection $\mathcal{U}_{-}:=\{z<0\} \subset S^{2}$, and the complement of these two sets in S^{2} is the circle $\{z=0\} \subset S^{2}$, which is a set of measure zero. Exercise 11.2 in the notes thus implies

$$
\int_{S^{2}} d \mathrm{vol}_{S^{2}}=2 \int_{\mathcal{U}_{+}} d \operatorname{vol}_{S^{2}}=2 \int_{\mathcal{U}_{+}} \frac{1}{z} d x \wedge d y,
$$

where the latter integral can be computed entirely in the oriented chart $(x, y): \mathcal{U}_{+} \rightarrow \mathbb{R}^{2}$ due to Proposition 11.3 in the notes. The image of this chart is the unit ball $B^{2}(1):=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$, and since $z=\sqrt{1-x^{2}-y^{2}}$ on \mathcal{U}_{+}, we have

$$
\int_{S^{2}} d \mathrm{vol}_{S^{2}}=2 \int_{B^{2}(1)} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d x d y
$$

[^0]This integral on $B^{2}(1) \subset \mathbb{R}^{2}$ is unfortunately not as easy to compute as the one we obtained in spherical coordinates, but it becomes computable if we switch from (x, y) to polar coordinates: write $x=\rho \cos \psi$ and $y=\rho \sin \psi$, then the classical change of variables formula gives

$$
2 \int_{B^{2}(1)} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d x d y=2 \int_{(0,1) \times(0,2 \pi)} \frac{1}{\sqrt{1-\rho^{2}}} \rho d \rho d \psi=4 \pi \int_{0}^{1} \frac{\rho d \rho}{\sqrt{1-\rho^{2}}}=4 \pi .
$$

I'm assuming you don't need any tips on computing $\int_{0}^{1} \frac{\rho d \rho}{\sqrt{1-\rho^{2}}}$.
Comment: what actually happened in this last step was that we replaced (x, y) with yet another chart on S^{2} for which the integral turns out to be more easily computable. Strictly speaking, if we want to regard (ρ, ψ) as a chart, then it cannot be defined on all of \mathcal{U}_{+}, but is well defined as soon as we exclude a suitable subset such as $E \cap \mathcal{U}_{+} \subset \mathcal{U}_{+}$; we can denote the complement of this set by $\mathcal{U}_{+}^{\prime} \subset \mathcal{U}_{+}$and assume the chart $(\rho, \psi): \mathcal{U}_{+}^{\prime} \rightarrow \mathbb{R}^{2}$ has image $(0,1) \times(0,2 \pi)$. Using the relations $x=\rho \cos \psi, y=\rho \sin \psi$ and $z=\sqrt{1-x^{2}-y^{2}}=$ $\sqrt{1-\rho^{2}}$ on \mathcal{U}_{+}^{\prime}, we find

$$
\begin{aligned}
d \mathrm{vol}_{S^{2}} & =\frac{1}{z} d x \wedge d y=\frac{1}{\sqrt{1-\rho^{2}}} d(\rho \cos \psi) \wedge d(\rho \sin \psi) \\
& =\frac{1}{\sqrt{1-\rho^{2}}}(\cos \psi d \rho-\rho \sin \psi d \psi) \wedge(\sin \psi d \rho+\rho \cos \psi d \psi) \\
& =\frac{1}{\sqrt{1-\rho^{2}}}\left(\rho \cos ^{2} \psi+\rho \sin ^{2} \psi\right) d \rho \wedge d \psi=\frac{\rho}{\sqrt{1-\rho^{2}}} d \rho \wedge d \psi
\end{aligned}
$$

Since the function $\frac{\rho}{\sqrt{1-\rho^{2}}}$ is positive, this shows that (ρ, ψ) is also an oriented chart on its domain, and since the set $\mathcal{U}_{+} \cap E$ we had to exclude in order to define it has measure zero, we can now reframe the computation above as

$$
\begin{aligned}
2 \int_{\mathcal{U}_{+}} d \mathrm{vol}_{S^{2}}=2 \int_{\mathcal{U}_{+}^{\prime}} d \mathrm{vol}_{S^{2}} & =2 \int_{\mathcal{U}_{+}^{\prime}} \frac{\rho}{\sqrt{1-\rho^{2}}} d \rho \wedge d \psi=2 \int_{(0,1) \times(0,2 \pi)} \frac{\rho}{\sqrt{1-\rho^{2}}} d \rho d \psi \\
& =4 \pi \int_{0}^{1} \frac{\rho d \rho}{\sqrt{1-\rho^{2}}}=4 \pi .
\end{aligned}
$$

[^0]: ${ }^{1}$ You may assume that the upper and lower hemispheres have the same area.

