HUMBOLDT-UNIVERSITÄT ZU BERLIN Institut für Mathematik C. Wendl, S. Dwivedi, O. Müller

Differentialgeometrie I

WiSe 2021–22

Problem Set 8

To be discussed: 15.12.2021

Problem 1

Show that if X is a topological space with open subset $\mathcal{U} \subset X$ and a locally finite collection of continuous functions $\{f_{\alpha} : X \to \mathbb{R}\}_{\alpha \in I}$ whose supports satisfy $\operatorname{supp}(f_{\alpha}) \subset \mathcal{U}$ for every $\alpha \in \mathcal{U}$, then $\sum_{\alpha \in I} f_{\alpha}$ also has support in \mathcal{U} .

Problem 2

Without mentioning Riemannian metrics, prove that a smooth *n*-manifold M admits a volume form $\omega \in \Omega^n(M)$ if and only if M is orientable.

Hint: If you were to take the existence of Riemannian metrics as given, then the existence of the volume form $\omega \in \Omega^n(M)$ would follow because every oriented Riemannian manifold has a canonical volume form. But do not use this. Try instead constructing ω directly, with the aid of a partition of unity.

Problem 3

Prove the following improvement on the theorem from lecture that every manifold M is paracompact: every open cover $\{\mathcal{U}_{\alpha}\}_{\alpha\in I}$ of M admits a locally finite refinement $\{\mathcal{O}_{\beta}\}_{\beta\in J}$ in which each of the sets \mathcal{O}_{β} is the domain of a chart.

Hint: The proof we worked through in lecture requires only one minor adjustment.

Problem 4

Suppose E is a smooth vector bundle (real of complex) of rank $m \ge 0$ over an *n*-manifold M. We proved in lecture that the total space of E admits a smooth atlas such that the natural bundle projection $\pi : E \to M$ is a smooth map. By a theorem from the second lecture in this course, the atlas on E determines a natural topology, and before we're allowed to call E a "manifold", we must prove that this topology is metrizable. Prove this by constructing a Riemannian metric on E, using only the fact that M (but not necessarily E) is metrizable.

Hint: It would help to know that every open cover of E admits a subordinate partition of unity, but you do not know this. You do know it however for M.

Problem 5

For a smooth vector bundle E over M with local trivialization¹ $\Phi_{\alpha} : E|_{\mathcal{U}_{\alpha}} \to \mathcal{U}_{\alpha} \times \mathbb{F}^{m}$, every section $s : M \to E$ is determined on the subset $\mathcal{U}_{\alpha} \subset M$ by its so-called *local* representation, which is the unique function $s_{\alpha} : \mathcal{U}_{\alpha} \to \mathbb{F}^{m}$ such that

$$\Phi_{\alpha}(s(p)) = (p, s_{\alpha}(p)) \quad \text{for all } p \in \mathcal{U}_{\alpha}.$$

Show that if $(\mathcal{U}_{\alpha}, \Phi_{\alpha})$ and $(\mathcal{U}_{\beta}, \Phi_{\beta})$ are two local trivializations of E and $s : M \to E$ is a section, then the local representations $s_{\alpha} : \mathcal{U}_{\alpha} \to \mathbb{F}^m$ and $s_{\beta} : \mathcal{U}_{\beta} \to \mathbb{F}^m$ are related to each other on $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ in terms of the transition function $g_{\beta\alpha} : \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \to \mathrm{GL}(m, \mathbb{F})$ by

$$s_{\beta}(p) = g_{\beta\alpha}(p) s_{\alpha}(p) \quad \text{for } p \in \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}.$$

ŝ

¹Here, as in the lecture, \mathbb{F} denotes a field which is either \mathbb{R} or \mathbb{C} , and we are assuming that the fibers of our vector bundle are real or complex accordingly.

Problem 6

In lecture we considered a real line bundle ℓ over S^1 , defined as follows: viewing S^1 as the unit circle in \mathbb{C} , define the set $\ell \subset S^1 \times \mathbb{R}^2$ as the union of the sets $\{e^{i\theta}\} \times \ell_{e^{i\theta}} \subset S^1 \times \mathbb{R}^2$ for all $\theta \in \mathbb{R}$, where the 1-dimensional subspace $\ell_{e^{i\theta}} \subset \mathbb{R}^2$ is given by

$$\ell_{e^{i\theta}} = \mathbb{R} \left(\frac{\cos(\theta/2)}{\sin(\theta/2)} \right) \subset \mathbb{R}^2.$$

For any $\theta_0 \in \mathbb{R}$, we can set $p := e^{i\theta_0} \in S^1$ and define a local trivialization for ℓ over $S^1 \setminus \{p\} \subset S^1$ by

$$\Phi: \ell|_{S^1 \setminus \{p\}} \to (S^1 \setminus \{p\}) \times \mathbb{R}: \left(e^{i\theta}, c\left(\frac{\cos(\theta/2)}{\sin(\theta/2)}\right)\right) \mapsto (e^{i\theta}, c), \tag{1}$$

with θ assumed to vary in the interval $(\theta_0, \theta_0 + 2\pi)$. Prove:

- (a) Any two local trivializations defined as in (1) with different choices of $\theta_0 \in \mathbb{R}$ are smoothly compatible.
- (b) ℓ is a smooth subbundle of the trivial 2-plane bundle $S^1 \times \mathbb{R}^2$.
- (c) There exists no continuous section of ℓ that is nowhere zero.
- (d) ℓ is not globally trivial.