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Problem 1
Show that if X is a topological space with open subset U X and a locally finite collection

of continuous functions f↵ : X R ↵ I whose supports satisfy supp f↵ U for every

↵ U , then ↵ I f↵ also has support in U .

Problem 2
Without mentioning Riemannian metrics, prove that a smooth n-manifold M admits a

volume form ! ⌦
n M if and only if M is orientable.

Hint: If you were to take the existence of Riemannian metrics as given, then the existence

of the volume form ! ⌦
n M would follow because every oriented Riemannian manifold

has a canonical volume form. But do not use this. Try instead constructing ! directly,

with the aid of a partition of unity.

Problem 3
Prove the following improvement on the theorem from lecture that every manifold M is

paracompact: every open cover U↵ ↵ I of M admits a locally finite refinement O� � J

in which each of the sets O� is the domain of a chart.

Hint: The proof we worked through in lecture requires only one minor adjustment.

Problem 4
Suppose E is a smooth vector bundle (real of complex) of rank m 0 over an n-
manifold M . We proved in lecture that the total space of E admits a smooth atlas such

that the natural bundle projection ⇡ : E M is a smooth map. By a theorem from the

second lecture in this course, the atlas on E determines a natural topology, and before

we’re allowed to call E a “manifold”, we must prove that this topology is metrizable.

Prove this by constructing a Riemannian metric on E, using only the fact that M (but

not necessarily E) is metrizable.

Hint: It would help to know that every open cover of E admits a subordinate partition of

unity, but you do not know this. You do know it however for M .

Problem 5
For a smooth vector bundle E over M with local trivialization

1
�↵ : E U↵ U↵ Fm

,

every section s : M E is determined on the subset U↵ M by its so-called local
representation, which is the unique function s↵ : U↵ Fm

such that

�↵ s p p, s↵ p for all p U↵.

Show that if U↵,�↵ and U� ,�� are two local trivializations of E and s : M E is

a section, then the local representations s↵ : U↵ Fm
and s� : U� Fm

are related to

each other on U↵ U� in terms of the transition function g�↵ : U↵ U� GL m,F by

s� p g�↵ p s↵ p for p U↵ U� .

1
Here, as in the lecture, F denotes a field which is either R or C, and we are assuming that the fibers

of our vector bundle are real or complex accordingly.
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Problem 6
In lecture we considered a real line bundle ` over S1

, defined as follows: viewing S1
as the

unit circle in C, define the set ` S1 R2
as the union of the sets ei✓ `ei✓ S1 R2

for all ✓ R, where the 1-dimensional subspace `ei✓ R2
is given by

`ei✓ R cos ✓ 2

sin ✓ 2
R2.

For any ✓0 R, we can set p : ei✓0 S1
and define a local trivialization for ` over

S1 p S1
by

� : ` S1 p S1 p R : ei✓, c
cos ✓ 2

sin ✓ 2
ei✓, c , (1)

with ✓ assumed to vary in the interval ✓0, ✓0 2⇡ . Prove:

(a) Any two local trivializations defined as in (1) with di↵erent choices of ✓0 R are

smoothly compatible.

(b) ` is a smooth subbundle of the trivial 2-plane bundle S1 R2
.

(c) There exists no continuous section of ` that is nowhere zero.

(d) ` is not globally trivial.
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