Differentialgeometrie I
WiSe 2021-22

Problem Set 9

To be discussed: 5.01.2022
Notation: As in the lectures, \mathbb{F} denotes either \mathbb{R} or \mathbb{C}, and all vector spaces, vector bundles and linear maps are over \mathbb{F} unless otherwise specified. The dual of a vector space V is $V^{*}:=\operatorname{Hom}(V, \mathbb{F})$, and $\operatorname{Hom}(V, W)$ denotes the space of linear maps $V \rightarrow W$.

Problem 1

Recall that in lecture we defined the tensor product $V \otimes W$ of two finite-dimensional vector spaces V, W as the space of bilinear maps $V^{*} \times W^{*} \rightarrow \mathbb{F}$. (In case you have seen a more general definition of the tensor product elsewhere, you can view this problem as an effort to convince you that that definition is equivalent to ours.)
(a) Verify that if v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n} are bases of V and W respectively, then the $m n$ elements $v_{i} \otimes w_{j} \in V \otimes W$ for $i=1, \ldots, m$ and j, \ldots, n form a basis of $V \otimes W$.
(b) Show that for any vector space X, there is a canonical isomorphism between the space of linear maps $V \otimes W \rightarrow X$ and the space of bilinear maps $V \times W \rightarrow X$.
(c) Find a canonical isomorphism between $(V \otimes W) \otimes X$ and $V \otimes(W \otimes X)$ that identifies $(v \otimes w) \otimes x$ with $v \otimes(w \otimes x)$ for every $v \in V, w \in W$ and $x \in X$.
Hint: Identify both spaces with the space of all multilinear maps $V^{*} \times W^{*} \times X^{*} \rightarrow \mathbb{F}$. In the same manner, one can dispense with parentheses and identify any finite tensor product $V_{1} \otimes \ldots \otimes V_{k}$ with the space of multilinear maps $V_{1}^{*} \times \ldots \times V_{k}^{*} \rightarrow \mathbb{F}$.

Problem 2

(a) Prove that for two finite-dimensional vector spaces V and W, there is a canonical isomorphism $\Psi: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ such that for all $\lambda \in V^{*}$ and $w \in W$, $\Psi(\lambda \otimes w) v=\lambda(v) w$.
(b) Given smooth vector bundles E and F of rank m and k respectively over the same manifold M, describe a collection of smoothly compatible local trivializations of

$$
\operatorname{Hom}(E, F):=\bigcup_{p \in M} \operatorname{Hom}\left(E_{p}, F_{p}\right)
$$

giving $\operatorname{Hom}(E, F)$ the structure of a smooth vector bundle of rank $m k$ over M. Hint: One can just as well describe local frames instead of trivializations.
(c) Assume $A: E \rightarrow F$ is a map whose restriction $A_{p}:=\left.A\right|_{E_{p}}$ to the fiber $E_{p} \subset E$ over each point $p \in M$ is a linear map to the corresponding fiber $F_{p} \subset F$; in other words, the map $p \mapsto A_{p}$ is a section of the bundle $\operatorname{Hom}(E, F)$. Show that it is a smooth section if and only if $A: E \rightarrow F$ is a smooth map between manifolds.
Remark: This shows that the notion of a "smooth linear bundle map $E \rightarrow F$ " as we defined it in lecture is the same thing as a smooth section of $\operatorname{Hom}(E, F)$.
(d) Show that if $F \subset E$ is a smooth subbundle of the vector bundle $E \xrightarrow{\pi} M$, then the natural map $E \rightarrow E / F$ that restricts to each fiber $E_{p} \subset E$ as the quotient projection $E_{p} \rightarrow E_{p} / F_{p}: v \mapsto[v]$ is a smooth linear bundle map.

Problem 3

Assume (M, g) is a Riemannian n-manifold and $N \subset M$ is a smooth k-dimensional submanifold, so for every $p \in N, T_{p} N \subset T_{p} M$ is a linear subspace and has a well-defined orthogonal complement $\left(T_{p} N\right)^{\perp} \subset T_{p} M$ with respect to the inner product g_{p}. Prove:
(a) $T N^{\perp}:=\bigcup_{p \in N}\left(T_{p} N\right)^{\perp}$ is a smooth subbundle of $\left.T M\right|_{N}$.

Hint: Construct smooth local frames X_{1}, \ldots, X_{n} for $\left.T M\right|_{N}$ such that X_{1}, \ldots, X_{k} are tangent to N and X_{k+1}, \ldots, X_{n} lie in $(T N)^{\perp}$.
(b) The composition of the inclusion $\left.T N^{\perp} \hookrightarrow T M\right|_{N}$ with the fiberwise quotient projection $\left.T M\right|_{N} \rightarrow\left(\left.T M\right|_{N}\right) / T N=: \nu N$ from Problem 2(d) defines a bundle isomorphism $T N^{\perp} \rightarrow \nu N$.

Problem 4

Prove:
(a) A (real or complex) line bundle is trivial if and only if it admits a section that is nowhere zero.
(b) A real vector bundle of any rank is orientable if and only if it admits a volume form.
(c) A real line bundle is orientable if and only if it is trivial.
(d) A real vector bundle $E \rightarrow M$ of rank m is orientable if and only if the bundle $\Lambda^{m} E \rightarrow M$ is trivial.

Problem 5

(a) Prove that every real vector bundle is isomorphic to its dual bundle.

Hint: For a finite-dimensional vector space V, an isomorphism $V \rightarrow V^{*}$ always exists but is not typically canonical. Your bundle isomorphism $E \rightarrow E^{*}$ will similarly need to depend on a non-canonical choice.
(b) Do you think every complex vector bundle is isomorphic to its dual? Just think about it - don't try to prove anything.

Problem 6

For subbundles $E^{1}, \ldots, E^{k} \subset E$, we write $E=E^{1} \oplus \ldots \oplus E^{k}$ if the natural map

$$
E^{1} \oplus \ldots \oplus E^{k} \rightarrow E:\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{1}+\ldots+v_{k}
$$

is a bundle isomorphism. Suppose a splitting of this form exists, and write $m_{i}:=\operatorname{rank}\left(E^{i}\right)$ for $i=1, \ldots, k$ and $m:=\operatorname{rank}(E)$. What does the existence of this splitting tell you about the structure group of E, i.e. to what subgroup of $\operatorname{GL}(m, \mathbb{F})$ can it be reduced?

Problem 7

Prove: If $E \rightarrow M$ is a real vector bundle with an indefinite bundle metric \langle,$\rangle of signature$ (k, ℓ), then $E=E^{+} \oplus E^{-}$for a pair of subbundles $E^{+}, E^{-} \subset E$ of ranks k and ℓ respectively such that \langle,$\rangle is positive-definite on each fiber of E^{+}$and negative-definite on each fiber of E^{-}. Are the subbundles $E^{ \pm} \subset E$ unique?

