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Problem Set 9: Solutions

Notation: As in the lectures, F denotes either R or C, and all vector spaces, vector bund-
les and linear maps are over F unless otherwise specified. The dual of a vector space V is
V � :� HompV,Fq, and HompV,W q denotes the space of linear maps V ÑW .

Problem 1
Recall that in lecture we defined the tensor product V bW of two finite-dimensional vector
spaces V,W as the space of bilinear maps V � �W � Ñ F. (In case you have seen a more
general definition of the tensor product elsewhere, you can view this problem as an effort
to convince you that that definition is equivalent to ours.)

(a) Verify that if v1, . . . , vm and w1, . . . , wn are bases of V and W respectively, then the
mn elements vi b wj P V bW for i � 1, . . . ,m and j � 1, . . . , n form a basis of
V bW .

Let v1�, . . . , v
m
� P V � and w1

�, . . . , w
n
� P W � denote the dual bases to v1, . . . , vm and

w1, . . . , wn respectively, and given any A P V bW , let

Aij :� Apvi�, w
j
�q P F

for i � 1, . . . ,m, j � 1, . . . , n. Then the element1 Aijvi b wj P V b W evaluates the
same as A on all pairs of the form pvk�, w

ℓ
�q P V

��W �, so we conclude via bilinearity that
A � Aijvibwj , i.e. every element of V bW is a linear combination of the elements vibwj .
These elements also are linearly independent since any linear combination A :� Aijvibwj

for which some coefficient Akℓ is nonzero satisfies Apvk�, w
ℓ
�q � Akℓ � 0.

(b) Show that for any vector space X, there is a canonical isomorphism between the
space of linear maps V bW Ñ X and the space of bilinear maps V �W Ñ X.

Denote the space of bilinear maps V �W Ñ X by Hom2pV,W ;Xq. An obvious way to
define a linear map Φ : HompV bW,Xq Ñ Hom2pV,W ;Xq is by

ΦpAqpv, wq :� Apv b wq,

which works due to the fact that V � W Ñ V b W : pv, wq ÞÑ v b w is a bilinear
map. (Note: bilinearity is actually the only fact one usually needs to know about tensor
products—we do not even need to know the precise definition of the space V b W for
this problem!) It is clear that Φ is linear and injective; the latter follows from part (a),
because if ΦpAqpv, wq � 0 for all v P V and w P W , it implies that A must vanish on all
elements of some basis of V bW and therefore is trivial. Conversely, given any bilinear
map B P Hom2pV,W ;Xq, there is clearly a unique A P HompV b W,Xq that satisfies
Apvi b wjq � Bpvi, wjq for the basis elements v1, . . . , vm P V and w1, . . . , wn P W we
considered in part (a). To show that ΦpAq � B, we can write arbitrary elements of V and
W as linear combinations aivi P V and bjwj PW for some coefficients ai, bj P F, and then
use bilinearity to compute

ΦpAqpaivi, b
jwjq � aibjΦpAqpvi, wjq � aibjApvi b wjq � aibjBpvi, wjq � Bpaivi, b

jwjq.

1summation convention in effect!
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Problem Set 9: Solutions

(c) Find a canonical isomorphism between pV bW qbX and V bpW bXq that identifies
pv b wq b x with v b pw b xq for every v P V , w PW and x P X.
Hint: Identify both spaces with the space of all multilinear maps V ��W ��X� Ñ F.
In the same manner, one can dispense with parentheses and identify any finite tensor
product V1 b . . .b Vk with the space of multilinear maps V �

1 � . . .� V �
k Ñ F.

Let Hom3pV
�,W �, X�;Fq denote the space of multilinear maps V � �W � �X� Ñ F. We

claim that there is an isomorphism Φ : pV bW q b X Ñ Hom3pV
�,W �, X�;Fq uniquely

determined by the condition that for every v P V , w PW and x P X, the multilinear map
Φppv b wq b xq : V � �W � �X� Ñ F is given by

Φppv b wq b xqpλ, µ, ξq � λpvqµpwqξpxq (1)

for λ P V �, µ PW �, ξ P X�. Indeed, one can define Φ in the first place by choosing bases
v1, . . . , vm P V , w1, . . . , wn P W and x1, . . . , xℓ P X, and requiring (1) to hold whenever
v, w, x are all basis elements; since the elements pvibwjqbxℓ form a basis of pV bW qbX
according to part (a), this determines Φ uniquely via linearity. A general formula for Φ is
then

Φpcijkpvi b wjq b xkqpλ, µ, ξq � cijkλpviqµpwjqξpxkq

for arbitrary coefficients cijk P F with i � 1, . . . ,m, j � 1, . . . , n and k � 1, . . . , ℓ. Using
the dual bases to write λ � λiv

i
� P V

�, µ � µjw
j
� P W

� and ξ � ξkx
k
� P X

�, this formula
becomes

Φpcijkpvi b wjq b xkqpλ, µ, ξq � cijkλiµjξk, (2)

making it clear that Φ is an isomorphism. To check that (1) is always satisfied, one can
now consider arbitrary linear combinations v � aivi P V , w � bjwj PW and x � cℓxℓ P X,
and compute

Φppv b wq b xqpλ, µ, ξq � Φppaivi b bjwjq b cℓxℓqpλ, µ, ξq

� aibjcℓΦppvi b wjq b xℓqpλ, µ, ξq

� aibjcℓλpviqµpwjqξpxℓq � λpaiviqµpb
jwjqξpc

ℓxℓq

� λpvqµpwqξpxq.

The claim about the isomorphism pV bW q bX Ñ Hom3pV
�,W �, X�;Fq is thus proven.

In a precisely analogous manner, one can show that there is a unique isomorphism Ψ : V b
pWbXq Ñ Hom3pV

�,W �, X�;Fq for which Ψpvbpwbxqq : V ��W ��X� Ñ F is the same
multilinear map as Φppvbwqbxq. The canonical isomorphism pV bW qbX Ñ V bpWbXq
is then given by Ψ�1 � Φ.

Addendum:
It is now straightforward to extend part (b) as follows. Suppose V1, . . . , Vk are finite-
dimensional vector spaces and HomkpV1, . . . , Vk;Xq denotes the space of multilinear maps
V1 � . . .� Vk Ñ X. Then there is a canonical isomorphism Φ : HompV1 b . . .b Vk, Xq Ñ
HomkpV1, . . . , Vk;Xq such that

ΦpAqpv1, . . . , vkq � Apv1 b . . .b vkq

for all pv1, . . . , vkq P V1 � . . .� Vk. The proof of this requires only two facts: (1) The map
V1 � . . . � Vk Ñ V1 b . . . b Vk : pv1, . . . , vkq ÞÑ v1 b . . . b vk is multilinear, and (2) Given
any bases of the spaces V1, . . . , Vk, the set of all tensor products of these basis elements
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forms a basis of V1 b . . . b Vk. If one has these properties, one never needs to know the
actual definition of the space V1 b . . .b Vk.

Problem 2

(a) Prove that for two finite-dimensional vector spaces V and W , there is a canonical
isomorphism Ψ : V � b W Ñ HompV,W q such that for all λ P V � and w P W ,
Ψpλb wqv � λpvqw.

We observe first that there is a bilinear map pΨ : V � � W Ñ HompV,W q given bypΨpλ,wqv :� λpvqw. The result of Problem 1(b) implies that this corresponds under the
canonical isomorphism

Hom2pV
�,W ; HompV,W qq � HompV � bW,HompV,W qq

to a unique linear map Ψ : V � bW Ñ HompV,W q such that Ψpλb wqv � λpvqw. To see
that it is an isomorphism, choose bases e1, . . . , em P V , f1, . . . , fn P W and denote the
dual basis of V � by e1�, . . . , e

m
� P V �. Then arbitrary elements of V � bW take the form

A j
i e

i
� b fj for coefficients A j

i P F, and for v � vkek P V ,

ΨpA j
i e

i
� b fjqv � A j

i Ψpe
i
� b fjqv � A j

i e
i
�pvqfj � A j

i v
ifj .

This last expression says that the coefficients A j
i are the entries in the matrix representing

the linear map ΨpA j
i e

i
� b fjq : V Ñ W with respect to the bases e1, . . . , em P V and

f1, . . . , fn P W . This linear map vanishes if and only if the matrix entries are all 0, thus
Ψ is injective, and it similarly is surjective since any choice of the matrix entries A j

i gives

rise to a corresponding element A j
i e

i
� b fj P V

� bW .

(b) Given smooth vector bundles E and F of rank m and k respectively over the same
manifold M , describe a collection of smoothly compatible local trivializations of

HompE,F q :�
¤
pPM

HompEp, Fpq,

giving HompE,F q the structure of a smooth vector bundle of rank mk over M .
Hint: One can just as well describe local frames instead of trivializations.

I will give two solutions.

Solution 1:
In light of part (a), it will be equivalent to describe smoothly compatible local trivializati-
ons on E�bF , so let’s do that first. As preparation, we start by describing how to obtain
a family of smoothly compatible trivializations of the dual bundle E�. (This was described
briefly in lecture, but the fact that they are smoothly compatible was not proved—let’s
prove it!)
Any point in M admits a neighborhood U � M on which there exists a smooth frame
e1, . . . , em for E, and this determines a dual frame e1�, . . . , e

m
� for E� over U , defined via the

condition ei�pejq � δij . We need to check that any two frames for E� that are constructed
in this way are smoothly compatible on the region where they overlap, where “smoothly
compatible” means that each consists of sections whose component functions with respect
to the other frame are smooth (cf. Proposition 17.4 in the notes). To this end, suppose
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pU � M is another open set that intersects U , and pe1, . . . , pem is a smooth frame for E
over pU . On U X pU , we can write pei � g j

i ej

for unique smooth functions g j
i : U X pU Ñ F. The corresponding dual frame pe1�, . . . , pem� :pU Ñ E� likewise satisfies pei� � hije

j
�

on U X pU for uniquely determined functions hij : U X pU Ñ F; we need to show that the
latter functions are smooth. To see this, we observe

δij � pei�ppejq � hiae
a
�

�
g b
j eb

	
� hiag

b
j e

a
�pebq

� hiag
b

j δ
a
b � hiag

a
j .

This is a matrix relation: what it says is that if g,h : U X pU Ñ Fm�m denote the matrix-
valued functions whose entries in row i and column j are g j

i and hij respectively, then

hgT � 1, or equivalently ghT � 1, hence gppq P Fm�m is invertible for every p P UX pU and
hppq is the transpose of its inverse. The smoothness of g thus implies the smoothness of h
and therefore of the individual functions hij : UX pU Ñ F. One shows in the same way after

reversing the roles of the two frames that each ei� has smooth component functions with
respect to the frame pe1�, . . . , pem� , thus the two frames correspond to smoothly compatible
local trivializations of E�.
Now consider again HompE,F q. Any point in M has a neighborhood U � M on which
both E and F admit smooth frames e1, . . . , em and f1, . . . , fk respectively, and we will
again denote the dual frame for E� by e1�, . . . , e

m
� . By Problem 1(a), the sections

ei� b fj : U Ñ E� b F, i � 1, . . . ,m, j � 1, . . . , k

then define a frame for E�bF over U . We can also use part (a) to interpret it as a frame
for HompE,F q, namely by identifying ei�ppq b fjppq P E

�
p b Fp for each p P U with the

linear map Ep Ñ Fp : v ÞÑ ei�ppqpvqfjppq. With this understood, it remains only to check
that any two local frames for HompE,F q constructed in this way are smoothly compatible
on the region where they overlap. Suppose pU � M is another open set that intersects
U and pe1, . . . , pem and pf1, . . . , pfk denote smooth frames for E and F respectively over pU ,
defining also the dual frame pe1�, . . . , pem� for E�. On U X pU , we can write

pei� � hiae
a
�,

pfj � G b
j fb

for unique functions hia, G
b
j : UX pU Ñ F, where the G b

j are smooth due to the assumption

that both frames for F are smoothly compatible, and the hia are smooth by the result of
the previous paragraph. We then have

pei� b pfj � hiae
a
� bG b

j fb � hiaG
b
j e

a
� b fb,

showing that the components of each of the sections pei� b pfj with respect to the frame
formed by the sections ea� b fb on HompE,F q are all functions of the form hiaG

b
j , which

are clearly smooth. This completes the proof that the corresponding local trivializations
for HompE,F q arising from this construction are all smoothly compatible.

Solution 2:
Here is a more direct construction, without using local frames.
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Suppose Uα � M is an open set on which both E and F admit local trivializations
Φα : E|Uα Ñ Uα � Fm and Ψα : F |Uα Ñ Uα � Fk. They can both be written in the form

Φαpvq � pp,Φα,pvq, Ψαpvq � pp,Ψα,pvq, for p P Uα, v P Ep,

where Φα,p : Ep Ñ Fm and Ψα,p : Ep Ñ Fk are vector space isomorphisms defined for each
p P Uα. These give rise to a family of vector space isomorphisms

Πα,p : HompEp, Fpq Ñ HompFm,Fkq � Fk�m

defined by Πα,ppAq :� Ψα,p �A � Φ�1
α,p, and these can be assembled into a bijection

Πα : HompE,F q|Uα Ñ Uα � Fk�m : A ÞÑ pp,Πα,ppAqq for p P Uα, A P HompEp, Fpq,

which we shall interpret as a local trivialization (you only have to choose your favorite
isomorphism of the vector space Fk�m with Fkm). Clearly the entirety of HompE,F q can
be covered by local trivializations that are constructed in this way, and we claim that any
two of them are smoothly compatible. To see this, suppose Uβ � M is another open set
intersecting Uα, on which there is another pair of local trivializations Φβ : E|Uβ

Ñ Uβ�Fm

and Ψβ : F |Uβ
Ñ Uβ � Fk that are related to Φα and Ψα by

Φβ � Φ
�1
α pp, vq � pp, gβαppqvq, Ψβ �Ψ

�1
α pp, vq � pp, hβαppqvq,

thus defining transition functions gβα : UαXUβ Ñ GLpm,Fq and hβα : UαXUβ Ñ GLpk,Fq.
These can also be written as gβαppq � Φβ,p �Φ

�1
α,p and hβαppq � Ψβ,p �Ψ

�1
α,p, thus the new

local trivialization Πβ : HompE,F q|Uβ
Ñ Uβ � Fk�m is related to Πα by Πβ �Π

�1
α pp,Aq �

pp,GβαppqAq, where

GβαppqA � Πβ,p �Π
�1
α,ppAq � Ψβ,p �Ψ

�1
α,p �A � Φα,p � Φ

�1
β,p � hβαppqAgβαppq

�1

� hβαppqAgαβppq.

This formula defines a smooth functionGβα : UαXUβ Ñ EndpFk�mq :� HompFk�m,Fk�mq,
thus Πα and Πβ are smoothly compatible.

Addendum:
You may be wondering: what relation is there between Solutions 1 and 2, i.e. is the local
frame for HompE,F q constructed in Solution 1 over a subset U :� Uα � M equivalent
to the local trivialization Πα : HompE,F q|Uα Ñ Uα � Fk�m in Solution 2 if we use the
same frames/trivializations on E and F for each? The answer is yes. To see it, note that
our trivialization in Solution 2 identifies each fiber of HompE,F q|Uα with HompFm,Fkq,
so to understand what local frame corresponds to this, we must first decide what to call
the “standard” basis of HompFm,Fkq. Using the isomorphism HompFm,Fkq � pFmq�b Fk

from part (a), I would say the natural basis of HompFm,Fkq consists of the elements

ei� b ej , i � 1, . . . ,m, j � 1, . . . , k,

where we denote by ei the standard basis vectors on Fm or Fk and write ei� for the
corresponding dual vectors. In other words, ei� b ej P HompFm,Fkq denotes the unique
linear map that sends ei ÞÑ ej and sends all other standard basis vectors of Fm to 0.
Assuming e1, . . . , em and f1, . . . , fk are the local frames of E and F respectively that
are identified with the standard bases via our trivializations Φα : E|Uα Ñ Uα � Fm and
Ψα : F |Uα Ñ Uα � Fk, you will find that Πα : HompE,F q|Uα Ñ Uα � HompFm,Fkq
now identifies this standard basis of HompFm,Fkq with the local frame we constructed in
Solution 1.
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(c) Assume A : E Ñ F is a map whose restriction Ap :� A|Ep to the fiber Ep � E over
each point p PM is a linear map to the corresponding fiber Fp � F ; in other words,
the map p ÞÑ Ap is a section of the bundle HompE,F q. Show that it is a smooth
section if and only if A : E Ñ F is a smooth map between manifolds.
Remark: This shows that the notion of a “smooth linear bundle map E Ñ F” as we
defined it in lecture is the same thing as a smooth section of HompE,F q.

To talk about smooth maps A : E Ñ F , we need to recall how the smooth structures
on the total spaces E and F are defined in terms of smooth local trivializations and
charts. Assume U � M is an open set that is small enough so that there exists both a
smooth chart x : U Ñ Rn for M and smooth local trivializations Φ : E|U Ñ U � Fm and
Ψ : F |U Ñ U � Fk. These choices give rise to charts on the open subsets E|U � E and
F |U � F of the total spaces, in the form

ϕ :� px� 1q � Φ : E|U Ñ Rn � Fm, ψ :� px� 1q �Ψ : F |U Ñ Rn � Fk.

In other words, if we write Φp : Ep Ñ Fm for the unique vector space isomorphism such that
Φpvq � pp,Φpvq for each p P U and v P Ep, then ϕ maps v P Ep to pxppq,Φpvq P Rn � Fm,
and we use the obvious identification of Rn�Fm with Rn�m or (in the case F � C) Rn�2m

in order to regard ϕ as a chart (and ψ similarly). Any charts of this form arising from
different choices of the smooth chart x and smooth local trivializations Φ,Ψ are smoothly
compatible, and the smooth structures of the total spaces E and F are defined as the
unique maximal smooth atlases that contain all charts of this form. In practice, we are
free to consider only charts of this form since E and F can be covered by open subsets of
the form E|U and F |U for U �M open.
Now, using the charts ϕ and ψ defined above, the key question is this: under what condi-
tions is the map

ψ �A � ϕ�1 : xpUq � Fm Ñ xpUq � Fk

smooth? For any given point p P U , writing q :� xppq P Rn, ϕ�1 sends tqu � Fm to the
fiber Ep via the linear isomorphism Φ�1

p , and by assumption A then sends it to Fp via
the linear map Ap : Ep Ñ Fp, after which ψ sends it by another linear isomorphism Ψp to
tqu � Fk. This shows that we can associate to each p P U a matrix

Bppq :� Ψp �Ap � Φ
�1
p P HompFm,Fkq � Fk�m,

such that
ψ �A � ϕ�1pq, vq � pq,Bpx�1pqqqvq,

and since x�1 : xpUq Ñ U is smooth, it follows that ψ � A � ϕ�1 is smooth if and only
if B : U Ñ Fk�m is a smooth function. Now look again at Solution 2 to part (b): if we
use a local trivialization Π : HompE,F q|U Ñ U � Fk�m as constructed there out of the
local trivializations Φ and Ψ for E and F respectively, then the function B : U Ñ Fk�m

is precisely the local representation of the section M Ñ HompE,F q : p ÞÑ Ap with respect
to that trivialization. We conclude that the section is smooth if and only if A : E Ñ F is
a smooth map.

(d) Show that if F � E is a smooth subbundle of the vector bundle E
π
Ñ M , then the

natural map E Ñ E{F that restricts to each fiber Ep � E as the quotient projection
Ep Ñ Ep{Fp : v ÞÑ rvs is a smooth linear bundle map.
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The result of part (c) makes this very easy. Recall first how smooth local trivializations
of the quotient bundle E{F Ñ M are constructed: assuming E and F have ranks m and
k respectively, one can cover E with local trivializations Φα : E|Uα Ñ Uα � Fm having
the special property that ΦαpF |Uαq � Uα � Fk, where we identify Fk with the subspace
Fk � t0u � Fm. Writing Φαpvq � pp,Φα,pvq for p P Uα and v P Ep, the corresponding local
trivialization of E{F over Uα takes the form

Ψα : pE{F q|Uα Ñ Uα � pFm{Fkq : rvs ÞÑ pp, rΦα,pvsq for p P Uα, rvs P Ep{Fp,

which is well defined because the isomorphism Φα,p : Ep Ñ Fm sends Fp � Ep isomorphi-
cally to Fk � Fm and thus descends to an isomorphism of quotient spaces Ep{Fp Ñ Fm{Fk.
Using the trivializations Φα and Ψα for E and E{F respectively over Uα, the fiberwise
projection map P : E Ñ E{F looks like

Ψα � P � Φ�1
α : Uα � Fm Ñ Uα � Fm{Fk : pq, vq ÞÑ pq, rvsq,

i.e. it is represented on every fiber over points in Uα by the same linear map Fm Ñ Fm{Fk,
namely the natural quotient projection. In other words, P is a section of the bundle
HompE,E{F q that looks constant when expressed in the local trivialization determined
by Φα and Ψα; it is thus smooth since constant functions are smooth.

Final comment: The point of this problem was to make your life easier when working
with smooth linear bundle maps in the future. Our initial definition in lecture for the
notion of “smoothness” of a linear bundle map A : E Ñ F was the quickest definition
we could give at the time, as we had already proved that the total spaces E and F ha-
ve natural smooth structures, and could thus talk about smooth maps E Ñ F . But it
is usually not convenient in practice to think of bundle maps in this way, and actually
checking smoothness in terms of smooth charts on E and F is a bit cumbersome—it is
typically easier to think in terms of smooth sections of the bundle HompE,F q, as we did in
part (d). From this perspective, the smoothness of many bundle maps that arise naturally
in various situations becomes almost obvious.

Problem 3
Assume pM, gq is a Riemannian n-manifold and N � M is a smooth k-dimensional sub-
manifold, so for every p P N , TpN � TpM is a linear subspace and has a well-defined
orthogonal complement pTpNq

K � TpM with respect to the inner product gp. Prove:

(a) TNK :�
�

pPN pTpNq
K is a smooth subbundle of TM |N .

Hint: Construct smooth local frames X1, . . . , Xn for TM |N such that X1, . . . , Xk are
tangent to N and Xk�1, . . . , Xn lie in pTNqK.

We already know TN � TM |N is a smooth subbundle, thus near any point p P N , one
can find a neighborhood U � N of p and a smooth local frame Y1, . . . , Yn for TM |N
over U such that Y1, . . . , Yk is a local frame for TN over U . Now define a new frame
X1, . . . , Xn for TM |N over the same region by applying the Gram-Schmidt algorithm
to Y1, . . . , Yn. This ensures that at every point, the vectors X1, . . . , Xk have the same
span as Y1, . . . , Yk, namely the tangent space to N , but the vectors Xk�1, . . . , Xn are also
orthogonal to all of these and thus belong to TNK. The local trivialization corresponding
to the frame X1, . . . , Xn thus defines isomorphisms TqM Ñ Rn for every q P U that
identify TqN � TqM with Rk�t0u � Rn and pTqNq

K � TqM with t0u�Rn�k � Rn, thus
making TNK � TM |N a smooth subbundle according to Proposition 17.2 in the notes.
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(b) The composition of the inclusion TNK
ãÑ TM |N with the fiberwise quotient projec-

tion TM |N Ñ pTM |N q
L
TN �: νN from Problem 2(d) defines a bundle isomorphism

TNK Ñ νN .

Basic linear algebra implies that on each fiber, the map pTpNq
K Ñ pνNqp is an iso-

morphism. That it also depends smoothly on p follows from the fact that the inclusion
TNK

ãÑ TM |N is a smooth linear bundle map (because TNK � TM |N is a subbundle)
and so is TM |N Ñ νN (by Problem 2(b)).

Problem 4
Prove:

(a) A (real or complex) line bundle is trivial if and only if it admits a section that is
nowhere zero.

Recall, the term “line bundle” means the fibers are 1-dimensional, so a nowhere-zero
section of E ÑM is in this case the same thing as a global frame for E, i.e. a frame that
is defined on all of M . There is a natural bijective correspondence between global frames
and global trivializations: concretely, we associate to any nowhere-zero section s :M Ñ E
the unique bundle isomorphism Φ : E ÑM �F such that Φ�1pp, λq � λsppq for all p PM
and λ P F.

(b) A real vector bundle of any rank is orientable if and only if it admits a volume form.

Assume E Ñ M is a real bundle of rank m and µ P ΛmE� is a volume form, meaning
µppq is a nontrivial alternating m-form on Ep for every p P M . Proposition 18.28 in the
notes then implies that E must be orientable; this was proved as a corollary of the fact
that SLpm,Rq is a subgroup of GL�pm,Rq. More concretely, one can define an orientation
of E via the condition that for each p PM , an ordered basis v1, . . . , vm of Ep is positively
oriented if and only if µppqpv1, . . . , vmq ¡ 0. Conversely, if E is orientable, then there are
at least two ways to show that a volume form µ P ΛmE� exists: (1) choose a positive
bundle metric (these always exist by Theorem 18.18 in the notes) and appeal to the fact
that every bundle metric on an oriented real vector bundle determines a canonical volume
form (Proposition 18.29 in the notes); (2) Cover E with local trivializations pUα,Φαq,
choose a volume form µα P ΛmE�|Uα that matches the standard volume form of Rm

in each trivialization, then piece these local choices together using a partition of unity
(cf. Problem Set 8 #2).

(c) A real line bundle is orientable if and only if it is trivial.

Every trivial real vector bundle is orientable. The converse is not true for bundles of
arbitrary rank m, but it is true when m � 1, for the following reason: if E Ñ M is an
orientable line bundle, then by part (b), it admits a volume form, which in the case m � 1
means a nowhere-zero section of the dual bundle E�. The latter is also a line bundle, so
part (a) now implies that E� is trivial, or equivalently, E� admits a global frame. This
frame is dual to a unique global frame of E, thus E is also trivial.

(d) A real vector bundle E Ñ M of rank m is orientable if and only if the bundle
ΛmE ÑM is trivial.

8
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The only tricky aspect of this problem is that it says ΛmE instead of ΛmE�. Let us first
show that E is orientable if and only if ΛmE� is trivial: by part (a), the latter is equivalent
to ΛmE� admitting a nowhere-zero section, which is the same thing as a volume form for E,
whose existence is equivalent via part (b) to E being orientable. So far so good.
I can think of three methods for proving the same thing about ΛmE instead of ΛmE�.

Method 1: Here is a fairly direct argument. Suppose first that ΛmE is trivial; since
rankpΛmEq � 1, it then follows from part (a) that there exists a nowhere-zero secti-
on µ P ΓpΛmEq. For any p P M and any basis v1, . . . , vm of Ep, the wedge product
v1 ^ . . . ^ vm P ΛmEp is then nontrivial and must be a scalar multiple of µppq since the
fibers of ΛmE are 1-dimensional, so

v1 ^ . . .^ vm � cµppq

for some c P Rzt0u. We define an orientation on E via the condition that v1, . . . , vm is
positively oriented if and only if c ¡ 0. Conversely, if E is oriented, then we have a preferred
class of local frames e1, . . . , em for E over subsets U �M , forming positively-oriented bases
on the fibers at points in U . Any such frame gives rise to a nontrivial section e1^ . . .^ em
of ΛmE over U , which can also be interpreted as a frame for ΛmE since the fibers of ΛmE
are 1-dimensional. We claim that if e11, . . . , e

1
m is another positively-oriented frame for E

on a region U 1 �M that intersects U , then

e11 ^ . . .^ e1m � f e1 ^ . . .^ em on U X U 1 (3)

for a positive function f : U X U 1 Ñ p0,8q. Indeed, applying Proposition 9.10 from the
notes to the vector space V :� E�

p at any point p P U X U 1, we find

e11 ^ . . .^ e1m � det

��� e1�pe
1
1q � � � em� pe

1
1q

...
. . .

...
e1�pe

1
mq � � � em� pe

1
mq

��e1 ^ . . .^ em, (4)

where e1�, . . . , e
m
� denotes the dual frame of e1, . . . , em. To see that the determinant of this

matrix is positive, note that since e1, . . . , em and e11, . . . , e
1
m define the same orientation of

Ep at any point p P U X U 1, one can deform the basis e11ppq, . . . , e
1
mppq to e1ppq, . . . , emppq

through a continuous family of ordered bases of Ep. This deformation has the effect of de-
forming the matrix in (4) to the identity matrix through a continuous family of invertible
matrices; since detp1q ¡ 0, the determinant in (4) must therefore also be positive, proving
the claim. If we now convert frames of the form e1 ^ . . .^ em into local trivializations of
ΛmE, the positivity of the function f in (3) implies that these trivializations are always
compatible with each other via positive transition functions, i.e. the transition functions
take values in GL�p1,Rq � p0,8q. In this way, we have endowed ΛmE with an orientation,
so by part (c), ΛmE is therefore trivial.

The other two methods both derive the result from the observation above that E is ori-
entable if and only if ΛmE� is trivial.

Method 2: Convince yourself that E is orientable if and only if E� is. In fact, any orien-
tation on a vector space V canonically determines an orientation on its dual space V � via
the condition that an ordered basis of V is positively oriented if and only if its dual basis
is a positively-oriented basis of V �. In this way, any continuous family of orientations of
the fibers of E gives rise to a continuous family of orientations of the fibers of E�, and

9
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vice versa. Once this is established, you can view nowhere-zero sections of ΛmE as volume
forms on E� and then appeal to the previous observation: identifying E�� with E, E� is
orientable if and only if ΛmE�� � ΛmE is trivial.

Method 3: There is a natural isomorphism of ΛmE� with the dual bundle of ΛmE, imply-
ing that the latter is trivial if and only if the former is. In fact, for any real m-dimensional
vector space V , each top-dimensional alternating form µ P ΛmV � defines a linear map
ΛmV Ñ R in the following way. As an m-fold multilinear map µ : V � . . . � V Ñ R,
the addendum to our solution of Problem 1 identifies µ with a linear map pµ : V bm :�
V b . . .b Vloooooomoooooon

m

Ñ R that is uniquely determined by the formula

pµpv1 b . . .b vmq � µpv1, . . . , vmq for all v1, . . . , vm P V.

The restriction of pµ to the subspace ΛmV � V bm thus defines a linear map ΛmV Ñ R, or
in other words, an element of the dual space pΛmV q�, so that we have in this way defined
a linear map

ΛmpV �q Ñ pΛmV q� : µ ÞÑ pµ|ΛmV . (5)

To see that this map is injective, note that for any basis v1, . . . , vm of V , ΛmV is spanned
by

v1 ^ . . .^ vm �
¸

σPSm

p�1q|σ|vσp1q b . . .b vσpmq P ΛmV � V bm,

and

pµpv1 ^ . . .^ vmq � pµ� ¸
σPSm

p�1q|σ|vσp1q b . . .b vσpmq

�
�

¸
σPSm

p�1q|σ|pµpvσp1q b . . .b vσpmqq �
¸

σPSm

p�1q|σ|µpvσp1q, . . . , vσpmqq

� m!µpv1, . . . , vmq,

where in the last line we have appealed to the fact that µ is antisymmetric in order to
remove the permutations. Since µ is a top-dimensional form on V and v1, . . . , vm is a basis,
this expression is nonzero if and only if µ � 0, proving that the map (5) is injective. It is
therefore also surjective, as dimΛmpV �q � dimpΛmV q� � 1. Applying this isomorphism
to all fibers of the bundle E ÑM defines a bijection

Ψ : ΛmpE�q Ñ pΛmEq�

that gives a vector space isomorphism ΛmpE�
p q Ñ pΛmEpq

� for every p P M . We claim
that this is a smooth linear bundle map, and therefore a bundle isomorphism. For this it
suffices to show that on a neighborhood of any given point in M , Ψ maps some smooth
frame for ΛmpE�q to a smooth frame for pΛmEq�. Indeed, suppose e1, . . . , em is a smooth
frame for E on some region U � M , with dual frame e1�, . . . , e

m
� , so e

1
� ^ . . .^ em� defines

a smooth frame for ΛmpE�q and e1 ^ . . . ^ em a smooth frame for ΛmE over the same

10
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region U . At each point in U , evaluating Ψpe1� ^ . . .^ em� q on e1 ^ . . .^ em then gives

Ψpe1� ^ . . .^ em� qpe1 ^ . . .^ emq � Ψpe1� ^ . . .^ em� q

� ¸
σPSm

p�1q|σ|eσp1q b . . .b eσpmq

�
�

¸
σPSm

p�1q|σ|Ψpe1� ^ . . .^ em� qpeσp1q b . . .b eσpmqq

�
¸

σPSm

p�1q|σ|pe1� ^ . . .^ em� qpeσp1q, . . . , eσpmqq

� m! pe1� ^ . . .^ em� qpe1, . . . , emq � m!.

This reveals that Ψ maps the smooth frame 1
m!e

1
�^. . .^e

m
� to the dual frame of e1^. . .^em,

which is indeed a smooth frame for pΛmEq� over U .

Problem 5

(a) Prove that every real vector bundle is isomorphic to its dual bundle.
Hint: For a finite-dimensional vector space V , an isomorphism V Ñ V � always exists
but is not typically canonical. Your bundle isomorphism E Ñ E� will similarly need
to depend on a non-canonical choice.

Recall that every vector bundle E ÑM admits a positive bundle metric x , y, so we can
choose one and define a bundle isomorphism E Ñ E� by

v ÞÑ xv, �y.

(b) Do you think every complex vector bundle is isomorphic to its dual? Just think
about it—don’t try to prove anything.

The answer is no: E and E� are not always isomorphic if E Ñ M is a complex vector
bundle. The reason the construction from part (a) does not work in the complex case is
that if x , y is an inner product on a complex vector space V , then v ÞÑ xv, �y gives a
bijection V Ñ V � but it is not a complex-linear map; it is in fact complex antilinear since
xiv, �y � �ixv, �y. One could try to get around this problem by using the map v ÞÑ x�, vy
instead of xv, �y, but now there is a different problem: x�, vy : V Ñ R is a complex-antilinear
map, and is thus not an element of the dual space V �. (One can more accurately regard
it as an element of the conjugate dual space sV �; see Exercise 17.21 in the notes.)

Commentary:
To actually show that no isomorphism E Ñ E� exists in certain examples requires topolo-
gical tools that we have not discussed in this course, but I can summarize the simplest case
as follows. If M is a closed oriented 2-manifold and E ÑM is a complex line bundle, then
there is a numerical invariant associated to E, called its first Chern number c1pEq P Z,
with the property that for any section s P ΓpEq that vanishes at only finitely many points,
counting the zeroes of s with suitable signs and weights always gives c1pEq. (In complex
analysis, you may have seen the notion of the order of a zero of a holomorphic function,
which is a positive integer one can define in terms of a winding number. If one instead
considers an antiholomorphic function, then a zero will instead have negative order. The
order of a zero in this sense is what I meant by “suitable signs and weights” above.) On-
ce you’ve convinced yourself that c1pEq is well defined, it is not hard to show that (1)
c1pEq � c1pF q whenever E and F are isomorphic complex line bundles over M , and (2)

11
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c1pE
�q � �c1pEq. It follows that a complex line bundle over a closed oriented surface

cannot be isomorphic to its dual bundle unless its first Chern number is 0, and it is easy
to come up with examples for which c1pEq is nonzero. One such example is TS2 Ñ S2, if
one chooses a complex structure in order to regard the tangent spaces TpS

2 as complex
1-dimensional vector spaces (see Section 18.7 in the notes). One then has c1pTS

2q � 2,
implying that TS2 is not complex-isomorphic to its dual bundle. (Incidentally, this also
implies a famous result known colloquially as the “hairy sphere” theorem: there exists
no continuous vector field on S2 that is nowhere zero, i.e. “you can’t comb the hair on a
sphere”. We will be able to prove this by the end of the semester.)

Problem 6
For subbundles E1, . . . , Ek � E, we write E � E1 ` . . .` Ek if the natural map

E1 ` . . .` Ek Ñ E : pv1, . . . , vkq ÞÑ v1 � . . .� vk

is a bundle isomorphism. Suppose a splitting of this form exists, and write mi :� rankpEiq
for i � 1, . . . , k and m :� rankpEq. What does the existence of this splitting tell you about
the structure group of E, i.e. to what subgroup of GLpm,Fq can it be reduced?

Define the subgroup G � GLpm,Fq to consist of all block-diagonal matrices of the form

A �

���A1 � � � 0
...

. . .
...

0 � � � Ak

��
where Ai P GLpmi,Rq for i � 1, . . . , k. We claim that splittings E � E1 ` . . . ` Ek are
equivalent to G-structures on E for this particular group G. Indeed, if such a splitting is
given, then on a sufficiently small neighborhood of any point in M one can find smooth
frames for each of the subbundles Ei � E and assemble them together into a frame
e1, . . . , em for E such that e1, . . . , em1 have values in E1, em1�1, . . . , em1�m2 have values in
E2, and so forth. The transition functions relating any two trivializations that correspond
to frames of this form take values in G. Conversely, if a G-structure on E is given, then
one can consider the obvious splitting

Rm � Rm1 ` . . .` Rmk (6)

and define subbundles Ei � E for each i � 1, . . . , k by the condition that every G-
compatible local trivialization Φ : E|U Ñ U � Rm should identify Ei|U with U � Rmi �
U�Rm. This is well defined because G is the group of all linear transformations Rm Ñ Rm

that preserve each of the summands in the splitting (6).

Problem 7
Prove: If E ÑM is a real vector bundle with an indefinite bundle metric x , y of signature
pk, ℓq, then E � E� ` E� for a pair of subbundles E�, E� � E of ranks k and ℓ respec-
tively such that x , y is positive-definite on each fiber of E� and negative-definite on each
fiber of E�. Are the subbundles E� � E unique?

Choose a positive bundle metric x , y� on E; this is always possible by Theorem 18.18 in
the notes. This determines a unique smooth linear bundle map H : E Ñ E such that

xv, wy � xv,Hwy�

12
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for all pv, wq P E ` E. On each fiber, Hp :� H|Ep is then a linear map Ep Ñ Ep that is
invertible (due to the nondegeneracy of x , y) and symmetric with respect to the inner
product x , y�, so by the spectral theorem, it uniquely determines a splitting of Ep into
two subspaces Ep � E�

p ` E�
p , spanned by the eigenvectors of Hp with positive or ne-

gative eigenvalues respectively. These subspaces are mutually orthogonal with respect to
x , y�, and since they are each preserved by Hp, they are also mutually orthogonal with
respect to x , y, and the latter is positive definite on E�

p and negative definite on E�
p . By

Corollary 18.23 in the notes, E� :�
�

pPM E�
p are smooth subbundles of E.

While the subspaces E�
p � Ep are uniquely determined by the linear map Hp : Ep Ñ Ep

for each p PM , Hp itself depended on a choice, namely the positive bundle metric x , y�.
In fact, it is easy to see that E�

p and E�
p are not uniquely determined by the condition that

x , y should be positive on one and negative on the other: these are open conditions, so they
will continue to hold if E�

p and E�
p are replaced by any sufficiently nearby perturbations

of these subspaces. I realize in retrospect that I meant to state one more condition in
the problem, namely that the subspaces E�

p and E�
p are orthogonal to each other with

respect to the indefinite bundle metric x , y. This is clearly satisfied for the construction
of E�

p via eigenspaces given above, but even with this extra condition, the two subspaces
are still not unique: one can allow any sufficiently small perturbation of E�

p and then use
the Gram-Schmidt algorithm to obtain a similarly small perturbation of E�

p that makes
it orthogonal to the perturbed E�

p .
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