
Topology II Humboldt-Universität zu Berlin
C. Wendl Winter Semester 2023–24

PROBLEM SET 1
To be discussed: 25.10.2023

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of
the problems before the next week’s lectures, as the problems will often serve as mental preparation for the
lecture material. Solutions will be discussed in the Übung.

1. Consider categories AbZ and Chain, defined as follows:

� Objects of AbZ are Z-graded abelian groups G� �
À

nPZ Gn, and morphisms from G� to H� are
group homomorphisms Φ : G� Ñ H� satisfying ΦpGnq � Hn for every n P Z.

� Objects of Chain are chain complexes pC�, Bq, meaning Z-graded abelian groups C� �
À

nPZ Cn

endowed with homomorphisms B : C� Ñ C� that satisfy BpCnq � Cn�1 for each n P Z and B2 � 0.
Morphisms from pA�, BAq to pB�, BBq are chain maps, meaning homomorphisms Φ : A� Ñ B�
with ΦpAnq � Bn for each n P Z and Φ � BA � BB � Φ.

Recall that the homology of a chain complex pC�, Bq is defined in general as the graded abelian group
H�pC�, Bq �

À
nPZ HnpC�, Bq where HnpC�, Bq � ker Bn

L
im Bn�1, with the restriction of B : C� Ñ C�

to Cn Ñ Cn�1 denoted by Bn.

(a) Show that H� defines a functor from Chain to AbZ in a natural way. How does this functor act
on morphisms of Chain?

(b) Recall that for two chain maps Φ,Ψ from pA�, BAq to pB�, BBq, a chain homotopy from Φ to Ψ
is a homomorphism h : A� Ñ B� satisfying hpAnq � Bn�1 for all n and

BB � h� h � BA � Ψ� Φ.

Show that the existence of chain homotopies defines an equivalence relation on the set of chain
maps. (The resulting equivalence classes are called chain homotopy classes, and we say Φ and
Ψ are chain homotopic if there exists a chain homotopy between them.)

(c) We can now define Chainh as the category whose objects are the same as in Chain, but with
morphisms defined as chain homotopy classes of chain maps. Show that H� also defines a functor
from Chainh to AbZ.

2. One can speak of “functors of multiple variables” in much the same way as with functions. Show for
instance that on the category Ab of abelian groups and homomorphisms,

Hom : Ab� Ab Ñ Ab

defines a functor that is contravariant in the first variable and covariant in the second, assigning to
each pair of abelian groups pG,Hq the group HompG,Hq of homomorphisms G Ñ H.

3. For a pointed space pX, pq, recall that the Hurewicz homomorphism1

h : π1pX, pq Ñ H1pX;Zq

sends each element rγs P π1pX, pq represented by a path γ : I Ñ X with γp0q � γp1q � p to the
homology class represented by the singular 1-cycle γ : ∆1 Ñ X, defined by identifying the unit interval
I :� r0, 1s with the standard 1-simplex ∆1 :� tpt0, t1q P I2 | t0 � t1 � 1u. Let Top

�
denote the

category of pointed spaces with base-point preserving continuous maps, so that we can regard both π1

and H1p�;Zq as functors from Top
�
to the category Grp of groups with homomorphisms. (Note that

the base point is irrelevant for the definition of H1p�;Zq, which actually takes values in the smaller
subcategory of abelian groups, but these details are unimportant for now.) In this context, show that
the Hurewicz homomorphism defines a natural transformation from π1 to H1p�;Zq.

1See Problem Set 9 #3 from last semester’s Topologie I class, which will be discussed in the Übung on 18.10.2023.
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4. Suppose A is a category whose objects form a set X, such that for each pair x, y P X, the set of
morphisms Morpx, yq contains either exactly one element or none. We can turn this into a binary
relation by writing x ' y for every pair such that Morpx, yq � H.

(a) What properties does the relation ' need to have in order for it to define a category in the way
indicated above?

(b) If B is another category whose objects form a set Y with morphisms determined by a binary
relation ' as indicated above, what properties does a map f : X Ñ Y need to have in order for
it to define a functor from A to B?

5. In any category C , each object X has an automorphism group (also called isotropy group) AutpXq,
consisting of all the isomorphisms in MorpX,Xq. A groupoid is a category in which all morphisms
are also isomorphisms.

(a) Show that if G is a groupoid and Grp denotes the usual category of groups with homomorphisms,
there exists a contravariant functor from G to Grp that assigns to each object X of G its automor-
phism group AutpXq. How does this functor act on morphisms X Ñ Y ? Could you alternatively
define it as a covariant functor? Conclude either way that whenever X and Y are isomorphic
objects in G (meaning there exists an isomorphism in MorpX,Y q), the groups AutpXq and AutpY q
are isomorphic.

(b) Given a topological space X and two points x, y, let Morpx, yq denote the set of homotopy classes
(with fixed end points) of paths I :� r0, 1s Ñ X from x to y, and define a composition function
Morpx, yq �Morpy, zq Ñ Morpx, zq : pα, βq ÞÑ α � β by the usual notion of concatenation of paths.
Show that this notion of morphisms defines a groupoid whose objects are the points in X.2 In
this case, what are the automorphism groups Autpxq and the isomorphisms Autpyq Ñ Autpxq
given by the functor in part (a)?

6. For a fixed field K, let VecK denote the category of finite-dimensional vector spaces over K with K-linear
maps as morphisms.

(a) Show that there is a covariant functor ∆2 from VecK to itself, assigning to each V P VecK the
dual of its dual space pV �q�. Describe how this functor acts on morphisms.

(b) Let Id denote the identity functor on VecK, which sends each object and morphism to itself.
Construct a natural transformation from Id to ∆2 that assigns to every V P VecK a vector space
isomorphism V Ñ pV �q�.

(c) Every complex vector space V P VecC has a conjugate space sV P VecC, defined as the same
set with the same notion of vector addition but with scalar multiplication conjugated: in other
words, if for each v P V we denote the same element in sV by v̄, then scalar multiplication on sV
is defined for λ P C by

λv̄ :� λ̄v.

Show that there is a covariant functor VecC Ñ VecC sending each complex vector space to its
conjugate, and describe how it acts on morphisms.

(d) Notice that for V P VecC, the map V Ñ sV : v ÞÑ v̄ is not a morphism in VecC, as it is complex
antilinear. Of course V and sV are both complex vector spaces of the same dimension, so they are
always isomorphic. Prove however that—in contrast to the case of the double dual in part (b)—
there exists no natural transformation from the identity to the conjugation functor that provides
a complex-linear isomorphism V Ñ sV for every V P VecC.
Hint: If such a natural transformation exists, what will it imply about the specific morphism
V Ñ V : v ÞÑ iv?

2It is called the fundamental groupoid of X.
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