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TAKE-HOME MIDTERM

Due: 2.02.2023

Instructions

The purpose of this assignment is two-fold:

• It gives the instructors a chance to gauge your understanding more directly than usual, and give
feedback.

• It provides an opportunity to improve your final grade in the course.

To receive feedback and/or credit, you must submit your written solutions by the start of the lecture (9:15am)
on Friday, February 2. Submissions can be on paper or electronic via the moodle.

You are free to use any resources at your disposal and to discuss the problems with your comrades, but
you must write up your solutions alone. Solutions may be written up in German or English, this is up
to you.

A score of 75 points or better will boost your final exam grade according to the formula that was indi-
cated in the course syllabus.

If a problem asks you to prove something, then unless it says otherwise, a complete argument is typically
expected, not just a sketch of the idea. Partial credit may sometimes be given for incomplete arguments if
you can demonstrate that you have the right idea, but for this it is important to write as clearly as possible.
Less complete arguments can sometimes be sufficient, e.g. a clear and convincing picture is often a better way
to prove that two spaces are homotopy equivalent than by writing down explicit maps and homotopies (use
your best judgement). Unless stated otherwise, you are free to make use of all results that have appeared
in the lecture notes or in problem sets, without reproving them. When using a result from a problem set or
the lecture notes, say explicitly which one.

If you get stuck on one part of a problem, it may often still be possible to move on and do the next
part. You are free to ask for clarification or hints via e-mail/moodle or in office hours or Übungen; of course
we reserve the right not to answer such questions.

Problems

1. [30 pts total] Consider a knot K ⊂ R
3, i.e. the image of a topological embedding1 S1 →֒ R

3. For
technical reasons, it is conventional in knot theory to assume that K is not too “wild,” for instance it
is good enough to assume that the embedding S1 →֒ R

3 is smooth (meaning C∞).

Figure 1: A smooth knot.

Figure 2: A “wild” knot, which is continu-
ous, but not smooth. We will not consider
these.

1Recall that a map f : X → Y between two topological spaces is called a topological embedding if it is continuous and
injective and the inverse f−1 : f(X) → X is also continuous with respect to the subspace topology on f(X) ⊂ Y .
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The smoothness condition has the following advantage: if K is the image of f : S1 →֒ R
3, we can

always assume there exists an extension of f to a topological embedding S1 × D
2 →֒ R

3 that matches
f along S1 × {0}. (Take a moment to convince yourself that no such extension exists for the knot in
Figure 2.) We shall denote the image of this extension by N ⊂ R

3, so

K ⊂ N ⊂ R
3 where N ∼= S1 × D

2.

One way to distinguish topologically between two knots is via their knot groups, meaning the group
π1(R

3 \ K). As you might recall from Topology I, one can equivalently extend R
3 to its one-point

compactification S3 and replace π1(R
3 \ K) with π1(S

3 \ K), as it is easy to show via the Seifert-
van Kampen theorem that these two groups are isomorphic. With this in mind, we lose nothing by
regarding all knots as subsets of S3.

(a) [20 pts] Prove that for every knot K, the abelianization of its knot group is isomorphic to Z.

(b) [10 pts] Draw a picture of the knot K in Figure 1 together with a loop in S3 \K representing a
generator of the abelianization of π1(S

3 \K).
Advice: For the purposes of this problem, you should imagine S3 as R3 with an extra “point at
infinity” that cannot be be shown in the picture.

Remark: Note that since the result of Problem 1(a) does not depend on the knot K, it is bad news if
your goal is to distinguish inequivalent knots—you cannot do so by distinguishing the abelianizations
of their knot groups. One has to find cleverer algebraic tricks for distinguishing two non-isomorphic
knot groups.

2. [70 pts total] This problem concerns the cellular homology of mapping cones. As preparation, here is
a quick definition of the reduced cellular homology groups of a CW-complex X :

H̃CW
∗

(X ;G) := ker
(
HCW

∗
(X ;G)

ǫ∗−→ HCW
∗

({pt};G)
)
,

where the one-point space {pt} is regarded as a CW-complex containing only one cell, making the
unique map ǫ : X → {pt} into a cellular map. Before continuing, you will want to convince yourself of
the following facts:

• HCW
k (X ;G) ∼= H̃CW

k (X ;G) for all k 6= 0, while HCW
0 (X ;G) ∼= H̃CW

0 (X ;G)⊕G.

• H̃CW
∗

is a functor on the category of CW-complexes, i.e. cellular maps induce maps between the
corresponding reduced cellular homology groups.

• There is a natural isomorphism H̃CW
∗

(X ;G) ∼= H̃∗(X ;G).

• H̃CW
∗

(X ;Z) is also the homology of an augmented cellular chain complex C̃CW
∗

(X ;Z) that takes
the form

. . . −→ CCW
2 (X ;Z)

∂
−→ CCW

1 (X ;Z)
∂

−→ CCW
0 (X ;Z)

ǫ
−→ C̃CW

−1 (X ;Z) := Z −→ 0 −→ 0 −→ . . . ,

where the augmentation ǫ : CCW
0 (X ;Z) → Z is the unique homomorphism that sends each 0-cell

(regarded as a generator of CCW
0 (X ;Z)) to 1 ∈ Z.

• Cellular mapsX → Y naturally induce chain maps C̃CW
∗

(X ;Z) → C̃CW
∗

(Y ;Z) between augmented
chain complexes. (How do they act in degree −1?)

As a bookkeeping device, it is sometimes helpful to think of H̃CW
∗

(X) as the cellular homology of
a CW-complex that has all the same cells as X , plus one extra “formal” cell e−1 of dimension −1,
corresponding to the canonical generator of C̃CW

−1 (X ;Z) = Z. The augmentation is then determined
by the formula ǫ(e0α) := e−1 for every 0-cell e0α ⊂ X .

With that out of the way, let’s do a little homological algebra. Suppose (A∗, ∂A), (B∗, ∂B) are chain
complexes of abelian groups, and f : A∗ → B∗ is a chain map. The (homological) mapping cone of

f is then the chain complex (Cf
∗ , ∂) with

Cf
n := An−1 ⊕Bn, and ∂ :=

(
−∂A 0
−f ∂B

)
.
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The reason for the terminology will become clearer in part (b) below.

(a) [20 pts] Show that the homomorphisms Hn(A∗)
f∗
−→ Hn(B∗) induced by the chain map f fit into

a long exact sequence of the form

. . . −→ Hn+1(C
f
∗
) −→ Hn(A∗)

f∗
−→ Hn(B∗) −→ Hn(C

f
∗
) −→ Hn−1(A∗)

f∗
−→ Hn−1(B∗) −→ . . . ,

and describe the other two maps in this sequence explicitly.
Hint: You can derive this from a short exact sequence of chain maps, but do not try to include f

in that sequence explicitly. See if you can make f∗ appear as a connecting homomorphism.

The topological mapping cone of a continuous map f : X → Y is a space Cf defined by

Cf :=
(
([0, 1]×X)∐ Y

)/
∼,

where the equivalence relation is the smallest such that for every x, x′ ∈ X , (0, x) ∼ f(x) and (1, x) ∼
(1, x′). In other words, Cf is the space CX ∪f Y formed by gluing the usual cone CX of X to Y along

its boundary via the map CX ⊃ ∂(CX) := {0}×X = X
f
→ Y . The usual cone CX is the special case

of Cf where X = Y and f : X → X is the identity, and more generally, one can imagine Cf as an
enlargement of Y in which extra stuff has been attached in order to make the map

X
f
→ Y →֒ Cf

homotopic to a constant.

(b) [25 pts] Assuming X,Y are CW-complexes and f : X → Y is a cellular map, describe a cell
decomposition of Cf for which the quotient projection

([0, 1]×X)∐ Y
q

−→ Cf

is a cellular map and the augmented cellular chain complex C̃CW
∗

(Cf ;Z) is isomorphic to the

(homological) mapping cone of the chain map f∗ : C̃CW
∗

(X ;Z) → C̃CW
∗

(Y ;Z).

(c) [25 pts] Prove: For any cellular map f : X → Y , the induced homomorphism f∗ : H∗(X ;Z) →

H∗(Y ;Z) is an isomorphism if and only if H̃∗(Cf ;Z) = 0.

Comments: The statement in part (c) still holds if f : X → Y is only assumed continuous instead of
cellular, because by the cellular approximation theorem, every continuous map between CW-complexes
is homotopic to a cellular map. (See if you can convince yourself that homotopic maps always have
homotopy equivalent mapping cones!) If X and Y are also assumed simply connected, then one can
combine this with some fundamental tools from homotopy theory—namely the theorems of Whitehead
and Hurewicz on higher homotopy groups—to establish the following elegant improvement: the map
f : X → Y is a homotopy equivalence if and only if its mapping cone is contractible.
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