What can have a 3-sphere as its boundary, and why should you ask Isaac Newton?

Chris Wendl

University College London

Talk for the UCL AdM Maths Society, 3rd March, 2014 Slides available at:
http://www.homepages.ucl.ac.uk/~ucahcwe/publications.html\#talks

PART 1: Differential topology

The n-dimensional sphere

$$
S^{n}:=\left\{\mathbf{x} \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\ldots x_{n+1}^{2}=1\right\}
$$

$=$ boundary of the ($n+1$)-dimensional ball $B^{n+1}:=\left\{\mathrm{x} \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\ldots x_{n+1}^{2} \leq 1\right\}$.

$$
S^{1}=\partial B^{2}
$$

$$
S^{2}=\partial B^{3}
$$

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Question: What other $(n+1)$-dimensional objects can have S^{n} as boundary?

Some surfaces Σ with $\partial \Sigma=S^{1}$:

Definition

Suppose $M \subset \mathbb{R}^{N}$ is a subset, $\mathcal{U} \subset M$ is open.

An n-dimensional coordinate chart on \mathcal{U} is a set of functions $x_{1}, \ldots, x_{n}: \mathcal{U} \rightarrow \mathbb{R}$ such that the mapping

$$
\left(x_{1}, \ldots, x_{n}\right): \mathcal{U} \rightarrow \mathbb{R}^{n}
$$

is bijective onto some open subset of \mathbb{R}^{n}.

M is a (smooth, n-dimensional) manifold if:

M is a (smooth, n-dimensional) manifold if:

- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
M is a (smooth, n-dimensional) manifold if:
- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.
M is a (smooth, n-dimensional) manifold if:
- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M^{\prime} are diffeomorphic ($M \cong M^{\prime}$) if there exists a bijection

$$
f: M \rightarrow M^{\prime}
$$

such that both f and f^{-1} are everywhere infinitely differentiable when expressed in coordinate charts.
M is a (smooth, n-dimensional) manifold if:

- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M^{\prime} are diffeomorphic ($M \cong M^{\prime}$) if there exists a bijection

$$
f: M \rightarrow M^{\prime}
$$

such that both f and f^{-1} are everywhere infinitely differentiable when expressed in coordinate charts.
M is compact if it is a closed and bounded subset of \mathbb{R}^{N}.
M is a (smooth, n-dimensional) manifold if:

- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M^{\prime} are diffeomorphic ($M \cong M^{\prime}$) if there exists a bijection

$$
f: M \rightarrow M^{\prime}
$$

such that both f and f^{-1} are everywhere infinitely differentiable when expressed in coordinate charts.
M is compact if it is a closed and bounded subset of \mathbb{R}^{N}. (Equivalently: every sequence in M has a convergent subsequence!)
M is a (smooth, n-dimensional) manifold if:

- Every point $p \in M$ is contained in an open subset $\mathcal{U} \subset M$ admitting an n-dimensional coordinate chart;
- Wherever two coordinate charts overlap, the resulting coordinate transformation maps are infinitely differentiable.

Two manifolds M and M^{\prime} are diffeomorphic ($M \cong M^{\prime}$) if there exists a bijection

$$
f: M \rightarrow M^{\prime}
$$

such that both f and f^{-1} are everywhere infinitely differentiable when expressed in coordinate charts.
M is compact if it is a closed and bounded subset of \mathbb{R}^{N}. (Equivalently: every sequence in M has a convergent subsequence!)

Proposition

If $M \cong M^{\prime}$, then they have the same dimension, and M compact $\Leftrightarrow M^{\prime}$ compact.

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $=2 n$)

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $=2 n$)
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $=2 n$)
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)
- Surfaces of genus g (dimension $=2$) (compact)

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $=2 n$)
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)
- Surfaces of genus g (dimension $=2$) (compact)
- Various matrix groups ("Lie groups"):
- $\mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid A\right.$ invertible $\}$ (dimension $=n^{2}$)

Some examples of manifolds

- \mathbb{R}^{n} (dimension $=n$)
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $=2 n$)
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)
- Surfaces of genus g (dimension $=2$) (compact)
- Various matrix groups ("Lie groups"):
- $\mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid A\right.$ invertible $\}$ (dimension $=n^{2}$)
$-\operatorname{SL}(n, \mathbb{R})=\{A \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} A=1\}$ (dimension $=n^{2}-1$)

Some examples of manifolds

- \mathbb{R}^{n} (dimension $=n$)
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $\left.=2 n\right)$
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)
- Surfaces of genus g (dimension $=2$) (compact)
- Various matrix groups ("Lie groups"):
- $\mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid A\right.$ invertible $\}$ (dimension $=n^{2}$)
$-\operatorname{SL}(n, \mathbb{R})=\{A \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} A=1\}$ (dimension $=n^{2}-1$)
$-\mathrm{O}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid A^{T} A=\mathbb{1}\right\}$ (dimension $=n(n+1) / 2)($ compact $)$

Some examples of manifolds

- $\mathbb{R}^{n}($ dimension $=n)$
- $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$
- $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (dimension $\left.=2 n\right)$
- Spheres S^{n} and balls B^{n} (dimension $=n$) (compact)
- Surfaces of genus g (dimension $=2$) (compact)
- Various matrix groups ("Lie groups"):
$-\operatorname{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid A\right.$ invertible $\}$ (dimension $=n^{2}$)
$-\operatorname{SL}(n, \mathbb{R})=\{A \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} A=1\}$ (dimension $=n^{2}-1$)
$-\mathrm{O}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid A^{T} A=\mathbb{1}\right\}$ (dimension $=n(n+1) / 2)($ compact $)$
- The universe?
(dimension $=4$? 10? 11?) (compact?)

More precise question: What kinds of compact $(n+1)$-manifolds M can have $\partial M \cong S^{n}$?

More precise question: What kinds of compact $(n+1)$-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!

More precise question: What kinds of compact $(n+1)$-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!

Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary,

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact ($n+1$)-manifold without boundary, pick a point $p \in \widehat{M}$

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary, pick a point $p \in \widehat{M}$ and a coordinate chart on some open set $\mathcal{U} \ni p$ such that p has coordinates $(0, \ldots, 0) \in \mathbb{R}^{n+1}$.

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary, pick a point $p \in \widehat{M}$ and a coordinate chart on some open set $\mathcal{U} \ni p$ such that p has coordinates $(0, \ldots, 0) \in \mathbb{R}^{n+1}$. Then for $\epsilon>0$ small, define

$$
M:=\widehat{M} \backslash B_{\epsilon}(p),
$$

where

$$
B_{\epsilon}(p):=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2} \leq \epsilon\right\} \subset \mathcal{U} .
$$

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary, pick a point $p \in \widehat{M}$ and a coordinate chart on some open set $\mathcal{U} \ni p$ such that p has coordinates $(0, \ldots, 0) \in \mathbb{R}^{n+1}$. Then for $\epsilon>0$ small, define

$$
M:=\widehat{M} \backslash B_{\epsilon}(p),
$$

where

$$
B_{\epsilon}(p):=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2} \leq \epsilon\right\} \subset \mathcal{U} .
$$

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary, pick a point $p \in \widehat{M}$ and a coordinate chart on some open set $\mathcal{U} \ni p$ such that p has coordinates $(0, \ldots, 0) \in \mathbb{R}^{n+1}$. Then for $\epsilon>0$ small, define

$$
M:=\widehat{M} \backslash B_{\epsilon}(p),
$$

where

$$
B_{\epsilon}(p):=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2} \leq \epsilon\right\} \subset \mathcal{U} .
$$

Now $\partial M=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2}=\epsilon\right\} \cong S^{n}$.

More precise question: What kinds of compact ($n+1$)-manifolds M can have $\partial M \cong S^{n}$?

Answer: Almost any!
Let $\widehat{M}=$ any compact $(n+1)$-manifold without boundary, pick a point $p \in \widehat{M}$ and a coordinate chart on some open set $\mathcal{U} \ni p$ such that p has coordinates $(0, \ldots, 0) \in \mathbb{R}^{n+1}$. Then for $\epsilon>0$ small, define

$$
M:=\widehat{M} \backslash B_{\epsilon}(p),
$$

where

$$
B_{\epsilon}(p):=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2} \leq \epsilon\right\} \subset \mathcal{U} .
$$

Now $\partial M=\left\{x_{1}^{2}+\ldots+x_{n+1}^{2}=\epsilon\right\} \cong S^{n}$.
Conclusion: We asked the wrong question. The answer was too easy!

PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in \mathbb{R}^{n},

$$
\mathbf{q}(t):=\left(q_{1}(t), \ldots, q_{n}(t)\right) \in \mathbb{R}^{n}
$$

PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in \mathbb{R}^{n},

$$
\mathbf{q}(t):=\left(q_{1}(t), \ldots, q_{n}(t)\right) \in \mathbb{R}^{n}
$$

If the system is conservative, its forces are derived from a potential function $V(q)$ by $\mathbf{F}(\mathbf{q})=-\nabla V(\mathbf{q})$.

Then Newton's second law gives

$$
m_{j} \ddot{q}_{j}=-\frac{\partial V}{\partial q_{j}}
$$

PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in \mathbb{R}^{n},

$$
\mathbf{q}(t):=\left(q_{1}(t), \ldots, q_{n}(t)\right) \in \mathbb{R}^{n}
$$

If the system is conservative, its forces are derived from a potential function $V(q)$ by $\mathbf{F}(\mathbf{q})=-\nabla V(\mathbf{q})$.

Then Newton's second law gives

$$
m_{j} \ddot{q}_{j}=-\frac{\partial V}{\partial q_{j}}
$$

a system of n second-order ordinary differential equations (ODE).

PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees of freedom is described by a path in \mathbb{R}^{n},

$$
\mathrm{q}(t):=\left(q_{1}(t), \ldots, q_{n}(t)\right) \in \mathbb{R}^{n} .
$$

If the system is conservative, its forces are derived from a potential function $V(\mathbf{q})$ by $\mathrm{F}(\mathrm{q})=-\nabla V(\mathrm{q})$.

Then Newton's second law gives

$$
m_{j} \ddot{q}_{j}=-\frac{\partial V}{\partial q_{j}},
$$

a system of n second-order ordinary differential equations (ODE). Its total energy

$$
E=\sum_{j=1}^{n} \frac{1}{2} m_{j} \dot{q}_{j}^{2}+V(\mathbf{q})
$$

is conserved, i.e. $\frac{d E}{d t}=0$.

Hamilton (19th century):
Pretend q_{i} and $p_{j}:=m_{j} \dot{q}_{j}$ (momentum) are independent variables moving in the "phase space" $\mathbb{R}^{2 n}$.

Hamilton (19th century):
Pretend q_{i} and $p_{j}:=m_{j} \dot{q}_{j}$ (momentum) are independent variables moving in the "phase space" $\mathbb{R}^{2 n}$. The total energy defines the Hamiltonian function:

$$
H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}:(\mathbf{q}, \mathbf{p}) \mapsto \sum_{j=1}^{n} \frac{p_{j}^{2}}{2 m_{j}}+V(\mathbf{q})
$$

and Newton's second-order system becomes Hamilton's (first-order!) equations:

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}, \quad j=1, \ldots, n \tag{*}
\end{equation*}
$$

Hamilton (19th century):
Pretend q_{i} and $p_{j}:=m_{j} \dot{q}_{j}$ (momentum) are independent variables moving in the "phase space" $\mathbb{R}^{2 n}$. The total energy defines the Hamiltonian function:

$$
H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}:(\mathbf{q}, \mathbf{p}) \mapsto \sum_{j=1}^{n} \frac{p_{j}^{2}}{2 m_{j}}+V(\mathbf{q})
$$

and Newton's second-order system becomes Hamilton's (first-order!) equations:

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}, \quad j=1, \ldots, n \tag{*}
\end{equation*}
$$

Idea: To study motion of systems satisfying constraints, we can treat (\mathbf{q}, \mathbf{p}) as local coordinates of a point moving in a manifold.

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \tag{*}
\end{equation*}
$$

Complication: A system that satisfies (*) for one particular choice of coordinates might not satisfy it for all other choices.

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \tag{*}
\end{equation*}
$$

Complication: A system that satisfies (*) for one particular choice of coordinates might not satisfy it for all other choices.

Definition

A $2 n$-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ such that for any smooth function $H: M \rightarrow$ \mathbb{R}, all coordinate transformations preserve the form of Hamilton's equations (*).

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \tag{*}
\end{equation*}
$$

Complication: A system that satisfies (*) for one particular choice of coordinates might not satisfy it for all other choices.

Definition

A $2 n$-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ such that for any smooth function $H: M \rightarrow$ \mathbb{R}, all coordinate transformations preserve the form of Hamilton's equations (*).

Exercise: A transformation on \mathbb{R}^{2} preserves (*) $\Leftrightarrow \quad$ it is area and orientation preserving.

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \tag{*}
\end{equation*}
$$

Complication: A system that satisfies (*) for one particular choice of coordinates might not satisfy it for all other choices.

Definition

A $2 n$-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ such that for any smooth function $H: M \rightarrow$ \mathbb{R}, all coordinate transformations preserve the form of Hamilton's equations (*).

Exercise: A transformation on \mathbb{R}^{2} preserves (*) $\Leftrightarrow \quad$ it is area and orientation preserving.

Simple examples

- Symplectic: $\mathbb{R}^{2 n}$, all orientable surfaces

$$
\begin{equation*}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \tag{*}
\end{equation*}
$$

Complication: A system that satisfies (*) for one particular choice of coordinates might not satisfy it for all other choices.

Definition

A $2 n$-dimensional manifold M has a symplectic structure if it is covered by special coordinate charts of the form $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ such that for any smooth function $H: M \rightarrow$ \mathbb{R}, all coordinate transformations preserve the form of Hamilton's equations (*).

Exercise: A transformation on \mathbb{R}^{2} preserves (*) $\Leftrightarrow \quad$ it is area and orientation preserving.

Simple examples

- Symplectic: $\mathbb{R}^{2 n}$, all orientable surfaces
- Not symplectic: $S^{2 n}$ for $n>1$
(can prove using de Rham cohomology)

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0
$$

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0,
$$

\Rightarrow orbits are confined to level sets $H^{-1}(c)$.

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0,
$$

\Rightarrow orbits are confined to level sets $H^{-1}(c)$.
Question: Given $H: M \rightarrow \mathbb{R}$ and c, must there exist a periodic orbit in $H^{-1}(c)$?

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0
$$

\Rightarrow orbits are confined to level sets $H^{-1}(c)$.
Question: Given $H: M \rightarrow \mathbb{R}$ and c, must there exist a periodic orbit in $H^{-1}(c)$?

Theorem (Rabinowitz-Weinstein '78)
Given $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, any star-shaped level set $H^{-1}(c) \subset \mathbb{R}^{2 n}$ admits a periodic orbit.

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0
$$

\Rightarrow orbits are confined to level sets $H^{-1}(c)$.
Question: Given $H: M \rightarrow \mathbb{R}$ and c, must there exist a periodic orbit in $H^{-1}(c)$?

Theorem (Rabinowitz-Weinstein '78)
Given $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, any star-shaped level set $H^{-1}(c) \subset \mathbb{R}^{2 n}$ admits a periodic orbit.

Assume M is symplectic, $H: M \rightarrow \mathbb{R}$ a smooth function. Then any path $\gamma: \mathbb{R} \rightarrow M$ satisfying Hamilton's equations "conserves energy":

$$
\frac{d}{d t} H(\gamma(t))=0
$$

\Rightarrow orbits are confined to level sets $H^{-1}(c)$.
Question: Given $H: M \rightarrow \mathbb{R}$ and c, must there exist a periodic orbit in $H^{-1}(c)$?

Theorem (Rabinowitz-Weinstein '78)
Given $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, any star-shaped level set $H^{-1}(c) \subset \mathbb{R}^{2 n}$ admits a periodic orbit.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

Definitions

A submanifold N of a manifold M is a subset $N \subset M$ such that the natural inclusion map $N \hookrightarrow M$ is infinitely differentiable.

A hypersurface $N \subset M$ is a submanifold with $\operatorname{dim} N=\operatorname{dim} M-1$.

A hypersurface $N \subset \mathbb{R}^{2 n}$ is star-shaped if it intersects every ray from the origin exactly once, transversely.

Exercise

Any star-shaped hypersurface in $\mathbb{R}^{2 n}$ is diffeomorphic to $S^{2 n-1}$.

PART 3: Symplectic topology

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds.

PART 3: Symplectic topology

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds. Among other remarkable results, it proved:

Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in \mathbb{R}^{4}. Then $M \cong B^{4}$.

PART 3: Symplectic topology

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds. Among other remarkable results, it proved:

Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in \mathbb{R}^{4}. Then $M \cong B^{4}$.

A generalisation to all dimensions ≥ 4 was published in 1991, due to

Yasha
Eliashberg

PART 3: Symplectic topology

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds. Among other remarkable results, it proved:

Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in \mathbb{R}^{4}. Then $M \cong B^{4}$.

A generalisation to all dimensions ≥ 4 was published in 1991, due to

Yasha
Eliashberg

Andreas
Floer

PART 3: Symplectic topology

In 1985, Mikhail Gromov published a paper called Pseudoholomorphic curves in symplectic manifolds. Among other remarkable results, it proved:

Our main theorem

Suppose M is a compact 4-manifold with an exact symplectic structure which, at its boundary, looks like a star-shaped hypersurface in \mathbb{R}^{4}. Then $M \cong B^{4}$.

A generalisation to all dimensions ≥ 4 was published in 1991, due to

Yasha
Eliashberg

Andreas
Floer

Dusa
McDuff

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t), \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t) .
\end{aligned}
$$

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t), \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t) .
\end{aligned}
$$

Equivalently: $\partial_{s} f+i \partial_{t} f=0$. (**)
A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ satisfying this equation is called a holomorphic curve in \mathbb{C}^{n}.

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t) \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t)
\end{aligned}
$$

Equivalently: $\quad \partial_{s} f+i \partial_{t} f=0$. (**)
A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ satisfying this equation is called a holomorphic curve in \mathbb{C}^{n}.

A $2 n$-dimensional manifold M has a complex structure if it is covered by special (complex) coordinate charts of the form $\left(z_{1}, \ldots, z_{n}\right)$: $\mathcal{U} \rightarrow \mathbb{C}^{n}$ such that all coordinate transformations preserve the form of the CauchyRiemann equation ($* *$).

Thus one can speak of holomorphic curves in any complex manifold.

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t) \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t)
\end{aligned}
$$

Equivalently: $\quad \partial_{s} f+i \partial_{t} f=0$. (**)
A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ satisfying this equation is called a holomorphic curve in \mathbb{C}^{n}.

A $2 n$-dimensional manifold M has a complex structure if it is covered by special (complex) coordinate charts of the form $\left(z_{1}, \ldots, z_{n}\right)$: $\mathcal{U} \rightarrow \mathbb{C}^{n}$ such that all coordinate transformations preserve the form of the CauchyRiemann equation ($* *$).

Thus one can speak of holomorphic curves in any complex manifold.

Examples: \mathbb{C}^{n}

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t) \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t)
\end{aligned}
$$

Equivalently: $\partial_{s} f+i \partial_{t} f=0$. (**)
A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ satisfying this equation is called a holomorphic curve in \mathbb{C}^{n}.

A $2 n$-dimensional manifold M has a complex structure if it is covered by special (complex) coordinate charts of the form $\left(z_{1}, \ldots, z_{n}\right)$: $\mathcal{U} \rightarrow \mathbb{C}^{n}$ such that all coordinate transformations preserve the form of the CauchyRiemann equation ($* *$).

Thus one can speak of holomorphic curves in any complex manifold.

Examples: $\mathbb{C}^{n}, \operatorname{SL}(n, \mathbb{C})$

Some preparation from complex analysis

A function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ is analytic / holomorphic if it satisfies the Cauchy-Riemann equations:

$$
\begin{aligned}
\partial_{s} u(s+i t) & =\partial_{t} v(s+i t) \\
\partial_{t} u(s+i t) & =-\partial_{s} v(s+i t)
\end{aligned}
$$

Equivalently: $\partial_{s} f+i \partial_{t} f=0$. (**)
A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ satisfying this equation is called a holomorphic curve in \mathbb{C}^{n}.

A $2 n$-dimensional manifold M has a complex structure if it is covered by special (complex) coordinate charts of the form $\left(z_{1}, \ldots, z_{n}\right)$: $\mathcal{U} \rightarrow \mathbb{C}^{n}$ such that all coordinate transformations preserve the form of the CauchyRiemann equation ($* *$).

Thus one can speak of holomorphic curves in any complex manifold.

Examples: $\mathbb{C}^{n}, \operatorname{SL}(n, \mathbb{C}), \mathbb{C} \cup\{\infty\} \cong S^{2}$

Unfortunately, symplectic manifolds are not always complex, so one cannot generally make sense of holomorphic curves in them.

Unfortunately, symplectic manifolds are not always complex, so one cannot generally make sense of holomorphic curves in them.

The next best thing. . .

An almost complex structure on \mathbb{C}^{n} is a smooth function
$J: \mathbb{C}^{n} \rightarrow\left\{\right.$ real-linear maps $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \cong \mathbb{R}^{2 n \times 2 n}$ such that for all $p \in \mathbb{C}^{n},[J(p)]^{2}=-1$.

Unfortunately, symplectic manifolds are not always complex, so one cannot generally make sense of holomorphic curves in them.

The next best thing. .

An almost complex structure on \mathbb{C}^{n} is a smooth function
$J: \mathbb{C}^{n} \rightarrow\left\{\right.$ real-linear maps $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \cong \mathbb{R}^{2 n \times 2 n}$ such that for all $p \in \mathbb{C}^{n},[J(p)]^{2}=-1$.

A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ is then called a pseudoholomorphic curve if it satisfies the nonlinear Cauchy-Riemann equation:

$$
\partial_{s} f+J(f) \partial_{t} f=0 . \quad(* * *)
$$

This is a nonlinear first-order elliptic partial differential equation (PDE).

Unfortunately, symplectic manifolds are not always complex, so one cannot generally make sense of holomorphic curves in them.

The next best thing. . .

An almost complex structure on \mathbb{C}^{n} is a smooth function
$J: \mathbb{C}^{n} \rightarrow\left\{\right.$ real-linear maps $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \cong \mathbb{R}^{2 n \times 2 n}$ such that for all $p \in \mathbb{C}^{n},[J(p)]^{2}=-1$.

A map $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$ is then called a pseudoholomorphic curve if it satisfies the nonlinear Cauchy-Riemann equation:

$$
\partial_{s} f+J(f) \partial_{t} f=0 . \quad(* * *)
$$

This is a nonlinear first-order elliptic partial differential equation (PDE).

Fundamental Iemma:

Every symplectic manifold admits a special class of compatible almost complex structures.

A decomposition of the standard $B^{4} \subset \mathbb{R}^{4}$

Identify $\mathbb{R}^{4}=\mathbb{C}^{2}$ and define

$$
J_{0}(p):=i \quad \text { for all } p \in \mathbb{R}^{4} .
$$

We now see two obvious 2-dimensional families of pseudoholomorphic curves:

$$
\begin{array}{ll}
u_{w}: \mathbb{C} \rightarrow \mathbb{C}^{2}: z \mapsto(z, w) & \text { for } w \in \mathbb{C}, \\
v_{w}: \mathbb{C} & \rightarrow \mathbb{C}^{2}: z \mapsto(w, z)
\end{array} \text { for } w \in \mathbb{C} .
$$

They form two transverse foliations of \mathbb{C}^{2} :

Proof of the main theorem

Given $\partial M=\Sigma \subset \mathbb{R}^{4}$ star-shaped, construct a symplectic manifold W by surgery:
(1) Remove from $\mathbb{R}^{4}=\mathbb{C}^{2}$ the interior of Σ;
(2) Attach M along its boundary to Σ.

Proof of the main theorem

Given $\partial M=\Sigma \subset \mathbb{R}^{4}$ star-shaped, construct a symplectic manifold W by surgery:
(1) Remove from $\mathbb{R}^{4}=\mathbb{C}^{2}$ the interior of Σ;
(2) Attach M along its boundary to Σ.

Choose J matching J_{0} outside a large ball. Then for large $|w|$, the pseudoholomorphic curves u_{w} and v_{w} also exist in W.

Let \mathcal{M}_{u} and \mathcal{M}_{v} denote the families of pseudoholomorphic curves in W containing the curves u_{w} and v_{w} respectively.

Let \mathcal{M}_{u} and \mathcal{M}_{v} denote the families of pseudoholomorphic curves in W containing the curves u_{w} and v_{w} respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):
One can choose J such that \mathcal{M}_{u} and \mathcal{M}_{v} are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in \mathcal{M}_{u} intersects every curve in \mathcal{M}_{v} exactly once, transversely.

Let \mathcal{M}_{u} and \mathcal{M}_{v} denote the families of pseudoholomorphic curves in W containing the curves u_{w} and v_{w} respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):
One can choose J such that \mathcal{M}_{u} and \mathcal{M}_{v} are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in \mathcal{M}_{u} intersects every curve in \mathcal{M}_{v} exactly once, transversely.

Lemma 2 (compactness):
Any bounded sequence of curves in \mathcal{M}_{u} or \mathcal{M}_{v} has a convergent subsequence.

Let \mathcal{M}_{u} and \mathcal{M}_{v} denote the families of pseudoholomorphic curves in W containing the curves u_{w} and v_{w} respectively. Using functional analysis and PDE theory, one can show:

Lemma 1 (smoothness):
One can choose J such that \mathcal{M}_{u} and \mathcal{M}_{v} are each parametrized by smooth, oriented 2dimensional manifolds, and within each family, any two distinct curves are disjoint. Moreover, every curve in \mathcal{M}_{u} intersects every curve in \mathcal{M}_{v} exactly once, transversely.

Lemma 2 (compactness):
Any bounded sequence of curves in \mathcal{M}_{u} or \mathcal{M}_{v} has a convergent subsequence.

These lemmas concern general properties of solution spaces.

One can prove them without knowing how to solve the PDE, and without knowing what M actually is!

Final step: "turn on the machine..."

Final step: "turn on the machine..."

Final step: "turn on the machine..."

Final step: "turn on the machine. . ."

Final step: "turn on the machine..."

Final step: "turn on the machine. .."

Final step: "turn on the machine. .."

Final step: "turn on the machine..."

Final step: "turn on the machine. .."

Final step: "turn on the machine. .."

$$
\Rightarrow \quad W \cong \mathbb{C}^{2} .
$$

\square

That was nearly 30 years ago.

Here is a more recent but similar result. . .

Theorem (W. 2010)
The only exact symplectic fillings of a 3dimensional torus

$$
\mathbb{T}^{3}:=S^{1} \times S^{1} \times S^{1}
$$

are star-shaped domains in the cotangent bundle of \mathbb{T}^{2}.

Question:

For a surface Σ of genus $g \geq 2$, does the unit cotangent bundle have more than one exact symplectic filling?

No one has any idea.

