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PART 1: Differential topology

The n-dimensional sphere

Sn :=
{
x ∈ R

n+1 | x21 + . . . x2n+1 = 1
}

= boundary of the (n+1)-dimensional ball

Bn+1 :=
{
x ∈ R

n+1 | x21 + . . . x2n+1 ≤ 1
}
.

S1 = ∂B2x1

x2

S2 = ∂B3x1

x2

x3
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Question: What other (n + 1)-dimensional

objects can have Sn as boundary?Some surfaes � with �� = S1:
PSfrag replaements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4MDe�nitionSuppose M � RN is a subset, U �M is open.An n-dimensional oordinate hart on U is aset of funtions x1; : : : ; xn : U ! R suh thatthe mapping(x1; : : : ; xn) : U ! Rnis bijetive onto some open subset of Rn.
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Question: What other (n + 1)-dimensional

objects can have Sn as boundary?

Some surfaces Σ with ∂Σ = S1:

replacements

Definition

Suppose M ⊂ RN is a subset, U ⊂ M is open.

An n-dimensional coordinate chart on U is a

set of functions x1, . . . , xn : U → R such that

the mapping

(x1, . . . , xn) : U → R
n

is bijective onto some open subset of Rn.
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M is a (smooth, n-dimensional) manifold if:

� Every point p 2M is ontained in an opensubset U �M admitting an n-dimensionaloordinate hart;� Wherever two oordinate harts overlap,the resulting oordinate transformationmaps are in�nitely di�erentiable.
Two manifolds M and M 0 are di�eomorphi(M �=M 0) if there exists a bijetionf :M !M 0suh that both f and f�1 are everywhere in-�nitely di�erentiable when expressed in oor-dinate harts.M is ompat if it is a losed and boundedsubset of RN . (Equivalently: every sequenein M has a onvergent subsequene!)PropositionIf M �= M 0, then they have the same dimen-sion, and M ompat , M 0 ompat.
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such that both f and f−1 are everywhere in-

finitely differentiable when expressed in coor-

dinate charts.

M is compact if it is a closed and bounded

subset of RN . (Equivalently: every sequence

in M has a convergent subsequence!)

Proposition

If M ∼= M ′, then they have the same dimen-

sion, and M compact ⇔ M ′ compact.
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Some examples of manifolds

• Rn (dimension = n)� C = fx+ iy j x; y 2 Rg �= R2� Cn �= R2n (dimension = 2n)� Spheres Sn and balls Bn (dimension = n)(ompat)� Surfaes of genus g (dimension = 2)(ompat)� Various matrix groups (\Lie groups"):{ GL(n;R) = fA 2 Rn�n j A invertibleg(dimension = n2){ SL(n;R) = fA 2 GL(n;R) j detA= 1g(dimension = n2 � 1){ O(n) = fA 2 GL(n;R) j ATA = Ig(dimension = n(n+1)=2) (ompat)� The universe?(dimension = 4? 10? 11?) (ompat?)
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More precise question: What kinds of com-

pact (n+1)-manifolds M can have ∂M ∼= Sn?Answer: Almost any!Let M = any ompat (n+1)-manifold with-out boundary, pik a point p 2 M and a o-ordinate hart on some open set U 3 p suhthat p has oordinates (0; : : : ;0) 2 Rn+1. Thenfor � > 0 small, de�neM := M nB�(p);whereB�(p) := nx21+ : : :+ x2n+1 � �o � U :

PSfrag replaements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4MNow �M = fx21+ : : :+ x2n+1 = �g �= Sn.Conlusion: We asked the wrong question.The answer was too easy!
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PART 2: Dynamics

Newton (18th century):

A system of particles moving with n degrees

of freedom is described by a path in Rn,

q(t) := (q1(t), . . . , qn(t)) ∈ R
n.If the system is onservative, its fores arederived from a potential funtion V (q) byF(q) = �rV (q).Then Newton's seond law givesmj�qj = ���V�qj�;a system of n seond-order ordinary di�eren-tial equations (ODE). Its total energyE = nXj=1 �12�mj _q2j + V (q)is onserved, i.e. �dEdt �= 0.
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2
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Hamilton (19th century):

Pretend qi and pj := mj q̇j (momentum) are

independent variables moving in the “phase

space” R2n. The total energy de�nes theHamiltonian funtion:H : R2n ! R : (q; p) 7! nXj=1 � p2j2mj�+ V (q);and Newton's seond-order system beomesHamilton's (�rst-order!) equations:_qj = ��H�pj�; _pj = ���H�qj�; j = 1; : : : ; n: (�)Idea: To study motion of systems satisfy-ing onstraints, we an treat (q; p) as loaloordinates of a point moving in a manifold.

PSfrag replaements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4M
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q̇j =
∂H

∂pj
, ṗj = −

∂H

∂qj
(∗)

Complication: A system that satisfies (∗)

for one particular choice of coordinates might
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Assume M is symplectic, H : M → R a smooth
function. Then any path γ : R → M satisfying
Hamilton’s equations “conserves energy”:

d

dt
H(γ(t)) = 0,) orbits are on�ned to level sets H�1().Question: Given H : M ! R and , mustthere exist a periodi orbit in H�1()?Theorem (Rabinowitz-Weinstein '78)Given H : R2n ! R, any star-shaped levelset H�1() � R2n admits a periodi orbit.PSfrag replaements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4M
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Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.A hypersurfae N �M is a submanifold withdimN = dimM � 1.A hypersurfae N � R2n is star-shaped if itintersets every ray from the origin exatlyone, transversely.ExeriseAny star-shaped hypersurfae in R2n is dif-feomorphi to S2n�1.
10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.A hypersurfae N � R2n is star-shaped if itintersets every ray from the origin exatlyone, transversely.ExeriseAny star-shaped hypersurfae in R2n is dif-feomorphi to S2n�1.
10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.ExeriseAny star-shaped hypersurfae in R2n is dif-feomorphi to S2n�1.
10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



Definitions

A submanifold N of a manifold M is a subset

N ⊂ M such that the natural inclusion map

N →֒ M is infinitely differentiable.

A hypersurface N ⊂ M is a submanifold with

dimN = dimM − 1.

A hypersurface N ⊂ R2n is star-shaped if it

intersects every ray from the origin exactly

once, transversely.

Exercise

Any star-shaped hypersurface in R2n is dif-

feomorphic to S2n−1.

10



PART 3: Symplectic topology

In 1985, Mikhail Gromov

published a paper called

Pseudoholomorphic curves

in symplectic manifolds.Among other remarkableresults, it proved:Our main theoremSuppose M is a ompat 4-manifold withan exat sympleti struture whih, at itsboundary, looks like a star-shaped hypersur-fae in R4. Then M �= B4.A generalisation to all dimensions � 4 waspublished in 1991, due to

PSfrag replaements� �= S3S2 = �B3S1 = �B2x1x2x3pB�(p)S1uwvw�B4MYashaEliashberg
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Some preparation from complex analysis

A function f = u + iv : C → C is analytic /

holomorphic if it satisfies the Cauchy-Riemann

equations:

∂su(s+ it) = ∂tv(s+ it),

∂tu(s+ it) = −∂sv(s+ it).

Equivalently: �sf + i �tf = 0 : (��)A map f : C ! Cn satisfying this equation isalled a holomorphi urve in Cn.A 2n-dimensional manifold M has a omplexstruture if it is overed by speial (omplex)oordinate harts of the form (z1; : : : ; zn) :U ! Cn suh that all oordinate transfor-mations preserve the form of the Cauhy-Riemann equation (��).Thus one an speak of holomorphi urvesin any omplex manifold.Examples: Cn, SL(n;C), C [ f1g �= S2
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Unfortunately, symplectic manifolds are not

always complex, so one cannot generally make

sense of holomorphic curves in them.The next best thing. . .An almost omplex struture on Cn is a smoothfuntionJ : Cn ! freal-linear maps Cn ! Cng �= R2n�2nsuh that for all p 2 Cn, [J(p)℄2 = �1.A map f : C ! Cn is then alled a pseudo-holomorphi urve if it satis�es the nonlinearCauhy-Riemann equation:�sf + J(f) �tf = 0 : (� � �)This is a nonlinear �rst-order ellipti partialdi�erential equation (PDE).Fundamental lemma:Every sympleti manifold admits a speiallass of ompatible almost omplex stru-tures.
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A decomposition of the standard B4 ⊂ R4

Identify R4 = C2 and define

J0(p) := i for all p ∈ R
4.

We now see two obvious 2-dimensional fam-

ilies of pseudoholomorphic curves:

uw : C → C
2 : z 7→ (z, w) for w ∈ C,

vw : C → C
2 : z 7→ (w, z) for w ∈ C.

They form two transverse foliations of C2:

uw

vw

∂B4

14



Proof of the main theorem

Given ∂M = Σ ⊂ R4 star-shaped, construct

a symplectic manifold W by surgery :

(1) Remove from R4 = C2 the interior of Σ;

(2) Attach M along its boundary to Σ.

Σ ∼= S3

uw

vw

∂B4

M

Choose J mathing J0 outside a large ball.Then for large jwj, the pseudoholomorphiurves uw and vw also exist in W .
15



Proof of the main theorem

Given ∂M = Σ ⊂ R4 star-shaped, construct

a symplectic manifold W by surgery :

(1) Remove from R4 = C2 the interior of Σ;

(2) Attach M along its boundary to Σ.

Σ ∼= S3

uw

vw

∂B4

M

Choose J matching J0 outside a large ball.

Then for large |w|, the pseudoholomorphic

curves uw and vw also exist in W .

15



Let Mu and Mv denote the families of pseu-

doholomorphic curves in W containing the

curves uw and vw respectively. Using fun-tional analysis and PDE theory, one an show:Lemma 1 (smoothness):One an hoose J suh that Mu and Mvare eah parametrized by smooth, oriented 2-dimensional manifolds, and within eah fam-ily, any two distint urves are disjoint. More-over, every urve inMu intersets every urvein Mv exatly one, transversely.Lemma 2 (ompatness):Any bounded sequene of urves in Mu orMv has a onvergent subsequene.These lemmas onern general properties ofsolution spaes.One an prove them without knowing how tosolve the PDE, and without knowing whatMatually is!
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Final step: “turn on the machine. . . ”

Σ ∼= S3
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Final step: “turn on the machine. . . ”

uw

vw

∂B4

⇒ W ∼= C2.
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That was nearly 30 years ago.

Here is a more recent but similar result. . .

Theorem (W. 2010)

The only exact symplectic fillings of a 3-

dimensional torus

T
3 := S1 × S1 × S1

are star-shaped domains in the cotangent bun-

dle of T2.

Question:

For a surface Σ of genus g ≥ 2, does the unit

cotangent bundle have more than one exact

symplectic filling?

No one has any idea.
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