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h-Principles for the curvature
of (semi-)Riemannian metrics

M smooth manifold
E+ = Sym2

+ T ∗M fibre bundle over M

sections in E+ = Riemannian metrics on M

secg : Gr2 TM → R sectional curvature of g ∈ Γ(E+)
Ricg ∈ Γ(Sym2 T ∗M) Ricci curvature
scalg : M → R scalar curvature

ricg : PTM = Gr1 TM → R: defined by ricg ([v ]) :=
Ricg (v , v)

g(v , v)



Some interesting second-order PDRs R ⊆ J2E+:

R = sec>0

R = ric>0

R = scal >0

analogous relations with “<0”

more generally, for a, b ∈ R ∪ {±∞}: a<sec<b etc.

E.g., sec>0 is defined to be{
j2x g

∣∣∣ g ∈ Γ(E+), x ∈ M, ∀σ ∈ Gr2 TxM : secg (σ) > 0
}
.

A solution of sec>0 is a Riem. metric g on M with secg > 0.

All these relations are open and Diff(M)-invariant.

Thus Gromov’s h-principle theorems apply if M is open.



Recall:

The parametric h-principle for diff-inv. PDRs on open manifolds

Let E → M be a natural fibre bundle over an open manifold.
Let R ⊆ J rE be open and Diff(M)-invariant.

Then j r : Sol(R)→ Γ(R) is a homotopy equivalence.

In our situation, this becomes (as we’ll see in a moment):

Theorem

Let a, b ∈ R ∪ {±∞} satisfy a < b.
Let M be an open manifold of dimension ≥ 2.
Let R be one of the PDRs a<sec<b, a<ric<b, a<scal <b on M.

Then Sol(R) is contractible (w.r.t. the compact-open C r -top.).
In particular it is nonempty and connected.

To prove this, we have to check that Γ(R) is contractible...



R ⊆ J2E+

fibre bundle with contractible fibres: convex, 6= ∅

J1E+

contractible fibres (vector spaces)

E+

contractible fibres: Sym2
+ T ∗x M convex, 6= ∅

M

p21
∣∣
R

p10

p0

Why (p2
1)−1(ξ) ∩R is nonempty and convex for each ξ ∈ J1E+:

Since dim M ≥ 2, metrics with a < secg < b exist locally.
⇒ ∀x ∈ M : ∃ξ0 ∈ J1

x E+ : (p2
1)−1(ξ0) ∩R 6= ∅.

All 1-jets of metrics at x look the same in normal coordinates.
R is Diff-invariant ⇒ ∀ξ ∈ J1E+ : (p2

1)−1(ξ) ∩R 6= ∅.



Curvature in local coordinates:

(x1, . . . , xn): local coordinates; ∂i ≡ ∂
∂x i

Riemann tensor: Rl
ijk = ∂iΓ

l
jk − ∂jΓl

ik +
∑

µ ΓµjkΓl
iµ −

∑
µ ΓµikΓl

jµ ,

where Γk
ij := 1

2

∑
µ gkµ

(
∂igjµ + ∂jgiµ − ∂µgij

)
sectional curvature: sec(span{u, v}) = R(u,v ,v ,u)

g(u,u)g(v ,v)−g(u,v)2

Ricci tensor: Ricij =
∑

k Rk
kij

scalar curvature: scal =
∑

i ,j g ijRicij

For fixed 0th and 1st derivatives of the metric components gij ,
all curvatures are affine functions of the 2nd derivatives of g .

Thus, for each ξ ∈ J1E+,
(p2

1)−1(ξ) ∩R is a convex subset of the fibre (p2
1)−1(ξ).

This proves our nonempty-and-convex-fibres claim.

Thus R → M has contractible fibres ⇒ Γ(R) is contractible.



Let M be a(n open) manifold. Let A ⊆ M be a closed subset
s.t. each connected component of M\A has an exit to infinity.

The relative h-principle for diff-inv. PDRs on open manifolds

Let E → M be a natural fibre bundle.
Let R ⊆ J rE be open and Diff(M)-invariant.
Let ϕ0 ∈ Γ(R) be holonomic on a neighbourhood of A.

Then there exists a continuous map ϕ : [0, 1]→ Γ(R) such that

ϕ(0) = ϕ0;

∀t ∈ [0, 1] : ϕ(t)|A = ϕ0|A;

ϕ(1) is holonomic.

Corollary

Let dim M ≥ 2. Let a, b ∈ R ∪ {±∞} satisfy a < b.
Let R be one of the PDRs a<sec<b, a<ric<b, a<scal <b on M.
Let g0 be a Riemannian metric which solves R on A.

Then there is a metric g on M which solves R everywhere
and is equal to g0 on A.



There’s also a relative parametric h-principle on open manifolds,
but let’s not spell it out here.

Could convex integration yield additional information?

A priori clear: many of the PDRs a<sec<b, a<ric<b, a<scal <b
are not ample. Otherwise they would have solutions on arbitrary
closed manifolds M, but there are obstructions:

The solution spaces of scal >0, ric>0, sec>0 are often empty.

When they are nonempty, they are usually not connected.

Sol(sec<0) = ∅ if M is closed and its universal cover
is not diffeomorphic to Rn (e.g. because π1(M) is finite).

Many open manifolds do not admit complete solutions of
scal >0, ric>0, sec>0, sec<0.
(E.g. T n × R does not admit a complete scal >0-metric.)

This shows also that the C 0-dense h-principle fails
even on open manifolds for scal >0, ric>0, sec>0, sec<0.



But what about the remaining relations?

It’s easy to see directly that none of our curvature PDRs is ample!

For x ∈ M and W ∈ Grn−1 TxM, let J2
⊥W E+ denote

the set of equivalence classes of sections in E+ → M
w.r.t. the equivalence relation of having at x the same 1-jet
and the same W -directional derivatives of the 1-jet.
p2
⊥W : J2

x E+ → J2
⊥W E+ denotes the obvious projection.

By definition, one of our curvature PDRs R is ample iff:
∀W ∈ Grn−1 TM : ∀ξ ∈ J2

⊥W E+ : (p2
⊥W )−1(ξ) ∩R is ample

(i.e., each of its connected comp.s has convex hull (p2
⊥W )−1(ξ)).

For each of our PDRs R in dim. ≥ 2 with (a, b) 6= (−∞,∞),
each (p2

⊥W )−1(ξ) ∩R is 6= ∅ and contained in a half-space.

Thus ampleness fails.

Nevertheless...



Lohkamp’s theorems (1992–1995) for ric<0 and scal <0;
we state only the ric versions, scal is analogous:

Let M be a manifold of dimension n ≥ 3.

Theorem (existence = π0-surjective h-principle)

M admits a complete Riemannian metric g with ricg < 0.

Even better: For each n ≥ 3, there are numbers an < bn < 0 s.t.
every n-mf. admits a complete Riem. metric g with an ≤ ricg ≤ bn.

Remark. For n ≥ 5, it is not known whether we can take an = bn.

Theorem (relative h-principle)

Let c ∈ R. Let A be a closed subset of M.
Let g0 be a metric on a nbhd. of A with ricg0 < c.
Then there is a metric g on M with ricg < c and g |A = g0|A.

Remark. The same holds with ric ≤ c instead of ric < c.



Theorem (parametric h-principle)

For every c ∈ R, the space Sol(ric<c)
of metrics g on M with ricg < c is contractible.

Theorem (C 0-dense h-principle)

For every c ∈ R, the set Sol(ric<c) is dense in the space Metr(M)
of Riem. metrics w.r.t. the fine (= Whitney) C 0-topology.

Remark. Using the Bochner formula
dd∗α + d∗dα = ∇∗g∇gα + Ricg (α], ) for 1-forms α,

and the fact that d∗α and ∇gα depend only on the 1-jet of g ,
one can show that
Sol(ric≤0) and Sol(scal ≤0) are C 1-closed in Metr(M).

Hence Sol(ric<0) and Sol(scal <0) are not C 1-dense in Metr(M).



How does Lohkamp prove that every manifold of dimension ≥ 3
admits a complete metric with ric<0?

For each n ≥ 3, consider the following statements:

A(n): There exists a Riemannian metric g on Rn which
is equal to eucl outside the open unit ball Bn

and satisfies ricg < 0 on Bn.

B(n): Each n-manifold M admits a complete ric < 0 metric.

Lohkamp’s proof consists of 3 steps (we’ll see no details today):

1 A(3) is true.

2 ∀n ≥ 3: A(n)⇒ B(n).

3 ∀n ≥ 3: B(n)⇒ A(n + 1).

inductive construction  hard to understand the metrics for n�3.

C 0-dense h-principle holds, C 1-dense fails... what about C 0,α?
(C 0,0 = C 0; C 0,1-topology = C 1-topology)



For simplicity, let’s consider only the relation scal < c from now on.

Unlike ric < c , this makes sense also for semi-Riemannian metrics!

Difference to Riemannian (= positive definite) or neg. def. metrics:

For p, q with pq 6= 0, not every (p + q)-manifold
admits a semi-Riem. metric of signature (p, q).

If a manifold M admits a metric of signature (p, q), the
space Metrp,q(M) of such metrics is usually not connected.

Example: Lorentzian (i.e. q = 1) metrics on closed 2-manifolds.

Only the 2-torus and the Klein bottle admit Lor. metrics.

The set of conn. comp.s of the space of Lor. metrics on T2

is in canonical bijective correspondence to Z× Z.



Analogous to what we’ve seen before, Gromov’s theorems yield:

Theorem (h-principle on open manifolds)

Let M be an open manifold of dimension p + q ≥ 2.
Let a, b ∈ R ∪ {±∞} satisfy a < b.
Then the inclusion

from the space of g ∈ Metrp,q(M) with a < scalg < b
to Metrp,q(M) is a homotopy equivalence.

Theorem (relative h-principle on open manifolds)

Let M be a(n open) manifold of dimension p + q ≥ 2.
Let A ⊆ M be a closed subset such that

each connected component of M\A has an exit to infinity.
Let a, b ∈ R ∪ {±∞} satisfy a < b.
Let g0 ∈ Metrp,q(M) satisfy a < scalg0 < b on A.

Then the connected component of Metrp,q(M) that contains g0
contains also a metric g with g |A = g0|A
which satisfies a < scalg < b on M.



I proved:

Theorem (semi-Riem. relative C 0,α-dense h-principle for scal <c)

Let c ∈ R. Let A be a closed subset of a manifold M.

Let g0 ∈ Metrp,q(M) satisfy scalg0 |A < c [resp. scalg0 |A > c].

Let 0 ≤ α < 1, let U ⊆ Metrp,q(M) be a fine C 0,α-nbhd. of g0.

If p ≥ 3, or p ≥ 1 and q ≥ 2, [resp. if q ≥ 3, or q ≥ 1 and p ≥ 2,]
then U contains a metric g with g |A = g0|A

and scalg < c [resp. scalg > c].

Thus, in dimension p + q ≥ 3,
scalar curvature can be decreased and increased
except in the signatures (p, 0), (0, q) and maybe (1, 2), (2, 1).



Idea of proof. Let U be an open nbhd. of A with scalg0 |U < c .

We choose locally finite covers (B̂i )i∈N and (Bi )i∈N of M\U
by smooth open balls, with closures contained in M\A,
such that ∀i : closure(Bi ) ⊂ B̂i .

Then we apply the following lemma iteratively to each i ∈ N:

Lemma

Let ε ∈ R>0, let c ∈ R. Let M := Rp+q, let g0 ∈ Metrp,q(M).

Let B̂,B ⊆ M be open smooth balls with closure(B) ⊂ B̂.

Let 0 ≤ α < 1, let U ⊆ Metrp,q(M) be a fine C 0,α-nbhd. of g0.

If p ≥ 3, or p ≥ 1 and q ≥ 2,
then there is a metric g ∈ U with g |M\B̂ = g0|M\B̂
and scalg ≤ scalg0 +ε and scalg |B ≤ c − 1.

This proves the theorem. It remains to prove the lemma.



This involves a picture you might find familiar:

We choose on M = Rp+q

a g0-orthonormal frame (e0, . . . , en−1)
such that the εi := g0(ei , ei ) ∈ {±1} satisfy ε1 = ε2;

a fct. ω0 ∈ C∞(M,R) s.t. dω0(e0) > 0, ∀i ≥ 1: dω0(ei ) = 0;

a cutoff β ∈ C∞(M, [0, 1]) with β|B = 1 and β|M\B̂ = 0.

For C ∈ R, consider ω ∈ C∞(M,R) given by ω(x) := ω0(C x).

For a ∈
[
−1

2 ,
1
2

]
, consider f := 1 + aβ ∈ C∞(M,R>0).



For C ∈ R, consider ω ∈ C∞(M,R) given by ω(x) := ω0(C x).

For a ∈
[
−1

2 ,
1
2

]
, consider f := 1 + aβ ∈ C∞(M,R>0).

We define another g0-orthonormal frame (e0, . . . , en−1) by

e i := ei if i /∈ {1, 2}
e1 := cos(ω)e1 + sin(ω)e2

e2 := − sin(ω)e1 + cos(ω)e2 .

Now we modify the frame (e0, . . . , en−1) slightly:

êi := e i if i 6= 1 , ê1 := f e1 .



For C ∈ R, consider ω ∈ C∞(M,R) given by ω(x) := ω0(C x).

For a ∈
[
−1

2 ,
1
2

]
, consider f := 1 + aβ ∈ C∞(M,R>0).

We define g by declaring (ê0, . . . , ên−1) to be g -orthonormal.

If |a| is small, then g is obviously C 0-close to g0.
If |aC | is large, then scalg ≤ scalg0 +ε and scalg |B ≤ c − 1.

By choosing C > 0 depending on a > 0 such that
|aC | is large but |aCα| is small,
we can make g even C 0,α-close to g0 for any α < 1.


