h-Principles for the curvature of (semi-)Riemannian metrics

- $\begin{array}{ll} \sec_g \colon \operatorname{Gr}_2 TM \to \mathbb{R} & \text{sectional curvature of } g \in \Gamma(E_+) \\ \operatorname{Ric}_g \in \Gamma(\operatorname{Sym}^2 T^*M) & \operatorname{Ricci curvature} \\ \operatorname{scal}_g \colon M \to \mathbb{R} & \text{scalar curvature} \end{array}$

 $\operatorname{ric}_g : \mathbb{P}TM = \operatorname{Gr}_1 TM \to \mathbb{R}$: defined by $\operatorname{ric}_g([v]) := \frac{\operatorname{Ric}_g(v, v)}{g(v, v)}$

Some interesting second-order PDRs $\mathscr{R} \subseteq J^2 E_+$:

- $\mathscr{R} = sec > 0$
- $\mathscr{R} = ric > 0$
- $\mathscr{R} = scal > 0$
- analogous relations with "<0"
- more generally, for $a, b \in \mathbb{R} \cup \{\pm \infty\}$: a < sec < b etc.

E.g., sec > 0 is defined to be

$$\left\{\begin{array}{c} j_{\mathsf{x}}^2 g \end{array} \middle| \hspace{0.1cm} g \in \Gamma(E_+), \hspace{0.1cm} \mathsf{x} \in M, \hspace{0.1cm} \forall \sigma \in \operatorname{Gr}_2 T_{\mathsf{x}} M \colon \operatorname{sec}_g(\sigma) > 0 \right\}.$$

<ロト <部ト <注入 <注下 = 正

A solution of sec>0 is a Riem. metric g on M with $sec_g > 0$.

All these relations are open and Diff(M)-invariant.

Thus Gromov's h-principle theorems apply if M is open.

Recall:

The parametric h-principle for diff-inv. PDRs on open manifolds

Let $E \to M$ be a natural fibre bundle over an open manifold. Let $\mathscr{R} \subseteq J^r E$ be open and Diff(M)-invariant.

Then $j^r : Sol(\mathscr{R}) \to \Gamma(\mathscr{R})$ is a homotopy equivalence.

In our situation, this becomes (as we'll see in a moment):

Theorem

Let $a, b \in \mathbb{R} \cup \{\pm \infty\}$ satisfy a < b. Let M be an open manifold of dimension ≥ 2 . Let \mathscr{R} be one of the PDRs a < sec < b, a < ric < b, a < scal < b on M. Then $Sol(\mathscr{R})$ is contractible (w.r.t. the compact-open C^r -top.). In particular it is nonempty and connected.

To prove this, we have to check that $\Gamma(\mathscr{R})$ is contractible...

Why $(p_1^2)^{-1}(\xi) \cap \mathscr{R}$ is nonempty and convex for each $\xi \in J^1E_+$:

Since dim $M \ge 2$, metrics with $a < \sec_g < b$ exist locally. $\Rightarrow \forall x \in M : \exists \xi_0 \in J_x^1 E_+ : (p_1^2)^{-1}(\xi_0) \cap \mathscr{R} \neq \varnothing$. All 1-jets of metrics at x look the same in normal coordinates. \mathscr{R} is Diff-invariant $\Rightarrow \forall \xi \in J^1 E_+ : (p_1^2)^{-1}(\xi) \cap \mathscr{R} \neq \varnothing$.

Curvature in local coordinates:

 $\begin{array}{ll} (x^1,\ldots,x^n): \mbox{ local coordinates; } & \partial_i \equiv \frac{\partial}{\partial x^i} \\ \mbox{Riemann tensor: } & \mathsf{R}'_{ijk} = \partial_i \Gamma'_{jk} - \partial_j \Gamma'_{ik} + \sum_{\mu} \Gamma^{\mu}_{jk} \Gamma^{I}_{i\mu} - \sum_{\mu} \Gamma^{\mu}_{ik} \Gamma^{I}_{j\mu} \ , \\ \mbox{where } & \Gamma^{k}_{ij} := \frac{1}{2} \sum_{\mu} g^{k\mu} (\partial_i g_{j\mu} + \partial_j g_{i\mu} - \partial_{\mu} g_{ij}) \\ \mbox{sectional curvature: } & \mbox{sec}(\mbox{span}\{u,v\}) = \frac{\mathsf{R}(u,v,v,u)}{g(u,u)g(v,v) - g(u,v)^2} \\ \mbox{Ricci tensor: } & \mbox{Ric}_{ij} = \sum_k \mathsf{R}^{k}_{kij} \\ \mbox{scalar curvature: } & \mbox{scal} = \sum_{i,j} g^{ij} \mathsf{Ric}_{ij} \end{array}$

For fixed 0th and 1st derivatives of the metric components g_{ij} , all curvatures are **affine** functions of the 2nd derivatives of g.

Thus, for each $\xi \in J^1 E_+$, $(p_1^2)^{-1}(\xi) \cap \mathscr{R}$ is a convex subset of the fibre $(p_1^2)^{-1}(\xi)$.

This proves our nonempty-and-convex-fibres claim.

Thus $\mathscr{R} \to M$ has contractible fibres $\Rightarrow \Gamma(\mathscr{R})$ is contractible.

990

Let M be a(n open) manifold. Let $A \subseteq M$ be a closed subset s.t. each connected component of $M \setminus A$ has an exit to infinity.

The relative h-principle for diff-inv. PDRs on open manifolds

Let $E \rightarrow M$ be a natural fibre bundle.

Let $\mathscr{R} \subseteq J^r E$ be open and Diff(M)-invariant.

Let $\varphi_0 \in \Gamma(\mathscr{R})$ be holonomic on a neighbourhood of A.

Then there exists a continuous map $\varphi \colon [0,1] \to \Gamma(\mathscr{R})$ such that

• $\varphi(0) = \varphi_0;$

•
$$\forall t \in [0,1]$$
: $\varphi(t)|_{\mathcal{A}} = \varphi_0|_{\mathcal{A}};$

• $\varphi(1)$ is holonomic.

Corollary

Let dim $M \ge 2$. Let $a, b \in \mathbb{R} \cup \{\pm \infty\}$ satisfy a < b. Let \mathscr{R} be one of the PDRs a < sec < b, a < ric < b, a < scal < b on M. Let g_0 be a Riemannian metric which solves \mathscr{R} on A. Then there is a metric g on M which solves \mathscr{R} everywhere and is equal to g_0 on A. There's also a relative parametric h-principle on open manifolds, but let's not spell it out here.

Could convex integration yield additional information?

A priori clear: many of the PDRs a < sec < b, a < ric < b, a < scal < bare not ample. Otherwise they would have solutions on arbitrary closed manifolds M, but there are obstructions:

- The solution spaces of *scal* >0, *ric*>0, *sec*>0 are often empty.
- When they are nonempty, they are usually not connected.
- Sol(sec<0) = Ø if M is closed and its universal cover is not diffeomorphic to ℝⁿ (e.g. because π₁(M) is finite).
- Many open manifolds do not admit complete solutions of scal >0, ric>0, sec>0, sec<0.
 (E.g. Tⁿ × ℝ does not admit a complete scal >0-metric.)
- This shows also that the C⁰-dense h-principle fails even on open manifolds for *scal* >0, *ric*>0, *sec*>0, *sec*<0.

But what about the remaining relations?

It's easy to see directly that none of our curvature PDRs is ample!

For $x \in M$ and $W \in \operatorname{Gr}_{n-1} T_x M$, let $J_{\perp W}^2 E_+$ denote the set of equivalence classes of sections in $E_+ \to M$ w.r.t. the equivalence relation of having at x the same 1-jet and the same W-directional derivatives of the 1-jet. $p_{\perp W}^2: J_x^2 E_+ \to J_{\perp W}^2 E_+$ denotes the obvious projection.

By definition, one of our curvature PDRs \mathscr{R} is *ample* iff: $\forall W \in \operatorname{Gr}_{n-1} TM: \forall \xi \in J^2_{\perp W} E_+: (p^2_{\perp W})^{-1}(\xi) \cap \mathscr{R}$ is ample (i.e., each of its connected comp.s has convex hull $(p^2_{\perp W})^{-1}(\xi)$).

For each of our PDRs \mathscr{R} in dim. ≥ 2 with $(a, b) \neq (-\infty, \infty)$, each $(p_{\perp W}^2)^{-1}(\xi) \cap \mathscr{R}$ is $\neq \emptyset$ and contained in a half-space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thus ampleness fails.

Nevertheless...

Lohkamp's theorems (1992–1995) for ric < 0 and scal < 0; we state only the *ric* versions, *scal* is analogous:

Let *M* be a manifold of dimension $n \ge 3$.

Theorem (existence = π_0 -surjective h-principle)

M admits a complete Riemannian metric g with $ric_g < 0$.

Even better: For each $n \ge 3$, there are numbers $a_n < b_n < 0$ s.t. every n-mf. admits a complete Riem. metric g with $a_n \le \operatorname{ric}_g \le b_n$.

Remark. For $n \ge 5$, it is not known whether we can take $a_n = b_n$.

Theorem (relative h-principle)

Let $c \in \mathbb{R}$. Let A be a closed subset of M. Let g_0 be a metric on a nbhd. of A with $\operatorname{ric}_{g_0} < c$. Then there is a metric g on M with $\operatorname{ric}_g < c$ and $g|_A = g_0|_A$.

Remark. The same holds with ric $\leq c$ instead of ric < c.

Theorem (parametric h-principle)

For every $c \in \mathbb{R}$, the space Sol(ric < c)of metrics g on M with $ric_g < c$ is contractible.

Theorem (C^0 -dense h-principle)

For every $c \in \mathbb{R}$, the set Sol(ric < c) is dense in the space Metr(M) of Riem. metrics w.r.t. the fine (= Whitney) C^0 -topology.

Remark. Using the Bochner formula $dd^*\alpha + d^*d\alpha = \nabla_g^* \nabla_g \alpha + \operatorname{Ric}_g(\alpha^{\sharp}, _)$ for 1-forms α , and the fact that $d^*\alpha$ and $\nabla_g \alpha$ depend only on the 1-jet of g, one can show that $Sol(ric \le 0)$ and $Sol(scal \le 0)$ are C^1 -closed in Metr(M). Hence Sol(ric < 0) and Sol(scal < 0) are not C^1 -dense in Metr(M). How does Lohkamp prove that every manifold of dimension \geq 3 admits a complete metric with *ric*<0?

For each $n \ge 3$, consider the following statements:

 $\begin{array}{l} A(n): \mbox{ There exists a Riemannian metric } g \mbox{ on } \mathbb{R}^n \mbox{ which} \\ \mbox{ is equal to eucl outside the open unit ball } B^n \\ \mbox{ and satisfies ric}_g < 0 \mbox{ on } B^n. \end{array}$

B(n): Each *n*-manifold *M* admits a complete ric < 0 metric.

Lohkamp's proof consists of 3 steps (we'll see no details today):

• A(3) is true.

$$\forall n \geq 3 \colon A(n) \Rightarrow B(n).$$

inductive construction \rightsquigarrow hard to understand the metrics for $n \gg 3$. C^{0} -dense h-principle holds, C^{1} -dense fails... what about $C^{0,\alpha}$? $(C^{0,0} = C^{0}; C^{0,1}$ -topology = C^{1} -topology) For simplicity, let's consider only the relation scal < c from now on. Unlike ric < c, this makes sense also for semi-Riemannian metrics! Difference to Riemannian (= positive definite) or neg. def. metrics:

- For p, q with pq ≠ 0, not every (p + q)-manifold admits a semi-Riem. metric of signature (p, q).
- If a manifold M admits a metric of signature (p, q), the space Metr_{p,q}(M) of such metrics is usually not connected.

Example: Lorentzian (i.e. q = 1) metrics on closed 2-manifolds.

- Only the 2-torus and the Klein bottle admit Lor. metrics.
- The set of conn. comp.s of the space of Lor. metrics on T² is in canonical bijective correspondence to Z × Z.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Analogous to what we've seen before, Gromov's theorems yield:

Theorem (h-principle on open manifolds)

Let *M* be an open manifold of dimension $p + q \ge 2$. Let $a, b \in \mathbb{R} \cup \{\pm \infty\}$ satisfy a < b. Then the inclusion

from the space of $g \in \operatorname{Metr}_{p,q}(M)$ with $a < \operatorname{scal}_g < b$ to $\operatorname{Metr}_{p,q}(M)$ is a homotopy equivalence.

Theorem (relative h-principle on open manifolds)

Let M be a(n open) manifold of dimension $p + q \ge 2$. Let $A \subseteq M$ be a closed subset such that

each connected component of $M \setminus A$ has an exit to infinity. Let $a, b \in \mathbb{R} \cup \{\pm \infty\}$ satisfy a < b.

Let $g_0 \in \operatorname{Metr}_{p,q}(M)$ satisfy $a < \operatorname{scal}_{g_0} < b$ on A.

Then the connected component of $\operatorname{Metr}_{p,q}(M)$ that contains g_0 contains also a metric g with $g|_A = g_0|_A$ which satisfies $a < \operatorname{scal}_g < b$ on M.

I proved:

Theorem (semi-Riem. relative $C^{0,\alpha}$ -dense h-principle for scal < c) Let $c \in \mathbb{R}$. Let A be a closed subset of a manifold M. Let $g_0 \in \operatorname{Metr}_{p,q}(M)$ satisfy $\operatorname{scal}_{g_0}|_A < c$ [resp. $\operatorname{scal}_{g_0}|_A > c$]. Let $0 \le \alpha < 1$, let $\mathscr{U} \subseteq \operatorname{Metr}_{p,q}(M)$ be a fine $C^{0,\alpha}$ -nbhd. of g_0 . If $p \ge 3$, or $p \ge 1$ and $q \ge 2$, [resp. if $q \ge 3$, or $q \ge 1$ and $p \ge 2$,] then \mathscr{U} contains a metric g with $g|_A = g_0|_A$ and $\operatorname{scal}_g < c$ [resp. $\operatorname{scal}_g > c$].

Thus, in dimension $p + q \ge 3$, scalar curvature can be decreased **and** increased except in the signatures (p, 0), (0, q) and maybe (1, 2), (2, 1).

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Idea of proof. Let U be an open nbhd. of A with $\operatorname{scal}_{g_0}|_U < c$. We choose locally finite covers $(\hat{B}_i)_{i \in \mathbb{N}}$ and $(B_i)_{i \in \mathbb{N}}$ of $M \setminus U$ by smooth open balls, with closures contained in $M \setminus A$, such that $\forall i$: $\operatorname{closure}(B_i) \subset \hat{B}_i$.

Then we apply the following lemma iteratively to each $i \in \mathbb{N}$:

Lemma

Let $\varepsilon \in \mathbb{R}_{>0}$, let $c \in \mathbb{R}$. Let $M := \mathbb{R}^{p+q}$, let $g_0 \in \operatorname{Metr}_{p,q}(M)$. Let $\hat{B}, B \subseteq M$ be open smooth balls with closure $(B) \subset \hat{B}$. Let $0 \le \alpha < 1$, let $\mathscr{U} \subseteq \operatorname{Metr}_{p,q}(M)$ be a fine $C^{0,\alpha}$ -nbhd. of g_0 . If $p \ge 3$, or $p \ge 1$ and $q \ge 2$, then there is a metric $g \in \mathscr{U}$ with $g|_{M \setminus \hat{B}} = g_0|_{M \setminus \hat{B}}$ and $\operatorname{scal}_g \le \operatorname{scal}_{g_0} + \varepsilon$ and $\operatorname{scal}_g |_B \le c - 1$.

This proves the theorem. It remains to prove the lemma.

This involves a picture you might find familiar:

We choose on $M = \mathbb{R}^{p+q}$

- a g_0 -orthonormal frame (e_0, \ldots, e_{n-1}) such that the $\varepsilon_i := g_0(e_i, e_i) \in \{\pm 1\}$ satisfy $\varepsilon_1 = \varepsilon_2$;
- a fct. $\omega_0 \in C^{\infty}(M, \mathbb{R})$ s.t. $d\omega_0(e_0) > 0$, $\forall i \ge 1$: $d\omega_0(e_i) = 0$;
- a cutoff $\beta \in C^{\infty}(M, [0, 1])$ with $\beta|_{B} = 1$ and $\beta|_{M \setminus \hat{B}} = 0$.

For $C \in \mathbb{R}$, consider $\omega \in C^{\infty}(M, \mathbb{R})$ given by $\omega(x) := \omega_0(Cx)$. For $a \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, consider $f := 1 + a\beta \in C^{\infty}(M, \mathbb{R}_{>0})$.

▲ロト ▲聞ト ▲ヨト ▲ヨト 三臣 - の々で

We define another g_0 -orthonormal frame $(\overline{e}_0, \ldots, \overline{e}_{n-1})$ by

 $\overline{\mathbf{e}}_i := \mathbf{e}_i \qquad \text{if } i \notin \{1, 2\}$ $\overline{\mathbf{e}}_1 := \cos(\omega)\mathbf{e}_1 + \sin(\omega)\mathbf{e}_2 \qquad$ $\overline{\mathbf{e}}_2 := -\sin(\omega)\mathbf{e}_1 + \cos(\omega)\mathbf{e}_2 \quad .$

Now we modify the frame $(\overline{e}_0, \ldots, \overline{e}_{n-1})$ slightly:

 $\hat{\mathbf{e}}_i := \overline{\mathbf{e}}_i \quad \text{if } i \neq 1 , \qquad \hat{\mathbf{e}}_1 := f \overline{\mathbf{e}}_1 .$

We define g by declaring $(\hat{e}_0, \ldots, \hat{e}_{n-1})$ to be g-orthonormal. If |a| is small, then g is obviously C^0 -close to g_0 . If |aC| is large, then $\operatorname{scal}_g \leq \operatorname{scal}_{g_0} + \varepsilon$ and $\operatorname{scal}_g |_B \leq c - 1$. By choosing C > 0 depending on a > 0 such that |aC| is large but $|aC^{\alpha}|$ is small, we can make g even $C^{0,\alpha}$ -close to g_0 for any $\alpha < 1$.

・ロト ・日子・ ・ヨト・