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GENERIC TRANSVERSALITY FOR UNBRANCHED COVERS OF

CLOSED PSEUDOHOLOMORPHIC CURVES

CHRIS GERIG AND CHRIS WENDL

Abstrat. We prove that in losed almost omplex manifolds of any dimension, generi

perturbations of the almost omplex struture suÆe to ahieve transversality for all un-

branhed multiple overs of simple pseudoholomorphi urves with deformation index

zero. A orollary is that the Gromov-Witten invariants (without desendants) of sym-

pleti 4-manifolds an always be omputed as a signed and weighted ount of honest

J-holomorphi urves for generi tame J : in partiular, eah suh invariant is an integer

divided by a weighting fator that depends only on the divisibility of the orresponding

homology lass. The transversality proof is based on an analyti perturbation tehnique,

originally due to Taubes.
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2 CHRIS GERIG AND CHRIS WENDL

1. Introdution

The Gromov-Witten invariants of losed sympleti manifolds are de�ned in priniple

by ounting J-holomorphi urves for generi tame almost omplex strutures J . One of

the main tehnial hurdles in this de�nition is that moduli spaes of J-holomorphi urves

are not generally manifolds of the \expeted" dimension unless multiply overed urves

an be exluded; thus in pratie, the de�nition usually requires more sophistiated teh-

niques suh as virtual yles, abstrat multivalued perturbations, or stabilizing divisors,

see e.g. [FO99,LT98,Rua99,Sie,CM07, IPa,HWZ℄.

It is nonetheless interesting to ask under what irumstanes the \lassial" tehnique

of perturbing J generially suÆes for a omplete desription of moduli spaes of multiply

overed urves. Results of this nature are desirable for several reasons: one is that the

resulting de�nition of the Gromov-Witten invariants is simpler to understand and to apply.

Another is that the relationship between simple urves and their multiple overs an

reveal nontrivial relations among Gromov-Witten invariants that annot be seen by more

abstrat tehniques; one example of this phenomenon is the Gopakumar-Vafa onjeture on

sympleti Calabi-Yau 3-folds, see [GV,BP01,BP08,IPb℄. While moduli spaes of multiply

overed urves annot generally ahieve regularity in the usual sense, it is sometimes

enough to show that they are as regular as possible. A simple J-holomorphi urve u with

deformation index 0 is alled \super-rigid" if, roughly speaking, the set of all overs of u

is an open subset in the moduli spae of all J-holomorphi urves (see x1.1 for a more

preise de�nition), so in partiular, no sequene of urves geometrially distint from u

an onverge to any over of u. The index relations between simple J-holomorphi urves

and their multiple overs make the following onjeture plausible:

1

Conjeture 1.1. On any losed sympleti manifold (M;!) of real dimension at least four,

there exists a Baire subset J

reg

in the spae of smooth !-tame almost omplex strutures

suh that for all J 2 J

reg

, every losed, onneted and simple J-holomorphi urve with

deformation index 0 is super-rigid.

Some speial ases of this onjeture have been proved previously by Lee-Parker [LP07,

LP12℄ and Eftekhary [Eft16℄. The tehniques used in the present paper are related to those

of [LP07,LP12℄, whih also play a role in the announed solution by Ionel and Parker to

the Gopakumar-Vafa onjeture [IPb℄.

For an unbranhed over of a simple urve, the super-rigidity ondition is equivalent to

the usual notion of Fredholm regularity, and our main result (stated as Theorem 1.3 below)

is that this an always be ahieved by hoosing J generially. This may be seen as an

initial step toward a proof of Conjeture 1.1 in full generality. While the result holds in all

dimensions, its onsequenes are espeially interesting in dimension four: as we will show

in x1.2, it implies that Gromov-Witten invariants without desendants in this setting an

be omputed without the aid of domain-dependent or inhomogeneous perturbations, and

they therefore satisfy integrality onditions that are not apparent from the more general

de�nitions; see Theorem 1.8 and Corollary 1.9.

1

After this artile was submitted for publiation, the seond author produed a preprint [Wenb℄ that

proves Conjeture 1.1 in all dimensions greater than four, together with a substantial generalization of

Theorem 1.3, using di�erent tehniques based on the Sard-Smale theorem and representation theory.

http://arxiv.org/abs/1407.0678v3
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Our proof is quite di�erent from the methods that sympleti topologists typially use to

establish transversality: it does not involve the Sard-Smale theorem, but is instead based

on an analyti perturbation theory tehnique introdued by Taubes in his de�nition of the

Gromov invariants of sympleti 4-manifolds [Tau96b℄. It works in the sympleti ategory

in all dimensions greater than two, but it does not work in the algebrai or omplex

ategory, i.e. if we start with an integrable omplex struture J , then our perturbation to

ahieve regularity will always make J nonintegrable (see Remark 2.1). The method also

is not stritly limited to unbranhed overs: for any given over of a simple urve with

index 0, we will show how to perturb J suh that the super-rigidity ondition is ahieved

for the given over. Sine spaes of unbranhed overs do not have moduli, this suÆes

to prove our main result, and it also lends hope that similar methods ould be used to

prove Conjeture 1.1 in full generality, though at present it is not lear whether the kind

of perturbation we de�ne an ahieve super-rigidity for all branhed overs at one in a

spae with nontrivial moduli.

2

We aim in future work to prove similar results for overs of �nite-energy puntured J -

holomorphi urves in sympleti obordisms, whih should have interesting appliations

in Sympleti Field Theory [EGH00℄ and Embedded Contat Homology [Hut14℄. A few

speial ases of super-rigidity in the puntured ase have previously been observed by

the seond author [Wen10℄, as well as work of Fabert [Fab13℄, and unpublished work

of Huthings [Hut℄; those examples were restrited to dimension four, but the methods

introdued in the present paper have no suh restritions.

1.1. The main result. Assume (M;J

�x

) is an almost omplex manifold of dimension

2n � 4, U �M is an open subset with ompat losure, and

J (M ; U ; J

�x

)

denotes the spae of smooth almost omplex strutures onM that math J

�x

outside of U ,

with its natural C

1

-topology. If M also arries a sympleti struture ! for whih J

�x

is !-tame or !-ompatible, we will denote the orresponding spaes of tame/ompatible

almost omplex strutures mathing J

�x

outside U by

J

tame

(M;! ; U ; J

�x

); J

omp

(M;! ; U ; J

�x

) � J (M ; U ; J

�x

):

Remark 1.2. The existene of a sympleti form on M is not required for any of the argu-

ments in this paper, but sine it is important in appliations, we will generally assume at

least that (M;!) is sympleti and all almost omplex strutures under onsideration are

!-tame. Note that J

tame

(M;! ; U ; J

�x

) is an open subset of J (M ; U ; J

�x

), thus all state-

ments made about J

tame

(M;! ; U ; J

�x

) will have obvious analogues for J (M ; U ; J

�x

).

With Remark 1.2 in mind, from now on we �x a sympleti form ! on M and assume

J

�x

is !-tame. Given J 2 J

tame

(M;! ; U ; J

�x

), a losed onneted Riemann surfae (�; j)

2

A preliminary version of this paper (under a di�erent title) laimed a proof of Conjeture 1.1 using

similar tehniques, but this argument had gaps that we have thus far been unable to �ll. See Remark 2.7.
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and a J -holomorphi urve

3

u : (�; j)! (M;J), the index of u is the integer

(1.1) ind(u) = (n� 3)�(�) + 2

1

(u);

where we abbreviate 

1

(u) := h

1

(TM; J); [u℄i, [u℄ := u

�

[�℄ 2 H

2

(M). A losed and

onneted J-holomorphi urve ~u : (

e

�; ~|) ! (M;J) is said to be a (d-fold) multiple

over of u if ~u = u Æ ' for some holomorphi map ' : (

e

�; ~|) ! (�; j) of degree d � 2,

and u is alled simple if it is nononstant and is not a multiple over of any other urve.

The map ' :

e

�! � is generally a branhed over, and we all it unbranhed (and ~u an

unbranhed over of u) if it is an honest overing map, meaning its set of branh points is

empty.

We say that the urve u : � ! M is Fredholm regular if a neighborhood of u in

the moduli spae of unparametrized J-holomorphi urves is ut out transversely, see

e.g. [Wena, x4.3℄. In this paper we will mainly deal with immersed urves, for whih a

preise de�nition of regularity is easier to state: suppose u : � ! M is immersed and

denote its omplex normal bundle by N

u

! �. The linearized Cauhy-Riemann operator

assoiated to u is the real-linear �rst-order di�erential operator

(1.2) D

u

: �(u

�

TM)! 


0;1

(�; u

�

TM) : � 7! r� + J(u) Æ r� Æ j + (r

�

J) Æ Tu Æ j;

where r is any hoie of symmetri onnetion on M . We de�ne the normal Cauhy-

Riemann operator at u as the restrition of D

u

to setions of N

u

, omposed with the

projetion �

N

: u

�

TM ! N

u

, hene

D

N
u

= �

N

ÆD

u

j

�(N

u

)

: �(N

u

)! 


0;1

(�; N

u

):

This is also a Cauhy-Riemann type operator, so its extension to any reasonable Banah

spae ompletions suh as

(1.3) D

N
u

: W

k;p

(N

u

)!W

k�1;p

(Hom

C

(T�; N

u

))

for k 2 N and p > 1 is a Fredholm operator, and ellipti regularity implies that its kernel

and okernel do not depend on the hoies k and p. The urve u is then Fredholm regular

if and only if the linear map (1.3) is surjetive. In the present paper, we will sometimes

deal with multiple overs ~u = u Æ ' for whih u is immersed but ' may have branh

points, in whih ase D

N

~u

an naturally be de�ned as a Cauhy-Riemann type operator

on N

~u

:= '

�

N

u

. The urve u is then alled super-rigid if it is immersed with index 0

and D

N

~u

is injetive for every over ~u of u. Note that if ' :

e

�! � has degree d 2 N and

Z(d') � 0 denotes the number of branh points of ' ounted with multipliities, then the

Riemann-Hurwitz formula

(1.4) � �(

e

�) + d�(�) = Z(d')

implies

ind(~u) = d � ind(u)� (n� 3)Z(d');

3

When we use the word \urve" to desribe u : (�; j) ! (M;J), we mean that (�; j) is a smooth

(non-nodal) Riemann surfae and u is a smooth map, or in some ases an equivalene lass of smooth

maps up to parametrization (this will be lear from ontext). By default this exludes nodal urves, and

when we do mean \nodal urve" we will make this expliit. This usage is ommon in sympleti topology

but may di�er from onventions in the algebrai geometry literature.
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hene unbranhed overs of immersed index 0 urves are also immersed with index 0, and

super-rigidity for unbranhed overs is therefore the same as Fredholm regularity.

Here is our main result.

Theorem 1.3. Assume (M;!) is a sympleti manifold

4

with tame almost omplex stru-

ture J

�x

, and U is an open subset with ompat losure. Then there exists a Baire subset

J

reg

� J

tame

(M;! ; U ; J

�x

) suh that for every J 2 J

reg

, all unbranhed overs of simple

losed J-holomorphi urves of index 0 ontained fully in U are Fredholm regular.

Moreover, if J

�x

is !-ompatible, then there is a Baire subset J

reg

� J

omp

(M;! ; U ; J

�x

)

suh that for every J 2 J

reg

, all unbranhed overs of embedded losed J-holomorphi

urves of index 0 ontained fully in U are Fredholm regular.

Remark 1.4. We do not know whether the restrition to embedded urves in the !-

ompatible ase an be relaxed; the reason is explained in Remark 3.3. This is in any

ase only a restrition in dimension four, sine embeddedness is a generi property of

holomorphi urves in higher dimensions (see e.g. [Wena, x4.6℄ or [OZ09℄). In the !-tame

ase, our argument works for all immersed urves with distint transverse self-intersetions,

whih is a generi property even in dimension four.

The next two remarks draw attention to generalizations of Theorem 1.3 that might

naturally be expeted to hold but do not follow from our arguments, and in some ases

are atually false.

Remark 1.5. The standard transversality results as in [MS04,Wena℄ for simple J -holo-

morphi urves have straightforward extensions to generi 1-paramater families fJ

�

g of

almost omplex strutures, showing in essene that the spae of pairs

f(�; u) j u is simple and J

�

-holomorphig

is a manifold of dimension ind(u) + 1. This means that all simple J

�

-holomorphi urves

are regular for almost every � , but there may be birth-death bifurations at a disrete

set of parameter values. The work of Taubes [Tau96a℄ shows that when multiple overs

are allowed, more general types of bifurations must be onsidered, so e.g. the extension

of the usual results for simple urves to unbranhed overs of index 0 urves is not at

all straightforward. We will not prove anything in this paper about generi 1-parameter

families of data.

Remark 1.6. The standard results for simple urves do not require the urves to be fully

ontained in the perturbation domain U in order to ahieve transversality; it suÆes rather

that they should interset U somewhere, the key point being that there is an injetive

point mapped into U . Our methods on the other hand work only for urves that are fully

ontained in U , and we do not know whether this assumption an be weakened. The

reason for this is disussed in Remark 2.1. In this sense, Theorem 1.3 seems to represent

a fundamentally di�erent phenomenon from the usual transversality results for simple

urves.

4

As indiated in Remark 1.2, the �rst statement in the theorem ould also be stated without referene

to any sympleti struture, produing a Baire subset of J (M ; U ; J

�x

).
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1.2. Appliation to Gromov-Witten theory. In the results of this setion, the words

\for generi J . . . " should be understood to mean that there exists a Baire subset of the

appropriate spae of almost omplex strutures for whih the statement is true.

Let M

g;m

(A; J) denote the moduli spae of smooth unparametrized J-holomorphi

urves in M with genus g and m marked points in the homology lass A 2 H

2

(M); the

preise de�nition will be realled in the disussion below. We denote the natural evaluation

map by

ev :M

g;m

(A; J)!M

m

;

and let

M

�
g;m

(A; J) �M

g;m

(A; J)

denote the open subset onsisting of simple urves. For any integer m � 0, the m-point

Gromov-Witten invariant

GW

(M;!)

g;m;A

: H

�

(M)


m

! Q

is de�ned morally by ounting intersetions of the evaluation map with yles inM

m

deter-

mined by an m-tuple of ohomology lasses. The standard de�nition of these invariants in

[RT97℄ for semipositive sympleti manifolds (whih inludes all sympleti 4-manifolds)

requires generi inhomogeneous perturbations to the nonlinear Cauhy-Riemann equation,

thus breaking the symmetry inherent in multiply overed urves. We will now show that

when dim

R

M = 4, these invariants an also be omputed by simpler means that do not

break the symmetry. Reall from [MS04, x6.5℄ that for any subsetM

�

�M

g;m

(A; J), the

restrition ev :M

�

! M

m

is said to be a pseudoyle of dimension d � 0 if M

�

is a

smooth d-dimensional manifold andM

g;m

(A; J)nM

�

an be overed by subsets on whih

ev fators through a smooth map to M

m

from a manifold of dimension at most d� 2. In

this ase one an de�ne integer-valued intersetion produts of ev with homology lasses

in M

m

. The following proposition for the ase m � 1 is presumably not a new result, but

we are not aware of any proof of it in the urrent literature; ours will require only the

standard transversality results for simple urves.

Proposition 1.7. Assume (M;!) is a losed sympleti 4-manifold. Then for generi

!-ompatible or tame almost omplex strutures J and for every A 2 H

2

(M) and every

pair of nonnegative integers (g;m) satisfying �(2 � 2g) + 2

1

(A) > 0 and m � 1, the

evaluation map ev : M

�
g;m

(A; J) ! M

m

on the set of simple urves is a pseudoyle of

dimension �(2�2g)+2

1

(A)+2m. The orresponding m-point Gromov-Witten invariant

an thus be omputed as an intersetion number

GW

(M;!)

g;m;A

(�

1

; : : : ; �

m

) =

h

ev j

M

�
g;m

(A;J)

i

� (PD(�

1

)� : : :� PD(�

m

)) ;

and in partiular, its values are always integers.

The piture for the 0-point invariants with g � 1 is somewhat di�erent, as it turns out

that multiply overed urves annot be avoided in this ase, but only unbranhed overs

need be onsidered. The arguments behind Proposition 1.7 thus ombine with Theorem 1.3

to give the following more novel result.

Theorem 1.8. For generi !-tame almost omplex strutures J on a losed sympleti

4-manifold (M;!), the set of index 0 urves satisfying any given bound on their genus and

area is �nite, and all of them are Fredholm regular.
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We should again aution the reader that we do not know whether the generi J in

Theorem 1.8 an be hosen to be ompatible with ! (see Remark 1.4), though one an

require this if one is only interested in overs of embedded urves (as in [Tau96a,Tau96b℄).

Choosing J tame is in any ase good enough to ompute Gromov-Witten invariants.

In order to state the main orollary, we an assoiate to any integral homology lass

A 2 H

2

(M) in a sympleti manifold (M;!) its sympleti divisibility

d

!

(A) 2 N;

de�ned as the produt of the �nite set of integers k 2 N suh that A = kB for some

primitive lass B 2 H

2

(M) with !(B) > 0.

Corollary 1.9. Suppose (M;!) is a losed sympleti 4-manifold and A 2 H

2

(M) and

g 2 N satisfy �(2� 2g) + 2

1

(A) = 0. Then the 0-point Gromov-Witten invariant an be

omputed for generi tame almost omplex strutures J as a signed and weighted ount of

�nitely many J-holomorphi urves

GW

(M;!)

g;0;A

=

X

u2M

g;0

(A;J)

�(u)

jAut(u)j

;

where for eah urve u, �(u) 2 f�1; 1g is determined by an orientation of the determinant

line bundle, and Aut(u) denotes the automorphism group of u. In partiular, the number

GW

(M;!)

0;0;A

is always an integer, while for g � 1, d

!

(A) �GW

(M;!)

g;0;A

is an integer.

In order to prepare for the proofs of these results, let us reall the de�nitions of the

relevant moduli spaes. Given integers g;m � 0 and a homology lass A 2 H

2

(M), the

moduli spae of unparametrized J-holomorphi urves M

g;m

(A; J) an be de�ned

as the set of equivalene lasses of tuples (�; j;�; u) where (�; j) is a losed onneted

Riemann surfae of genus g, � � � is an ordered set of m distint points (the marked

points), and u : (�; j) ! (M;J) is a J -holomorphi map satisfying [u℄ = A, with equiv-

alene de�ned by (�; j;�; u) � (�

0

;  

�

j;  

�1

(�); u Æ  ) for di�eomorphisms  : �

0

! �.

The automorphism group Aut(u) of [(�; j;�; u)℄ 2M

g;m

(A; J) is the group of biholo-

morphi di�eomorphisms  : (�; j)! (�; j) that �x eah of the marked points and satisfy

u = u Æ  ; it is always �nite, and is trivial whenever u is simple. The Gromov om-

pati�ation of M

g;m

(A; J) is the spae M

g;m

(A; J) of (equivalene lasses of) stable

nodal urves (S; j;�;�; u), where now S may be disonneted, and the original data are

augmented by an unordered set of distint points in S n�, arranged into unordered pairs

� = ff^z

1

; �z

1

g; : : : ; f^z

r

; �z

r

gg ;

suh that u(^z

i

) = u(�z

i

) for eah i = 1; : : : ; r. We all the pairs f^z

i

; �z

i

g nodes, and

eah individual ^z

i

or �z

i

2 S a nodal point. The urves in M

g;m

(A; J) are required to

have arithmeti genus g, whih means that the surfae obtained from S by performing

onneted sums at all mathed pairs of nodal points is a losed onneted surfae of genus g.

The stability ondition requires that any omponent of S n (�[�) on whih u is onstant

should have negative Euler harateristi. With this ondition,M

g;m

(A; J) an be given a

natural topology as a metrizable Hausdor� spae, and it is ompat whenever J is tamed

by a sympleti form. A de�nition of the topology may be found e.g. in [BEH

+

03℄; for

sequenes in M

g;m

(A; J), it amounts to the notion of C

1

-onvergene for j and u after

8 CHRIS GERIG AND CHRIS WENDL

a hoie of parametrization for whih all domains and marked point sets are identi�ed.

Curves [(S; j;�;�; u)℄ 2M

g;m

(A; J) with � = ; an equivalently be regarded as elements

ofM

g;m

(A; J), and are thus alled smooth urves to distinguish them from nodal urves.

The evaluation map is de�ned by

ev :M

g;m

(A; J)!M � : : :�M : [(�; j; (�

1

; : : : ; �

m

); u)℄ 7! (u(�

1

); : : : ; u(�

m

));

and it extends to a ontinuous map on M

g;m

(A; J).

When there is no danger of onfusion, we shall sometimes abuse notation by denoting

equivalene lasses [(�; j;�; u)℄ 2 M

g;m

(A; J) or [(S; j;�;�; u)℄ 2 M

g;m

(A; J) simply by

u 2 M

g;m

(A; J) or u 2 M

g;m

(A; J) respetively, and we will refer to the restrition of

a nodal urve [(S; j;�;�; u)℄ to any onneted omponent of its domain S as a smooth

omponent of u. Reall that M

g;0

(A; J) has virtual dimension equal to the index of

any urve u 2M

g;0

(A; J).

It will be useful to reall ertain index relations for degenerating sequenes of holo-

morphi urves. Suppose dim

R

M = 2n, and [(�; j

k

; u

k

)℄ 2 M

g;0

(A; J) is a sequene

onverging to a stable nodal urve [(S; j

1

;�; u

1

)℄ 2 M

g;0

(A; J) with smooth ompo-

nents

�

[(S

i

; j

i

1

; u

i
1

)℄ 2M

g

i

(A

i

; J)

	

i=1;:::;r

:

Then if N

i

:= jS

i

\�j � 1 denotes the number of nodal points on S

i

for i = 1; : : : ; r, we

have �(�) =

P

i

[�(S

i

)�N

i

℄, so the index formula (1.1) gives

(1.5) ind(u

k

) =

r

X

i=1

�

ind(u

i
1

)� (n� 3)N

i

�

:

Note that by the stability ondition, we have

(1.6) �(S

i

)�N

i

< 0 whenever A

i

= 0:

If A

i

6= 0, then u

i
1

= v

i

Æ '

i

for some simple urve v

i

and holomorphi map '

i

of degree

d

i

� 1 with Z(d'

i

) � 0 branh points, and the Riemann-Hurwitz formula ombined with

(1.1) gives

(1.7) ind(u

i
1

) = d

i

� ind(v

i

)� (n� 3)Z(d'

i

):

Proof of Proposition 1.7. Assume J is hosen so that all somewhere injetive urves are

Fredholm regular. Then M

�
g;m

(A; J) is a manifold of real dimension ind(u) + 2m for any

u 2 M

�
g;m

(A; J). The index relations (1.5) and (1.7) imply that if u

k

2 M

�
g;m

(A; J)

is a sequene of simple urves with ind(u

k

) > 0 onverging to a nodal urve u

1

, then

the nononstant omponents of u

1

over simple urves whose indies add up to at most

ind(u

k

)� 2. More onretely, if u

1

has smooth omponents u

1
1

; : : : ; u

r
1

, eah u

i
1

having

N

i

� 1 nodal points, then the 4-dimensional ase of (1.5) together with the stability

ondition (1.6) implies

(1.8) ind(u

k

) �

X

fi j u

i
1

6=onstg

�

ind(u

i
1

) +N

i

�

;
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with equality if and only if u

1

has no onstant (i.e. \ghost") omponents. This shows in

partiular that

(1.9) ind(u

k

) � 2 +

X

fi j u

i
1

6=onstg

ind(u

i
1

):

Now by (1.7) in the ase n = 2, we see that if u

i
1

is a d

i

-fold over of a simple urve

v

i

, then ind(u

i
1

) � d

i

ind(v

i

), with equality if and only if the over is unbranhed. Sine

ind(v

i

) � 0 by generiity, this implies that eah smooth omponent u

i
1

has index at least

two less than ind(u

k

). On the other hand, if u

1

= limu

k

is a smooth urve that is a d-fold

over v Æ ' of some simple urve v, then (1.7) gives

ind(u

1

) = d � ind(v) + Z(d') � d � ind(v);

and sine ind(u

1

) > 0 by assumption and the index is always even, we onlude ind(v) �

ind(u

1

)� 2 unless d = 1. These relations imply the pseudoyle ondition. �

Proof of Theorem 1.8 and Corollary 1.9. Applying the index relations as in the proof of

Proposition 1.7 above, we �nd that the worst ase senario for a degenerating sequene

of index 0 urves u

k

! u

1

is that u

1

is an unbranhed over of a simple index 0 urve.

For generi tame J , Theorem 1.3 implies that the latter is regular, hene all urves in

M

g;0

(A; J) are smooth and regular, and therefore isolated due to the impliit funtion

theorem. The integrality ondition in Corollary 1.9 arises from the observation that when-

ever u 2 M

g;0

(A; J) is a d-fold over of a simple urve v 2 M

g

0

;0

(B; J), we neessarily

have A = dB and !(B) > 0, and the order of the automorphism group Aut(u) is an inte-

ger dividing d. For g = 0 the integrality result is stronger, beause the Riemann-Hurwitz

formula forbids the existene of unbranhed overs with genus 0, hene every urve in

M

0;0

(A; J) is simple. �

1.3. Outline of the paper. The main steps in the proof of Theorem 1.3 will be explained

in x2, modulo three tehnial results onerning (1) the nonlinear problem, (2) the linear

problem, and (3) obstrution theory. The remainder of the paper will then be onerned

with these three tehnial results: the nonlinear result in x3, the linear result in x5 and

x6, and the obstrution theoreti result (whih is only needed for the ase dim

R

M � 6)

in x4. These are followed by a brief appendix realling the essential result from analyti

perturbation theory that is needed in x6.

A brief remark on terminology. Sine many important objets in this paper do not

arry natural omplex strutures, our formulas for dimensions and Fredholm indies gen-

erally give the real dimension unless otherwise noted, even in ases where this number

is always even. The major exeptions are the bundles u

�

TM and N

u

assoiated to a

J -holomorphi urve u : (�; j)! (M;J); these are naturally omplex vetor bundles and

are desribed in terms of their omplex rank.

Aknowledgements. The present paper emerged out of disussions between the two au-

thors and Mihael Huthings and Dan Cristofaro-Gardiner at the Simons Center's Work-

shop on Moduli Spaes of Pseudo-holomorphi Curves II, June 2{6, 2014. We would

like to thank Huthings and Cristofaro-Gardiner for ontributing useful ideas and enour-

agement, Helmut Hofer, Dusa MDu�, Tim Pertuz, Cli� Taubes and Aleksey Zinger for
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enlightening onversations, Daniel Rauh for sending us a opy of his PhD thesis, and the

Simons Center for its hospitality and for providing suh a stimulating environment for

ollaboration. We also thank Eleny Ionel and Tom Parker for pointing out a ruial error

in our preliminary version of this paper.

2. The main argument

The goal of this setion will be to redue the proof of Theorem 1.3 to a sequene of

three tehnial results to be proved in later setions.

2.1. Unbranhed tori in dimension four. Before diving into the details on Theo-

rem 1.3, it may be instrutive to reall the argument of Taubes whih has inspired the

present approah to regularity for multiple overs. The Gromov invariants were de�ned

in [Tau96a, Tau96b℄ as ertain ounts of holomorphi urves in sympleti 4-manifolds,

inluding both embedded urves and unbranhed overs of embedded holomorphi tori

with index 0. In order to ahieve transversality for the multiple overs, Taubes argued

in [Tau96b, x7(b)℄ as follows. Assume u : T

2

! M is an embedded J-holomorphi torus

with index 0, ' : T

2

! T

2

is a holomorphi overing map and ~u = u Æ'. Then the normal

Cauhy-Riemann operator for ~u an be identi�ed with an operator of the form

D =

�

� +A : C

1

(T

2

; C ) ! C

1

(T

2

; C );

where

�

� = �

s

+ i�

t

in holomorphi oordinates s + it on T

2

and A 2 C

1

(T

2

;End

R

(C )).

Taubes shows that one an always perturb the ambient almost omplex struture along u

suh that D beomes

D

�

� := D� + ����

for some � 2 C

1

(T

2

; C

�

) and a small parameter � 2 R. This perturbation of the linear

operator is required to be omplex-antilinear, and it must never vanish, but in ontrast

to the standard transversality arguments as in [MS04℄, it is allowed to be arbitrarily

symmetri, so in partiular the fat that ~u is a multiple over poses no diÆulty here. The

main hallenge is now to show that this perturbed operator will always be injetive for

suÆiently small � > 0. The argument for this involves two main ingredients.

(1) Bohner-Weitzenb�ok tehnique: The following argument shows that D

�

must be

injetive for all � � 0. Fix the standard real-valued L

2

-inner produt on C

1

(T

2

; C ) and

let D

�

and D

�
�

denote the formal adjoints of D and D

�

respetively; expliitly, we have

D

�

= � + A

�

and D

�
�

� = D

�

� + ����, where � = �

s

� i�

t

and A

�

2 C

1

(T

2

;End

R

(C ))

denotes the pointwise real-linear transpose of A. From these relations, one obtains a

Weitzenb�ok formula,

(2.1) D

�
�

D

�

� = D

�

D� + �L� + �

2

j�j

2

�;

where L 2 C

1

(T

2

;End

R

(C )) is the zeroth-order real-linear operator L� = �A� +A

�

��� �

(��)��. The ruial point in (2.1) is that D

�
�

D

�

� and D

�

D� di�er only by a zeroth-order

term|the omplex-anti linear nature of the perturbation auses all other derivatives of �
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to anel. For all � 2 C

1

(T

2

; C ), we then have

kD

�

�k

2
L

2

= h�;D

�
�

D

�

�i

L

2 =




�;D

�

D� + �L� + �

2

j�j

2

�

�

L

2

= kD�k

2
L

2

+ �h�; L�i

L

2 + �

2

h�; j�j

2

�i

L

2

� kD�k

2
L

2

+ (�

2

� 

0

�)k�k

2
L

2

(2.2)

for some onstants ; 

0

> 0. Here we have used the fat that � is nowhere zero so that

h�; j�j

2

�i

L

2 � k�k

2
L

2

.

(2) Analyti perturbation theory : RegardD

�

as a omplex-linear operatorH

1

(T

2

; C ) !

L

2

(T

2

; C ), or more aurately on the omplexi�ations of these two spaes. Then D

�

depends analytially on the parameter � 2 C , so the set of all � 2 C for whih D

�

is not

an isomorphism looks loally like the zero-set of an analyti funtion on C , i.e. D

�

has

nontrivial kernel either for all � or only for a disrete subset. (A proof of this fat is given

in the Appendix.) Step (1) implies that it is the latter, not the former.

Remark 2.1. The �rst step desribed above depends ruially on the following two prop-

erties of the perturbation, both of whih lend a distintive avor to our main result:

(1) The perturbation from D to D

�

must be antilinear, otherwise the Weitzenb�ok

formula (2.1) does not hold. This implies that, in general, the generi almost

omplex strutures for whih our transversality result holds an never be expeted

to be integrable.

(2) The perturbation must also be nowhere zero so that k�k

L

2 an be bounded below

via h�j�j

2

�i

L

2 in (2.2). This is why our proof of Theorem 1.3 does not work for

urves that only pass through the perturbation domain rather than being fully

ontained in it (see Remark 1.6).

We will see that both of these features also appear in the general ase to be disussed

below.

Remark 2.2. A version of the Bohner-Weitzenb�ok tehnique desribed above has also

appeared in the work of Lee and Parker on K�ahler surfaes with positive geometri genus,

see [LP07, Proposition 8.6℄. In their more speialized setting, the terms linear in � vanish

for geometri reasons, thus one obtains super-rigidity for all (not neessarily small) per-

turbations of the type that they onsider, without any need to apply analyti perturbation

theory.

2.2. Three tehnial results for the general ase. We now desribe what is required

in order to generalize the argument of Taubes skethed above.

The �rst tehnial result we will need desribes the perturbation of the normal Cauhy-

Riemann operator realized by a ertain lass of perturbations to the almost omplex stru-

ture. Working under the assumptions of Theorem 1.3, suppose u : (�; j) ! (M;J) is an

immersed J -holomorphi urve with image fully ontained in U , hoose a tangent/normal

splitting u

�

TM = T

u

�N

u

with T

u

= imdu, and abbreviate the omplex vetor bundles

E := N

u

; F := Hom

C

(T�; N

u

) = T

0;1

�
E;

both of whih have rank m := n � 1. The normal Cauhy-Riemann operator D

N
u

then

maps setions of E to setions of F . Suppose fJ

�

2 J

tame

(M;! ; U ; J

�x

)g

�2(��;�)

is a
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smooth 1-parameter family of almost omplex strutures suh that

J

0

� J; and J

�

j

T

u

� J j

T

u

for all � :

Then u : (�; j)! (M;J

�

) is J

�

-holomorphi for all � , though the previously hosen normal

bundle N

u

� u

�

TM may fail to be J

�

-invariant for � 6= 0. Nonetheless one an always

�nd a smooth 1-parameter family of omplex bundle isomorphisms

�

�

: (TM; J)! (TM; J

�

)

that �x T

u

and satisfy �

0

= 1, allowing us to de�ne perturbed omplex normal bundles

N

u;�

:= �

�

(N

u

) and normal Cauhy-Riemann operators

D

N
u;�

: �(N

u;�

)! �(Hom

C

(T�; N

u;�

));

so that a 1-parameter family of operators �(E)! �(F ) an be de�ned by

�

�1

�

D

N
u;�

�

�

: �(E)! �(F ):

We will prove the following result in x3.

Proposition 2.3. Assume the urve u : (�; j) ! (M;J) in the above setup is immersed

with only transverse double points, suh that no point inM is in the image of more than two

distint points of �. Then given any real-linear bundle map B : E ! F , one an hoose

the families of !-tame almost omplex strutures fJ

�

g and omplex bundle isomorphisms

f�

�

g as above suh that

�

�1

�

D

N
u;�

�

�

= D

N
u

+ �B:

In partiular, for any p > 1, this de�nes a family of Fredholm operators W

1;p

(E)! L

p

(F )

that depends analytially on the parameter � . If J is !-ompatible and u has no double

points, then one an also arrange that J

�

2 J

omp

(M;! ; U ; J

�x

) for all � .

Continuing with the above setup, assume now that ind(u) = 0. Then 0 is also the index

of D

N
u

, whih is m�(�) + 2

1

(E), hene �

1

(E) = m�(�) + 

1

(E) = 

1

(F ), implying the

existene of a omplex-antilinear bundle isomorphism B : E ! F . Let h ; i denote a

Hermitian bundle metri on E, and denote its real part by h ; i

R

; if J is !-ompatible,

we may assume that h ; i

R

mathes the restrition of !(�; J �) to N

u

. For our linear

transversality argument, it will be important to establish the following symmetry property

for B, whih will be possible due to an obstrution theoreti argument explained in x4.

Note that the ondition desribed here is vauous when E is a line bundle, so this step

did not appear in Taubes's argument of x2.1 and is only needed for the higher-dimensional

ase.

Proposition 2.4. Every homotopy lass of omplex-antilinear bundle isomorphisms B :

E ! Hom

C

(T�; E) ontains one that satis�es the following ondition: for all z 2 �,

X 2 T

z

� and �; � 2 E

z

,

h�;B�(X)i

R

= hB�(X); �i

R

:

The remaining ruial ingredient will be a generalization of Taubes's analyti perturba-

tion theory argument desribed in x2.1. Fix B : E ! F as given by Proposition 2.4, and

assume ' : (

e

�; ~|)! (�; j) is a holomorphi map of degree d � 1. The generalized normal

bundle of ~u := u Æ ' is then

e

E := N

~u

= '

�

E, and we de�ne

e

F := Hom

C

(T

e

�;

e

E) so that
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D

N

~u

maps �(

e

E) to �(

e

F ). If fJ

�

g is a 1-parameter family of almost omplex strutures as

in Proposition 2.3 so that D

N
u;�

for eah � is onjugate to D

N
u

+ �B, then the resulting

perturbed normal Cauhy-Riemann operators D

N

~u;�

are onjugate to the family

D

N

~u

+ �B

'

; : �(

e

E)! �(

e

F );

where

B

'

: '

�

E ! Hom

C

(T

e

�; '

�

E) : � 7! B� Æ T':

We will prove the following in x6, using a Weitzenb�ok formula developed in x5.

Proposition 2.5. Given any B and ' as desribed above, the operator D

N

~u

+ �B

'

is

injetive for all � 2 R outside of a disrete subset.

2.3. Proof of Theorem 1.3. Assuming Propositions 2.3, 2.4 and 2.5, we now prove

the main result. The following topologial argument is also inspired by ideas of Taubes

(f. [MS04, pp. 52{53℄ or [Wena, x4.4.2℄). We shall arry out the argument �rst in the

setting of embedded holomorphi urves and ompatible almost omplex strutures, and

then explain what modi�ations are needed for the immersed/tame ase.

Fix an integer g � 0, a homology lass A 2 H

2

(M) and a losed onneted and oriented

surfae � of genus g. Reall that the Teihm�uller spae T (�) = J (�)=Di�

0

(�) is a

smooth manifold di�eomorphi to C

N

, with N = 3g�3 for g � 2 or N = g for g = 0; 1. In

partiular, T (�) is ontratible, allowing us to �x a smooth family of omplex strutures

fj

x

2 J (�)g

x2C

N

for whih the natural projetion to T (�) is bijetive. Fix Riemannian metris on � andM ,

denoting the resulting distane funtions all by dist( ; ). Now for any J 2 J (M ; U ; J

�x

)

and N 2 N, de�ne

M

g

(A; J;N) �M

g;0

(A; J)

to onsist of every equivalene lass in M

g;0

(A; J) admitting a representative of the form

(�; j

x

; u) suh that the following onditions are satis�ed:

(1) j

x

is \not lose to degenerating":

jxj � N

(2) u is \not lose to bubbling":

jdu(z)j � N for all z 2 �;

(3) u is \not lose to being non-embedded":

min

z2�

jdu(z)j �

1

N

; and inf

z;�2�; z 6=�

dist(u(z); u(�))

dist(z; �)

�

1

N

;

(4) u is \not lose to esaping U":

dist (u(�);M n U) �

1

N

:

The union of the subsets M

g

(A; J;N) for all N 2 N onsists preisely of all urves in

M

g;0

(A; J) that are embedded and ontained in U . We laim that for any �xed N 2 N,

M

g

(A; J;N) is ompat|in fat:
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Lemma 2.6. For any N 2 N and any onvergent sequene J

k

! J 2 J (M ; U ; J

�x

), every

sequene u

k

2M

g

(A; J

k

; N) has a subsequene onverging to an element of M

g

(A; J;N).

Proof. By assumption, the given sequene admits representatives of the form (�; j

x

k

; u

k

)

that eah satisfy the four onditions listed above. Condition (1) implies jx

k

j � N for

all k, so we an take a subsequene for whih the omplex strutures j

x

k

onverge to

some j

x

with jxj � N . The seond ondition then implies via ellipti regularity that after

passing to a further subsequene, the maps u

k

onverge in C

1

to a pseudoholomorphi

map u : (�; j

x

)! (M;J) with jduj � N everywhere. Given this onvergene, (3) and (4)

are both losed onditions and are thus also satis�ed by u, so (�; j

x

; u) represents an

element of M

g

(A; J;N). �

Now for eah N 2 N, de�ne

J

reg

(N) � J

omp

(M;! ; U ; J

�x

)

to onsist of all J 2 J

omp

(M;! ; U ; J

�x

) with the property that for every index 0 urve

[(�; j; u)℄ 2 M

g

(A; J;N) and every unbranhed holomorphi over ' : (

e

�; ~|) ! (�; j) of

degree at most N , the urve ~u = u Æ ' is Fredholm regular.

We laim that J

reg

(N) is open. If this is not the ase, then there exists a sequene J

k

2

J

omp

(M;! ; U ; J

�x

) onverging to J 2 J

reg

(N), together with a sequene [(�; j

k

; u

k

)℄ 2

M

g

(A; J

k

; N) and unbranhed overs '

k

: (

e

�

k

; ~|

k

)! (�; j

k

) with deg('

k

) � N for whih

ind(u

k

) = 0 but u

k

Æ'

k

is not regular. But then [(�; j

k

; u

k

)℄ has a subsequene onverging

to an element [(�; j; u)℄ 2 M

g

(A; J;N), and sine eah (�; j

k

) has only �nitely many

unbranhed overs of degree at most N up to biholomorphi equivalene, we may also

assume after reparametrization that a subsequene of '

k

onverges to another unbranhed

over ' : (

e

�; ~|)! (�; j) of degree at most N . Sine J 2 J

reg

(N), u Æ' is regular, but this

ondition is open and thus gives a ontradition.

We laim next that J

reg

(N) is dense. To see this, note �rst that by the standard

transversality theory as in [MS04℄, any J 2 J

omp

(M;! ; U ; J

�x

) has a perturbation J

0

2

J

omp

(M;! ; U ; J

�x

) for whih all urves in M

g

(A; J

0

; N) are Fredholm regular, as all of

them have injetive points mapped into U . Sine M

g

(A; J

0

; N) is ompat, the set of

index 0 urves in M

g

(A; J

0

; N) is now �nite. For eah individual suh urve [(�; j; u)℄

and eah unbranhed over ' : (

e

�; ~|) ! (�; j), the ombination of Propositions 2.3, 2.4

and 2.5 provides a 1-parameter family of perturbed almost omplex strutures fJ

�

2

J

omp

(M;! ; U ; J

�x

)g with J

0

= J

0

suh that the normal Cauhy-Riemann operator of

u Æ ' beomes injetive for suÆiently small � > 0. Note that by the impliit funtion

theorem, there is a natural bijetive orrespondene between the sets of index 0 urves

in M

g

(A; J

0

; N) and M

g

(A; J

�

; N) for � suÆiently small. Now sine the set of overs

u Æ ' with u 2 M

g

(A; J

0

; N), ind(u) = 0 and deg(') � N is �nite up to biholomorphi

equivalene, one an repeat this proedure �nitely many times to obtain an arbitrarily

small perturbation J

00

of J

0

for whih all suh overs beome regular, meaning J

00

2

J

reg

(N).

Finally, the desired Baire subset an be de�ned as the ountable intersetion of the sets

J

reg

(N) for all possible N 2 N, g � 0 and A 2 H

2

(M), thus onluding the proof of

Theorem 1.3 for embedded urves.
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Remark 2.7. The diÆulty in using this method to prove super-rigidity for branhed overs

is that for a given (�; j) and N 2 N, the set of inequivalent branhed overs of (�; j)

with degree at most N is generally unountable, so there is no guarantee that any single

perturbation J

�

ould make the normal operator injetive for all of them at one. The

analyti perturbation trik unfortunately provides no obvious ontrol over the funtion

' 7! sup

�

�

0

> 0 j D

N
uÆ'

de�ned with respet to J

�

is injetive for all � 2 (0; �

0

℄

	

;

e.g. it ould vary disontinuously as ' moves in the moduli spae of branhed overs.

The above argument ould also be repeated verbatim to �nd orresponding Baire sub-

sets of J (M ; U ; J

�x

) and J

tame

(M;! ; U ; J

�x

) that establish regularity for unbranhed

overs of embedded urves. This means all simple urves without loss of generality if

dim

R

M � 6, but a modi�ed argument is needed in dimension four to handle urves with

self-intersetions. If dim

R

M = 4, we modify the de�nition of M

g

(A; J;N) as follows. For

any simple urve u 2M

g;0

(A; J), de�ne the integer d(u) � 0 by

2d(u) =

�
�

f(z; �) 2 �� � j u(z) = u(�) and z 6= �g

�
�

:

Reall that by the adjuntion inequality, this number satis�es

A �A � 2d(u) + 

1

(A)� (2� 2g);

with equality if and only if u is immersed with only transverse double points. With this

in mind, de�ne

d(A; g) :=

1
2

(A � A� 

1

(A)) + 1� g;

and de�ne M

g

(A; J;N) via onditions (1), (2) and (4) above, plus the following replae-

ment of ondition (3):

(3a) min

z2�

jdu(z)j �

1

N

;

(3b) There exists a point z

0

2 � suh that

inf

z2�nfz

0

g

dist(u(z

0

); u(z))

dist(z

0

; z)

�

1

N

;

(3) M ontains d := d(A; g) distint points p

1

; : : : ; p

d

2 M at whih ju

�1

(p

j

)j > 1,

and

dist ((p

1

; : : : ; p

d

);�) �

1

N

;

where � �M

d

denotes the set of tuples (x

1

; : : : ; x

d

) for whih at least two of the

points oinide.

The adjuntion inequality implies that every urve in u 2 M

g

(A; J;N) is immersed with

transverse double points, all at distint points in the image, and

S

N2N

M

g

(A; J;N) now

onsists of all urves inM

g;0

(A; J) that have these properties. The only other modi�ation

needed from the embedded ase is in the proof that J

reg

(N) is dense. This is where we

need to allow J 2 J

tame

(M;! ; U ; J

�x

) instead of J

omp

(M;! ; U ; J

�x

), as Proposition 2.3

does not provide an !-ompatible perturbation if u has double points. Note however that

after a small perturbation of any given J , we are free to assume that all simple index 0

urves are immersed with transverse double points at separate points in the image (see

e.g. [Wena, Exerise 4.65 and x4.6℄), in whih ase Propositions 2.3 and 2.5 an be used
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to �nd an !-tame perturbation in J

reg

(N). With this established, the rest of the proof

goes through as before. �

3. Normal perturbations of almost omplex strutures

The purpose of this setion is to prove Proposition 2.3. Fix a tame almost omplex

struture J 2 J

tame

(M;! ; U ; J

�x

) and a losed J-holomorphi urve u : (�; j) ! (M;J)

that has image in U and is immersed with at most �nitely many double points, all trans-

verse and at distint points in the image. Note that if dim

R

M � 6, this assumption means

u is embedded.

Choose a omplex subbundle N

u

� u

�

TM suh that u

�

TM = T

u

� N

u

, where T

u

:=

imdu. In the 4-dimensional ase, our assumption about double points implies that we an

also arrange

(T

u

)

z

= (N

u

)

�

and (T

u

)

�

= (N

u

)

z

whenever u(z) = u(�) with z 6= �. To onstrut a suitable perturbation of J , �x Y 2

�(End

C

(TM; J)) with support in U and let

� := 1+

1
2

JY 2 �(End

R

(TM)):

We shall always assume that Y is C

0

-small enough for � to be everywhere invertible, in

whih ase

J

0

:= �J�

�1

de�nes an almost omplex struture that is lose to J and therefore tame if Y is suÆiently

small. We shall make use of the splitting u

�

TM = T

u

� N

u

and restrit Y by assuming

that along u, it takes the blok form

(3.1) Y (u(z)) =

�

0 Y

NT

(z)

0 0

�

2 End

C

(T

u

�N

u

) for all z 2 �;

where Y

NT

is a (neessarily omplex-antilinear) bundle map N

u

! T

u

. Note that if u has

any double points, then this ondition requires Y to vanish at the images of those points.

Writing the tangent and normal parts of J along u as J

T

: T

u

! T

u

and J

N

: N

u

! N

u

respetively, we now have

(3.2) �(u(z)) =

�

1

1
2

J

T

(z)Y

NT

(z)

0 1

�

for all z 2 �;

and thus

(3.3) J

0

(u(z)) =

�

J

T

(z) Y

NT

(z)

0 J

N

(z)

�

for all z 2 �.

This shows that J

0

j

T

u

= J j

T

u

, so u is also J

0

-holomorpi. We an now de�ne a J

0

-invariant

normal bundle along u by

N

0

u

:= �(N

u

) � u

�

TM;

so �j

N

u

: (N

u

; J) ! (N

0

u

; J

0

) is a omplex bundle isomorphism by onstrution. Let

�

N

0

: u

�

TM = T

u

�N

0

u

! N

0

u

denote the resulting normal projetion, whih gives rise to

a perturbed normal Cauhy-Riemann operator

D

N

0

u

= �

N

0

ÆD

0
u

�
�

�(N

0

u

)

: �(N

0

u

)! 


0;1

(�; N

0

u

);
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where D

0
u

denotes the linearized Cauhy-Riemann operator for u as a J

0

-holomorphi

urve. Conjugating this with the bundle isomorphism gives an operator

�

�1

ÆD

N

0

u

Æ � : �(N

u

)! 


0;1

(�; N

u

):

Lemma 3.1. There exists a smooth bundle map A : N

u

! Hom

C

(T�; N

u

) suh that

�

�1

ÆD

N

0

u

Æ � = D

N
u

+A. For any onnetion r on TM , A is given by the formula

A� = �

N

Æ r

�

Y Æ Tu Æ j:

Remark 3.2. Impliit in the above statement is that the expression on the right hand

side of the formula does not depend on the hoie of onnetion. This will follow from

a diret alulation in the proof, but the intuitive reason for it is that under the blok

deomposition of r

�

Y given by the splitting u

�

TM = T

u

�N

u

, only the lower-left blok

(mapping T

u

to N

u

) is relevant in the above expression, while the orresponding blok of

Y itself has been assumed to vanish along u.

Proof of Lemma 3.1. In terms of the splitting u

�

TM = T

u

� N

u

, the perturbed normal

projetion u

�

TM ! N

0

u

is given in blok form by

�

N

0

=

�

0

1
2

J

T

Y

NT

0 1

�

;

so using (3.2) to write �

�1

(u(z)) =

�

1 �

1
2

J

T

(z)Y

NT

(z)

0 1

�

, we �nd

�

�1

Æ �

N

0

= �

N

:

Reall now from [Wen10, Lemma 3.8℄ that D

u

maps setions of T

u

to (0; 1)-forms valued in

u

�

TM with vanishing normal omponent. The same applies to D

0
u

, hene for � 2 �(N

u

),

we have �� � � 2 �(T

u

) and thus

�

�

�1

ÆD

N

0

u

Æ �

�

� = (�

�1

Æ �

N

0

)D

0
u

(��) = �

N

(D

0
u

�):

To ompute D

0
u

�, hoose any smooth 1-parameter family of maps u

�

: � ! M for � 2

(��; �) with u

0

= u and �

�

u

�

j

�=0

= �. Then for any onnetion r on TM and any

holomorphi loal oordinate system (s; t) on some open subset in �, the (0; 1)-form D

0
u

�

is given loally by

(D

0
u

�)�

s

= r

�

�

�

s

u

�

+ J

0

(u

�

) �

t

u

�

�

�
�

�=0

= r

�

�

�

s

u

�

+ J(u

�

) �

t

u

�

+

�

J

0

(u

�

)� J(u

�

)

�

�

t

u

�

�

�
�

�=0

= (D

u

�)�

s

+ r

�

��

J

0

(u

�

)� J(u

�

)

�

�

t

u

�

�

�
�

�=0

= (D

u

�)�

s

+

�

r

�

(J

0

� J)

�

�

t

u+

�

J

0

(u)� J(u)

�

r

�

�

t

u

�

j

�=0

:

(3.4)

By (3.3), the image of J

0

�J has vanishing normal omponent everywhere along u, so the

third term on the right hand side of (3.4) does not ontribute to �

N

(D

0
u

�). Removing the

loal oordinates, we thus obtain the global expression

�

�

�1

ÆD

N

0

u

Æ �

�

� = D

N
u

� + �

N

Æ r

�

(J

0

� J) Æ Tu Æ j:
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To simplify the last term, observe that sine J

0

= �J�

�1

with � = 1+

1
2

JY , JY = �Y J

and J

2

= �1, we have

(J

0

� J)� = �J � J� =

�

1+

1
2

JY

�

J � J

�

1+

1
2

JY

�

=

1
2

JY J +

1
2

Y = Y;

hene J

0

� J = Y �

�1

, and therefore

r

�

(J

0

� J) = (r

�

Y )�

�1

+ Y (r

�

�

�1

):

Composing the seond of these two terms with Tu Æ j produes a setion with vanishing

normal omponent due to (3.1), so it does not ontribute. In the remaining expression,

�

�1

an be omitted sine it ats trivially on the tangential omponent, and this produes

the formula that was laimed. �

Proof of Proposition 2.3. Given a bundle map B : N

u

! Hom

C

(T�; N

u

), it will suÆe to

arry out the onstrution in Lemma 3.1 with � replaed by the 1-parameter family of

bundle isomorphisms �

�

= 1 +

1
2

�JY , as long as Y 2 �(End

C

(TM; J)) an be hosen

to math a blok expression of the form (3.1) along u, with normal derivative along u

satisfying

(3.5) �

N

Æ r

�

Y Æ Tu Æ j = B� for all � 2 N

u

:

Sine Tu Æ j : T�! T

u

is a omplex-linear bundle isomorphism, this is learly possible if

u is embedded, as one an then assume Y = 0 along u and hoose its normal derivative

to satisfy (3.5). Note that if J is !-ompatible, then J

�

will also be !-ompatible if and

only if Y is everywhere symmetri with respet to the metri !(�; J �), and this an also be

ahieved in the absene of double points sine (3.5) only onstrains the lower-left blok of

r

�

Y with respet to the splitting u

�

TM = T

u

�N

u

.

We must be a bit more areful if dim

R

M = 4 and u has double points. Assume

u(z) = u(�) = p, with (T

u

)

z

= (N

u

)

�

and vie versa. We an hoose loal oordinates

(z

1

; z

2

) 2 C

2

near p that identify p with the origin, while the images of u near z and � are

identi�ed with subsets of C � f0g and f0g � C respetively. In this neighborhood, hoose

a omplex loal trivialization of (TM; J) identifying the normal subspaes along C � f0g

with f0g � C and those along f0g � C with C � f0g, and let r be the trivial onnetion

with respet to this trivialization. We laim that in this trivialization near p, a suitable

Y an be written in the form

Y (z

1

; z

2

) =

�

0 Y

12

(z

1

; z

2

)

Y

21

(z

1

; z

2

) 0

�

for some funtions Y

12

and Y

21

valued in End

C

(C ). Indeed, the ondition (3.1) now beomes

Y

21

(z

1

; 0) = 0 for all z

1

;

Y

12

(0; z

2

) = 0 for all z

2

;

while (3.5) spei�es the normal derivatives of Y

21

along C � f0g and Y

12

along f0g � C .

After hoosing Y

12

and Y

21

to satisfy these onditions, we an then also arrange Y

21

(0; z

2

) =

Y

12

(z

1

; 0) = 0 for all z

1

; z

2

ouside some small neighborhood of 0, hene Y vanishes along u

outside a neighborhood of p, and the previous argument for the embedded ase an then

be used to extend Y globally. �
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Remark 3.3. If J is !-ompatible and u has double points, then the above proof fails

to provide !-ompatible perturbations J

�

: in a neighborhood of a double point, the last

step in the onstrution generally fores the upper-right blok of (3.1) to take nonzero

values, thus violating the symmetry ondition required for !-ompatibility. This is why

the statement of Theorem 1.3 in the ompatible ase is limited to embedded urves.

4. Symmetri bundle isomorphisms

We now state and prove a result that implies Proposition 2.4.

Proposition 4.1. Suppose E ! � is a Hermitian vetor bundle, let h ; i

R

denote the

real part of its bundle metri, and suppose L ! � is a omplex line bundle. Then every

homotopy lass of omplex-antilinear bundle isomorphisms B : E ! Hom

C

(L;E) ontains

one that satis�es the ondition

h�;B�(X)i

R

= hB�(X); �i

R

for all (X; �; �) 2 L�E �E:

Observe �rst that a hoie of omplex-antilinear isomorphism B : E ! Hom

C

(L;E)

is equivalent via the orrespondene B�(X) =

b

BX(�) to a hoie of omplex-antilinear

bundle map

b

B : L! End

C

(E)

with the property that for all nonzero X 2 L,

b

B(X) is invertible. Proposition 4.1 is

then equivalent to showing that every homotopy lass of bundle maps

b

B with the above

property ontains one for whih

b

B(X) is always symmetri. This is learly true for the

restrition of

b

B to the 0-skeleton of �, sine the spae of antilinear isomorphisms on any

omplex vetor spae is onneted and ontains one that is symmetri. Extending this to

the 1-skeleton and then the 2-skeleton of � is possible due to Proposition 4.2 below.

Identify C

m

with R

2m

so that End

C

(C

m

) is regarded as the real subspae of End

R

(R

2m

) =

End

R

(C

m

) onsisting of linear maps that ommute with the standard omplex struture

i 2 GL(2m;R). We then denote

Aut

C

(C

m

) := End

C

(C

m

) \GL(2m;R);

Aut

S
C

(C

m

) :=

�

A 2 Aut

C

(C

m

) j A = A

T

	

;

where A

T

means the usual transpose of real 2m-by-2m matries.

Proposition 4.2. We have

�

1

�

Aut

C

(C

m

);Aut

S
C

(C

m

)

�

= �

2

�

Aut

C

(C

m

);Aut

S
C

(C

m

)

�

= 0:

The proof of the proposition oupies the remainder of this setion. Observe �rst that

omposition with the real-linear isomorphism

C

m

! C

m

: v 7! �v

identi�es Aut

C

(C

m

) with GL(m; C ) � GL(2m;R) and Aut

S
C

(C

m

) with

GL

S

(m; C ) :=

�

A 2 GL(m; C ) j A = A

T

	

;
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where in the latter ase A

T

denotes the transpose (not the adjoint!) of them-by-m omplex

matrix A, i.e. A

T

= A

y

. The proposition is therefore equivalent to the omputation

(4.1) �

1

�

GL(m; C );GL

S

(m; C )

�

= �

2

�

GL(m; C );GL

S

(m; C )

�

= 0:

We prove this in �ve steps.

Step 1. Consider the map

(4.2) Q : GL(m; C )=O(m; C ) ! GL

S

(m; C ) : A 7! A

T

A;

where O(m; C ) denotes the omplex orthogonal group fA 2 GL(m; C ) j A

T

A = 1g. We

laim that Q is a bijetion. Injetivity is easy to hek; surjetivity follows from the fat

that every A 2 GL

S

(m; C ) de�nes a symmetri nondegenerate omplex bilinear form

(v; w) 7! v

T

Aw;

and all suh forms are equivalent up to a hoie of basis. Sine GL(m; C ) is onneted, it

follows that GL

S

(m; C ) is onneted.

Step 2. We laim that for all m 2 N, O(m; C ) has exatly two onneted omponents.

It is lear that there are at least two, as every A 2 O(m; C ) has detA = �1. It suÆes

therefore to prove that SO(m; C ) := fA 2 O(m; C ) j detA = 1g is onneted. This is true

for m = 1 sine SO(1; C ) is the trivial group. The laim then follows by indution using

the �bration

SO(m� 1; C ) ,! SO(m; C )

�

! H

m�1

;

where H

m�1

:= fv 2 C

m

j v

T

v = 1g and �(A) is de�ned as the �rst olumn of A. The fat

that � is surjetive an be proved using the same argument that is used in diagonalizing

quadrati forms: it redues to the fat that any given v

1

2 H

m�1

an be extended to a

omplex basis v

1

; : : : ; v

m

2 H

m�1

of C

m

suh that v

T

i

v

j

= Æ

ij

.

Step 3. We laim that �

1

(GL(m; C )=O(m; C ))

�
=

Z is generated by the projetion to

GL(m; C )=O(m; C ) of the path

 : [0; 1℄ ! GL(m; C ) : t 7!

0
B
B
B
�

e

�it

1

.

.

.

1

1
C
C
C
A

:

To see this, onsider the long exat sequene of the �bration O(m; C )

�

,! GL(m; C )

p

!

GL(m; C )=O(m; C ):

: : : �! �

1

(GL(m; C ))

p

�

�! �

1

(GL(m; C )=O(m; C ))

�

�!

�

0

(O(m; C )) �! �

0

(GL(m; C )) = 0:

Any loop in GL(m; C )=O(m; C ) an be represented as a path � : [0; 1℄ ! GL(m; C ) with

�(0) = 1 and �(1) 2 O(m; C ), and the map � an then be written as

�[�℄ = det�(1) 2 f1;�1g = �

0

(O(m; C ));

applying the result of Step 2. Sine ker � = im p

�

, any suh path � with det�(1) = 1

is equivalent in �

1

(GL(m; C )=O(m; C )) to a loop in GL(m; C ), and using the standard
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omputation of �

1

(GL(m; C )) = �

1

(U(m)), any suh loop is homotopi to

S

1

! GL(m; C ) : t 7!

0
B
B
B
�

e

2�kit

1

.

.

.

1

1
C
C
C
A

for some k 2 Z. Thus any suh element of �

1

(GL(m; C )=O(m; C )) is an even power

of . If on the other hand det �(1) = �1, then we an onatenate � with the loop

t 7! [�(1)(t)℄ in GL(m; C )=O(m; C ), whose determinant at t = 1 is positive, implying

that � �  2 �

1

(GL(m; C )=O(m; C )) is an even power of , so this proves the laim.

Step 4. We laim that the omposition of the map Q in (4.2) with the inlusion

GL

S

(m; C ) ,! GL(m; C ) indues an isomorphism

�

1

(GL(m; C )=O(m; C )) = �

1

(GL(m; C )):

This follows by omputing the ation of this map on the generator of �

1

(GL(m; C )=O(m; C ))

as desribed in Step 3.

Step 5. Consider the homotopy exat sequene for (GL(m; C );O(m; C )):

: : : �!�

2

(GL(m; C ))

�

2

�! �

2

�

GL(m; C );GL

S

(m; C )

�

�

2

�!

�

1

�

GL

S

(m; C )

�

�

�

�! �

1

(GL(m; C ))

�

1

�! �

1

�

GL(m; C );GL

S

(m; C )

�

�

1

�!

�

0

�

GL

S

(m; C )

�

= 0:

We showed in Step 4 that �

�

is an isomorphism, thus �

1

= 0, implying that �

1

is injetive

and thus

�

1

�

GL(m; C );GL

S

(m; C )

�

= 0:

Moreover, the injetivity of �

�

implies �

2

= 0, so �

2

is surjetive and, sine �

2

(GL(m; C )) =

�

2

(U(m)) = 0,

�

2

�

GL(m; C );GL

S

(m; C )

�

= 0:

This ompletes the proof of Proposition 4.2 and hene, by standard obstrution theory as

in [Ste51℄, Proposition 4.1.

5. A Weitzenb

�

ok formula for antilinear perturbations

In preparation for the proof of Proposition 2.5, we now explain a generalization of the

Weitzenb�ok formula that was derived in x2.1 for trivial bundles on the torus.

Throughout this setion, we assume (�; j) is a losed onneted Riemann surfae and

(E; J)! (�; j) is a omplex vetor bundle of rank m 2 N with Hermitian struture h ; i

E

.

Fix also a j-invariant Riemannian metri on �, whih is the real part of a Hermitian

struture h ; i

�

on T�, and denote the indued volume form on � by d vol. This hoie

determines a omplex-linear bundle isomorphism

5

(5.1) T�! �

0;1

T

�

� : X 7! X

0;1

:= h�;Xi

�

5

We are using the onvention that Hermitian bundle metris are antilinear in the �rst and linear in the

seond argument.
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and onsequently a global trivialization

(5.2) �

1;0

T

�

�
 �

0;1

T

�

�! C : �
X

0;1

7! �(X):

Moreover, the rank m omplex bundle

F := �

0;1

T

�

�
E

inherits from h ; i

�

and h ; i

E

a Hermitian bundle metri h ; i

F

, and we shall de�ne

real-valued L

2

-pairings for setions of E and F by

h�; �i

L

2

(E)

:= Re

Z

�

h�; �i

E

d vol; for �; � 2 �(E);

h�; �i

L

2

(F )

:= Re

Z

�

h�; �i

F

d vol; for �; � 2 �(F ):

Given any real-linear map D : �(E) ! �(F ), the formal adjoint D

�

: �(F ) ! �(E) is

de�ned via the relation

h�;D�i

L

2

(F )

= hD

�

�; �i

L

2

(E)

for all � 2 �(E); � 2 �(F ):

Reall that D : �(E)! 


0;1

(�; E) = �(F ) is alled a Cauhy-Riemann type operator

on E if it satis�es the Leibniz rule

D(f�) = (

�

�f)� + f D� for all f 2 C

1

(�;R); � 2 �(E);

where

�

�f := df+i df Æj. Similarly, we will say that D : E ! 


1;0

(�; E) = �(�

1;0

T

�

�
E)

is an anti-Cauhy-Riemann type operator on E if it satis�es

(5.3) D(f�) = (�f)� + f D� for all f 2 C

1

(�;R); � 2 �(E);

with �f := df � i df Æ j. If D is of Cauhy-Riemann type, then it is well known that D

�

is

onjugate via real-linear bundle isomorphisms to another Cauhy-Riemann type operator;

more preisely, the natural omplex bundle isomorphism

(5.4) �

1;0

T

�

�
 F = �

1;0

T

�

�
 �

0;1

T

�

�
E = E

de�ned via (5.2) identi�es �D

�

with an anti-Cauhy-Riemann type operator

�D

�

: �(F )! �(E) = �(�

1;0

T

�

�
 F ) = 


1;0

(�; F ):

Proposition 5.1. Suppose D : �(E)! �(F ) is a real-linear Cauhy-Riemann type oper-

ator, B : E ! F is a omplex-antilinear bundle map satisfying the symmetry ondition

(5.5) Reh�;B�(X)i

E

= RehB�(X); �i

E

for all (X; �; �) 2 T��E �E;

and D

B

:= D + B. Then the omplex vetor bundle

6

Hom

C

(E;F ) admits a real-linear

anti-Cauhy-Riemann type operator �

H

suh that for all � 2 �(E),

D

�
B

D

B

� = D

�

D� +B

�

B� � (�

H

B)�:

6

We de�ne the omplex struture on Hom

R

(E;F ) and its subbundles suh as Hom

C

(E;F ) via the

omplex struture of F , i.e. B 7! J ÆB.
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Remark 5.2. In the above formula, the produt of �

H

B 2 


1;0

(�;Hom

C

(E;F )) with

� 2 �(E) is interpreted as a setion of E via the produt pairing

�

�

1;0

T

�

�
Hom

C

(E;F )

�


E ! �

1;0

T

�

�
 F

and the isomorphism (5.4).

The proof of Proposition 5.1 will rely mainly on a few basi observations about anti-

Cauhy-Riemann operators. Reall that a omplex-valued funtion f on an open subset of

� is alled antiholomorphi if it satis�es �f � 0. The omposition of a holomorphi and

an antiholomorphi funtion is antiholomorphi, and the produt of two antiholomorphi

funtions is also antiholomorphi, thus it makes sense to speak of antiholomorphi vetor

bundles over �. Anti-Cauhy-Riemann type operators have several properties analogous

to Cauhy-Riemann type operators, notably:

(1) The di�erene between two anti-Cauhy-Riemann type operators on the same bun-

dle is a zeroth-order operator.

(2) The omplex-linear part of any real-linear anti-Cauhy-Riemann type operator is

also an anti-Cauhy-Riemann type operator.

(3) Every antiholomorphi vetor bundle arries a natural omplex-linear anti-Cauhy-

Riemann operator that annihilates loal antiholomorphi setions, and onversely,

every omplex-linear anti-Cauhy-Riemann operator on (E; J) ! (�; j) indues

an antiholomorphi bundle struture in this way.

The �rst two statements are easy onsequenes of the Leibniz rule (5.3). The third is non-

trivial, but is equivalent to the orresponding fat about Cauhy-Riemann type operators

and holomorphi bundles over Riemann surfaes.

Lemma 5.3. Suppose E

1

and E

2

are omplex vetor bundles over (�; j) endowed with

anti-Cauhy-Riemann type operators D

1

and D

2

respetively. Then Hom

C

(E

1

; E

2

) admits

an anti-Cauhy-Riemann type operator D

12

suh that for all � 2 �(Hom

C

(E

1

; E

2

)) and

� 2 �(E

1

),

D

2

(��) = (D

12

�)� +�(D

1

�):

Proof. Write D

1

= D

C
1

+A and D

2

= D

C
2

+B, where D

C
1

and D

C
2

are omplex-linear anti-

Cauhy-Riemann type operators (e.g. the omplex-linear parts ofD

1

andD

2

respetively),

so

A : E

1

! �

1;0

T

�

�
E

1

and B : E

2

! �

1;0

T

�

�
E

2

are zeroth-order terms. Then D

C
1

and D

C
2

indue antiholomorphi bundle strutures on

E

1

and E

2

, and Hom

C

(E

1

; E

2

) therefore inherits loal trivializations with transition maps

that are produts of antiholomorphi funtions, giving rise to an antiholomorphi struture

and a orresponding omplex-linear anti-Cauhy-Riemann operator D

C
12

that satis�es

D

C
2

(��) = (D

C
12

�)� +�(D

C
1

�)

for all � 2 �(Hom

C

(E

1

; E

2

)) and � 2 �(E

1

). The desired operator an then be de�ned as

D

12

= D

C
12

+ C, where C : Hom

C

(E

1

; E

2

) ! �

1;0

T

�

� 
 Hom

C

(E

1

; E

2

) is a bundle map

taking the form

(C�)� = B(��)� �(A�) 2 �

1;0

T

�

�
E

2

for (�; �) 2 Hom

C

(E

1

; E

2

)�E

1

. �
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For any vetor bundle (E

1

; J

1

) over �, let E



1

denote its onjugate bundle, de�ned

as the same real vetor bundle but with omplex struture �J

1

. The identity map gives

a natural omplex-antilinear bundle isomorphism

E

1

! E



1

: v 7! �v;

and if E

1

arries a Hermitian bundle metri h ; i

E

1

, its onjugate inherits a Hermitian

struture de�ned by

h�v; �wi

E



1

= hw; vi

E

1

:

There are anonial omplex-linear bundle isomorphisms

(E

1


E

2

)



= E



1


E



2

; Hom

C

(E

1

; E

2

)



= Hom

C

(E



1

; E



2

); Hom

C

(E



1

; E

2

) = Hom

C

(E

1

; E

2

);

where the third of these identi�es � 2 Hom

C

(E



1

; E

2

) with the antilinear map

B : E

1

! E

2

: � 7! ���:

The metri on � determines a omplex-linear isomorphism

(T�)



! �

1;0

T

�

� :

�

X 7! X

1;0

:= hX; �i

�

;

so together with (5.1), this identi�es �

1;0

T

�

� and �

0;1

T

�

� with eah other's onjugate

bundles. Observe now that if D : �(E)! �(F ) is a Cauhy-Riemann type operator, then

D



�� := D�

de�nes an anti-Cauhy-Riemann type operator

D



: �(E



)! �(F



) = �

�

(�

0;1

T

�

�
E)



�

= �(�

1;0

T

�

�
E



) = 


1;0

(�; E



):

Given an antilinear bundle map B : E ! F , let � : E



! F denote the orresponding

omplex-linear bundle map suh that

B� = ���;

and let �

y

: F ! E



denote the adjoint of � with respet to the Hermitian strutures on

E



and F , i.e.

h�; ���i

F

= h�

y

�; ��i

E



for all (��; �) 2 E



� F:

Conjugating this then gives a bundle map

�

y

=

�

�

y

: F



! E:

We laim that � : E



! F an also be regarded as a bundle map F



! E. Indeed, using

the isomorphism

F



= (�

0;1

T

�

�
E)



= �

1;0

T

�

�
E



;

we obtain from � : E



! F a bundle map

F



= �

1;0

T

�

�
E



1
�

�! �

1;0

T

�

�
 F;

where the target an be identi�ed with E via (5.4).

Lemma 5.4. Fix a omplex-linear bundle map � : E



! F and let B : E ! F : � 7! ���.

Then B satis�es the symmetry ondition (5.5) if and only if � and

�

�

y

de�ne idential

bundle maps F



! E.
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Proof. It will suÆe to show that (5.5) holds if and only if for every z 2 �, � 2 E

z

and

�

� 2 F



z

,

Reh�

�

�; �i

E

= Reh

�

�

y

�

�; �i

E

:

Choose any nonzero vetor X 2 T

z

�; we an then write � = X

0;1


� 2 �

0;1

T

�

z

�
E

z

= F

z

where � := �(X)=jXj

2
�

2 E

z

. Similarly, ��� = B� = X

0;1


 �, where � := B�(X)=jXj

2
�

2

E

z

. Then

h

�

�

y

�

�; �i

E

= h

�

�;

�

��i

F



= h���; �i

F

= hX

0;1


 �;X

0;1


 �i

F

= hX;Xi

�

h�; �i

E

= hB�(X); �i

E

:

Likewise, writing �

�

� = X

0;1


 � for � := B�(X)=jXj

2
�

2 E

z

, we use the natural isomor-

phisms (5.2), (5.4) and

(�

0;1

T

�

�)



! �

1;0

T

�

� : X

0;1

7! X

1;0

to obtain

h�

�

�; �i

E

= h�(X

1;0




�

�); �i

E

= hX

1;0


 �

�

�; �i

E

= hX

1;0


X

0;1


 �; �i

E

=

�

hX;Xi

�

1

jXj

2
�

B�(X); �

�

E

= hB�(X); �i

E

:

�

Proof of Proposition 5.1. Writing D

�
B

= D

�

+B

�

, we �rst expand

D

�
B

D

B

� = (D

�

+B

�

)(D+B)� = D

�

D� +B

�

B� +D

�

(B�) +B

�

(D�):

We will see that all derivatives of � anel in the sum of the last two terms. Write

B� = ���, where � 2 �(Hom

C

(E



; F )). To understand D

�

(B�) = D

�

(���), we an view

�D

�

as an anti-Cauhy-Riemann type operator on F , and sine D



is likewise an anti-

Cauhy-Riemann type operator on E



, Lemma 5.3 provides an anti-Cauhy-Riemann type

operator �

H

on Hom

C

(E



; F ) suh that

(5.6) �D

�

(���) = (�

H

�)�� + �D



��:

For the �nal term in the expansion, observe that for any z 2 �, � 2 E

z

and � 2 F

z

,

Reh�;B�i

F

= Reh�; ���i

F

= Reh�

y

�; ��i

E



= Reh�;

�

�

y

�

�i

E

= Reh

�

�

y

�

�; �i

E

;

whih gives the formula B

�

� =

�

�

y

�

�, hene

(5.7) B

�

(D�) =

�

�

y

D



��:

Putting (5.6) and (5.7) together and applying Lemma 5.4, we have

D

�

(B�) +B

�

(D�) = �(�

H

�)�� + (

�

�

y

� �)D



�� = �(�

H

�)��;

and the stated formula follows by using the natural identi�ation of Hom

C

(E



; F ) with

Hom

C

(E;F ) to view �

H

as an anti-Cauhy-Riemann type operator on the latter. �

Suppose next that (

e

�; ~|) is another losed onneted Riemann surfae.
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De�nition 5.5. Given a nononstant holomorphi map ' : (

e

�; ~|)! (�; j) and a Cauhy-

Riemann type operator D on E, de�ne '

�

D to be the unique Cauhy-Riemann type

operator on '

�

E that satis�es

(5.8) ('

�

D)(� Æ ') = '

�

(D�) for all � 2 �(E):

The uniqueness of '

�

D is lear from (5.8). To see that suh an operator always exists,

write D = D

C

+ A where D

C

is a omplex-linear Cauhy-Riemann type operator and

A : E ! F is a real-linear bundle map, whih we an view equivalently as a (0; 1)-form

valued in End

R

(E). Then D

C

indues a holomorphi bundle struture on E, whih pulls

bak to de�ne a holomorphi struture on '

�

E and onsequently a Cauhy-Riemann type

operator '

�

D

C

. The operator '

�

D

C

+ '

�

A then satis�es (5.8).

Example 5.6. If u : (�; j)! (M;J) is an immersed J-holomorphi urve and ~u = u Æ ',

then D

N

~u

= '

�

D

N
u

.

The next lemma is only interesting when ' has branh points and is thus not needed

for the proof of Theorem 1.3, but the general ase of Proposition 2.5 requires it. Given D

and B as in Proposition 5.1 and a nononstant holomorphi map ' : (

e

�; ~|) ! (�; j), let

us abbreviate

e

E = '

�

E;

e

F = �

0;1

T

�

e

�


e

E;

e

D = '

�

D : �(

e

E)! �(

e

F ):

Viewing B as an End

C

(E)-valued (0; 1)-form on �, we an then de�ne

e

B = '

�

B 2 


0;1

(

e

�;End

C

(

e

E));

e

D

B

=

e

D+

e

B : �(

e

E)! �(

e

F ):

Choose a Hermitian struture h ; i

e

�

on T

e

�, whose real part is then a ~|-invariant Rie-

mannian metri on

e

�. The bundles

e

E and

e

F now inherit natural Hermitian strutures,

the former as the pullbak of E and the latter as the tensor produt �

0;1

T

�

e

� 


e

E, and

these determine formal adjoint operators

e

D

�

and

e

D

�
B

. The symmetry assumption (5.5) on

B implies that

e

B also satis�es this ondition, so that Proposition 5.1 gives a Weitzenb�ok

formula over

e

� in the form

e

D

�
B

e

D

B

� =

e

D

�

e

D� +

e

B

�

e

B� � (

~

�

H

e

B)�

for some anti-Cauhy-Riemann type operator

~

�

H

on Hom

C

(

e

E;

e

F ).

Lemma 5.7. Assume the Riemannian metri Reh ; i

e

�

on

e

� is at near all ritial points

of '. Then there exists a onstant  > 0 suh that

�
�~

�

H

e

B(z)

�
�

� jd'(z)j

2

for all z 2

e

�:

Proof. Reall from the proof of Proposition 5.1 that after identifying Hom

C

(

e

E;

e

F ) with

Hom

C

(

e

E



;

e

F ) by writing

e

B� =

~

��� for

~

� 2 �(Hom

C

(

e

E



;

e

F )), the operator

~

�

H

is determined

by the two anti-Cauhy-Riemann type operators

e

D



and �

e

D

�

via a Leibniz rule. It will

suÆe to hek that j

~

�

H

~

�j � jd'j

2

holds in suitable loal trivializations in a neighborhood

of eah branh point z

0

2

e

�. Sine the metri on

e

� is assumed at near z

0

and indues

the same onformal struture as ~|, we an �nd holomorphi oordinates z = s+ it on some

neighorhood

e

U �

e

� of z

0

in whih the area form determined by the metri is ds^dt, and the

indued bundle metri on �

0;1

T

�

e

�j

e

U

satis�es jd�zj

e

�

= 1. Choose holomorphi oordinates
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also on a neighborhood U � � of '(z

0

) and assume without loss of generality that '(

e

U) =

U . Next, �x a unitary trivialization of Ej

U

, pull it bak to de�ne a trivialization of

e

Ej

e

U

,

and use this together with the frame d�z to trivialize

e

F = �

0;1

T

�

e

� 


e

E over

e

U . These

trivializations identify D and

e

D loally with operators of the form

D =

�

� +A;

e

D =

�

� +

~

A;

where

�

� = �

s

+ i�

t

, A : U ! End

R

(C

m

) and

~

A :

e

U ! End

R

(C

m

). Using the natural

trivialization indued on

e

E



j

e

U

for whih the anonial antilinear isomorphism

e

E !

e

E



appears as omplex onjugation,

e

D



an now be written as

e

D



= � +

~

A



;

where

~

A



:

e

U ! End

R

(C

m

) is de�ned by

~

A



�� =

~

A�. Observe now that our trivializations of

e

E and

e

F over

e

U are both unitary, and sine the area form

e

U is also standard in oordinates,

the formal adjoint of

e

D takes the form

e

D

�

= �� +

~

A

T

:

From these expressions and the Leibniz rule (f. the proof of Lemma 5.3), one derives a

funtion

e

C :

e

U ! End

R

(End

C

(C

m

)) suh that the loal formula for

~

�

H

as a di�erential

operator on End

C

(C

m

)-valued funtions is

(5.9)

~

�

H

= � +

e

C where (

e

C�)�� = �

~

A

T

(���)� �(

~

A



��):

Reall now that sine

e

D = '

�

D, A and

~

A represent elements of 


0;1

(�;End

R

(E)) and




0;1

(

e

�;End

R

(

e

E)) respetively, with the latter being the pullbak of the former via '.

To make this expliit, the funtion A : U ! End

R

(C

m

) represents a (0; 1)-form that

orresponds under our trivialization of Ej

U

to d�z 
 A 2 


0;1

(End

R

(C

m

)), and

~

A then

orresponds to the pullbak '

�

(d�z 
 A) = d �' 
 (A Æ ') = d�z 
 '

0

� (A Æ '), giving the

relation

~

A(z) = '

0

(z)A('(z)):

This implies an estimate of the form j

~

A(z)j � j'

0

(z)j and, by (5.9), a similar estimate for

j

e

C(z)j. Finally, viewing

~

� as a (0; 1)-form valued in Hom

C

(

e

E



;

e

E), it is also the pullbak

of a Hom

C

(E



; E)-valued (0; 1)-form and is thus similarly represented in trivializations by

a funtion

~

� :

e

U ! End

C

(C

m

) that satis�es

~

�(z) = '

0

(z)�('(z))

for some funtion � : U ! End

C

(C

m

). The estimate j

~

�

H

~

�j = j�

~

� +

e

C

~

�j � j'

0

j

2

now

follows by a short alulation: indeed, j

e

C

~

�j � j

e

Cj � j

~

�j � j'

0

j

2

for some  > 0, and sine '

0

is antiholomorphi, �

~

� = �

�

'

0

� (� Æ ')

�

= '

0

(��Æ')'

0

similarly satis�es j�

~

�j � j'

0

j

2

. �

6. Regularity for the linearized operator

We now state and prove a linear perturbation result that implies Proposition 2.5. The

result is a higher-dimensional generalization of results for omplex line bundles that were

proved by Taubes [Tau96a,Tau96b℄, and similar results stated in [Rau04℄.
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Assume (�; j) and (

e

�; ~|) are losed onneted Riemann surfaes, ' : (

e

�; ~|) ! (�; j) is

a holomorphi map of degree d � 1, (E; J) ! (�; j) is a omplex vetor bundle of rank

m � 1, and D : �(E)! 


0;1

(�; E) is a real-linear Cauhy-Riemann type operator. As in

the previous setion, we shall abbreviate

e

E = '

�

E;

e

D = '

�

D;

where '

�

D : �('

�

E)! 


0;1

(

e

�; '

�

E) denotes the indued Cauhy-Riemann type operator

on the pullbak (see De�nition 5.5).

Now assume ind(D) = 0. By the Riemann-Roh formula, this means

�

1

(E) =m�(�) + 

1

(E) = 

1

(Hom

C

(T�; E));

so there exists a omplex-antilinear bundle isomorphism

B : E ! Hom

C

(T�; E):

Choosing a Hermitian bundle metri h ; i

E

on E, we an also arrange by Proposition 2.4

that B satis�es the symmetry ondition

(6.1) Reh�;B�(X)i

E

= RehB�(X); �i

E

for all (X; �; �) 2 T��E �E:

This gives rise to a 1-parameter family of real-linear Cauhy-Riemann type operators on

e

E, de�ned by

e

D

�

= '

�

(D+ �B) =

e

D+ �

e

B

for � 2 R, where we abbreviate

e

B := '

�

B with B regarded as an End

C

(E; J)-valued

(0; 1)-form. Let Z(d') � 0 denote the algebrai ount of branh points of ', whih is

��(

e

�) + d�(�) by the Riemann-Hurwitz formula. Then

ind(

e

D

�

) = m�(

e

�) + 2

1

('

�

E) = m [d�(�)� Z(d')℄ + 2d

1

(E)

= d � ind(D) �mZ(d') = �mZ(d') � 0:

Theorem 6.1. The operators

e

D

�

: �(

e

E) ! 


0;1

(�;

e

E) de�ned above are injetive for all

� 2 R outside of a disrete subset.

Remark 6.2. The proof of Theorem 1.3 only requires the speial ase of Theorem 6.1

for whih ' : (

e

�; ~|) ! (�; j) is unbranhed, and in this ase the proof below beomes

somewhat simpler, e.g. it does not require Lemma 5.7. The general ase of Theorem 6.1

may nonetheless be useful for proving stronger super-rigidity results.

As in x2.1, we an use analyti perturbation theory to redue this theorem to a state-

ment for partiular values of � . We �rst extend

e

D

�

to a Fredholm operator between

Hilbert spaes H

1

and L

2

, eah regarded as real vetor spaes (sine

e

D

�

itself is real and

not omplex linear), then omplexify and onsider the family of omplex-linear Fredholm

operators

e

D

�

: H

1

(

e

E)
 C ! L

2

(Hom

C

(T

e

�;

e

E))
 C

for � 2 C . This family depends holomorphially on � . Note that for � 2 R, the underlying

operator

e

D

�

is injetive whenever its omplexi�ation is injetive. Thus by Proposition A.1

in the appendix, in order to prove Theorem 6.1, it suÆes to establish the following:

Lemma 6.3. The operator

e

D

�

is injetive for all suÆiently large � > 0.
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Proof. Choose a Hermitian bundle metri on T

e

� that mathes the standard Hermitian

inner produt in some hoie of loal holomorphi oordinates near eah of the branh

points of '. This gives rise to a family of formal adjoint operators

e

D

�
�

with

e

D

�
0

=:

e

D

�

suh that by Proposition 5.1,

e

D

�
�

e

D

�

� =

e

D

�

e

D� + �

2

e

B

�

e

B� � �(

~

�

H

e

B)�;

and Lemma 5.7 also implies

�
�

~

�

H

e

B

�
�

� 

1

jd'j

2

for some 

1

> 0. Sine B is a bundle isomorphism, we an �nd another onstant 

2

> 0,

suh that jB�j � 

2

j�j and thus

�
� e

B�

�
�

� 

2

jd'j � j�j:

We then �nd for every � 2 �(

e

E),

k

e

D

�

�k

2
L

2

=

D

�;

e

D

�
�

e

D

�

�

E

L

2

=

D

�;

e

D

�

e

D� + �

2

e

B

�

e

B� � �(

~

�

H

e

B)�

E

L

2

= k

e

D�k

2
L

2

+ �

2

k

e

B�k

2
L

2

� �

D

�; (

~

�

H

e

B)�

E

L

2

�

�

�

2



2
2

� �

1

�




jd'j � �




2
L

2

;

where the onstants 

1

; 

2

> 0 are independent of �. Sine jd'j > 0 almost everywhere,

we onlude that

e

D

�

is injetive whenever �

2



2
2

� �

1

> 0. �

Appendix A. Some analyti perturbation theory

The linear perturbation argument of x6 requires a basi ingredient from analyti per-

turbation theory in the spirit of [Kat95℄. Sine we were not able to �nd a referene for

the preise result we need, we have inluded a proof of it in this appendix for the sake of

ompleteness.

Given omplex Banah spaesX and Y , denote by L(X;Y ) the Banah spae of bounded

omplex-linear operators X ! Y , abbreviate L(X) := L(X;X), and let Fred(X;Y ) �

L(X;Y ) denote the open subset onsisting of Fredholm operators. Sine Fred(X;Y ) arries

a natural omplex struture as a subset of L(X;Y ), it makes sense to speak of holomor-

phi maps into Fred(X;Y ), i.e. maps whih are Fr�ehet di�erentiable with omplex-linear

derivative.

Proposition A.1. Suppose U � C is a onneted open subset and U ! Fred(X;Y ) : � 7!

T

�

is a holomorphi map, and let

Z = f� 2 U j T

�

is not injetiveg:

Then either Z is a disrete subset of U , or Z = U .

Proof. Given any T

0

2 Fred(X;Y ), there exist splittings into losed linear subspaes

X = V � kerT

0

; Y =W � okerT

0

suh that T

0

j

V

is an isomorphism V ! W . Using this splitting, we an write any other

T 2 Fred(X;Y ) in blok form as

T =

�

A B

C D

�

;
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and de�ne O � Fred(X;Y ) to be the open neighborhood of T

0

for whih the blok A is

invertible. We an then de�ne a holomorphi map

� : O ! L(kerT

0

; okerT

0

) : T 7! D�CA

�1

B:

We laim that for allT 2 O, kerT

�
=

ker�(T). To see this, assoiate to T the isomorphism

	 =

�

1 �A

�1

B

0 1

�

2 L(V � kerT

0

) = L(X):

Then T	 =

�

A 0

C �(T)

�

, and sine A is invertible, kerT	 = f0g�ker �(T), from whih

the laim follows.

Now if U ! Fred(X;Y ) : � ! T

�

is a family of operators depending holomorphially

on � , then �xing any �

0

2 U and plaing T

�

0

in the role of T

0

above, one an de�ne � on

a neighborhood of T

�

0

so that

� 7! �(T

�

)

de�nes a holomorphi urve mapping into the �nite-dimensional omplex vetor spae

L(kerT

�

0

; okerT

�

0

) for � in a neighborhood of �

0

. The set of all � near �

0

for whih T

�

is not injetive then orresponds to the intersetions of this holomorphi urve with the

strati�ed omplex subvariety of noninjetive maps in L(kerT

�

0

; okerT

�

0

), whih has pos-

itive odimension. The proposition thus follows from the standard results on intersetions

of holomorphi urves with omplex submanifolds. �
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