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Setup:

I A abelian variety / C

I T∨A = A× V its cotangent bundle

I D ⊂ A a reduced divisor

I For each p ∈ Sm(D) we get a line

γD(p) := ker
(
V = T∨p A −→ T∨p D

)
⊂ V

I The Gauss map is the rational map

γD : D 99K PV, p 7→ γD(p).
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Remark. For a reduced irreducible D ⊂ A the following are
equivalent:

I D is ample.

I Stab(D) := {x ∈ A | D + x = D} is finite.

I γD : D 99K PV is a generically finite dominant cover.

If these properties are not satisfied, then the divisor comes
by pullback from an abelian quotient variety A/Stab(D) of
smaller dimension and we can work directly there.

Q: What can we say about the generic degree deg(γD)?
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Example. Let (A,Θ) be a ppav with dim(A) = g.

I We have deg(γΘ) ≤ g! with equality iff Θ is smooth.

I If (A,Θ) = Jac(C) is the Jacobian of a smooth projective
curve, then

deg(γΘ) =

 2g if C is hyperelliptic,(
2g−2
g−1

)
otherwise.

I If (A,Θ) is a generic Prym variety, a result by Verra says
that

deg(γΘ) = D(g) + 2g−3 where D(g) = · · ·
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The goal of today’s talk is to explain the following answer to
a conjecture by Codogni, Grushevsky and Sernesi:

Thm 1. For any d ∈ N the Gauss loci

Gd = {(A,Θ) ∈ Ag | deg(γΘ) ≤ d} ⊆ Ag are closed.

Thm 2. Inside Ag we have:

I The closure of the locus of Jacobians is a component of
the Gauss locus Gd for d =

(
2g−2
g−1

)
.

I The closure of the locus of hyperelliptic Jacobians is a
component of Gd für d = 2g.

I The closure of the locus of Prym varieties is a component
of Gd for d = D(g) + 2g−3.
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More interestingly, our proof gives a new method to compute
Gauss degrees by degeneration...

For theorem 2 we show that the stratification of Ag by the
degree of the Gauss map refines the Andreotti-Mayer strata

Nc =
{

(A,Θ) ∈ Ag | dim Sg(Θ) ≥ c
}

for c ∈ N.

More precisely:

Thm 3. Let N ⊂ Nc be an irreducible component whose
general point corresponds to a ppav (A,Θ) where Sg(Θ) has
no negligible component. ThenN is an irreducible component
of the Gauss locus Gd for some d ∈ N.
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Here a closed subvariety Z ⊆ A is called negligible if comes
by pullback from a proper abelian quotient variety, i.e. iff the
stabilizer

Stab(Z) := {x ∈ A | Z + x = Z} has positive dimension.

Remark. If A is simple as an abelian variety, it has no proper
negligible closed subvarieties. Thus thm 3 ⇒ thm 2.

We don’t know if the assumption in thm 3 is needed:

Q: Are there indecomposable ppav’s (A,Θ) ∈ Ag such that
the underlying reduced subscheme of the singular locus Sg(Θ)
has a negligible irreducible component?
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Our method also works for the intersection cohomology Euler
characteristic χIC(X) of subvarieties X ⊆ A. For instance:

Corollary 4. For any d ∈ N the loci

Xd = {(A,Θ) ∈ Ag | χIC(Θ) ≤ d} ⊆ Ag are closed.

Corollary 5. Inside Ag, the closure of the locus of Jacobian
varieties is an irreducible component of Xd for d =

(
2g−2
g−1

)
.

Q: The above answer to the Schottky problem only sees the
homeomorphism type of the theta divisor. Does the same hold
for all the loci Gd and Nc?
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Ideas of the proof

I Gauss maps via conormal varieties

I Lagrangian specialization

I Kashiwara’s index formula



Preliminary remark: Isn’t semicontinuity obvious?

Example. Let f : P3 99K P3 be the generically finite rational
map defined by a linear system of four generic cubics passing
through n < 27 given points.

Then

I deg(f) = 27− n if the points are in general position.

I deg(f) = 20 − (n − δ) if δ ≥ 4 of them are in general
position on a line and the others in general position.

Moving the points, we can get families of rational maps where
the degree jumps both up and down under specialization!
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We have to show that for Gauss maps on abelian varieties
such things do not happen:

Semicontinuity theorem. Let A→ S be an abelian scheme
and D ⊂ A a relatively ample divisor which is flat over S,
then for each d ∈ N the subsets

Sd := {s ∈ S | deg(γDs) ≤ d} ⊆ S are Zariski closed.

Jump criterion. Let dimS = 1 and 0 ∈ S(C). If Sg(D0)
has a non-negligible component that is not in the closure
of
⋃
s 6=0 Sg(Ds), then

deg(γD0) < deg(γDs) for all nearby s 6= 0.
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E.g. in this picture the degree jumps down at 0 ∈ S unless
the solid red line is negligible:

The proof of the semicontinuity theorem and jump criterion
uses specialization of conormal varieties...
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Conormal varieties

I Let W be an ambient smooth variety.

I For any closed subvariety X ⊆W consider the conormal
variety

ΛX = {(x, ξ) | x ∈ Sm(X), ξ ∈ T∨xW, ξ ⊥ TxX}

⊆ T∨W

I The conormal varieties are precisely the conic Lagrangian
subvarieties of the cotangent bundle.

I We put L(W ) =
⊕

X⊆W Z · ΛX .
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Suppose W is projective of pure dimension n.

Definition. The degree of a conic Lagrangian cycle is its
intersection number with the zero section i : W ↪→ T∨W
of the cotangent bundle:

deg : L(W ) −→ CHn(T∨W )
i∗−→ CHn(W ) � Z

Remark. The degree is the topological Euler characteristic
weighted by the local Euler obstruction EuX : W → Z of
MacPherson:

deg(ΛX) = (−1)dimX · χtop(X, EuX)

= (−1)dimX · χtop(X) if X is smooth
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The degree of conormal varieties can be negative. On abelian
varieties this doesn’t happen:

Positivity (Franecki-Kapranov, Weissauer). If W = A is
an abelian variety, then

I deg(ΛX) ≥ 0 for all X ⊆ A.

I deg(ΛX) = 0 iff X is negligible.

I deg(ΛX) = deg(γX) for the Gauss map

γX : ΛX ⊆ T∨A = A× V p2−→ V

NB. If X ⊆ A is a divisor, then after projectivizing the fibers
of the cotangent bundle the above Gauss map resolves the
classical Gauss map. So their degrees are the same.
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To prove semicontinuity for Gauss maps of conormal varieties,
we recast the definitions in a relative setting:

I Let f : W → S be a smooth proper morphism.

I For any closed subvariety X ⊆ W consider the relative
conormal variety

ΛX/S = {(x, ξ) | x ∈ Sm(X/S), ξ ⊥ TxXf(x)}

⊆ T∨(W/S)

I As before we put

L(W/S) =
⊕
X⊆W

Z · ΛX/S .
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For dim(S) = 1 we have:

Principle of Lagrangian specialization. The map sending
a relative conormal variety to its fiber over s ∈ S(C) gives a
homomorphism

sps : L(W/S) −→ L(Ws), Λ 7→
[
Λ · f−1(s)

]
.

For any subvariety X ⊆W there exists a finite subset Σ ⊂ S
such that

sps(ΛX/S) =


ΛXs if s /∈ Σ,

msΛXs +Rs if s ∈ Σ,

w/ ms ≥ 1 and an effective cycle Rs supported over Sg(Xs).
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Semicontinuity is now obvious:

Corollary. Let W = A→ S be an abelian scheme and X ⊆ A
a closed subvariety which is flat over S. Then the map

S → N0, s 7→ deg(ΛXs) is lower semicontinuous.

Proof.

I By flatness, d := deg(sps(ΛX/S)) is independent of s.

I Write sps(ΛX/S) = ΛXs +Rs for a cycle Rs ≥ 0.

I Then we get

deg(ΛXs) = d− deg(Rs) ≤ d

with < at most for the finitely many s with Rs 6= 0.
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For the jump criterion we need to know if Rs 6= 0. This has
nothing to do with abelian varieties, we work in the following
setup:

I S is a smooth curve,

I f : W → S is a smooth dominant morphism,

I X ⊆W is a closed subvariety flat over S,

I d := codim(X,W ).

Our jump criterion for divisors follows from:

Proposition. Assume d = 1. If Sg(X/S) has an irreducible
component Z which is contained in the fiber over s ∈ S(C),
then

Rs := sps(ΛX/S) − ΛXs ≥ ΛZ .
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Sketch of proof. We may assume

I Z = Sg(X/S),

I T∨(W/S) = W × V is trivial,

I X ⊂W is cut out by a regular sequence f1, . . . , fd

(we don’t assume d = 1 yet).

The relative Gauss map X 99K Gr(d, V ) is resolved by blowing
up Z, and

αX : X̂ = BlZ(X) −→ X ×Gr(d, V )

is a closed immersion (use X̂ = ProjX
⊕

n≥0 InZ & Plücker).
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By base change to the flag variety we then get the following
diagram:

Y X × Fl(d, 1, V ) X × PV

X̂ X ×Gr(d, V )

π

αX

Let

I αY : Y → X × PV be the composite of the top row,

I EY := π−1(EX) for the exceptional divisor EX ⊂ X̂.

Claim. For the support Λ = Supp(sps(ΛX/S)) ⊆ X × V we
have

αY (EY ) ⊆ PΛ.
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This finishes the proof:

I We have n := dim(Ws) = dim(EY ).

I For d = 1 the morphism αY = αX is a closed immersion
and we get

dim(αY (EY )) = n.

I Since Λ is of pure dimension n, it follows that

αY (EY ) ⊆ Λ is a union of components of Λ.

I But Λ ⊆ T∨Ws is conic Lagrangian and hence each of
these components is a conormal variety.

I As αY (EY ) surjects onto Z, we get ΛZ ⊆ αY (EY ).
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Remark. The same works also for d = codim(X,W ) > 1 if
the morphism

αY : EY −→ X × PV

is generically finite onto its image.

Q: This seems a very mild condition. Does it always hold?

EY Y X × Fl(d, 1, V ) X × PV

EX BlZ(X) X ×Gr(d, V )
Gauss
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Final remark: Relation with topology

Setup:

I X complex algebraic variety

I IH•(X) intersection cohomology

I χIC(X) :=
∑

i∈Z(−1)dimX+i dim IHi(X).

Theorem. Let A → S be an abelian scheme and X ⊆ A a
subvariety such that the map X → S is flat with generically
reduced fibers. Then for all d ∈ N the subsets

Sd := {s ∈ S | χIC(Xs) ≤ d} ⊆ S are Zariski closed.
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This is again a result about conormal degrees:

I Kashiwara’s index formula says χIC(Xs) = deg(CC(δXs))
for the cycle

CC(δXs) = ΛXs + · · · ∈ L(As).

I Specialization of conic Lagrangian cycles corresponds to
the nearby cycles functor on perverse sheaves: A theorem
by Ginzburg says

CC(Ψs(P )) = sps(CC(P )) for all P ∈ Perv(A).

I Now apply this to perverse intersection complexes.
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Why perverse sheaves?

I For any ambient smooth projective variety W we have
defined deg : L(W )→ Z.

I For X ⊆W the degree

deg(ΛX) = (−1)dimX · χtop(X, EuX)

is in general not a topological invariant. A cuspidal cubic
and a smooth rational curve have different EuX .

I But in the world of perverse sheaves we have

deg
(
CC(δX)

)
= deg

(
ΛX + · · ·

)
= χIC(X)

which only depends on the homeomorphism type of X.
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Thank you very much!
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