Research Seminar
SoSe 2023

Table of Contents
Organization [ back ]
Prof. Carsten Carstensen
Contact: Benedikt Gräßle (graesslb(at)math.hu-berlin.de)
The seminar talks usually take place on Tuesday at 1 pm.
The announcements for each talk will be sent via a mailing list. Please contact Benedikt Gräßle (graesslb(at)math.hu-berlin.de) if you want to join the list.
Location [ back ]
Humboldt-Universität zu Berlin, Institut für Mathematik
Rudower Chaussee 25, 12489 Berlin
House 2, Floor 4, Room 2.417
Schedule [ back ]
Date | Time | Talk by | Title | Room |
---|---|---|---|---|
April 19, 2023 | 13:15 | Benedikt Gräßle (HU Berlin) | The hierarchical Argyris AFEM with optimal convergence rates | 2.417 |
April 25, 2023 | 13:15 | Georgi Mitsov (HU Berlin) | Combining time-stepping θ-schemes with dPG-FEM for the solution of the heat equation | 2.417 |
May 02, 2023 | 13:15 | Stefan Sauter (Uni Zürich) | The method of integral equations for acoustic transmission problems with varying coefficients | 2.417 |
May 09, 2023 | 13:15 | Lara Théallier (HU Berlin) | Implementing HHO for linear elasticity | 2.417 |
May 10, 2023 | 14:45 | Neela Nataraj (IIT Bombay) | Discussion on WOPSIP | 2.417 |
May 16, 2023 | 13:15 | Felix Goldmann (HU Berlin) | Discontinuous Galerkin method for the Parabolic Obstacle Problem | 2.417 |
May 16, 2023 | 15:00 | Ngoc Tien Tran (Uni Jena) | Minimal residual methods for PDE of second order in nondivergence form | 2.417 |
May 23, 2023 | 13:15 | Johannes Storn (Uni Bielefeld) | Advantages of Dual Formulations in Computational Calculus of Variations | 2.417 |
May 30, 2023 | 13:15 | Joscha Gedicke (Uni Bonn) | P₁ finite element methods for an elliptic optimal control problem with pointwise state constraints | 2.417 |
June 13, 2023 | 13:15 | Emilie Pirch (Uni Jena) | TBA | 2.417 |
July 18, 2023 | 13:15 | Christian Merdon (WIAS Berlin) | TBA | 2.417 |
Abstracts [ back ]
Speaker: | Stefan Sauter |
---|---|
Title: | The method of integral equations for acoustic transmission problems with varying coefficients |
In our talk we will derive an integral equation method which transforms
a three-dimensional acoustic transmission problem with variable
coefficients and mixed boundary conditions to a non-local equation on
the two-dimensional boundary and skeleton of the domain. For this goal,
we introduce and analyze abstract layer potentials as solutions of
auxiliary coercive full space variational problems and derive jump
conditions across domain interfaces. This allows us to formulate the
non-local skeleton equation as a direct method for the unknown Cauchy
data of the original partial differential equation. We develop a theory
which inherits coercivity and continuity of the auxiliary full space
variational problem to the resulting variational form of the skeleton
equation without relying on an explicit
knowledge of Green's function. Some concrete examples of full and half
space transmission problems with piecewise constant coefficients are
presented which illustrate the generality of our integral equation
method and its theory.
This talk comprises joint work with Francesco Florian, University of Zurich and Ralf Hiptmair, ETH Zurich. |
|
Speaker: | Johannes Storn |
Title: | Advantages of Dual Formulations in Computational Calculus of Variations |
Duality theory is a very useful tool in the calculus of variations. In this talk we exploit this tool to overcome the Lavrentiev gap phenomenon and to design an iterative scheme for the computation of the p-Laplace problem with large exponents. | |
Speaker: | Joscha Gedicke |
Title: | P₁ finite element methods for an elliptic optimal control problem with pointwise state constraints |
We present theoretical and numerical results for two P₁ finite element methods for an elliptic distributed optimal control problem on general polygonal/polyhedral domains with pointwise state constraints. |
Archive [ back ]
- Current Seminar
- Winter Semester 2022/2023
- Summer Semester 2020
- Winter Semester 2019/2020
- Summer Semester 2019
- Winter Semester 2018/2019
- Summer Semester 2018
- Winter Semester 2017/2018
- Summer Semester 2017
- Winter Semester 2016/2017
- Summer Semester 2016
- Winter Semester 2015/2016
- Summer Semester 2015
- Winter Semester 2014/2015
- Summer Semester 2014
- Winter Semester 2013/2014
- Summer Semester 2013
- Winter Semester 2012/2013
- Summer Semester 2012
- Winter Semester 2011/2012
- Summer Semester 2011